JP2006232572A - Apparatus for forming fine particle of chemically combined explosive, apparatus for manufacturing chemically combined fine particle explosive, and method for manufacturing chemicaly combined fine particle explosive - Google Patents

Apparatus for forming fine particle of chemically combined explosive, apparatus for manufacturing chemically combined fine particle explosive, and method for manufacturing chemicaly combined fine particle explosive Download PDF

Info

Publication number
JP2006232572A
JP2006232572A JP2005045729A JP2005045729A JP2006232572A JP 2006232572 A JP2006232572 A JP 2006232572A JP 2005045729 A JP2005045729 A JP 2005045729A JP 2005045729 A JP2005045729 A JP 2005045729A JP 2006232572 A JP2006232572 A JP 2006232572A
Authority
JP
Japan
Prior art keywords
conduit
carbon dioxide
fine particle
explosives
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005045729A
Other languages
Japanese (ja)
Other versions
JP4635154B2 (en
Inventor
Shinichi Matsuzaki
伸一 松崎
Katsuto Otake
勝人 大竹
Takehiro Matsunaga
猛裕 松永
Shuzo Fujiwara
修三 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koki Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nippon Koki Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koki Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nippon Koki Co Ltd
Priority to JP2005045729A priority Critical patent/JP4635154B2/en
Publication of JP2006232572A publication Critical patent/JP2006232572A/en
Application granted granted Critical
Publication of JP4635154B2 publication Critical patent/JP4635154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate the controlling of the particle shape and the particle size of a chemically combined fine particle explosive when performing the recrystallization of the chemically combined explosive using a supercritical CO<SB>2</SB>. <P>SOLUTION: There are provided a first conduit that introduces a solution of the chemically combined explosive being dissolved in an organic solvent, and a second conduit that is arranged coaxially with the first conduit and so as to surround the first conduit and that introduces the supercritical CO<SB>2</SB>, wherein the exit end of the second conduit is longer than the exit end of the first conduit by 5 mm or more, whereby the second conduit forms a single flow channel for performing the recrystallization of the chemically combined explosive by contacting the supercritical CO<SB>2</SB>with the solution. In the single flow channel the second conduit has the same inner diameter and a length of 5-200 mm. When the pressure within the second conduit reaches to a given pressure during introducing the supercritical CO<SB>2</SB>into the second conduit, the solution is introduced into the first conduit and in the single flow channel the recrystallization to the chemically combined fine particle explosive having a spherical shape is occurred by contacting the supercritical CO<SB>2</SB>with the solution, and the recrystallized chemically combined fine particle explosive is recovered. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、特定形状の乾燥した微粒子化合火薬類の微粒子生成装置、微粒子化合火薬類の製造装置および微粒子化合火薬類の製造方法に関し、詳しくは超臨界二酸化炭素と化合火薬類の溶解液を接触させて、球状体に再結晶化する微粒子化合火薬類の微粒子生成装置、微粒子化合火薬類の製造装置および微粒子化合火薬類の製造方法に関する。   TECHNICAL FIELD The present invention relates to a fine particle generating apparatus for dry particulate compound explosives having a specific shape, an apparatus for producing particulate compound explosives, and a method for producing particulate compound explosives, and more specifically, contacting a solution of supercritical carbon dioxide and compound explosives. The present invention relates to a fine particle generating apparatus for finely divided compound explosives that recrystallizes into a spherical body, a fine particle compounded explosives manufacturing apparatus, and a method for manufacturing finely divided compound explosives.

化合火薬類は、高威力、低感度のものが望まれる。
「火薬と発破」(須藤秀治、大久保正八郎、田中一三共著、オーム社、pp19〜)によると、化合火薬類の威力、例えば動的効果を評価するにあたって、爆ごう圧力Pは爆ごう速度(爆速)Dおよび化合火薬類の充填密度ρ0を用いてP=(1/4)ρ02と概算できる。そして、爆ごう理論から、爆ごう圧力は、化合火薬類の充填密度の影響を受け、化合火薬類を充填する際に死圧現象が起こらない範囲で充填密度を高くすることができれば、化合火薬類の威力を向上させることができる。
Chemical explosives are desired to have high power and low sensitivity.
According to "Explosives and Blasting" (Sudo Hideharu, Okubo Shohachiro, Tanaka Ichizo, Ohmsha, pp19-), in evaluating the power of chemical explosives, such as dynamic effects, the detonation pressure P is the detonation speed (Explosion speed) It can be approximated as P = (1/4) ρ 0 D 2 using D and the packing density ρ 0 of compound explosives. From the theory of detonation, if the detonation pressure is affected by the packing density of chemical explosives, and if the filling density can be increased within the range where no dead pressure phenomenon occurs when filling chemical explosives, chemical explosives You can improve the power of the kind.

また、「粉体 理論と応用」(久保輝一郎、水渡英ニ、中川有三、早川宗八郎共著、丸善株式会社、pp208〜)によると、粉体の充填密度は粒子径や粒子形状などの影響を受け、特に粒子形状が球から離れ、棒状、板状などの不規則な形になると、粉体の見掛け比容積が大きくなり、見掛け比容積の逆数として計算される見掛け密度が小さくなる。
したがって、化合火薬類を高密度に充填するためには、大小の粒子径の化合火薬類を混ぜ合わせて充填すれば、大粒子間の空隙に小粒子が詰まることで、高密度に充填することができ、その際、粒子形状が球状の化合火薬類粒子を用いることにより、さらに高密度に充填することができる。
According to "Powder Theory and Application" (Kuichiro Teruichiro, Eiji Mizuwatari, Yuzo Nakagawa, Sohachiro Hayakawa, Maruzen Co., Ltd., pp208 ~) In particular, when the particle shape departs from the sphere and becomes an irregular shape such as a rod shape or a plate shape, the apparent specific volume of the powder increases, and the apparent density calculated as the reciprocal of the apparent specific volume decreases.
Therefore, in order to pack compound explosives at high density, if compound explosives of large and small particle sizes are mixed and filled, small particles are clogged in the gaps between large particles, thus filling with high density. At that time, by using compound powders having a spherical particle shape, the particles can be filled at a higher density.

また、近年、化合火薬類を取り扱う際の危険性をできるだけ排除することが望まれており、この危険性は粒子形状を角の取れた球状化することで排除できる。すなわち、化合火薬類微粒子の粒子形状を角の取れた球状とすることで、充填密度の向上と、それによる燃焼特性の向上が期待できるだけでなく、近年の化合火薬類の取扱い感度低減の要請にも応えることができる。   In recent years, it has been desired to eliminate as much as possible the danger when handling compound explosives, and this danger can be eliminated by making the particle shape spherical. In other words, by making the particle shape of compound powder fine particles spherical with a rounded corner, not only can the packing density be improved and the combustion characteristics can be improved, but in recent years there has been a demand for reducing the handling sensitivity of compound powders. Can also respond.

従来、化合火薬類微粒子粉末の作製にあたり、機械的粉砕に依る微粒子化を行ってきた(例えば、非特許文献1参照)。機械的に大量に粉砕することは、発火・爆発の危険性が高く、また、粉砕された結晶同志の凝集による再付着もあることから、5μm以下の平均粒子径の微粒子粉末は、費用と効果の面から判断して現実的ではなかった。さらに、機械的粉砕による微細粒子粉末は、結晶形が不規則で、角張った結晶内部に歪エネルギを介在しているため、取扱い感度が鋭敏になる傾向があり、鈍感化傾向に進みつつある近年の火薬類の時勢にそぐわないばかりか、粒度分布もブロードな傾向にある。   Conventionally, fine powder by mechanical pulverization has been performed in the preparation of compound explosive fine particles (see, for example, Non-Patent Document 1). When mechanically pulverizing in large quantities, there is a high risk of ignition and explosion, and there is also re-adhesion due to agglomeration of the pulverized crystals, so a fine particle powder with an average particle size of 5 μm or less is costly and effective. Judging from this aspect, it was not realistic. Furthermore, fine particle powder by mechanical pulverization has an irregular crystal form, and strain energy is interposed inside the angular crystal, so that the handling sensitivity tends to be sharp, and the tendency to desensitize in recent years. In addition to the current trend of explosives, the particle size distribution tends to be broad.

そこで、化合火薬類を有機溶剤で溶解し、これを水などの貧溶媒中で析出させる化学的処理方法も検討されている。
出発成分をその成分を溶解しうる溶媒に溶解し、その後攪拌して得られた溶液を、エジェクターに供給し、エジェクターに供給される溶媒および水蒸気をディフューザ中で蒸発させるようにし、溶媒中に溶解した爆薬成分を結晶化し、または沈殿させ、その後サイクロン中で結晶成分を溶媒から分離し、溶媒は凝縮後再使用する微粒子化結晶質爆発性物質の製造方法が開示されている(例えば、特許文献1参照)。
Therefore, a chemical treatment method in which compound explosives are dissolved in an organic solvent and precipitated in a poor solvent such as water has been studied.
Dissolve the starting component in a solvent that can dissolve the component, then stir the solution, supply the ejector, evaporate the solvent and water vapor supplied to the ejector in the diffuser, and dissolve in the solvent A method for producing a micronized crystalline explosive material is disclosed in which the explosive component is crystallized or precipitated, and then the crystal component is separated from the solvent in a cyclone, and the solvent is condensed and reused (for example, patent document) 1).

また、出発成分である火薬組成物原料を有機溶剤に溶解または懸濁させ、不活性ガスなどを用いて霧状に噴射し、この噴射液がチェンバーを通過する間に、加温と減圧の少なくとも一方を行うことにより、有機溶剤の40〜90%を火薬組成物原料から留去した後、粉状火薬組成物が不溶の貧溶媒に接触させる粉状火薬組成物の製造方法および製造装置が開示されている(例えば、特許文献2参照)。   Further, the explosive composition raw material, which is a starting component, is dissolved or suspended in an organic solvent, and sprayed in a mist using an inert gas or the like, and at least heating and decompression are performed while the spray liquid passes through the chamber. Disclosed is a method and apparatus for producing a powdered explosive composition in which 40% to 90% of an organic solvent is distilled off from an explosive composition raw material by performing one, and then the powdered explosive composition is brought into contact with an insoluble poor solvent. (For example, refer to Patent Document 2).

また、火薬組成物原料(例えば、トリメチレントリニトラミン)を良溶媒(例えば、メチルエチルケトン)と混合し、1種以上の結晶性爆薬を良溶媒に20〜98wt%溶解し、その他の成分を完全に溶解させた固液共存状態の懸濁液を火薬組成物原料が不溶の貧溶媒(例えば、水)に接触させることにより、火薬組成物原料を析出させる粉状火薬組成物の製造方法が開示されている(例えば、特許文献3参照)。   In addition, the explosive composition raw material (for example, trimethylenetrinitramine) is mixed with a good solvent (for example, methyl ethyl ketone), and one or more crystalline explosives are dissolved in the good solvent by 20 to 98 wt%, and other components are completely dissolved. Disclosed is a method for producing a powdered explosive composition in which an explosive composition raw material is precipitated by contacting a suspension in a solid-liquid coexisting state dissolved in a powder with a poor solvent (eg, water) in which the explosive composition raw material is insoluble (For example, see Patent Document 3).

これらの従来技術は、再結晶後の結晶内部に良溶媒が取り込まれて、空隙(ボイド)を生じる場合があり、取扱い感度の鋭感化や威力低下の問題がある。
また、製造方法の観点から再結晶後にろ過、洗浄、乾燥工程などの煩雑な工程が必要となり、これらの工程を経るにしたがって、化合火薬類微粒子の粒子形状や粒子径などの品質への影響も問題となる。
In these conventional techniques, a good solvent is taken into the crystal after recrystallization and voids may be generated, and there is a problem that handling sensitivity becomes sharp and power is lowered.
In addition, complicated steps such as filtration, washing, and drying steps are required after recrystallization from the viewpoint of the manufacturing method, and as these steps pass, the effects on the quality such as the particle shape and particle size of chemical explosives fine particles are also affected. It becomes a problem.

さらに、製造時に廃液(例えば、有機溶剤を含む水など)が大量に出されるため、廃液の処理に多大な労力を要するだけでなく、近年の環境問題の観点から有機溶剤低減の時勢にそぐわず、これらの方法では結晶の析出、成長が遅いために、所望の粒子形状、粒子径に制御することが難しいという問題がある。
上記問題点から、近年、超臨界二酸化炭素を用いた化合火薬類の微粒子粉末製造方法が検討されている。二酸化炭素は不活性のガスであるため、不活性雰囲気下で化合火薬類の微粒子粉末製造を行うことができ、機械的粉砕のような微粒子粉末製造時の発火、爆発の危険性を排除することができる。また、二酸化炭素は、無毒性で減圧すれば容易に気化し、分離・回収・リサイクルが可能であるため、環境への負荷を低減することができるばかりか、製造時に出される廃棄物を低減することができる上に、廃棄物の処理に要する労力を低減することができる。
Furthermore, since a large amount of waste liquid (for example, water containing an organic solvent) is produced at the time of manufacture, not only does it require a lot of labor to process the waste liquid, but it is not suitable for the trend of organic solvent reduction from the viewpoint of environmental problems in recent years. However, these methods have a problem that it is difficult to control to a desired particle shape and particle diameter because of slow deposition and growth of crystals.
In view of the above problems, in recent years, methods for producing fine powders of chemical explosives using supercritical carbon dioxide have been studied. Since carbon dioxide is an inert gas, it is possible to produce compound powders of chemical explosives in an inert atmosphere, and eliminate the risk of ignition and explosion when producing fine particle powders such as mechanical grinding. Can do. Carbon dioxide is non-toxic and can be easily vaporized if reduced in pressure, and can be separated, recovered, and recycled, which not only reduces the burden on the environment, but also reduces the waste generated during production. In addition, the labor required for waste disposal can be reduced.

そこで、アセトンまたはシクロヘキサノンの有機溶媒にRDXを溶解し、溶媒に可溶でRDXには不溶である二酸化炭素から成るガス成分を、溶媒が過飽和状態に近づく、または達する、あるいは超過するように適量添加することにより、RDXを再結晶化する微粒子粉末製造方法が開示されている(例えば、特許文献4〜5参照)。
これらの微粒子粉末製造方法は、GAS(Gas Anti-Solvent)法により行われており、従来の再結晶化法で発生する結晶中の空隙(ボイド)をなくすこと、不純物を含まない結晶性爆薬を得ることを主眼としているが、二酸化炭素を所望の圧力まで添加するための添加速度と保持時間の管理が煩雑で、粒子形状や粒子サイズの制御が難しいという問題がある。
Therefore, RDX is dissolved in an organic solvent of acetone or cyclohexanone, and an appropriate amount of a gas component composed of carbon dioxide that is soluble in the solvent and insoluble in RDX is added so that the solvent approaches, reaches, or exceeds the supersaturated state. Thus, a fine particle powder manufacturing method for recrystallizing RDX is disclosed (for example, see Patent Documents 4 to 5).
These fine particle powder manufacturing methods are carried out by GAS (Gas Anti-Solvent) method, which eliminates voids in the crystal generated by the conventional recrystallization method and eliminates impurities in crystalline explosives. However, there is a problem that it is difficult to control the particle shape and the particle size because the management of the addition rate and the holding time for adding carbon dioxide to a desired pressure is complicated.

また、超臨界二酸化炭素中に化合火薬類を溶解し、噴霧ノズルを通して噴霧するRESS(Rapid Expansion of Supercritical Solutions)法を用いた化合火薬類の微粒子粉末製造方法が報告されている(例えば、非特許文献2参照)。
しかし、RESS法は、超臨界二酸化炭素に化合火薬類が溶解しないと、適用するのが困難な微粒子粉末製造方法であり、報告されている化合火薬類、例えばTNTの結晶は針状のような形状となり、衝撃・摩擦に対して感度が増大する問題があり、また、微粒子化合火薬類の製造において、噴霧と同時に微粒子粉末は乾燥してしまい、粉塵爆発の虞が予測される。
In addition, a method for producing fine powders of chemical explosives using a rapid expansion of supercritical solutions (RESS) method in which chemical explosives are dissolved in supercritical carbon dioxide and sprayed through a spray nozzle has been reported (for example, non-patented). Reference 2).
However, the RESS method is a fine particle powder manufacturing method that is difficult to apply unless the chemical explosives are dissolved in supercritical carbon dioxide. The reported chemical explosives such as TNT crystals are needle-like. There is a problem of increased sensitivity to impact and friction, and in the production of fine powdered pyrotechnics, the fine particle powder dries at the same time as spraying, and there is a risk of dust explosion.

また、非特許文献2には、高圧容器内の超臨界二酸化炭素雰囲気下に有機溶剤に溶解した化合火薬類の溶解液を噴射ノズルを通して噴射して、化合火薬類の再結晶を行う、PCA(Precipitation with a Compressed Fluid Antisolvent)法による化合火薬類の微粒子粉末製造方法も報告されている。しかし、報告されている化合火薬類、例えばRDXの結晶は、板状のような明確なエッジを有する形状となり、衝撃・摩擦に対して感度が増大する問題がある。   Non-Patent Document 2 discloses a PCA (a recrystallization of compound explosives by injecting a solution of compound explosives dissolved in an organic solvent in a supercritical carbon dioxide atmosphere in a high-pressure vessel through an injection nozzle. A method for producing fine powders of chemical explosives by the Precipitation with a Compressed Fluid Antisolvent method has also been reported. However, reported chemical explosives, for example, RDX crystals, have a plate-like shape with a clear edge, and there is a problem that sensitivity to impact and friction increases.

超臨界二酸化炭素を用いた化合火薬類の微粒子粉末製造方法は、所望の粒子形状および粒子径に制御するのが難しいといった、従来の化合火薬類の微粒子粉末製造方法と同様の問題を包含しており、このようにして得られた化合火薬類微粒子は、取扱い時の危険性を排除することが難しい。
これに対して、粒子形成容器内の温度および圧力を制御するための手段と、そして粒子形成容器中に、少なくとも一種の物質をビヒクルに溶かしまたは懸濁させた溶液または懸濁液と超臨界流体とを同時導入するための導入手段とを含んで成る粒状生成物を形成するための装置であって、導入手段が、超臨界流体を導入するための第一通路と、溶液または懸濁液を導入するための第二通路とを含み、第一通路および第二通路並びにこれらの各出口の相対配置が、使用の際、第一通路から導入される超臨界流体と第二通路から導入される溶液または懸濁液とが共に粒子形成容器に同一地点で流入し、その地点が超臨界流体と溶液または懸濁液とが接する地点と実質的に同一となり、そして超臨界流体の流れによって、超臨界流体と溶液または懸濁液とが接し、かつ粒子形成容器に流入する地点において、溶液または懸濁液を分散させることができるような配置とした粒子生成装置およびこの装置を用いた粒子生成方法が開示されている(例えば、特許文献6参照)。
The method for producing fine powder of chemical explosives using supercritical carbon dioxide includes the same problems as the conventional method for producing fine powder of chemical explosives, such as difficulty in controlling the desired particle shape and particle size. Therefore, it is difficult to eliminate the danger during handling of the compound powder fine particles obtained in this way.
In contrast, means for controlling the temperature and pressure in the particle formation vessel, and a solution or suspension in which at least one substance is dissolved or suspended in the particle formation vessel or a supercritical fluid An apparatus for forming a granular product comprising: a first passage for introducing a supercritical fluid; and a solution or suspension. And a relative arrangement of the first passage and the second passage and their respective outlets is introduced from the first passage and the supercritical fluid introduced from the first passage in use. Both the solution or suspension flow into the particle formation vessel at the same point, which is substantially the same as the point where the supercritical fluid and the solution or suspension contact, and the supercritical fluid flow Critical fluid and solution or suspension Disclosed is a particle generation device arranged to disperse a solution or suspension at a point where it comes into contact with a liquid and flows into a particle formation container, and a particle generation method using this device (for example, And Patent Document 6).

粒子生成法は、SEDS(Solution Enhanced Dispersion by Supercritical fluids)法と呼ばれ、粒子生成容器内に超臨界流体と溶液とを同時導入するための手段は、第一通路および第二通路から成る同軸通路を有し、それぞれの通路が出口端部で互いに隣接した末端を有する同軸ノズルを用いることに特徴がある。
同軸ノズルは、超臨界流体の流れによって粒子生成容器内に溶液を分散させるための手段であり、容器内へのビヒクルの分散と同時に超臨界流体にビヒクルを抽出して溶液中の物質の粒子を析出せしめる。
The particle generation method is called SEDS (Solution Enhanced Dispersion by Supercritical fluids) method, and the means for simultaneously introducing the supercritical fluid and the solution into the particle generation container is a coaxial passage composed of a first passage and a second passage. Characterized in that a coaxial nozzle is used, each passage having its ends adjacent to each other at the outlet end.
The coaxial nozzle is a means for dispersing the solution in the particle generation container by the flow of the supercritical fluid. At the same time as the dispersion of the vehicle in the container, the vehicle is extracted into the supercritical fluid and the particles of the substance in the solution are extracted. Precipitate.

しかし、同軸流路を形成する第一通路と第二通路のそれぞれの出口端は、互いに隣接した配置といった定性的な相対位置を規定しているのみで、相対位置が定量化されていない。さらに、超臨界流体により粒子形成容器中に分散された溶液の微小液滴から粒子を析出せしめる過程で、容器内に分散された液滴が互いに凝集したり、超臨界流体へのビヒクルの抽出が不十分な状態で容器内に分散されて、析出した粒子の結晶成長がおこり、粒子形状を所望の形状に制御するのが難しいという問題がある。
特開平1−313382号公報 特開2002−179490号公報 特開2002−179491号公報 米国特許5360478号明細書 米国特許5389263号明細書 特開2004−105953号公報 U.Teipel,I.Mikonsaari,”Size reduction of particulate energetic material”,PEP,27,168-174(2002). U.Teipel,H.Krober,and H.Krause,”Formation of Energetic Materials Using Supercritical fluids”,PEP,26,168-173(2001).
However, the outlet ends of the first passage and the second passage forming the coaxial flow path only define a qualitative relative position such as an arrangement adjacent to each other, and the relative position is not quantified. Furthermore, in the process of precipitating particles from the fine droplets of the solution dispersed in the particle formation container by the supercritical fluid, the droplets dispersed in the container aggregate each other, and the vehicle is extracted into the supercritical fluid. There is a problem that it is difficult to control the particle shape to a desired shape due to crystal growth of the particles dispersed and deposited in the container in an insufficient state.
JP-A-1-313382 JP 2002-179490 A JP 2002-179491 A US Pat. No. 5,360,478 US Pat. No. 5,389,263 JP 2004-105953 A U. Teipel, I. Mikonsaari, “Size reduction of particulate energetic material”, PEP, 27, 168-174 (2002). U. Teipel, H. Kraber, and H. Krause, “Formation of Energetic Materials Using Supercritical fluids”, PEP, 26, 168-173 (2001).

従来の化合火薬類微粒子の製造方法は、機械的粉砕では製造時の発火・爆発の危険性をともない、再結晶化法では製造後に大量の廃液が出されるため、廃液の処理に多大な労力を要する。
また、超臨界二酸化炭素を用いた微粒子粉末製造方法は、二酸化炭素が不活性のガスであるという特徴を活かして、製造時の発火・爆発の危険性を排除でき、微粒子粉末製造後に出される廃棄物の量を低減できる良い方法ではあるが、化合火薬類微粒子の粒子形状および粒子径を制御するのが困難であった。
The conventional method for producing fine powders of chemical explosives involves the risk of ignition and explosion during mechanical pulverization, and the recrystallization method generates a large amount of waste liquid after production. Cost.
In addition, the method for producing fine particle powder using supercritical carbon dioxide makes use of the feature that carbon dioxide is an inert gas, and can eliminate the risk of ignition and explosion during production. Although it is a good method that can reduce the amount of substances, it has been difficult to control the particle shape and particle size of the compound powder fine particles.

本発明は斯かる従来の問題点に鑑みて為されたもので、その目的は、超臨界二酸化炭素を用いて化合火薬類の再結晶化を行う際に化合火薬類微粒子の粒子形状および粒子径の制御が容易にできる微粒子化合火薬類の微粒子生成装置および製造装置ならびに微粒子化合火薬類の製造方法を提供することにある。   The present invention has been made in view of such conventional problems, and the object thereof is to form the particle shape and particle diameter of the chemical explosive fine particles when recrystallizing the chemical explosives using supercritical carbon dioxide. It is an object of the present invention to provide a fine particle generating apparatus and production apparatus for fine chemical compound, and a method for producing fine chemical compound.

請求項1に係る発明は、化合火薬類を有機溶剤に溶解した溶解液を導入する第一の導管と、第一の導管を囲繞して第一の導管と同軸上に配設され、超臨界二酸化炭素を導入する第二の導管とを備えている。第二の導管は、出口端部を第一の導管の出口端部より少なくとも5mm以上長くして、超臨界二酸化炭素と溶解液とが接触し化合火薬類の再結晶を行うための単一流路を形成している。   The invention according to claim 1 includes a first conduit for introducing a solution obtained by dissolving compound explosives in an organic solvent, a first conduit surrounding the first conduit, and coaxially disposed with the first conduit. And a second conduit for introducing carbon dioxide. The second conduit has an outlet end that is at least 5 mm longer than the outlet end of the first conduit so that the supercritical carbon dioxide and the solution come into contact with each other to recrystallize the chemicals. Is forming.

請求項2に係る発明は、請求項1に記載の微粒子化合火薬類の微粒子生成装置において、単一流路における第二の導管の内径は、同じである。
請求項3に係る発明は、請求項1または請求項2に記載の微粒子化合火薬類の微粒子生成装置において、単一流路の長さは、5mm〜200mmである。
請求項4に係る発明は、請求項1ないし請求項3の何れか1項に記載の微粒子化合火薬類の微粒子生成装置と、第二の導管の出口端部に連結する微粒子回収容器と、微粒子回収容器の出口側に連絡し、微粒子回収容器内の圧力を調整する圧力調整弁と、第一の導管に連絡し、化合火薬類を有機溶剤に溶解した溶解液を送液ポンプにより供給する溶解液供給装置と、第二の導管に連絡し、臨界二酸化炭素を供給する臨界二酸化炭素供給装置とを備えている。臨界二酸化炭素供給装置は、二酸化炭素を冷却・液化する冷却器と、冷却・液化した二酸化炭素を昇圧する昇圧ポンプと、昇圧ポンプから導入する二酸化炭素を超臨界二酸化炭素にする熱交換器とを有する。
According to a second aspect of the present invention, in the fine particle generating apparatus for fine particle pyrotechnics according to the first aspect, the inner diameter of the second conduit in the single flow path is the same.
According to a third aspect of the present invention, in the fine particle generating device for the fine chemical compound according to the first or second aspect, the length of the single flow path is 5 mm to 200 mm.
According to a fourth aspect of the present invention, there is provided a fine particle generating device for a fine chemical compound according to any one of the first to third aspects, a fine particle collecting container connected to an outlet end of a second conduit, and a fine particle Dissolution connected to the outlet side of the collection container and connected to the first conduit and pressure control valve that adjusts the pressure inside the particulate collection container, and a solution obtained by dissolving chemical explosives in an organic solvent is supplied by a feed pump A liquid supply device and a critical carbon dioxide supply device that communicates with the second conduit and supplies critical carbon dioxide are provided. The critical carbon dioxide supply device includes a cooler that cools and liquefies carbon dioxide, a booster pump that pressurizes the cooled and liquefied carbon dioxide, and a heat exchanger that converts carbon dioxide introduced from the booster pump into supercritical carbon dioxide. Have.

請求項5に係る発明は、請求項4項に記載の微粒子化合火薬類の製造装置を用いて微粒子化合火薬類に再結晶化する方法において、超臨界二酸化炭素を第二の導管内に導入中に第二の導管内の圧力が所定圧力に達したときに、溶解液を第一の導管内に導入し、単一流路において超臨界二酸化炭素と溶解液とを所定の流量で接触させて球状体の微粒子化合火薬類に再結晶化させ、再結晶化した微粒子化合火薬類を粒子回収容器に回収する。   According to a fifth aspect of the present invention, in the method for recrystallizing into a fine powdered pyrotechnics using the apparatus for producing fine powdered pyrotechnics according to claim 4, supercritical carbon dioxide is being introduced into the second conduit. When the pressure in the second conduit reaches a predetermined pressure, the solution is introduced into the first conduit, and the supercritical carbon dioxide and the solution are brought into contact with each other at a predetermined flow rate in a single flow path. Recrystallized into fine powdered explosives of the body, and the recrystallized fine powdered explosives are collected in a particle recovery container.

請求項6に係る発明は、請求項5に記載の微粒子化合火薬類の製造方法において、溶解液流量に対する超臨界二酸化炭素の流量比率は、30〜200である。
請求項7に係る発明は、請求項5または請求項6に記載の微粒子化合火薬類の製造方法において、溶解液導入時の第二の導管内の圧力は、12.7MPa〜29.4MPaである。
According to a sixth aspect of the present invention, in the method for producing the micronized pyrotechnics according to the fifth aspect, the flow rate ratio of the supercritical carbon dioxide to the solution flow rate is 30 to 200.
According to a seventh aspect of the present invention, in the method for producing a fine chemical compound according to the fifth or sixth aspect, the pressure in the second conduit at the time of introducing the solution is 12.7 MPa to 29.4 MPa. .

本発明においては、超臨界二酸化炭素を貧溶媒として用い、化合火薬類を有機溶剤に溶解した溶解液とし、超臨界二酸化炭素と溶解液の導入および接触を行うために第一の導管および第二の導管の一部(所定範囲)に同軸流路(第一の導管の流路と第二の導管の流路が重管する部分)を有し、同軸流路の下流に超臨界二酸化炭素と溶解液が接触し化合火薬類の再結晶を行うための単一流路(同軸流路を除く第二の導管だけの流路)を有する。単一流路(同軸流路を除く第二の導管だけの流路)は、第一の導管の出口端部よりも下流に配置する相対位置を構成する。そして、同軸流路(第一の導管の流路と第二の導管の流路)から単一流路(同軸流路を除く第二の導管だけの流路)内に連続して導入される超臨界二酸化炭素の流れの中で第二の導管内の圧力が所定圧力に達すると、第一の導管から溶解液を導入して両者を接触させる。これにより、単一流路内で超臨界二酸化炭素と溶解液の接触・混合、有機溶剤の抽出さらに溶解液中の化合火薬類の再結晶化が行われ、球状体に制御された微粒子化合火薬類が製造できる。   In the present invention, a superconducting carbon dioxide is used as a poor solvent, a chemical compound is dissolved in an organic solvent, and the first conduit and the second conduit are used for introducing and contacting the supercritical carbon dioxide and the dissolving liquid. A coaxial flow path (portion where the flow path of the first conduit and the flow path of the second conduit are overlapped) is provided in a part (predetermined range) of the superconducting carbon dioxide downstream of the coaxial flow path. It has a single flow path (the flow path of only the second conduit excluding the coaxial flow path) for resolving the chemical explosives in contact with the solution. The single flow path (the flow path of only the second conduit excluding the coaxial flow path) constitutes a relative position arranged downstream from the outlet end portion of the first conduit. Then, the super-sequentially introduced from the coaxial flow path (the flow path of the first conduit and the flow path of the second conduit) into the single flow path (the flow path of only the second conduit excluding the coaxial flow path). When the pressure in the second conduit reaches a predetermined pressure in the flow of critical carbon dioxide, a solution is introduced from the first conduit to bring them into contact with each other. As a result, contact and mixing of supercritical carbon dioxide and solution in a single channel, extraction of organic solvent, and recrystallization of compound explosives in the solution are carried out, and fine particle compound explosives controlled to be spherical. Can be manufactured.

本発明において、超臨界二酸化炭素は、二酸化炭素をその臨界点(臨界温度31℃および臨界圧力7.38MPa)以上に加温、加圧することにより得られ、それ以上加圧しても、液化しない状態の流体となった二酸化炭素をいい、通常、気体と液体の性質を有する。また、超臨界二酸化炭素は、例えば、ボンベなどに入った市販の二酸化炭素を、その臨界点以上にすることによって得ることができる。導入する二酸化炭素は、好ましくは純度99.9%以上の二酸化炭素が良い。   In the present invention, supercritical carbon dioxide is obtained by heating and pressurizing carbon dioxide to the critical point (critical temperature 31 ° C. and critical pressure 7.38 MPa) or higher, and is not liquefied even when further pressurized. It is carbon dioxide that has become a fluid and usually has gas and liquid properties. Supercritical carbon dioxide can be obtained, for example, by bringing commercially available carbon dioxide contained in a cylinder or the like to the critical point or higher. The carbon dioxide to be introduced is preferably carbon dioxide having a purity of 99.9% or more.

また、超臨界状態の二酸化炭素の好適な温度としては、31℃〜150℃、好ましくは35℃〜80℃とすることができる。
超臨界状態の二酸化炭素の好適な圧力としては、12.7MPa〜29.4MPa、好ましくは12.7MPa〜19.6MPa、より好ましくは13.7MPa〜19.6MPaとすることができる。
Moreover, as suitable temperature of the carbon dioxide of a supercritical state, it can be set to 31 to 150 degreeC, Preferably it can be set to 35 to 80 degreeC.
A suitable pressure of carbon dioxide in a supercritical state can be 12.7 MPa to 29.4 MPa, preferably 12.7 MPa to 19.6 MPa, more preferably 13.7 MPa to 19.6 MPa.

超臨界二酸化炭素の温度を31℃未満、または超臨界二酸化炭素の圧力を12.7MPa未満とすると、得られる化合火薬類の粒子形状が不規則形状となり好ましくない。
超臨界二酸化炭素の温度が150℃を超えた場合、再結晶化された化合火薬類が熱により発火・爆発する危険性があり、または再結晶化された化合火薬類が熱により分解する可能性があるため、好ましくない。
If the temperature of supercritical carbon dioxide is less than 31 ° C., or the pressure of supercritical carbon dioxide is less than 12.7 MPa, the particle shape of the obtained compound explosives becomes irregular, which is not preferable.
If the temperature of supercritical carbon dioxide exceeds 150 ° C, the recrystallized chemical explosives may ignite or explode due to heat, or the recrystallized chemical explosives may decompose by heat. This is not preferable.

超臨界二酸化炭素の圧力が29.4MPaを超えた場合は、粒子形状が12.7MPa〜29.4MPaの範囲内と同等の球状体となるので、必要以上に高くする意味がない。
微粒子生成装置に導入される超臨界二酸化炭素と溶解液は、超臨界二酸化炭素/溶解液の質量流量比率として30〜200、好ましくは50〜150として導入するのが良い。
超臨界二酸化炭素/溶解液の質量流量比率を30未満とすると、得られる粒子形状が不規則形状となり、好ましくない。また、超臨界二酸化炭素/溶解液の質量流量比率が200を超えた場合は、粒子形状が30〜200の範囲内と同等の球状体となるので、必要以上に高くする意味がない。
When the pressure of supercritical carbon dioxide exceeds 29.4 MPa, the particle shape is equivalent to a spherical body in the range of 12.7 MPa to 29.4 MPa, so there is no point in making it higher than necessary.
The supercritical carbon dioxide and the solution introduced into the fine particle generator are introduced as a supercritical carbon dioxide / solution mass flow rate ratio of 30 to 200, preferably 50 to 150.
When the mass flow rate ratio of supercritical carbon dioxide / dissolved solution is less than 30, the resulting particle shape is irregular, which is not preferable. In addition, when the mass flow rate ratio of supercritical carbon dioxide / dissolved solution exceeds 200, the spherical shape is the same as that in the range of 30 to 200, so there is no point in making it higher than necessary.

ここで、質量流量比率の計算式を示す。
超臨界CO2/溶解液の質量流量比率[−]=(超臨界CO2質量流量[kg/hr]*1000[g/kg]/60[min/hr])/溶解液質量流量[g/min]
例えば、超臨界二酸化炭素の質量流量を1.0kg/hrとした場合、質量流量比率30〜200の範囲内で、上記計算式から溶解液の質量流量は、略0.08〜0.5g/minの範囲となり任意に選定することができる。
Here, the calculation formula of the mass flow rate ratio is shown.
Mass flow rate ratio of supercritical CO 2 / solution [−] = (supercritical CO 2 mass flow rate [kg / hr] * 1000 [g / kg] / 60 [min / hr]) / solution mass flow rate [g / min]
For example, when the mass flow rate of supercritical carbon dioxide is 1.0 kg / hr, the mass flow rate of the solution is approximately 0.08 to 0.5 g / h from the above formula within a mass flow rate ratio of 30 to 200. It can be arbitrarily selected within the range of min.

・例示1:(1.0×1000÷60)÷30[比率]=0.555g/min
・例示2:(1.0×1000÷60)÷200[比率]=0.083g/min
また、化合火薬類は、例えば、トリメチレントリニトラミン(RDX)、シクロテトラメチレンテトラニトラミン(HMX)、ペンタエリスリトールテトラナイトレート(PETN)、ヘキサニトロスチルベン(HNS)、およびヘキサニトロヘキサアザイソウルチタン(CL−20)をはじめとする化合火薬類のうち、少なくとも1種の化合火薬類を用いることができる。
-Example 1: (1.0 × 1000 ÷ 60) ÷ 30 [ratio] = 0.555 g / min
Example 2: (1.0 × 1000 ÷ 60) ÷ 200 [ratio] = 0.083 g / min
Compound explosives include, for example, trimethylenetrinitramine (RDX), cyclotetramethylenetetranitramine (HMX), pentaerythritol tetranitrate (PETN), hexanitrostilbene (HNS), and hexanitrohexaazai. Among chemical explosives including Seoul Titanium (CL-20), at least one chemical explosive can be used.

有機溶剤は、化合火薬類が可溶で、超臨界二酸化炭素により容易に抽出することが可能な液体のことである。有機溶剤としては、例えば、アセトン、シクロヘキサノン、ジメチルスルホキシド(DMSO)、アセトニトリル、γ−ブチロラクトン、メチルエチルケトン、シクロペンタノン、ジメチルホルムアミド(DMF)などのうち、1種または2種以上の混合溶剤を使用することができ、好ましくはアセトン、シクロヘキサノン、またはDMSOを使用するのが良い。   An organic solvent is a liquid in which compound explosives are soluble and can be easily extracted with supercritical carbon dioxide. As the organic solvent, for example, one or a mixed solvent of two or more of acetone, cyclohexanone, dimethyl sulfoxide (DMSO), acetonitrile, γ-butyrolactone, methyl ethyl ketone, cyclopentanone, dimethylformamide (DMF), and the like is used. Preferably, acetone, cyclohexanone or DMSO is used.

化合火薬類を有機溶剤に溶解させた溶解液は、有機溶剤中の化合火薬類の濃度を、その製造条件での飽和濃度までの任意の濃度とすることができる。さらに、化合火薬類原料を完全に溶解させるために、室温以上で、かつ、有機溶剤の沸点以下の温度まで溶液を加温することができる。
また、本発明においては、粒子形状を「球状体」或いは「不規則形状体」と明記しているが、ここでは次のような意味で用いている。
In a solution obtained by dissolving chemical explosives in an organic solvent, the concentration of chemical explosives in the organic solvent can be set to any concentration up to the saturation concentration under the production conditions. Furthermore, in order to completely dissolve the chemical explosives raw material, the solution can be heated to a temperature not lower than room temperature and not higher than the boiling point of the organic solvent.
In the present invention, the particle shape is specified as “spherical body” or “irregularly shaped body”, but here it is used in the following meaning.

「球状体」とは、球状体、楕円状体などの角のとれた丸みを有する形状をいう。また、これらの混在をいう。
「不規則形状体」とは、板状、棒状、片状(鱗片、薄片など)、針状などの形状をいう。また、これらの混在をいう。
“Spherical body” refers to a shape having rounded corners such as a spherical body and an elliptical body. Moreover, these are mixed.
The “irregular shape body” refers to a plate shape, a rod shape, a flake shape (a scale piece, a thin flake, etc.), a needle shape or the like. Moreover, these are mixed.

本発明によれば、低感度で所望の球状に制御された微粒子化合火薬類を安全に製造することができる。
また、本発明によれば、不活性ガスである二酸化炭素の雰囲気下で再結晶化が行われるため、安全性の高い製造方法を提供することができる。しかも、製造時に用いる二酸化炭素や有機溶剤を回収して再利用することができるため、製造後に出される廃棄物の量、および廃棄物の処理に要する労力を低減することができる。
ADVANTAGE OF THE INVENTION According to this invention, the micronized compound explosives controlled to the desired spherical shape with low sensitivity can be manufactured safely.
Further, according to the present invention, since recrystallization is performed in an atmosphere of carbon dioxide that is an inert gas, a highly safe manufacturing method can be provided. In addition, since carbon dioxide and organic solvents used during production can be recovered and reused, the amount of waste produced after production and the labor required for waste disposal can be reduced.

また、本発明により得られる微粒子化合火薬類は、乾燥した凝集性の少ない微粒子であり、従来技術で一般的に行われている再結晶後のろ過・洗浄・乾燥工程といった煩雑な工程を省略することができるばかりでなく、上述の工程時に与える微粒子品質への影響を排除することができる。
また、本発明により得られた微粒子粉状化合火薬類を原料として製造した火薬類は、その燃焼特性または爆発特性およびそれらの物性が向上し、微粒子粉末の製造時および製造した微粒子化合火薬類を取り扱う際の衝撃や摩擦による発火・爆発の危険性を低減できる。
In addition, the fine powdered chemicals obtained by the present invention are dried fine particles having a low cohesiveness, and the complicated steps such as filtration, washing and drying steps after recrystallization generally performed in the prior art are omitted. In addition, it is possible to eliminate the influence on the fine particle quality given during the above-mentioned process.
In addition, the explosives manufactured using the fine powdered powdered explosives obtained by the present invention as a raw material have improved combustion characteristics or explosive characteristics and physical properties thereof, and the fine powdered explosives manufactured at the time of the production of the fine powder and manufactured Reduces the risk of ignition and explosion due to shock and friction when handling.

以下、本発明を図面に示す実施形態に基づいて説明する。
図1は、本発明の一実施形態に係る微粒子化合火薬類の微粒子生成装置10を示す(請求項1,2,3に対応する)。
本実施形態に係る微粒子生成装置10は、内径の大きな第二の導管12の内側に内径の小さな第一の導管11を同軸方向に装着し、第一の導管11および第二の導管12内の一部に超臨界二酸化炭素と溶解液とを導入して互いに接触することがない同軸流路13を形成し、同軸流路13の下流に連続して単一流路14を形成し、単一流路14においては、同軸流路13を構成する第一の導管11の出口端部11aが第二の導管12の出口端部12aよりも上流に配置されている。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
FIG. 1 shows a fine particle generating apparatus 10 for a fine chemical compound according to an embodiment of the present invention (corresponding to claims 1, 2 and 3).
In the particulate generator 10 according to the present embodiment, a first conduit 11 having a small inner diameter is mounted on the inner side of a second conduit 12 having a large inner diameter in a coaxial direction. A supercritical carbon dioxide and a solution are partially introduced to form a coaxial flow path 13 that does not come into contact with each other, a single flow path 14 is formed continuously downstream of the coaxial flow path 13, and a single flow path In FIG. 14, the outlet end 11 a of the first conduit 11 constituting the coaxial flow path 13 is disposed upstream of the outlet end 12 a of the second conduit 12.

第二の導管12は、例えば、材質にシリカを用い、その内径は0.2mm〜3.0mm、好ましくは0.3mm〜1.0mmが良く、第二の導管12の内径は、外部流路15および単一流路14において実質的に同一寸法とすることが好ましい。第二の導管12の出口端部12aをテーパ形状のように第二の導管12の出口端部12aの内径を小さく絞る構造とすると、単一流路14内で生成粒子による閉塞が起こり、好ましくない。   The second conduit 12 uses, for example, silica as a material, and its inner diameter is 0.2 mm to 3.0 mm, preferably 0.3 mm to 1.0 mm. The inner diameter of the second conduit 12 is an external flow path. 15 and the single channel 14 are preferably substantially the same size. If the outlet end portion 12a of the second conduit 12 has a structure in which the inner diameter of the outlet end portion 12a of the second conduit 12 is reduced so as to have a tapered shape, clogging by generated particles occurs in the single flow path 14, which is not preferable. .

第二の導管12の外径は、使用する材質特性に依存し、後述の好適な圧力および温度において破損することのない肉厚を有するように任意に選択することができる。また、例えば、第二の導管12の材質としてシリカを用いた場合、第二の導管12の外周をSUS316の管またはチューブで補強するような手段を講じることもできる。
第一の導管11は、例えば、材質にシリカを用い、その内径は0.05mm〜0.8mm、好ましくは0.07mm〜0.2mmが良い。第一の導管11の外径は、第二の導管12内に装着した際に構成される同軸流路13において、第二の導管12の内径/第一の導管11の外径の比率が1.5〜4.0、好ましくは、1.6〜2.1とするのが良い。
The outer diameter of the second conduit 12 depends on the material characteristics used, and can be arbitrarily selected so as to have a thickness that does not break at a suitable pressure and temperature described below. In addition, for example, when silica is used as the material of the second conduit 12, a means for reinforcing the outer periphery of the second conduit 12 with a tube or tube of SUS316 may be taken.
The first conduit 11 is made of, for example, silica and has an inner diameter of 0.05 mm to 0.8 mm, preferably 0.07 mm to 0.2 mm. The outer diameter of the first conduit 11 is such that the ratio of the inner diameter of the second conduit 12 to the outer diameter of the first conduit 11 is 1 in the coaxial flow path 13 configured when mounted in the second conduit 12. .5 to 4.0, preferably 1.6 to 2.1.

第二の導管12の内径/第一の導管11の外径の比率が、4.0より大きくなると、得られる再結晶化した化合火薬類の粒子形状が不規則形状となるため、好ましくない。
第一の導管11の出口端部11aは、第二の導管12の出口端部12aよりも上流に配置する。この相対位置は、例えば、5mm〜200mmの範囲に配置される。200mmを超えた場合は、粒子形状が5mm〜200mmの範囲内と同等の球状体となるので、相対位置を必要以上に長くする意味がない。5mm未満になると粒子形状が不規則形状となる。すなわち、5mm未満になると、超臨界二酸化炭素と溶解液との接触から化合火薬類の再結晶化にいたる物質移動プロセスが微粒子生成装置10の外で行われ、後述する微粒子回収容器内に溶解液が分散された後、または実質的に分散と同時に化合火薬類の再結晶化が起こるが、再結晶の過程で分散された微小液滴が互いに凝集して再結晶化されたり、超臨界二酸化炭素への有機溶剤の抽出が十分に行われずに微粒子回収容器内に滞留し、生成粒子の結晶成長が起こるために得られる化合火薬類の粒子形状が不規則形状となる。
If the ratio of the inner diameter of the second conduit 12 / the outer diameter of the first conduit 11 is greater than 4.0, the resulting recrystallized compound explosive particles have an irregular shape, which is not preferable.
The outlet end 11 a of the first conduit 11 is disposed upstream of the outlet end 12 a of the second conduit 12. This relative position is arrange | positioned in the range of 5 mm-200 mm, for example. When it exceeds 200 mm, the particle shape becomes a spherical body equivalent to the range of 5 mm to 200 mm, so there is no point in making the relative position longer than necessary. If it is less than 5 mm, the particle shape becomes irregular. That is, when the thickness is less than 5 mm, a mass transfer process from contact between supercritical carbon dioxide and the solution to recrystallization of the compound explosives is performed outside the particle generation apparatus 10, and the solution is placed in a particle collection container to be described later. After the liquid is dispersed or substantially simultaneously with the dispersion, the recombination of the compound explosives takes place, but the fine droplets dispersed during the recrystallization process are aggregated and recrystallized, or supercritical carbon dioxide. Since the organic solvent is not sufficiently extracted into the fine particles, the organic solvent stays in the fine particle collecting container and crystal growth of the generated particles occurs, so that the shape of the compound explosive particles becomes irregular.

次に、本実施形態に係る微粒子生成装置10の作用について説明する。
同軸流路13から単一流路14内に連続して導入される超臨界二酸化炭素の所定流量の流れの中に所定流量で溶解液を導入する。その際、超臨界二酸化炭素は所定圧力の状態にある。これにより、両者を接触させて溶解液を単一流路14内に分散し、この単一流路14内で、超臨界二酸化炭素と溶解液との混合、超臨界二酸化炭素への有機溶剤の抽出、および溶解液中の化合火薬類の再結晶が行なわれ、10μm以下の球状に制御された微粒子化合火薬類を析出する。
Next, the operation of the particulate generator 10 according to the present embodiment will be described.
A solution is introduced at a predetermined flow rate into a flow of supercritical carbon dioxide continuously introduced from the coaxial flow channel 13 into the single flow channel 14. At that time, the supercritical carbon dioxide is in a predetermined pressure state. Thereby, both are made to contact and a solution is disperse | distributed in the single flow path 14, In this single flow path 14, mixing of a supercritical carbon dioxide and a solution, extraction of the organic solvent to supercritical carbon dioxide, Then, the compound explosives in the solution are recrystallized, and fine compound explosives controlled to a spherical shape of 10 μm or less are deposited.

以上のように、本実施形態に係る微粒子生成装置10では、所定圧力および流量で連続して超臨界二酸化炭素が導入されている雰囲気下に所定流量で分散された溶解液の微小液滴は、互いに凝集することがなく、微小液滴単位で化合火薬類の再結晶化が起こり、さらに超臨界二酸化炭素と溶解液の接触から化合火薬類の再結晶化にいたる物質移動プロセスが、微粒子生成装置10内で完了するため、第二の導管12の出口端部12aを通して導かれた微粒子化合火薬類は、その後の結晶成長や凝集などの粒子形状に影響する要因が排除され、球状に制御された化合火薬類微粒子を生成することができる。   As described above, in the fine particle generation device 10 according to the present embodiment, the micro droplets of the dissolved liquid dispersed at a predetermined flow rate in an atmosphere in which supercritical carbon dioxide is continuously introduced at a predetermined pressure and flow rate, The chemical transfer explosives recrystallize in units of small droplets without agglomerating with each other, and the mass transfer process from contact of supercritical carbon dioxide with the solution to recrystallization of chemical explosives 10, the fine compounding explosives guided through the outlet end portion 12a of the second conduit 12 are controlled in a spherical shape by eliminating factors affecting the particle shape such as subsequent crystal growth and aggregation. Chemical explosive fine particles can be generated.

また、超臨界状態の二酸化炭素の好適な温度は、31℃〜150℃、好ましくは35℃〜80℃である。
図2は、本発明の一実施形態に係る微粒子化合火薬類の製造装置100の概要を示す。
微粒子生成装置10は、微粒子回収容器20の上面部に配置される。
微粒子生成装置10の第一の導管11には、溶解液導入管42が配置されている。溶解液導入管42は、バルブ40、送液ポンプ39を介して化合火薬類を有機溶剤に溶解した溶解液を収容する収納容器38内に連絡している。また、溶解液導入管42は、溶解液導入管42を加温する温度調節器41を備えている。
Moreover, the suitable temperature of the carbon dioxide of a supercritical state is 31 to 150 degreeC, Preferably it is 35 to 80 degreeC.
FIG. 2 shows an outline of the micronized pyrotechnics manufacturing apparatus 100 according to an embodiment of the present invention.
The particulate generator 10 is disposed on the upper surface of the particulate collection container 20.
A solution introduction pipe 42 is disposed in the first conduit 11 of the particulate generator 10. The solution introduction pipe 42 communicates with the inside of the storage container 38 for containing a solution obtained by dissolving chemical compounds in an organic solvent via a valve 40 and a liquid feed pump 39. The solution introduction pipe 42 includes a temperature controller 41 that heats the solution introduction pipe 42.

微粒子生成装置10の第二の導管12には、二酸化炭素導入管37が配置されている。二酸化炭素導入管37は、温度調節器35を備えた熱交換器36、バルブ34、昇圧ポンプ33、バルブ32、冷却器31を介して二酸化炭素ボンベ30に連絡している。
本実施形態において、微粒子生成装置10に導入する二酸化炭素は、熱交換器36により予め好適な温度される。微粒子生成装置10に導入される超臨界二酸化炭素が、好適な温度として導入されないと、得られる化合火薬類微粒子の粒子形状が不規則形状となり好ましくない。
A carbon dioxide introduction pipe 37 is disposed in the second conduit 12 of the particulate generator 10. The carbon dioxide introduction pipe 37 communicates with the carbon dioxide cylinder 30 through a heat exchanger 36 including a temperature controller 35, a valve 34, a booster pump 33, a valve 32, and a cooler 31.
In the present embodiment, the carbon dioxide introduced into the particulate generator 10 is preliminarily heated to a suitable temperature by the heat exchanger 36. If the supercritical carbon dioxide introduced into the fine particle generation apparatus 10 is not introduced at a suitable temperature, the particle shape of the obtained compound explosive particles becomes irregular, which is not preferable.

熱交換器36は、昇圧ポンプ33から二酸化炭素を導入して昇圧する過程で二酸化炭素を好適な温度に加温し、超臨界二酸化炭素として微粒子生成装置10に導入するために用いられる。熱交換器36は、例えば外径100mm、内径97mm、長さ270mmのSUSパイプの円周上に外径1/16インチ、内径0.8mm、長さ15mのSUS316チューブを一重に巻き付け、さらに外周に断熱材を巻きつけて温度調節器35を設置したものを用いている。   The heat exchanger 36 is used for warming carbon dioxide to a suitable temperature in the process of introducing and boosting carbon dioxide from the booster pump 33 and introducing the carbon dioxide into the particulate generator 10 as supercritical carbon dioxide. For example, the heat exchanger 36 is formed by winding a SUS316 tube having an outer diameter of 1/16 inch, an inner diameter of 0.8 mm, and a length of 15 m on a circumference of a SUS pipe having an outer diameter of 100 mm, an inner diameter of 97 mm, and a length of 270 mm. A heat insulator is wound around and a temperature controller 35 is installed.

微粒子回収容器20は、温度調節器25と圧力計26とを備えている。微粒子回収容器20は、生成した化合火薬類微粒子が微粒子回収容器20から排出するのを防ぐために、予め微粒子回収容器20の底面部の排出口に捕集手段21を設けている。捕集手段21は、例えば、メンブランフィルタ、ろ紙、焼結金属フィルタなどを用いることができ、微粒子回収容器20の排出口に捕集手段21をアルミテープなどで固定して用いることができる。   The particulate collection container 20 includes a temperature controller 25 and a pressure gauge 26. In the particulate collection container 20, in order to prevent the generated chemical explosives particulates from being discharged from the particulate collection container 20, a collecting means 21 is provided in advance at the outlet of the bottom surface portion of the particulate collection container 20. For example, a membrane filter, a filter paper, a sintered metal filter, or the like can be used as the collection means 21, and the collection means 21 can be used by fixing the collection means 21 with an aluminum tape or the like at the discharge port of the particulate collection container 20.

微粒子回収容器20には、好適な圧力まで昇圧されると、その圧力を保持する圧力調整弁22が連絡している。圧力調整弁22は、その圧力を保持するために排出口より二酸化炭素を排出する。圧力調整弁22の排出口より排出された二酸化炭素は、分離容器23を通して流量計24に導かれ、排出された二酸化炭素の流量を流量計24でモニタしながら好適な質量流量となるように昇圧ポンプ33の流量を調整する。   When the pressure is raised to a suitable pressure, the fine particle collection container 20 communicates with a pressure regulating valve 22 that holds the pressure. The pressure regulating valve 22 discharges carbon dioxide from the discharge port in order to maintain the pressure. The carbon dioxide discharged from the discharge port of the pressure regulating valve 22 is guided to the flow meter 24 through the separation container 23, and the pressure is increased so that a suitable mass flow rate is obtained while the flow rate of the discharged carbon dioxide is monitored by the flow meter 24. The flow rate of the pump 33 is adjusted.

次に、本実施形態に係る微粒子化合火薬類の製造装置100による作用を説明する。
熱交換器36および微粒子回収容器20を予め好適な温度に加温する。熱交換器36および微粒子回収容器20の温度は、好ましくは実質的に同じ、または熱交換器36の温度を幾分高めにするのが良い。
二酸化炭素ボンベ30からの二酸化炭素を冷却器31を通して冷却・液化して昇圧ポンプ33に導入する。昇圧ポンプ33に導入する前に二酸化炭素を冷却・液化しないと、昇圧ポンプ33内に気泡が入り、昇圧ポンプ33以降への二酸化炭素の導入が困難となったり、導入される二酸化炭素の流量が低下するため好ましくない。
Next, the effect | action by the manufacturing apparatus 100 of the fine particle compound explosives which concern on this embodiment is demonstrated.
The heat exchanger 36 and the particulate collection container 20 are preheated to a suitable temperature. The temperatures of the heat exchanger 36 and the particulate collection container 20 are preferably substantially the same, or the temperature of the heat exchanger 36 may be somewhat higher.
The carbon dioxide from the carbon dioxide cylinder 30 is cooled and liquefied through the cooler 31 and introduced into the booster pump 33. If the carbon dioxide is not cooled and liquefied before being introduced into the booster pump 33, bubbles will enter the booster pump 33, making it difficult to introduce carbon dioxide after the booster pump 33, and the flow rate of the introduced carbon dioxide is high. Since it falls, it is not preferable.

昇圧ポンプ33を作動させて二酸化炭素を熱交換器36に導き、さらに二酸化炭素導入管37から微粒子生成装置10の第二の導管12を通して微粒子回収容器20に導入し、好適な圧力まで昇圧する。ここで、図2における圧力保持領域は、昇圧ポンプ33および送液ポンプ39の下流に設置したバルブ34,40から圧力調整弁22に亘る範囲である。圧力保持領域が広範になるため、本実施形態では、代表して微粒子回収容器20に圧力計26を設置して測定している。   The pressurizing pump 33 is operated to introduce carbon dioxide into the heat exchanger 36, and further introduced into the particulate collection container 20 from the carbon dioxide introduction pipe 37 through the second conduit 12 of the particulate production apparatus 10, and the pressure is increased to a suitable pressure. Here, the pressure holding region in FIG. 2 is a range from the valves 34 and 40 installed downstream of the booster pump 33 and the liquid feed pump 39 to the pressure regulating valve 22. Since the pressure holding area is wide, in the present embodiment, the pressure gauge 26 is typically installed in the particulate collection container 20 for measurement.

二酸化炭素を導入して昇圧する過程で、熱交換器36を二酸化炭素が通過することで超臨界二酸化炭素となる。
微粒子回収容器20内が好適な圧力まで昇圧されると、その圧力を保持するように圧力調整弁22が作用する。この際、昇圧ポンプ33による二酸化炭素の導入を継続して行うと圧力を保持しつつ、圧力調整弁22の排出口より二酸化炭素が排出される。
In the process of introducing and increasing the pressure of carbon dioxide, carbon dioxide passes through the heat exchanger 36 and becomes supercritical carbon dioxide.
When the inside of the particulate collection container 20 is increased to a suitable pressure, the pressure regulating valve 22 acts so as to maintain the pressure. At this time, if carbon dioxide is continuously introduced by the booster pump 33, carbon dioxide is discharged from the outlet of the pressure regulating valve 22 while maintaining the pressure.

圧力調整弁22の排出口より排出された二酸化炭素は、分離容器23を通して流量計24に導かれ、排出された二酸化炭素の流量を流量計24でモニタしながら好適な質量流量となるように昇圧ポンプ33の流量を調整する。
導入される超臨界二酸化炭素が、好適な温度、圧力、および質量流量に制御されたところに、送液ポンプ39を用いて予め化合火薬類を有機溶剤に溶解した溶解液を好適な流量で溶解液導入管42から微粒子生成装置10の第一の導管11に導入する。その際、溶解液中の化合火薬類が、溶解液導入管42内および微粒子生成装置10の第二の導管12内で析出するのを防ぐために、温度調節器41を用いて予め溶解液導入管42を加温しておく。さらに、溶解液を導入する前に化合火薬類を含まない有機溶剤のみを導入してから溶解液を導入したほうが良い。
The carbon dioxide discharged from the discharge port of the pressure regulating valve 22 is guided to the flow meter 24 through the separation container 23, and the pressure is increased so that a suitable mass flow rate is obtained while the flow rate of the discharged carbon dioxide is monitored by the flow meter 24. The flow rate of the pump 33 is adjusted.
When the supercritical carbon dioxide to be introduced is controlled to a suitable temperature, pressure, and mass flow rate, a solution obtained by dissolving chemical compounds in an organic solvent in advance using a liquid feed pump 39 is dissolved at a suitable flow rate. The liquid is introduced from the liquid introduction pipe 42 into the first conduit 11 of the fine particle generating apparatus 10. At that time, in order to prevent the compound explosives in the solution from precipitating in the solution introduction tube 42 and in the second conduit 12 of the fine particle generating apparatus 10, the solution introduction tube is used in advance using the temperature controller 41. Warm 42. Furthermore, it is better to introduce only the organic solvent that does not contain chemical explosives before introducing the solution, and then introduce the solution.

微粒子生成装置10の第二の導管12を通して連続して導入される超臨界二酸化炭素の流れの中に第一の導管11を通して導入される溶解液を接触させることにより、単一流路14内に溶解液が分散され、超臨界二酸化炭素とともに激しく混合されると同時に超臨界二酸化炭素への有機溶剤の抽出が行われて化合火薬類が再結晶化され、再結晶化された化合火薬類微粒子が、第二の導管12の出口端部12aを通して微粒子回収容器20内に導かれる。   By dissolving the solution introduced through the first conduit 11 into the flow of supercritical carbon dioxide continuously introduced through the second conduit 12 of the particulate generator 10, the solution is dissolved in the single channel 14. The liquid is dispersed and mixed vigorously with supercritical carbon dioxide. At the same time, extraction of the organic solvent into supercritical carbon dioxide is performed to recrystallize the compound explosives. It is guided into the particulate collection container 20 through the outlet end 12 a of the second conduit 12.

再結晶終了後、好適な温度、圧力、および質量流量を維持しつつ超臨界二酸化炭素のみを1時間以上導入して、微粒子回収容器20内に残留する有機溶剤を超臨界二酸化炭素により除去する。超臨界二酸化炭素の導入が不十分だと、残留する有機溶剤の除去が不十分となり、減圧して二酸化炭素を排出した際に微粒子回収容器20内で気液相分離が起こり、有機溶剤相が出現して、再結晶された微粒子化合火薬類に降り注ぎ、粒子形状および粒子サイズに影響を及ぼす可能性があり、好ましくない。さらに、得られた微粒子化合火薬類が、出現した有機溶剤相に再溶解して、収率が低下する可能性があり、好ましくない。   After completion of the recrystallization, only supercritical carbon dioxide is introduced for 1 hour or more while maintaining a suitable temperature, pressure, and mass flow rate, and the organic solvent remaining in the fine particle collection container 20 is removed by supercritical carbon dioxide. If the introduction of supercritical carbon dioxide is insufficient, the removal of the remaining organic solvent becomes insufficient, and when the carbon dioxide is discharged under reduced pressure, gas-liquid phase separation occurs in the particulate collection container 20, and the organic solvent phase is changed. Appearing and falling on the recrystallized fine powdered explosives, which may affect the particle shape and particle size, which is undesirable. Furthermore, the resulting fine powdered explosives may be redissolved in the organic solvent phase that appears, which may reduce the yield, which is not preferable.

この際、圧力調整弁22の排出口から排出された有機溶剤を含む超臨界溶液は、分離容器23に導かれる。大気圧雰囲気下の分離容器23内で二酸化炭素と有機溶剤とに分離され、分離された有機溶剤は分離容器23内に残留し、二酸化炭素が流量計24に導かれる。分離容器23内に残留した有機溶剤、および流量計24より排出された二酸化炭素はそれぞれ回収して再利用することができる。   At this time, the supercritical solution containing the organic solvent discharged from the discharge port of the pressure regulating valve 22 is guided to the separation container 23. Carbon dioxide and an organic solvent are separated in a separation container 23 under an atmospheric pressure atmosphere. The separated organic solvent remains in the separation container 23, and the carbon dioxide is guided to the flow meter 24. The organic solvent remaining in the separation container 23 and the carbon dioxide discharged from the flow meter 24 can be recovered and reused.

二酸化炭素を排出して減圧することで、微粒子回収容器20内および捕集手段21から乾燥した球状に制御された微粒子化合火薬類を容易に回収することができる。
ステンレス鋼チューブとしては、例えば、外径1/4インチ、内径5mmのSUS316チューブを用いることができる。
以上のように、本実施形態によれば、超臨界二酸化炭素と溶解液の接触を単一流路14内で行い、かつ溶解液の分散が行われるだけでなく、超臨界二酸化炭素の連続した流れにより、分散された溶解液の微小液滴が互いに凝集することが防がれるとともに溶解液との混合性が高まり、有機溶剤の抽出が効率的に行われて溶解液中の化合火薬類の核生成に続いて起こる結晶成長が抑制され、球状に制御された微粒子化合火薬類を得ることができる。所望の球状に制御された微粒子化合火薬類は、取扱い感度を低減することができるだけでなく、このような化合火薬類微粒子は高密度に充填することができるため、燃焼特性を向上することができる。
By discharging the carbon dioxide and reducing the pressure, it is possible to easily collect the spherically controlled fine particle compound explosives controlled in the spherical shape from the fine particle collecting container 20 and the collecting means 21.
As the stainless steel tube, for example, a SUS316 tube having an outer diameter of 1/4 inch and an inner diameter of 5 mm can be used.
As described above, according to the present embodiment, not only the contact of the supercritical carbon dioxide and the solution is performed in the single flow path 14 and the dispersion of the solution is performed, but also the continuous flow of the supercritical carbon dioxide. Prevents the dispersed fine droplets of the dissolved solution from aggregating with each other and increases the mixing with the dissolved solution, thereby efficiently extracting the organic solvent and the core of the chemical explosives in the dissolved solution. Crystal growth occurring following the formation is suppressed, and spherical compounded explosives controlled to be spherical can be obtained. Desired spherical controlled fine particle compound explosives can not only reduce handling sensitivity, but also such compound explosive fine particles can be packed at high density, thus improving combustion characteristics. .

また、超臨界二酸化炭素は、減圧すれば気体として除去できるため、乾燥した微粒子化合火薬類を得ることができ、再結晶後の工程が容易である。さらに、排出された二酸化炭素から有機溶剤を容易に分離・回収することができるため、分離された二酸化炭素および有機溶剤を回収して再利用することもでき、微粒子粉末製造後に出される廃棄物の量を低減できるだけでなく、廃棄物の処理に要する労力を低減することができる。   In addition, since supercritical carbon dioxide can be removed as a gas when the pressure is reduced, dry particulate compound explosives can be obtained, and the process after recrystallization is easy. Furthermore, since the organic solvent can be easily separated and recovered from the discharged carbon dioxide, the separated carbon dioxide and the organic solvent can be recovered and reused. Not only can the amount be reduced, but also the labor required for waste disposal can be reduced.

その上、二酸化炭素が不活性ガスであるため、化合火薬類の微粒子粉末製造工程が不活性雰囲気下で行われ、製造時の発火・爆発の危険性も排除することができる。
このようにして得られた球状体の乾燥した微粒子化合火薬類は、更なる粉砕や洗浄、および乾燥の工程などを経ずに、直接、微粒子粉末の製品として用いることができる。
また、球状体の乾燥した微粒子化合火薬類を貯蔵、保管するために適度な水分を加えることもできる。
In addition, since carbon dioxide is an inert gas, the process for producing fine powders of chemical explosives is performed under an inert atmosphere, and the risk of ignition and explosion during production can be eliminated.
The thus obtained dried spherical fine particle compound explosives can be directly used as a fine particle powder product without further pulverization, washing and drying steps.
In addition, moderate moisture can be added to store and store the fine particle compound explosives dried in a spherical shape.

また、微粒子化合火薬類は、貯蔵・保管時の粒子凝集や結晶成長などによる粒子形状や粒子径の変化の影響を受けることがない。   In addition, the fine powdered explosives are not affected by changes in particle shape and particle diameter due to particle aggregation and crystal growth during storage and storage.

以下に、図2に示す微粒子化合火薬類の製造装置100を用いて微粒子化合火薬類を得る方法について具体的に説明する。なお、前述したとおり本発明の本質的な方法および作用効果を阻害しない範囲でプロセスの変更を加えることは可能であり、各実施例に限定されるものではない。
実施例において用いた測定方法などは、以下の通りである。
(粒度分布測定)
界面活性剤(分散媒)の約1%水溶液の5〜10mlを試験管に準備し、これにRDX微粒子粉末を約0.1g加え、数分間超音波により分散させる。分散させた微粒子粉末試料を下記の測定条件に従って、粒度分布測定を行った。
Hereinafter, a method for obtaining the fine powdered explosives using the fine powdered explosives manufacturing apparatus 100 shown in FIG. 2 will be specifically described. In addition, as described above, it is possible to add process changes within a range that does not hinder the essential method and effect of the present invention, and the present invention is not limited to each example.
The measurement methods used in the examples are as follows.
(Particle size distribution measurement)
Prepare 5 to 10 ml of an about 1% aqueous solution of a surfactant (dispersion medium) in a test tube, add about 0.1 g of RDX fine particle powder to this, and disperse by ultrasonic for several minutes. A particle size distribution measurement was performed on the dispersed fine particle powder sample according to the following measurement conditions.

・レーザー回折・散乱式の粒度分布測定装置(セイシン企業社製 LMS−300)
・測定原理(レーザ回折および散乱法)
・光源(半導体レーザ(波長670nm/最大出力2mW))
・検出器(49素子半円型シリコンフォト・ダイオードおよび6素子前方・後方シリコンフォト・ダイオード)
・分散方法(スターラおよび超音波)
(粒度分布図の説明)
図3および図4に示した粒度分布図には、頻度分布図と粒度累積曲線が示されている。
・ Laser diffraction / scattering type particle size distribution analyzer (LMS-300 manufactured by Seishin Enterprise Co., Ltd.)
・ Measurement principle (laser diffraction and scattering method)
・ Light source (semiconductor laser (wavelength 670 nm / maximum output 2 mW))
・ Detector (49-element semicircular silicon photodiode and 6-element forward / backward silicon photodiode)
・ Dispersion method (stirrer and ultrasonic)
(Explanation of particle size distribution diagram)
In the particle size distribution diagrams shown in FIGS. 3 and 4, a frequency distribution diagram and a particle size cumulative curve are shown.

頻度分布図とは、図中、柱状図として描かれており、横軸に粒子径、縦軸に相対頻度(図中縦軸右Q3[%])を取ることで描かれる。頻度分布図からは、分布の偏りを見ることができ、対称のとき対称分布といい、対称でなく山が左に偏るとき左傾分布、右に偏るとき右傾分布といわれる。
粒度累積曲線とは、図中、曲線として描かれており、相対頻度を累積した相対累積頻度(図中縦軸左q3[%])を計算して縦軸にとり、横軸に粒子径を取ることで描かれる。
The frequency distribution diagram is drawn as a columnar diagram in the figure, and is drawn by taking the particle diameter on the horizontal axis and the relative frequency (Q3 [%] on the vertical axis in the figure) on the vertical axis. From the frequency distribution chart, it is possible to see the distribution bias. When it is symmetric, it is called a symmetric distribution.
The particle size accumulation curve is drawn as a curve in the figure. The relative accumulation frequency (q3 [%] on the vertical axis in the figure) obtained by accumulating the relative frequency is calculated and taken on the vertical axis, and the particle diameter is taken on the horizontal axis. It is drawn by that.

粒度累積曲線の中央累積値(50%)に当たる粒子径をメジアン径といい、明細書記載の平均粒子径は、メジアン径を用いている。
図3に示した粒度分布図は、実施例1において得られたRDX微粒子粉末の粒度分布を示している。頻度分布図から、対称分布に近い分布を示しており、粒度累積曲線から求めた平均粒子径は、2.8μmであった。
The particle diameter corresponding to the median cumulative value (50%) of the particle size accumulation curve is called the median diameter, and the median diameter is used as the average particle diameter described in the specification.
The particle size distribution chart shown in FIG. 3 shows the particle size distribution of the RDX fine particle powder obtained in Example 1. The frequency distribution diagram shows a distribution close to a symmetric distribution, and the average particle size obtained from the particle size cumulative curve was 2.8 μm.

図4に示した粒度分布図は、実施例2において得られたRDX微粒子粉末の粒度分布を示している。図3同様に対称分布に近い分布を示し、粒度累積曲線から求めた平均粒子径は2.7μmであった。
(実施例1)
乾燥したRDX(平均粒子径 61μm)2.4gを20gのシクロヘキサノンに加え、50℃に加温、撹拌してRDXを完全に溶解した溶液を用意した。
The particle size distribution chart shown in FIG. 4 shows the particle size distribution of the RDX fine particle powder obtained in Example 2. Similar to FIG. 3, the distribution was close to a symmetrical distribution, and the average particle size obtained from the cumulative particle size curve was 2.7 μm.
Example 1
2.4 g of dried RDX (average particle size 61 μm) was added to 20 g of cyclohexanone, heated to 50 ° C. and stirred to prepare a solution in which RDX was completely dissolved.

微粒子生成装置10は、外径0.2mm、内径0.1mmから成る第一の導管11(材質シリカ)を、外径0.45mm、内径0.32mmから成る第二の導管12(材質シリカ)に装着し、第一の導管11の出口端部11aを第二の導管12の出口端部12aより上流に150mmの位置に配置することにより構成した。
熱交換器36および微粒子回収容器20を50℃に加温し、微粒子回収容器20の圧力を13.7MPa、二酸化炭素の質量流量を約1.0kg/hrに制御した。
The fine particle generator 10 includes a first conduit 11 (material silica) having an outer diameter of 0.2 mm and an inner diameter of 0.1 mm, and a second conduit 12 (material silica) having an outer diameter of 0.45 mm and an inner diameter of 0.32 mm. And the outlet end portion 11a of the first conduit 11 is arranged at a position of 150 mm upstream from the outlet end portion 12a of the second conduit 12.
The heat exchanger 36 and the particulate collection container 20 were heated to 50 ° C., the pressure of the particulate collection container 20 was controlled to 13.7 MPa, and the mass flow rate of carbon dioxide was controlled to about 1.0 kg / hr.

第二の導管12を通して連続して超臨界二酸化炭素が導入されているところに、溶解液を50〜60℃に保ったまま、0.2g/minの流量で第一の導管11に導入すると、再結晶されたRDX微粒子が第二の導管12の出口端部12aより微粒子回収容器20内に導入された。
再結晶終了後、超臨界二酸化炭素のみを約1.0kg/hrの質量流量で約1時間以上流して、残留するシクロヘキサノンを除去した。微粒子回収容器20内の二酸化炭素を排出して圧力を下げた後、微粒子回収容器20内および捕集手段21より白色のRDX微粒子粉末を回収した。
When supercritical carbon dioxide is continuously introduced through the second conduit 12 and the solution is introduced into the first conduit 11 at a flow rate of 0.2 g / min while maintaining the temperature at 50 to 60 ° C., The recrystallized RDX fine particles were introduced into the fine particle collection container 20 from the outlet end portion 12 a of the second conduit 12.
After completion of recrystallization, only supercritical carbon dioxide was flowed at a mass flow rate of about 1.0 kg / hr for about 1 hour or more to remove residual cyclohexanone. After discharging carbon dioxide in the fine particle collecting container 20 and reducing the pressure, white RDX fine particle powder was collected from the fine particle collecting container 20 and the collecting means 21.

得られたRDX微粒子粉末の粒子径を、粒度分布測定により測定した結果を表1および図3に示すとともに、得られたRDX微粒子粉末の電子顕微鏡写真を図5に示す。
図3に示すように、得られたRDX微粒子粉末は、粒度分布の幅が狭い微粒子粉末であり、平均粒子径は2.8μmであった。図5に示すように、得られたRDX微粒子粉末は、球状になっていることが分かった。
The result of measuring the particle size of the obtained RDX fine particle powder by particle size distribution measurement is shown in Table 1 and FIG. 3, and the electron micrograph of the obtained RDX fine particle powder is shown in FIG.
As shown in FIG. 3, the obtained RDX fine particle powder was a fine particle powder having a narrow particle size distribution, and the average particle size was 2.8 μm. As shown in FIG. 5, it was found that the obtained RDX fine particle powder was spherical.

さらに、得られたRDX微粒子粉末を常温、大気圧下に1ヶ月間貯蔵・保管し、RDX微粒子粉末の平均粒子径を測定したところ、平均粒子径は3.1μmであった。
製造直後、および常温にて1ヶ月経過後のRDX微粒子粉末の平均粒子径の変化がなく、本実施例により得られたRDX微粒子粉末は、凝集性の少ない微粒子であることが分かった。
Further, the obtained RDX fine particle powder was stored and stored for 1 month at room temperature and atmospheric pressure, and when the average particle size of the RDX fine particle powder was measured, the average particle size was 3.1 μm.
There was no change in the average particle size of the RDX fine particle powder immediately after production and after one month at room temperature, and it was found that the RDX fine particle powder obtained in this example was a finely-coagulated fine particle.

(実施例2)
乾燥したRDX(平均粒子径61μm)1.6gを20gのアセトンに加え、40℃に加温、撹拌してRDXを完全に溶解した溶解液を用意した。
RDXを溶解する有機溶剤をアセトンに代えた以外は、実施例1と同様の方法で微粒子粉末製造を行った。
(Example 2)
1.6 g of dried RDX (average particle size 61 μm) was added to 20 g of acetone, and heated to 40 ° C. and stirred to prepare a solution in which RDX was completely dissolved.
Fine particle powder was produced in the same manner as in Example 1 except that the organic solvent for dissolving RDX was replaced with acetone.

得られたRDX微粒子粉末の粒子径を、粒度分布測定により測定した結果を表1および図4に示すとともに、得られたRDX微粒子粉末の電子顕微鏡写真を図6に示す。
図4に示すように、得られたRDX微粒子粉末は、粒度分布の幅が狭い微粒子粉末であり、平均粒子径は2.7μmであった。
図6に示すように、得られたRDX微粒子粉末は、球状になっていることが分かった。
The results of measuring the particle size of the obtained RDX fine particle powder by particle size distribution measurement are shown in Table 1 and FIG. 4, and the electron micrograph of the obtained RDX fine particle powder is shown in FIG.
As shown in FIG. 4, the obtained RDX fine particle powder was a fine particle powder having a narrow particle size distribution, and the average particle size was 2.7 μm.
As shown in FIG. 6, it was found that the obtained RDX fine particle powder was spherical.

さらに、得られたRDX微粒子粉末を常温、大気圧下に1ヶ月間貯蔵・保管し、RDX微粒子粉末の平均粒子径を測定したところ、平均粒子径は2.8μmであった。
製造直後、および常温にて1ヶ月経過後のRDX微粒子粉末の平均粒子径の変化がなく、本実施例により得られたRDX微粒子粉末は、凝集性の少ない微粒子であることが分かった。
Furthermore, when the obtained RDX fine particle powder was stored and stored for 1 month at room temperature and atmospheric pressure, and the average particle size of the RDX fine particle powder was measured, the average particle size was 2.8 μm.
There was no change in the average particle size of the RDX fine particle powder immediately after production and after one month at room temperature, and it was found that the RDX fine particle powder obtained in this example was a finely-coagulated fine particle.

(実施例3)(相対位置の影響)
微粒子生成装置10の第二の導管12の出口端部12aと第一の導管11の出口端部11aとの相対位置が、得られるRDX微粒子粉末の粒子形状、および平均粒子径に及ぼす影響を検討した。
微粒子生成装置10は、外径0.2mm、内径0.1mmから成る第一の導管11(材質シリカ)を、外径0.45mm、内径0.32mmから成る第二の導管12(材質シリカ)に装着し、第一の導管11の出口端部11aを第二の導管12の出口端部12aより上流に5〜200mmの位置における実施例1と同様の方法で微粒子粉末製造を行った。
Example 3 (Influence of relative position)
Examination of the influence of the relative position between the outlet end 12a of the second conduit 12 and the outlet end 11a of the first conduit 11 on the particle shape and average particle diameter of the obtained RDX particulate powder of the particulate generator 10 did.
The fine particle generator 10 includes a first conduit 11 (material silica) having an outer diameter of 0.2 mm and an inner diameter of 0.1 mm, and a second conduit 12 (material silica) having an outer diameter of 0.45 mm and an inner diameter of 0.32 mm. The outlet end portion 11a of the first conduit 11 was produced in the same manner as in Example 1 at a position of 5 to 200 mm upstream from the outlet end portion 12a of the second conduit 12.

得られたRDX微粒子粉末の粒子径を、粒度分布測定により測定した結果を表1に示すとともに、それぞれの相対位置で得られたRDX微粒子粉末の粒子形状写真を図7〜図11に示す。
上記結果より、第一の導管11の出口端部11aが第二の導管12の出口端部12aより上流に5〜200mmの位置に配置されると、得られるRDX微粒子粉末の粒子形状が球状に制御され、かつ平均粒子径3μm以下のRDX微粒子粉末を得ることができる。
The results of measuring the particle size of the obtained RDX fine particle powder by particle size distribution measurement are shown in Table 1, and the particle shape photographs of the RDX fine particle powder obtained at the respective relative positions are shown in FIGS.
From the above results, when the outlet end portion 11a of the first conduit 11 is disposed at a position of 5 to 200 mm upstream from the outlet end portion 12a of the second conduit 12, the particle shape of the obtained RDX fine particle powder is spherical. A controlled RDX fine particle powder having an average particle size of 3 μm or less can be obtained.

(実施例4)(超臨界二酸化炭素の質量流量の影響)
超臨界二酸化炭素の質量流量が、得られるRDX微粒子粉末の粒子形状および平均粒子径に及ぼす影響を検討した。
二酸化炭素の質量流量を0.4kg/hr〜1.2kg/hrの範囲とし、超臨界二酸化炭素の質量流量/溶解液の質量流量比率33〜100[−]における実施例1と同様の方法で微粒子粉末製造を行った。
(Example 4) (Influence of mass flow rate of supercritical carbon dioxide)
The influence of the mass flow rate of supercritical carbon dioxide on the particle shape and average particle size of the obtained RDX fine particle powder was examined.
The mass flow rate of carbon dioxide is in the range of 0.4 kg / hr to 1.2 kg / hr, and the mass flow rate of supercritical carbon dioxide / mass flow rate ratio of the solution is 33 to 100 [-] in the same manner as in Example 1. Fine particle powder was produced.

得られたRDX微粒子粉末の粒子径を、実施例1と同様に粒度分布測定により測定した結果を表1に示す。
上記の結果より、超臨界二酸化炭素の質量流量を遅くすると、得られるRDX微粒子粉末の粒子径が大きくなり、超臨界二酸化炭素の質量流量を速くすると、得られるRDX微粒子粉末の粒子径が小さくなる。超臨界二酸化炭素の質量流量を制御することにより、得られるRDX微粒子粉末の粒子形状を球状に維持しつつ、所望の平均粒子径に制御することができる。
Table 1 shows the results of measuring the particle size of the obtained RDX fine particle powder by particle size distribution measurement in the same manner as in Example 1.
From the above results, when the mass flow rate of supercritical carbon dioxide is slowed down, the particle size of the obtained RDX fine particle powder becomes large, and when the mass flow rate of supercritical carbon dioxide is made fast, the particle size of the obtained RDX fine particle powder becomes small. . By controlling the mass flow rate of supercritical carbon dioxide, it is possible to control the desired average particle size while maintaining the particle shape of the obtained RDX fine particle powder in a spherical shape.

(実施例5)(溶解液流量の影響)
微粒子生成装置10の第一の導管11に導入する溶解液の流量が、得られるRDX微粒子粉末の粒子形状および平均粒子径に及ぼす影響を検討した。
超臨界二酸化炭素の質量流量を0.8kg/hr、溶解液の流量を0.1〜0.3g/minの範囲とし、超臨界二酸化炭素の質量流量/溶解液の質量流量比率44〜133[−]における実施例1と同様の方法で微粒子粉末製造を行った。
(Example 5) (Influence of flow rate of solution)
The influence of the flow rate of the solution introduced into the first conduit 11 of the fine particle generator 10 on the particle shape and average particle diameter of the obtained RDX fine particle powder was examined.
The mass flow rate of the supercritical carbon dioxide is 0.8 kg / hr, the flow rate of the solution is 0.1 to 0.3 g / min, and the mass flow rate of the supercritical carbon dioxide / the mass flow rate of the solution 44 to 133 [ The fine particle powder was produced in the same manner as in Example 1 in [-].

得られたRDX微粒子粉末の粒子径を、実施例1と同様に粒度分布測定により測定した結果を表1に示す。
微粒子生成装置10に導入される超臨界二酸化炭素および溶解液の流量のバランスを調整することで、所望の球状に制御されたRDX微粒子粉末を製造することができる。
(実施例6)(圧力の影響)
超臨界二酸化炭素の圧力が、得られるRDX微粒子粉末の粒子形状および平均粒子径に及ぼす影響を検討した。
Table 1 shows the results of measuring the particle size of the obtained RDX fine particle powder by particle size distribution measurement in the same manner as in Example 1.
By adjusting the balance between the flow rate of the supercritical carbon dioxide introduced into the fine particle generating apparatus 10 and the solution, it is possible to produce a desired spherically controlled RDX fine particle powder.
(Example 6) (Influence of pressure)
The influence of the pressure of supercritical carbon dioxide on the particle shape and average particle size of the obtained RDX fine particle powder was examined.

微粒子生成装置10および微粒子回収容器20内の圧力が12.7MPa〜17.6MPaの範囲、超臨界二酸化炭素の質量流量0.5kg/hrとした以外は、実施例1と同様の方法で微粒子粉末製造を行った。
得られたRDX微粒子粉末の粒子径を、実施例1と同様に粒度分布測定により測定した結果を表1に示す。
Fine particle powder was produced in the same manner as in Example 1 except that the pressure in the fine particle generator 10 and the fine particle collection container 20 was in the range of 12.7 MPa to 17.6 MPa and the mass flow rate of supercritical carbon dioxide was 0.5 kg / hr. Manufactured.
Table 1 shows the results of measuring the particle size of the obtained RDX fine particle powder by particle size distribution measurement in the same manner as in Example 1.

上記結果より、圧力を12.7MPa以上とすることで、所望の球状に制御されたRDX微粒子粉末を得ることができる。
(実施例7)(温度の影響)
熱交換器36および微粒子回収容器20の温度が、得られるRDX微粒子粉末の粒子形状および平均粒子径に及ぼす影響を検討した。
From the above results, by setting the pressure to 12.7 MPa or more, it is possible to obtain a desired spherically controlled RDX fine particle powder.
(Example 7) (Influence of temperature)
The effects of the temperature of the heat exchanger 36 and the fine particle collection container 20 on the particle shape and average particle diameter of the obtained RDX fine particle powder were examined.

熱交換器36および微粒子回収容器20の温度を32〜80℃の範囲にした以外は、実施例1と同様の方法で微粒子粉末製造を行った。
得られたRDX微粒子粉末の粒子径を、粒度分布測定により測定した結果を表1に示す。また、それぞれの温度で得られたRDX微粒子粉末の粒子形状写真を図5および図12〜図15に示す。
Fine particle powder was produced in the same manner as in Example 1 except that the temperature of the heat exchanger 36 and the fine particle collection container 20 was in the range of 32 to 80 ° C.
Table 1 shows the results of measuring the particle size of the obtained RDX fine particle powder by particle size distribution measurement. Moreover, the particle shape photograph of RDX fine particle powder obtained at each temperature is shown in FIG. 5 and FIGS.

上記結果より、熱交換器36および微粒子回収容器20の温度を二酸化炭素の臨界温度以上とすることで、所望の球状に制御されたRDX微粒子粉末を得ることができる。
(実施例8)(第二の導管内径、第一の導管外径および第一の導管内径の影響)
微粒子生成装置10を構成する第二の導管12の内径、第一の導管11の外径および第一の導管11の内径が、得られるRDX微粒子粉末の粒子形状および平均粒子径に及ぼす影響を検討した。
From the above results, by setting the temperature of the heat exchanger 36 and the particulate collection container 20 to be equal to or higher than the critical temperature of carbon dioxide, it is possible to obtain RDX particulate powder controlled to have a desired spherical shape.
(Example 8) (Influence of second conduit inner diameter, first conduit outer diameter and first conduit inner diameter)
Examining the effects of the inner diameter of the second conduit 12, the outer diameter of the first conduit 11, and the inner diameter of the first conduit 11 constituting the particulate generator 10 on the particle shape and average particle diameter of the obtained RDX particulate powder did.

第二の導管12の内径0.2〜0.8mmの範囲、第一の導管11の外径0.13〜0.2mm、内径0.05〜0.32mmの範囲のものを用い、第二の導管12の内径/第一の導管11の外径比率1.5〜4.0[−]とした以外は、実施例1と同様の方法で微粒子粉末製造を行った。
得られたRDX微粒子粉末の粒子径を、粒度分布測定により測定した結果を表1に示す。
The second conduit 12 has an inner diameter of 0.2 to 0.8 mm, the first conduit 11 has an outer diameter of 0.13 to 0.2 mm, and an inner diameter of 0.05 to 0.32 mm. The fine particle powder was produced in the same manner as in Example 1 except that the ratio of the inner diameter of the conduit 12 to the outer diameter ratio of the first conduit 11 was 1.5 to 4.0 [-].
Table 1 shows the results of measuring the particle size of the obtained RDX fine particle powder by particle size distribution measurement.

上記結果より、微粒子生成装置10を構成する第二の導管12の内径と第一の導管11の外径の組合せを選べば、粒子形状が球状に制御されたRDX微粒子粉末を所望の平均粒子径に制御することができる。   From the above results, if a combination of the inner diameter of the second conduit 12 and the outer diameter of the first conduit 11 constituting the particulate generator 10 is selected, a desired average particle diameter of the RDX particulate powder whose particle shape is controlled to be spherical is selected. Can be controlled.

Figure 2006232572
(比較例1)(相対位置の影響)
微粒子生成装置10の第二の導管12の出口端部12aと第一の導管11の出口端部11aの相対位置が、得られるRDX微粒子粉末の粒子形状および平均粒子径に及ぼす影響を検討した。
Figure 2006232572
(Comparative Example 1) (Influence of relative position)
The influence of the relative positions of the outlet end portion 12a of the second conduit 12 and the outlet end portion 11a of the first conduit 11 on the particle shape and average particle diameter of the obtained RDX particulate powder was examined.

微粒子生成装置10は、外径0.2mm、内径0.1mmから成る第一の導管11(材質シリカ)を、外径0.45mm、内径0.32mmから成る第二の導管12(材質シリカ)に装着し、第一の導管11の出口端部11aを第二の導管12の出口端部12aより上流に1〜3mmの位置として、実施例1と同様の方法で微粒子粉末製造を行った。
得られたRDX微粒子粉末の粒子径を粒度分布測定により測定した結果を表2に示すとともに、第一の導管11の出口端部11aが第二の導管12の出口端部12aより上流に1mmの位置において得られたRDX微粒子粉末の粒子形状写真を図16に示す。
The fine particle generator 10 includes a first conduit 11 (material silica) having an outer diameter of 0.2 mm and an inner diameter of 0.1 mm, and a second conduit 12 (material silica) having an outer diameter of 0.45 mm and an inner diameter of 0.32 mm. In the same manner as in Example 1, fine particle powder production was performed by setting the outlet end portion 11a of the first conduit 11 upstream of the outlet end portion 12a of the second conduit 12 to a position of 1 to 3 mm.
The results of measuring the particle size of the obtained RDX fine particle powder by particle size distribution measurement are shown in Table 2, and the outlet end 11a of the first conduit 11 is 1 mm upstream from the outlet end 12a of the second conduit 12. FIG. 16 shows a particle shape photograph of the RDX fine particle powder obtained at the position.

上記結果より、第一の導管11の出口端部11aが第二の導管12の出口端部12aより上流に1〜3mmの位置に配置されると、得られるRDX微粒子粉末の粒子形状が不規則形状となる。
(比較例2)(溶解液流量の影響)
微粒子生成装置10の第一の導管11に導入する溶解液の流量が、得られるRDX微粒子粉末の粒子形状および平均粒子径に及ぼす影響を検討した。
From the above results, when the outlet end portion 11a of the first conduit 11 is disposed at a position of 1 to 3 mm upstream from the outlet end portion 12a of the second conduit 12, the particle shape of the obtained RDX fine particle powder is irregular. It becomes a shape.
(Comparative Example 2) (Influence of flow rate of solution)
The influence of the flow rate of the solution introduced into the first conduit 11 of the fine particle generator 10 on the particle shape and average particle diameter of the obtained RDX fine particle powder was examined.

超臨界二酸化炭素の質量流量を0.8kg/hr、溶解液の流量を0.5g/minとし、超臨界二酸化炭素の質量流量/溶解液の質量流量比率27[−]における実施例1と同様の方法で微粒子粉末製造を行った。
得られたRDX微粒子粉末の粒子径を、粒度分布測定により測定した結果を表2に示す。
The mass flow rate of supercritical carbon dioxide is 0.8 kg / hr, the flow rate of the solution is 0.5 g / min, and the mass flow rate of supercritical carbon dioxide / the mass flow rate of the solution is 27 [−], as in Example 1. The fine particle powder was produced by the method described above.
Table 2 shows the results of measuring the particle size of the obtained RDX fine particle powder by particle size distribution measurement.

上記結果より、微粒子生成装置10に導入される超臨界二酸化炭素と溶解液の質量流量比率を30未満とすると、得られるRDX微粒子粉末の粒子形状が不規則形状となる。
(比較例3)(圧力の影響)
超臨界二酸化炭素の圧力が、得られるRDX微粒子粉末の粒子形状および平均粒子径に及ぼす影響を検討した。
From the above results, when the mass flow rate ratio of the supercritical carbon dioxide and the solution introduced into the fine particle generating apparatus 10 is less than 30, the particle shape of the obtained RDX fine particle powder becomes an irregular shape.
(Comparative Example 3) (Influence of pressure)
The influence of the pressure of supercritical carbon dioxide on the particle shape and average particle size of the obtained RDX fine particle powder was examined.

微粒子生成装置10および微粒子回収容器20内の圧力が9.8MPa〜11.8MPa、超臨界二酸化炭素の質量流量0.5kgf/hrとした以外は、実施例1と同様の方法で微粒子粉末製造を行った。
得られたRDX微粒子粉末の粒子径を、粒度分布測定により測定した結果を表2に示す。
A fine particle powder was produced in the same manner as in Example 1 except that the pressure in the fine particle generator 10 and the fine particle collection container 20 was 9.8 MPa to 11.8 MPa and the mass flow rate of supercritical carbon dioxide was 0.5 kgf / hr. went.
Table 2 shows the results of measuring the particle size of the obtained RDX fine particle powder by particle size distribution measurement.

上記結果より、圧力を11.8MPa以下とすると、得られるRDX微粒子粉末の粒子形状が不規則形状となる。
(比較例4)(温度の影響)
熱交換器36および微粒子回収容器20の温度が、得られるRDX微粒子粉末の平均粒子径に及ぼす影響を検討した。
From the above results, when the pressure is 11.8 MPa or less, the particle shape of the obtained RDX fine particle powder becomes an irregular shape.
(Comparative Example 4) (Influence of temperature)
The influence of the temperature of the heat exchanger 36 and the fine particle collection container 20 on the average particle size of the obtained RDX fine particle powder was examined.

熱交換器36および微粒子回収容器20の温度を22℃または28℃とした以外は、実施例1と同様の方法で微粒子粉末製造を行った。
得られたRDX微粒子粉末の粒子径を、粒度分布測定により測定した結果を表2に示す。また、それぞれの温度で得られたRDX微粒子粉末の粒子形状写真をそれぞれ図17と図18に示す。
Fine particle powder was produced in the same manner as in Example 1 except that the temperature of the heat exchanger 36 and the fine particle collection container 20 was set to 22 ° C. or 28 ° C.
Table 2 shows the results of measuring the particle size of the obtained RDX fine particle powder by particle size distribution measurement. Moreover, the particle shape photograph of RDX fine particle powder obtained at each temperature is shown in FIGS. 17 and 18, respectively.

上記結果より、熱交換器36および微粒子回収容器20の温度を二酸化炭素の臨界温度未満とすると、得られるRDX微粒子粉末の粒子形状が不規則形状となる。   From the above results, when the temperature of the heat exchanger 36 and the particulate collection container 20 is less than the critical temperature of carbon dioxide, the resulting RDX particulate powder has an irregular shape.

Figure 2006232572
Figure 2006232572

本発明で得られた球状の微粒子粉状化合火薬類は、粉状発射薬などの製造に使用される原料や薄膜式デトネータ(Exploding Foil Initiator)或いは無起爆薬雷管(Non Primary Electronic Detonator)の製造に使用される原料として使用することができる。   The spherical fine particle powdered compound explosives obtained in the present invention are raw materials used for the production of powdered propellants and the like, and the production of a thin film detonator (Exploding Foil Initiator) or a non-prime detonator (Non Primary Electronic Detonator) Can be used as a raw material.

本発明の一実施形態に係る微粒子化合火薬類の微粒子生成装置の概略図。1 is a schematic view of a fine particle generating device for a fine chemical compound according to an embodiment of the present invention. 本発明の一実施形態に係る微粒子化合火薬類の製造装置の概略図。Schematic of the manufacturing apparatus of fine chemical compound concerning one Embodiment of this invention. 実施例1により得られたRDX微粒子粉末の粒度分布(平均粒子径2.8μm)を示す図。The figure which shows the particle size distribution (average particle diameter of 2.8 micrometers) of RDX fine particle powder obtained by Example 1. FIG. 実施例2により得られたRDX微粒子粉末の粒度分布(平均粒子径2.7μm)を示す図。The figure which shows the particle size distribution (average particle diameter of 2.7 micrometers) of RDX fine particle powder obtained by Example 2. FIG. 実施例1により得られたRDX微粒子粉末の電子顕微鏡写真(2000倍)。The electron micrograph (2000 times) of RDX fine particle powder obtained by Example 1. FIG. 実施例2により得られたRDX微粒子粉末の電子顕微鏡写真(3500倍)。The electron micrograph (3500 times) of RDX fine particle powder obtained by Example 2. FIG. 実施例3において相対位置5mmで得られたRDX微粒子粉末の電子顕微鏡写真(2000倍)。The electron micrograph (2000 times) of RDX fine particle powder obtained in Example 3 with the relative position of 5 mm. 実施例3において相対位置10mmで得られたRDX微粒子粉末の電子顕微鏡写真(2000倍)。The electron micrograph (2000 times) of the RDX fine particle powder obtained in Example 3 at a relative position of 10 mm. 実施例3において相対位置50mmで得られたRDX微粒子粉末の電子顕微鏡写真(2000倍)。The electron micrograph (2000 times) of the RDX fine particle powder obtained in Example 3 at a relative position of 50 mm. 実施例3において相対位置100mmで得られたRDX微粒子粉末の電子顕微鏡写真(2000倍)。The electron micrograph (2000 times) of RDX fine particle powder obtained in Example 3 with the relative position of 100 mm. 実施例3において相対位置200mmで得られたRDX微粒子粉末の電子顕微鏡写真(1500倍)。The electron micrograph (1500 times) of RDX fine particle powder obtained in Example 3 with the relative position of 200 mm. 実施例7において温度32℃で得られたRDX微粒子粉末の電子顕微鏡写真(2000倍)。The electron micrograph (2000 times) of RDX fine particle powder obtained in Example 7 at the temperature of 32 degreeC. 実施例7において温度35℃で得られたRDX微粒子粉末の電子顕微鏡写真(2000倍)。The electron micrograph (2000 times) of RDX fine particle powder obtained in Example 7 at the temperature of 35 degreeC. 実施例7において温度38℃で得られたRDX微粒子粉末の電子顕微鏡写真(3500倍)。The electron micrograph (3500 times) of RDX fine particle powder obtained at the temperature of 38 degreeC in Example 7. FIG. 実施例7において温度80℃で得られたRDX微粒子粉末の電子顕微鏡写真(3500倍)。The electron micrograph (3500 times) of RDX fine particle powder obtained at the temperature of 80 degreeC in Example 7. FIG. 比較例1において得られたRDX微粒子粉末の電子顕微鏡写真(1000倍)。4 is an electron micrograph (1000 ×) of RDX fine particle powder obtained in Comparative Example 1. FIG. 比較例4において温度22℃で得られたRDX微粒子粉末の電子顕微鏡写真(2000倍)。The electron micrograph (2000 times) of the RDX fine particle powder obtained at the temperature of 22 degreeC in the comparative example 4. FIG. 比較例4において温度28℃で得られたRDX微粒子粉末の電子顕微鏡写真(2000倍)。The electron micrograph (2000 times) of RDX fine particle powder obtained at the temperature of 28 degreeC in the comparative example 4. FIG.

符号の説明Explanation of symbols

10 微粒子化合火薬類の微粒子生成装置
11 第一の導管
11a 出口端部
12 第二の導管
12a 出口端部
13 同軸流路
14 単一流路
15 外部流路
20 微粒子回収容器
21 捕集手段
22 圧力調整弁
23 分離容器
24 流量計
25 温度調節器
26 圧力計
30 二酸化炭素ボンベ
31 冷却器
32 バルブ
33 昇圧ポンプ
34 バルブ
35 温度調節器
36 熱交換器
37 二酸化炭素導入管
38 溶解液の収納容器
39 送液ポンプ
40 バルブ
41 温度調節器
42 溶解液導入管
100 微粒子化合火薬類の製造装置
DESCRIPTION OF SYMBOLS 10 Fine particle generating apparatus 11 of fine particle compound explosives 11 1st conduit | pipe 11a Outlet end part 12 2nd conduit | pipe 12a Outlet end part 13 Coaxial flow path 14 Single flow path 15 External flow path 20 Fine particle collection container 21 Collection means 22 Pressure adjustment Valve 23 Separation container 24 Flow meter 25 Temperature controller 26 Pressure gauge 30 Carbon dioxide cylinder 31 Cooler 32 Valve 33 Booster pump 34 Valve 35 Temperature controller 36 Heat exchanger 37 Carbon dioxide introduction pipe 38 Dissolving solution storage container 39 Pump 40 Valve 41 Temperature controller 42 Dissolving liquid introduction pipe 100 Fine chemical compound manufacturing apparatus

Claims (7)

化合火薬類を有機溶剤に溶解した溶解液を導入する第一の導管と、
前記第一の導管を囲繞して前記第一の導管と同軸上に配設され、超臨界二酸化炭素を導入する第二の導管と
を備え、
前記第二の導管は、出口端部を前記第一の導管の出口端部より少なくとも5mm以上長くして、前記超臨界二酸化炭素と前記溶解液とが接触し前記化合火薬類の再結晶を行うための単一流路を形成して成る
ことを特徴とする微粒子化合火薬類の微粒子生成装置。
A first conduit for introducing a solution obtained by dissolving chemical explosives in an organic solvent;
A second conduit surrounding the first conduit and coaxially disposed with the first conduit for introducing supercritical carbon dioxide;
The second conduit has an outlet end that is at least 5 mm longer than the outlet end of the first conduit, and the supercritical carbon dioxide and the solution come into contact to recrystallize the chemical explosives. An apparatus for producing fine particles of a powdered pyrotechnics, characterized in that a single flow path is formed.
請求項1に記載の微粒子化合火薬類の微粒子生成装置において、前記単一流路における前記第二の導管の内径は、同じであることを特徴とする微粒子化合火薬類の微粒子生成装置。   2. The fine particle generating apparatus for fine particle compound explosives according to claim 1, wherein the inner diameter of the second conduit in the single channel is the same. 請求項1または請求項2に記載の微粒子化合火薬類の微粒子生成装置において、前記単一流路の長さは、5mm〜200mmであることを特徴とする微粒子化合火薬類の微粒子生成装置。   The fine particle generating apparatus for fine particle compound explosives according to claim 1 or 2, wherein the single flow path has a length of 5 mm to 200 mm. 請求項1ないし請求項3の何れか1項に記載の微粒子化合火薬類の微粒子生成装置と、
前記第二の導管の出口端部に連結する微粒子回収容器と、
前記微粒子回収容器の出口側に連絡し、前記微粒子回収容器内の圧力を調整する圧力調整弁と、
前記第一の導管に連絡し、前記化合火薬類を有機溶剤に溶解した溶解液を送液ポンプにより供給する溶解液供給装置と、
前記第二の導管に連絡し、前記臨界二酸化炭素を供給する臨界二酸化炭素供給装置と
を備え、
前記臨界二酸化炭素供給装置は、二酸化炭素を冷却・液化する冷却器と、冷却・液化した二酸化炭素を昇圧する昇圧ポンプと、前記昇圧ポンプから導入する二酸化炭素を超臨界二酸化炭素にする熱交換器とを有する
ことを特徴とする微粒子化合火薬類の製造装置。
The fine particle generating apparatus for the fine chemical compound according to any one of claims 1 to 3,
A particulate collection container connected to the outlet end of the second conduit;
A pressure regulating valve that communicates with the outlet side of the particulate collection container and regulates the pressure in the particulate collection container;
A solution supply device that communicates with the first conduit and supplies a solution obtained by dissolving the compound explosives in an organic solvent by a liquid feed pump;
A critical carbon dioxide supply device that communicates with the second conduit and supplies the critical carbon dioxide;
The critical carbon dioxide supply device includes a cooler that cools and liquefies carbon dioxide, a booster pump that pressurizes the cooled and liquefied carbon dioxide, and a heat exchanger that converts carbon dioxide introduced from the booster pump to supercritical carbon dioxide. An apparatus for producing fine powder compound explosives characterized by comprising:
請求項4項に記載の微粒子化合火薬類の製造装置を用いて微粒子化合火薬類に再結晶化する方法において、
前記超臨界二酸化炭素を前記第二の導管内に導入中に前記第二の導管内の圧力が所定圧力に達したときに、前記溶解液を前記第一の導管内に導入し、前記単一流路において前記超臨界二酸化炭素と前記溶解液とを所定の流量で接触させて球状体の微粒子化合火薬類に再結晶化させ、前記再結晶化した微粒子化合火薬類を前記粒子回収容器に回収することを特徴とする微粒子化合火薬類の製造方法。
In the method of recrystallizing into a fine powdered explosives using the apparatus for producing a fine powdered explosive according to claim 4,
When the pressure in the second conduit reaches a predetermined pressure during the introduction of the supercritical carbon dioxide into the second conduit, the solution is introduced into the first conduit and the single stream The supercritical carbon dioxide and the solution are brought into contact with each other at a predetermined flow rate in the channel to recrystallize into spherical fine particle compound explosives, and the recrystallized fine particle compound explosives are recovered in the particle recovery container. A method for producing a fine chemical compound characterized by the above.
請求項5に記載の微粒子化合火薬類の製造方法において、前記溶解液流量に対する前記超臨界二酸化炭素の流量比率は、30〜200であることを特徴とする微粒子化合火薬類の製造方法。   6. The method for producing a micronized pyrotechnics according to claim 5, wherein a flow rate ratio of the supercritical carbon dioxide to the solution flow rate is 30 to 200. 請求項5または請求項6に記載の微粒子化合火薬類の製造方法において、前記溶解液導入時の前記第二の導管内の圧力は、12.7MPa〜29.4MPaであることを特徴とする微粒子化合火薬類の製造方法。   The method for producing a fine chemical compound according to claim 5 or 6, wherein the pressure in the second conduit at the time of introducing the solution is 12.7 MPa to 29.4 MPa. A method for producing chemical explosives.
JP2005045729A 2005-02-22 2005-02-22 Particulate generating device for particulate compound explosives, apparatus for producing particulate compound explosives, and method for producing particulate compound explosives Active JP4635154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045729A JP4635154B2 (en) 2005-02-22 2005-02-22 Particulate generating device for particulate compound explosives, apparatus for producing particulate compound explosives, and method for producing particulate compound explosives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045729A JP4635154B2 (en) 2005-02-22 2005-02-22 Particulate generating device for particulate compound explosives, apparatus for producing particulate compound explosives, and method for producing particulate compound explosives

Publications (2)

Publication Number Publication Date
JP2006232572A true JP2006232572A (en) 2006-09-07
JP4635154B2 JP4635154B2 (en) 2011-02-16

Family

ID=37040639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045729A Active JP4635154B2 (en) 2005-02-22 2005-02-22 Particulate generating device for particulate compound explosives, apparatus for producing particulate compound explosives, and method for producing particulate compound explosives

Country Status (1)

Country Link
JP (1) JP4635154B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189515A (en) * 2007-02-05 2008-08-21 Nippon Koki Co Ltd Desensitized explosive composition, and method for producing the same
JP2011089720A (en) * 2009-10-23 2011-05-06 Daikin Industries Ltd Fuse
JP2018179481A (en) * 2017-04-13 2018-11-15 池田食研株式会社 Spray dehydration system and spray dehydration method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176437A (en) * 1987-12-29 1989-07-12 Ono Pharmaceut Co Ltd Method for rendering organic substance into fine particles
JPH10502016A (en) * 1994-06-30 1998-02-24 ユニバーシティ オブ ブラッドフォード Method and apparatus for forming particles
JPH11124422A (en) * 1997-08-22 1999-05-11 Polyplastics Co Continuous production of polyacetal resin
JP2004105953A (en) * 1993-07-01 2004-04-08 Nektar Therapeutics Uk Ltd Method and equipment for forming particles
JP2004195307A (en) * 2002-12-17 2004-07-15 Itec Co Ltd Method and apparatus for producing microparticle or microcapsule by using high-pressure fluid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176437A (en) * 1987-12-29 1989-07-12 Ono Pharmaceut Co Ltd Method for rendering organic substance into fine particles
JP2004105953A (en) * 1993-07-01 2004-04-08 Nektar Therapeutics Uk Ltd Method and equipment for forming particles
JPH10502016A (en) * 1994-06-30 1998-02-24 ユニバーシティ オブ ブラッドフォード Method and apparatus for forming particles
JPH11124422A (en) * 1997-08-22 1999-05-11 Polyplastics Co Continuous production of polyacetal resin
JP2004195307A (en) * 2002-12-17 2004-07-15 Itec Co Ltd Method and apparatus for producing microparticle or microcapsule by using high-pressure fluid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189515A (en) * 2007-02-05 2008-08-21 Nippon Koki Co Ltd Desensitized explosive composition, and method for producing the same
JP2011089720A (en) * 2009-10-23 2011-05-06 Daikin Industries Ltd Fuse
JP2018179481A (en) * 2017-04-13 2018-11-15 池田食研株式会社 Spray dehydration system and spray dehydration method
JP7138837B2 (en) 2017-04-13 2022-09-20 池田食研株式会社 Spray drying system and spray drying method

Also Published As

Publication number Publication date
JP4635154B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
Zhang et al. Recent advances on the crystallization engineering of energetic materials
Stepanov et al. Production of nanocrystalline RDX by rapid expansion of supercritical solutions
JP3839042B2 (en) Salmeterol xinafoate with sized particles
Huang et al. Construction and properties of structure-and size-controlled micro/nano-energetic materials
Qiu et al. Single-step production and formulation of HMX nanocrystals
Risse et al. Continuous formation of submicron energetic particles by the flash-evaporation technique
Gao et al. Preparation and characterization of nano-1, 1-diamino-2, 2-dinitroethene (FOX-7) explosive
Zhang et al. Preparation and Properties of Submicrometer‐Sized LLM‐105 via Spray‐Crystallization Method
JPH09508851A (en) Method for producing particles or powder
Kim et al. Evaporation crystallization of RDX by ultrasonic spray
Pessina et al. Tunable continuous production of RDX from microns to nanoscale using polymeric additives
Foster et al. Application of dense gas techniques for the production of fine particles
JP4635154B2 (en) Particulate generating device for particulate compound explosives, apparatus for producing particulate compound explosives, and method for producing particulate compound explosives
Teipel Production of particles of explosives
Lobry et al. Tuning the oxygen balance of energetic composites: Crystallization of ADN/secondary explosives mixtures by spray flash evaporation
Pant et al. Preparation and characterization of ultrafine RDX
Yan et al. Fabrication of nano-and micron-sized spheres of CL-20 by electrospray
Xu et al. Preparation of multi-scale FOX-7 particles and investigation of sensitivity and thermal stability
Lee et al. Supercritical antisolvent micronization of cyclotrimethylenetrinitramin: influence of the organic solvent
US8759514B2 (en) Method for separation of HMX and RDX
US8729261B2 (en) Recrystallization method of fine spherical RDX particle
Zhao et al. Morphology and properties of CL-20/MTNP cocrystal prepared via facile spray drying
US5197677A (en) Wet grinding of crystalline energetic materials
JP3964214B2 (en) Method and apparatus for producing powdered explosive composition
Stepanov Production of nanocrystalline RDX by RESS: Process development and material characterization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4635154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250