JP5109012B2 - Solid-liquid separation method and apparatus of solid-liquid mixed material by specific gravity difference separation using supercritical carbon dioxide - Google Patents

Solid-liquid separation method and apparatus of solid-liquid mixed material by specific gravity difference separation using supercritical carbon dioxide Download PDF

Info

Publication number
JP5109012B2
JP5109012B2 JP2008156003A JP2008156003A JP5109012B2 JP 5109012 B2 JP5109012 B2 JP 5109012B2 JP 2008156003 A JP2008156003 A JP 2008156003A JP 2008156003 A JP2008156003 A JP 2008156003A JP 5109012 B2 JP5109012 B2 JP 5109012B2
Authority
JP
Japan
Prior art keywords
solid
liquid
specific gravity
gravity difference
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008156003A
Other languages
Japanese (ja)
Other versions
JP2009297665A (en
Inventor
明 鈴木
慎一朗 川▲崎▼
邦夫 新井
清隆 畑田
道夫 米谷
健一 柴田
富士夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Chemical Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Santoku Chemical Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Chemical Industries Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Santoku Chemical Industries Co Ltd
Priority to JP2008156003A priority Critical patent/JP5109012B2/en
Publication of JP2009297665A publication Critical patent/JP2009297665A/en
Application granted granted Critical
Publication of JP5109012B2 publication Critical patent/JP5109012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

本発明は、超臨界二酸化炭素又は液体二酸化炭素を比重差分離溶媒として用いてスラリー廃液等の固液混合物質を高効率で固液分離する固液混合物質の固液分離方法及びその装置に関するものであり、更に詳しくは、シリコンウェハー製造工程で発生するスラリー廃液等の固液混合物質を、超臨界二酸化炭素又は液体二酸化炭素を比重差分離溶媒として用いて、連続的に固液分離することにより、高い分離効率で固液を分離し、有価物を回収して再利用することを可能とする、スラリー廃液等の固液混合物質の比重差分離による新しい固液分離方法及びその装置に関するものである。   TECHNICAL FIELD The present invention relates to a solid-liquid separation method and apparatus for solid-liquid mixed material, in which solid-liquid mixed material such as slurry waste liquid is solid-liquid separated with high efficiency using supercritical carbon dioxide or liquid carbon dioxide as a specific gravity difference separation solvent. More specifically, by solid-liquid separation of a solid-liquid mixed material such as slurry waste liquid generated in a silicon wafer manufacturing process using supercritical carbon dioxide or liquid carbon dioxide as a specific gravity difference separation solvent. , A new solid-liquid separation method and apparatus using specific gravity difference separation of solid-liquid mixed substances such as slurry waste liquid, which enables separation of solid-liquid with high separation efficiency and recovery of valuable materials and reuse is there.

近年、地球温暖化や環境汚染の問題を背景に、世界各国が積極的に再生可能なクリーンエネルギーを求めており、太陽電池等の需要は増々増加する傾向にあり、その需要は、今後も更に伸び続けることが推測される。   In recent years, against the background of global warming and environmental pollution, countries around the world are actively seeking clean energy that can be renewed, and the demand for solar cells and the like has been increasing. It is estimated that it will continue to grow.

太陽電池には、単結晶シリコンや多結晶シリコンを用いたシリコン結晶系、CVD等で製膜した非結晶系、CdTe等の化合物系、その他、様々な種類のものがあるが、実際に生産されている太陽電池の約9割は、シリコン結晶系である。太陽電池以外にも、シリコンウェハーは、IC、LSI等の基盤にも使用されており、パソコンや携帯電話端末、デジタル家電の需要増加に伴い、その生産量は、増加傾向にある。   There are various types of solar cells, including silicon crystal systems using single crystal silicon and polycrystalline silicon, amorphous systems formed by CVD, etc., compound systems such as CdTe, etc. About 90% of solar cells are silicon crystal. In addition to solar cells, silicon wafers are also used for ICs, LSIs, and other substrates, and their production volume is increasing as demand for personal computers, mobile phone terminals, and digital home appliances increases.

太陽電池や、IC、LSIの需要が高まる一方で、生産に伴う廃棄物も増々増加しているのが実情である。例えば、シリコンウェハーは、シリコンインゴットをワイヤーソーで薄く切断し、鏡面加工、洗浄等を行うことで製造されており、ワイヤーソーによるシリコンインゴットの切断では、高速で走る多数本の細径ワイヤーにシリコンインゴットを押しつけ、同時に砥粒とクーラントを混合したスラリーを供給しながら、シリコンインゴットの切断操作が行われている。   While the demand for solar cells, ICs and LSIs is increasing, the amount of waste associated with production is increasing. For example, a silicon wafer is manufactured by thinly cutting a silicon ingot with a wire saw, performing mirror processing, cleaning, etc., and when cutting a silicon ingot with a wire saw, silicon wafers are made into a large number of thin wires running at high speed. The silicon ingot is being cut while the slurry is mixed with abrasive grains and coolant while pressing the ingot.

上記スラリーには、クーラントとして、ポリエチレングリコールを使用した水系と、鉱物油を使用した油系があり、砥粒は、主にSiCが使用されており、これらは、用途に応じて、使い分けられている。いずれのスラリーも、シリコンインゴットの切断時に、シリコン屑や、ワイヤーからの鉄屑が蓄積し、それらがワイヤーソーの切断性能を低下させる原因となるため、切断毎に一部のスラリーを抜き取り、廃棄し、残りのスラリーは、遠心分離を施した後、新しいスラリーに混合しつつ使用されている。しかし、一部のスラリーは、切断毎に廃棄されるため、廃棄されるスラリー廃液は、相当量に達する。   There are two types of slurry, water-based using polyethylene glycol and oil-based using mineral oil as the coolant, and SiC is mainly used for abrasive grains. Yes. In any slurry, silicon scrap or iron scrap from the wire accumulates when the silicon ingot is cut, causing them to deteriorate the cutting performance of the wire saw. The remaining slurry is used after being centrifuged and mixed with a new slurry. However, since a part of the slurry is discarded at every cutting, a considerable amount of the slurry waste liquid is discarded.

この廃棄されるスラリー廃液の成分含有比は、SiC45〜60%、クーラント30〜40%、シリコン屑10〜20%、鉄屑5〜15%であり、その多くは、再使用が可能なSiCとクーラントである。廃棄されたスラリー廃液の一部については、遠心分離により、SiCとクーラントの延命が行われているものの、スラリーの廃棄量は、膨大である。   The component content ratio of the waste slurry waste is 45 to 60% SiC, 30 to 40% coolant, 10 to 20% silicon scrap, and 5 to 15% iron scrap, most of which are reusable SiC and Coolant. Although some of the discarded slurry waste liquid has been subjected to the life extension of SiC and coolant by centrifugation, the amount of slurry discarded is enormous.

この廃棄されたスラリー廃液には、シリコン屑の他に、鉄屑や、再使用が可能なクーラント及び砥粒が含まれているため、廃棄されたスラリー廃液から、それらを分離回収するために、従来、様々な手法が提案されている(特許文献1〜6参照)。また、近年、半導体や太陽電池の需要の大幅な増加に対して、廃棄されたスラリー廃液の有価物の効率的な分離プロセスの開発が種々試みられている。   In addition to silicon scrap, this discarded slurry waste liquid contains iron scrap, reusable coolant and abrasive grains, so that they can be separated and recovered from the discarded slurry waste liquid. Conventionally, various methods have been proposed (see Patent Documents 1 to 6). In recent years, various attempts have been made to develop an efficient separation process for valuable materials from discarded slurry waste liquid in response to a significant increase in demand for semiconductors and solar cells.

例えば、先行文献には、油系スラリー廃液を、灯油等の抽出剤で希釈し、比重差で沈殿、分離して砥粒(SiC)を回収する方法が開示されている(特許文献7参照)。また、他の先行文献には、フィルタープレス等により分離したスラリー廃液に、アルキルスルホン酸ナトリウム等の捕集剤と起泡剤を配合して、微細気泡を上昇させることによって、SiC粒子を分離する方法が開示されている(特許文献8参照)。しかし、これらの方法では、分散剤の添加が必要であり、また、スラリー廃液の有用成分を分離する際に、新たな廃棄物が発生する、という問題がある。   For example, a prior art document discloses a method of recovering abrasive grains (SiC) by diluting an oil-based slurry waste liquid with an extractant such as kerosene, and precipitating and separating with a specific gravity difference (see Patent Document 7). . In addition, in other prior literatures, SiC particles are separated by mixing a slurry waste liquid separated by a filter press or the like with a trapping agent such as sodium alkyl sulfonate and a foaming agent to raise fine bubbles. A method is disclosed (see Patent Document 8). However, these methods require the addition of a dispersant, and have a problem that new waste is generated when useful components of the slurry waste liquid are separated.

また、他の先行文献には、亜臨界もしくは超臨界二酸化炭素を用いて、有機物成分を抽出分離した後、温度、圧力を下げて、二酸化炭素と有機物成分を分離し、更に、二酸化炭素を回収し、再度、亜臨界もしくは超臨界二酸化炭素を抽出剤として使用する方法が開示されている(特許文献9参照)。しかし、この種の方法では、目的抽出物質が、超臨界二酸化炭素に溶解する物質に限定される、という問題がある。   In other prior literature, after extracting and separating organic components using subcritical or supercritical carbon dioxide, the temperature and pressure are lowered to separate carbon dioxide and organic components, and carbon dioxide is recovered. Again, a method of using subcritical or supercritical carbon dioxide as an extractant is disclosed (see Patent Document 9). However, this type of method has a problem that the target extraction substance is limited to a substance that dissolves in supercritical carbon dioxide.

一方、本発明者らは、先に、超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒及び/又は抽出分離溶媒として用いて、固液混合物質を、比重差及び/又は抽出分離を利用して分離する固液混合物質の分離方法及びその装置を開発している(特許文献10参照)。   On the other hand, the inventors of the present invention firstly used supercritical carbon dioxide and / or liquid carbon dioxide as a specific gravity difference separation solvent and / or an extraction separation solvent to convert a solid-liquid mixed material into a specific gravity difference and / or extraction separation. A separation method and apparatus for solid-liquid mixed substances to be separated by use have been developed (see Patent Document 10).

上記先行技術を開示した先行文献では、具体的方法として、比重差分離と抽出分離を同一系内で、同時に行い、固形物を水スラリーで取り出し、フィルターあるいはサイクロンでSiCを回収し、固形物分離後のCOをスラリー廃液と混合して比重差分離を行い、COとスラリー廃液との混合流体の密度及び粘度を制御して高い分離効率で固液を分離する基本的方法及びその装置が提案されている。 In the prior art document disclosing the above prior art, as a specific method, the specific gravity difference separation and the extraction separation are simultaneously performed in the same system, the solid matter is taken out with a water slurry, and the SiC is recovered with a filter or a cyclone. A basic method and apparatus for separating solid and liquid with high separation efficiency by controlling the density and viscosity of the mixed fluid of CO 2 and slurry waste liquid by mixing the subsequent CO 2 with slurry waste liquid and performing specific gravity difference separation Proposed.

しかし、その後、本発明者らが更に実用化研究を進める中で、この方法では、良好な固液分離結果が得られたが、分離過程でクーラントが極小量沈降し、固形物回収槽から小量のクーラントが回収され、該方法は、スラリー廃液の分離プロセスの実用化を可能にする固液の完全分離プロセスとしては、未だ課題を有するものであった。   However, after that, while the inventors proceeded with further practical research, this method obtained a good solid-liquid separation result. The amount of coolant is recovered, and this method still has a problem as a solid-liquid complete separation process that enables practical use of a slurry waste liquid separation process.

このように、当技術分野においては、廃棄スラリーから再利用可能なSiCとクーラントを分離、回収する方法として、比重差分離器の下段へのクーラントの沈降が全くなく、固液の完全分離プロセスとして実用化可能であり、しかも人体及び環境に対して負荷の低い超臨界二酸化炭素を比重差分離媒体として用いた新しい有価物回収技術を確立することが強く要請されていた。   Thus, in this technical field, as a method for separating and recovering reusable SiC and coolant from waste slurry, there is no settling of coolant to the lower stage of the specific gravity difference separator, and as a complete solid-liquid separation process. There has been a strong demand to establish a new valuable material recovery technique using supercritical carbon dioxide as a specific gravity difference separation medium that can be put into practical use and has a low load on the human body and the environment.

特許第3199159号公報Japanese Patent No. 3199159 特開平11−48146号公報JP 11-48146 A 特開2002−28866号公報JP 2002-28866 A 特開2003−225700号公報JP 2003-225700 A 特開2000−254543号公報JP 2000-254543 A 特開平11−172237号公報JP-A-11-172237 特開平9−109144号公報JP-A-9-109144 特開2004−223321号公報JP 2004-223321 A 特開平8−183989号公報Japanese Patent Laid-Open No. 8-183989 特開2007−330964号公報JP 2007-330964 A

このような状況の中で、本発明者らは、上記従来技術に鑑みて、スラリー廃液等の固液混合物質からその有価物を高効率に分離回収することを可能とする新しい有価物回収技術を開発することを目標として鋭意研究を積み重ねた結果、超臨界二酸化炭素又は液体二酸化炭素を比重差分離媒体として用いて、スラリー廃液等の固液混合物質を比重差分離器の中段の固液混合物質の供給口より供給し、該供給口よりも下から上へ超臨界二酸化炭素又は液体二酸化炭素を常に定量供給し、更に、比重差分離器から流出した流体を、上記固液混合物質の供給口に、循環流体として、循環させ、該循環の過程で上記循環流体にスラリー廃液等の固液混合物を混合して、比重差分離器の固液混合物質の供給口に供給する循環手段を用いて固液分離を連続的に行うことにより、所期の目的を達成し得ることを見出し、更に研究を重ねて、本発明を完成するに至った。   In such a situation, in view of the above-described conventional technology, the present inventors have developed a new valuable resource recovery technology that enables highly efficient separation and recovery of valuable resources from solid-liquid mixed substances such as slurry waste liquid. As a result of intensive research with the goal of developing a solid-liquid mixed material in the middle stage of a specific gravity difference separator using supercritical carbon dioxide or liquid carbon dioxide as a specific gravity difference separation medium. Supply from the material supply port, always supply a constant amount of supercritical carbon dioxide or liquid carbon dioxide from the bottom to the top of the supply port, and further supply the fluid flowing out from the specific gravity difference separator to supply the solid-liquid mixed material Use circulation means to circulate as a circulating fluid in the mouth, mix a solid-liquid mixture such as slurry waste liquid with the circulating fluid in the circulation process, and supply it to the supply port of the solid-liquid mixed material of the specific gravity difference separator Continuous solid-liquid separation By performing, we found that it is possible to achieve the intended purpose, further extensive research, and completed the present invention.

本発明は、超臨界二酸化炭素又は液体二酸化炭素を比重差分離媒体として用いて、クーラント等の液体成分の沈降を確実に防止することが可能で、スラリー廃液等の固液混合物質から、その有価物を高い分離効率で分離回収することを可能とする新しい固液混合物質の完全分離方法を提供することを目的とするものである。また、本発明は、超臨界二酸化炭素又は液体二酸化炭素を比重差分離媒体として用いて、スラリー廃液等の固液混合物質を、固液分離器内で固液分離する固液分離方法であって、従来法のように、固形物回収槽にクーラントが沈降することがなく、スラリー廃液の分離プロセスの実用化を可能とする、比重差分離による固液の完全分離プロセスを構築し、提供することを目的とするものである。更に、本発明は、比重差分離工程と界面活性剤洗浄工程の組み合わせにより、スラリー廃液から、高い分離効率で有価物を回収することを可能とする新しい固液混合物質の分離方法及びその装置を提供することを目的とするものである。   The present invention uses supercritical carbon dioxide or liquid carbon dioxide as a specific gravity difference separation medium, and can reliably prevent liquid components such as coolant from settling. It is an object of the present invention to provide a new method for completely separating a solid-liquid mixed substance, which makes it possible to separate and recover substances with high separation efficiency. The present invention is also a solid-liquid separation method in which a solid-liquid mixed material such as slurry waste liquid is solid-liquid separated in a solid-liquid separator using supercritical carbon dioxide or liquid carbon dioxide as a specific gravity difference separation medium. Establish and provide a solid-liquid complete separation process by specific gravity difference separation, which enables practical use of the slurry waste liquid separation process without the coolant settling in the solids collection tank as in the conventional method It is intended. Furthermore, the present invention provides a new solid-liquid mixed substance separation method and apparatus capable of recovering valuable materials from slurry waste liquid with high separation efficiency by combining a specific gravity difference separation step and a surfactant washing step. It is intended to provide.

上記課題を解決するための本発明は、以下の技術的手段より構成される。
(1)超臨界二酸化炭素又は液体二酸化炭素を比重差分離溶媒として用いる固液混合物質の比重差分離方法において、比重差分離器の中段の供給口から固液混合物質を供給し、該比重差分離器の上段から固液混合物質中の液体と二酸化炭素を流出させ、固形物を下に沈降させて回収し、比重差分離器の中段の固液混合物質の供給口よりも下から上へ密度が固液混合物質中の液体の密度以上の超臨界二酸化炭素又は液体二酸化炭素を定量供給し、上記比重差分離器から流出した流体を、循環流体として、上記固液混合物質の供給口に循環させ、この循環流体に固液混合物質を乱流混合し、比重差分離器に供給することにより、固液混合物質中の液体の上記固液混合物質の供給口よりも下への沈降を防止して連続的に固液分離することを特徴とする固液混合物質の比重差分離方法。
(2)上記固液混合物質が、シリコンウェハー製造工程で発生するスラリー廃液、又は研磨・切削スラリー廃液である、前記(1)に記載の比重差分離方法。
)超臨界二酸化炭素又は液体二酸化炭素の密度を、温度及び/又は圧力を変えることにより制御する際に、比重差分離器の固液混合物質の供給口よりも上部では、固液混合物質の固形物の所定の終末速度を得るために下部よりも高温で制御して比重差分離溶媒の密度を小さくし、下部では、上部よりも低温で制御して、比重差分離溶媒の密度を、固液混合物質の液体の密度、及び固液混合物質の液体と二酸化炭素の混合流体の密度以上となるようにして、固液混合物質中の液体の上記固液混合物質の供給口よりも下への沈降を防止する、前記()に記載の比重差分離方法。
)比重差分離器から流出した固液混合物質中の液体と二酸化炭素を、気液分離器で分離し、分離した二酸化炭素を凝縮し、該二酸化炭素を、固液混合物質の供給口よりも下から上へ供給する超臨界二酸化炭素又は液体二酸化炭素として循環利用する、前記(1)に記載の比重差分離方法。
)比重差分離器の上段の排出口からフィルターを介して流出した流体を、循環流体として、比重差分離器の固液混合物質の供給口に循環させる、前記(1)から()のいずれかに記載の比重差分離方法。
)比重差分離器の上段から流出した流体を、循環流体として、比重差分離器の固液混合物質の供給口に循環させ、この循環流体に固液混合物質を混合する工程において、上記循環流体と固液混合物質をミキサーで混合する、前記(1)から()のいずれかに記載の比重差分離方法。
)比重差分離器の上段から流出した流体を、循環流体として、比重差分離器の固液混合物質の供給口に循環させ、この循環流体に固液混合物質を混合する工程において、循環流体の温度、圧力、及び/又は流速を制御し、循環流体と固液混合物質の混合を確保しつつ、比重差分離器内の二酸化炭素及び固液混合物質中の液体と二酸化炭素の混合流体の流速が、固形物の所定の終末速度以下になるように制御する、前記(1)から()のいずれかに記載の比重差分離方法。
)超臨界二酸化炭素又は液体二酸化炭素を比重差分離溶媒として用いて、比重差分離器の中段から固液混合物質を供給し、該比重差分離器の上段から固液混合物質中の液体と二酸化炭素を流出させ、固形物を下に沈降させて回収して、固液混合物質を連続的に固液分離する固液混合物質の比重差分離装置であって、
比重差分離器の中断の固液混合物質の供給口よりも下の位置に、下から上へ密度が固液混合物質中の液体の密度以上の超臨界二酸化炭素又は液体二酸化炭素を定量供給する供給手段を有し、比重差分離器から流出した流体を、循環流体として、上記固液混合物質の供給口に循環する手段、及びこの循環流体に固液混合物質を乱流混合して、比重差分離器に供給する手段を具備し、固液混合物質中の液体の上記固液混合物質の供給口よりも下への沈降を防止して連続的に固液分離するようにしたことを特徴とする固液混合物質の連続比重差分離装置。
)比重差分離器の上段から流出した固液混合物質中の液体と二酸化炭素を分離する気液分離器を有し、分離した二酸化炭素を凝縮する手段、該二酸化炭素を比重差分離器に再供給して利用する手段を具備した、前記()に記載の連続比重差分離装置。
10)比重差分離型の固液混合物質の供給口よりも下から上へ供給する超臨界二酸化炭素又は液体二酸化炭素の密度を、温度及び/又は圧力を変えることにより調整する手段を有する、前記()に記載の連続比重差分離装置。
11)比重差分離器の固液混合物質の供給口よりも上部と下部を異なる温度に制御する手段を有する、前記()に記載の連続比重差分離装置。
12)比重差分離器から流出した流体を、循環流体として、比重差分離器の固液混合物質の供給口に循環させ、この循環流体に固液混合物質を混合する装置において、循環流体と固液混合物質を混合するミキサー手段を有する、前記()から(11)のいずれかに記載の連続比重差分離装置。
The present invention for solving the above-described problems comprises the following technical means.
(1) In a specific gravity difference separation method for a solid-liquid mixed material using supercritical carbon dioxide or liquid carbon dioxide as a specific gravity difference separation solvent, the solid-liquid mixed material is supplied from a middle supply port of the specific gravity difference separator, and the specific gravity difference The liquid and carbon dioxide in the solid-liquid mixed material are discharged from the upper stage of the separator, and the solid matter is settled down and recovered. From the bottom to the upper part of the solid-liquid mixed substance supply port in the middle stage of the specific gravity difference separator Supercritical carbon dioxide or liquid carbon dioxide whose density is equal to or higher than that of the liquid in the solid-liquid mixed substance is quantitatively supplied, and the fluid flowing out of the specific gravity difference separator is used as a circulating fluid to the supply port of the solid-liquid mixed substance. The solid-liquid mixed substance is turbulently mixed in this circulating fluid and supplied to the specific gravity difference separator, so that the liquid in the solid-liquid mixed substance settles below the solid-liquid mixed substance supply port. prevention to be characterized by continuous solid-liquid separation The difference in specific gravity separation method of the solid-liquid substance mixture.
(2) The specific gravity difference separation method according to (1), wherein the solid-liquid mixed material is slurry waste liquid generated in a silicon wafer manufacturing process or polishing / cutting slurry waste liquid.
( 3 ) When the density of supercritical carbon dioxide or liquid carbon dioxide is controlled by changing the temperature and / or pressure, the solid-liquid mixed substance is above the solid-liquid mixed substance supply port of the specific gravity difference separator. In order to obtain a predetermined terminal velocity of the solids, the density of the specific gravity difference separation solvent is reduced by controlling it at a higher temperature than the lower part, and at the lower part, the density of the specific gravity difference separation solvent is controlled at a lower temperature than the upper part. The density of the liquid in the solid-liquid mixed substance and the density of the liquid in the solid-liquid mixed substance and the mixed fluid of carbon dioxide should be higher than the supply port of the solid-liquid mixed substance in the solid-liquid mixed substance. The specific gravity difference separation method according to the above ( 1 ), which prevents sedimentation into the liquid.
( 4 ) The liquid and carbon dioxide in the solid-liquid mixed material flowing out from the specific gravity difference separator are separated by the gas-liquid separator, the separated carbon dioxide is condensed, and the carbon dioxide is supplied to the solid-liquid mixed material supply port. The specific gravity difference separation method according to (1), wherein the separation is performed as supercritical carbon dioxide or liquid carbon dioxide supplied from below to above.
( 5 ) From the above (1) to ( 3 ), the fluid flowing out from the upper discharge port of the specific gravity difference separator through the filter is circulated as a circulating fluid to the solid-liquid mixed material supply port of the specific gravity difference separator. The specific gravity difference separation method according to any one of the above.
( 6 ) In the step of circulating the fluid flowing out from the upper stage of the specific gravity difference separator as a circulating fluid to the solid-liquid mixed substance supply port of the specific gravity difference separator and mixing the solid-liquid mixed substance with this circulating fluid, The specific gravity difference separation method according to any one of (1) to ( 5 ), wherein the circulating fluid and the solid-liquid mixed substance are mixed with a mixer.
( 7 ) In the step of circulating the fluid flowing out from the upper stage of the specific gravity difference separator as a circulating fluid to the solid-liquid mixed substance supply port of the specific gravity difference separator and mixing the solid-liquid mixed substance with this circulating fluid, Controlling the temperature, pressure, and / or flow rate of the fluid and ensuring mixing of the circulating fluid and the solid-liquid mixed material, while mixing the carbon dioxide in the specific gravity difference separator and the liquid and carbon dioxide mixed fluid in the solid-liquid mixed material The specific gravity difference separation method according to any one of (1) to ( 6 ), wherein the flow rate is controlled to be equal to or lower than a predetermined terminal velocity of the solid.
( 8 ) Using supercritical carbon dioxide or liquid carbon dioxide as a specific gravity difference separation solvent, supplying a solid-liquid mixed substance from the middle stage of the specific gravity difference separator, and liquid in the solid-liquid mixed substance from the upper stage of the specific gravity difference separator And a solid-liquid mixed substance specific gravity difference separation device that continuously solid-liquid separates the solid-liquid mixed substance by flowing out and carbon dioxide and collecting the solid by settling down,
Quantitatively supply supercritical carbon dioxide or liquid carbon dioxide whose density is higher than the density of the liquid in the solid-liquid mixed material, from the bottom to the top, at a position below the supply port of the solid-liquid mixed material at the interruption of the specific gravity difference separator A means for circulating the fluid that has flowed out of the specific gravity difference separator as a circulating fluid to the supply port of the solid-liquid mixed material, and a turbulent mixing of the solid-liquid mixed material with the circulating fluid, A means for supplying to the differential separator is provided, and the liquid in the solid-liquid mixed substance is continuously solid-liquid separated by preventing sedimentation below the supply port of the solid-liquid mixed substance. A continuous specific gravity difference separation apparatus for solid-liquid mixed materials.
( 9 ) A gas-liquid separator that separates carbon dioxide from the liquid in the solid-liquid mixed material flowing out from the upper stage of the specific gravity difference separator, means for condensing the separated carbon dioxide, and the specific gravity difference separator for the carbon dioxide The continuous specific gravity difference separation device according to ( 8 ), comprising means for re-supplying and using the same.
( 10 ) having means for adjusting the density of supercritical carbon dioxide or liquid carbon dioxide supplied from below to above the supply port of the solid-liquid mixed material of specific gravity difference separation type by changing temperature and / or pressure; The continuous specific gravity difference separation device according to ( 8 ) above.
( 11 ) The continuous specific gravity difference separation device according to ( 8 ), further including means for controlling the upper part and the lower part of the specific gravity difference separator to have different temperatures from the supply port of the solid-liquid mixed substance.
( 12 ) In a device for circulating a fluid flowing out from a specific gravity difference separator as a circulating fluid to a solid-liquid mixed substance supply port of the specific gravity difference separator and mixing the solid-liquid mixed substance with this circulating fluid, The continuous specific gravity difference separation device according to any one of ( 8 ) to ( 11 ), comprising mixer means for mixing a solid-liquid mixed substance.

次に、本発明について更に詳細に説明する。
本発明は、超臨界二酸化炭素又は液体二酸化炭素を比重差分離溶媒として用いる固液混合物質の比重差分離方法において、縦長の比重差分離器の中段の供給口から固液混合物質を供給し、該比重差分離器の上段から固液混合物質中の液体と二酸化炭素を流出させ、固形物を下に沈降させて回収し、比重差分離器の中段の固液混合物質の供給口よりも下から上へ超臨界二酸化炭素又は液体二酸化炭素を常に定量供給し、上記比重差分離器から流出した流体を、循環流体として、上記固液混合物質の供給口に循環させ、この循環流体に固液混合物質を供給し、比重差分離器に供給することにより連続的に固液分離することを特徴とするものである。
Next, the present invention will be described in more detail.
In the specific gravity difference separation method of the solid-liquid mixed material using supercritical carbon dioxide or liquid carbon dioxide as the specific gravity difference separation solvent, the present invention supplies the solid-liquid mixed material from the middle supply port of the vertically long specific gravity difference separator, The liquid and carbon dioxide in the solid-liquid mixed substance are discharged from the upper stage of the specific gravity difference separator, and the solid matter is settled down and recovered, and is lower than the supply port of the solid-liquid mixed substance in the middle stage of the specific gravity difference separator. The supercritical carbon dioxide or liquid carbon dioxide is constantly supplied from above to the top, and the fluid flowing out of the specific gravity difference separator is circulated as a circulating fluid to the supply port of the solid-liquid mixed material. A mixed substance is supplied, and solid-liquid separation is performed continuously by supplying the mixed substance to a specific gravity difference separator.

また、本発明は、超臨界二酸化炭素又は液体二酸化炭素を比重差分離溶媒として用いて、縦長の比重差分離器の中段から固液混合物質を供給し、該比重差分離器の上段から固液混合物質中の液体と二酸化炭素を流出させ、固形物を下に沈降させて回収して固液混合物質を連続的に固液分離する固液混合物質の比重差分離装置であって、比重差分離器の固液混合物質の供給口よりも下の位置に、下から上へ超臨界二酸化炭素又は液体二酸化炭素を定量供給する供給手段を有し、比重差分離器から流出した流体を、循環流体として、上記固液混合物質の供給口に循環する手段、及びこの循環流体に固液混合物質を混合して、比重差分離器に供給する手段を具備していることを特徴とするものである。   In addition, the present invention uses supercritical carbon dioxide or liquid carbon dioxide as a specific gravity difference separation solvent to supply a solid-liquid mixed substance from the middle stage of a vertically long specific gravity difference separator, and from the upper stage of the specific gravity difference separator, This is a solid-liquid mixed material specific gravity difference separation device that continuously separates solid-liquid mixed material by letting the liquid and carbon dioxide in the mixed material flow out, and the solid matter is settled down and recovered. At the position below the solid-liquid mixed substance supply port of the separator, there is a supply means for quantitatively supplying supercritical carbon dioxide or liquid carbon dioxide from the bottom to the top, and the fluid flowing out from the specific gravity difference separator is circulated. The fluid includes means for circulating to the solid-liquid mixed substance supply port, and means for mixing the solid-liquid mixed substance with the circulating fluid and supplying the mixed liquid to the specific gravity separator. is there.

本発明では、例えば、縦長の円筒状の比重差分離器が好適に用いられるが、その具体的な形態は、適宜設計することができる。本発明においては、比重差分離溶媒として、温度31.17℃以上で圧力7.386MPa以上の超臨界二酸化炭素又は液体二酸化炭素が用いられる。超臨界流体の密度は、液体に近く、拡散係数は液体に比べて著しく高く、無極性、弱極性油脂を溶解する作用を有し、その密度及びその溶解力は、温度及び/又は圧力を変えることで変化する。また、二酸化炭素は、圧力条件のみで気化、除去及び液化による再利用が可能であり、本発明では、上記二酸化炭素を比重差分離溶媒として用いることで、本発明の比重差分離プロセスの構築を可能としている。   In the present invention, for example, a vertically long cylindrical specific gravity difference separator is preferably used, but its specific form can be appropriately designed. In the present invention, supercritical carbon dioxide or liquid carbon dioxide having a temperature of 31.17 ° C. or higher and a pressure of 7.386 MPa or higher is used as the specific gravity difference separation solvent. The density of the supercritical fluid is close to that of the liquid, and the diffusion coefficient is significantly higher than that of the liquid. It has the action of dissolving nonpolar, weakly polar oils and fats, and its density and its dissolving power change the temperature and / or pressure. It changes with that. Carbon dioxide can be reused by vaporization, removal and liquefaction only under pressure conditions. In the present invention, the carbon dioxide is used as a specific gravity difference separation solvent, so that the specific gravity difference separation process of the present invention can be constructed. It is possible.

本発明では、上記固液混合物質として、例えば、一般的な研磨・切削スラリー廃液、シリコンウェハー製造過程で発生するシリコンスラリー廃液等のスラリー廃液が例示される。これらのスラリー廃液中には、研削剤、研磨剤等として使用される、砥粒、クーラント等が含まれている。   In the present invention, examples of the solid-liquid mixed material include slurry waste liquid such as general polishing / cutting slurry waste liquid and silicon slurry waste liquid generated in the process of manufacturing a silicon wafer. These slurry waste liquids contain abrasive grains, coolants, and the like used as abrasives, abrasives, and the like.

砥粒としては、例えば、微粒アルミナ、コロイダルシリカ、炭化ケイ素、酸化セリウム、酸化ケイ素、ボロンカーバイト、ボロンナイトライド、酸化ジルコニウム、微粒ダイヤモンド、微粒サファイヤ等が例示される。クーラントとしては、例えば、鉱物油等の油系クーラント、ポリ水溶性グリコール類、アミン類等の水系クーラント、及び潤滑剤等が例示される。また、クーラントには、界面活性剤、水、及び溶剤等が含まれている場合があるが、本発明は、これらを含むクーラントも本発明の対象とされる。   Examples of the abrasive grains include fine alumina, colloidal silica, silicon carbide, cerium oxide, silicon oxide, boron carbide, boron nitride, zirconium oxide, fine diamond, and fine sapphire. Examples of the coolant include oil-based coolants such as mineral oil, water-based coolants such as poly water-soluble glycols and amines, and lubricants. Moreover, although a surfactant, water, a solvent, etc. may be contained in coolant, the coolant containing these is also the object of this invention.

一般に、研削剤、研磨剤については、通常、上記砥粒は、クーラント、潤滑剤に分散されて存在している。それらのスラリー廃液には、上記砥粒、シリコン等の切粉、研磨屑、ワイヤソーに由来する鉄屑、砕けた砥粒のかけら等の固形分が含まれている。本発明は、上記スラリー廃液に限らず、それらと同等ないし類似の性状及び組成を有するあらゆる種類の固液混合物質の分離手段として適用可能である。   In general, for abrasives and abrasives, the abrasive grains are usually dispersed in a coolant and a lubricant. These slurry waste liquids contain solids such as the above-mentioned abrasive grains, chips such as silicon, polishing scraps, iron scraps derived from wire saws, and fragments of crushed abrasive grains. The present invention is not limited to the above-described slurry waste liquid, and can be applied as a means for separating all kinds of solid-liquid mixed substances having properties and compositions equivalent or similar to those.

しかし、本発明では、本発明についての説明を簡便かつ容易にするために、スラリー廃液の場合を例として説明する。スラリー廃液の組成として、例えば、シリコンウェハー製造工程で発生するスラリー廃液の場合、該スラリー廃液は、一般的には、SiC砥粒が48〜55w%、クーラントが30〜35wt%、シリコン屑が9〜10%、その他として、鉄屑、の割合からなる。   However, in the present invention, in order to make the description of the present invention simple and easy, a case of slurry waste liquid will be described as an example. As a composition of slurry waste liquid, for example, in the case of slurry waste liquid generated in a silicon wafer manufacturing process, the slurry waste liquid is generally 48 to 55 w% of SiC abrasive grains, 30 to 35 wt% of coolant, and 9 of silicon scrap. It consists of a ratio of iron scraps as -10% and others.

超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒として用いて、固液混合物質を固液分離する場合、固液混合物質を、超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離器の中段に位置させた固液混合物質の供給口から供給し、比重差を利用して、固液分離を行い、比重差分離器の上段から油系成分を排出し、比重差分離器の下に固形物質を沈降、分離させる。例えば、クーラントとして、鉱物油を用いたシリコンスラリー廃液の場合、比重差分離器の上段からクーラントが流出、分離し、下に固形物が沈降、分離する。   When supercritical carbon dioxide and / or liquid carbon dioxide is used as a specific gravity difference separation solvent, when solid-liquid mixed substances are separated into solid and liquid, supercritical carbon dioxide and / or liquid carbon dioxide are separated by specific gravity difference. Supply from the supply port of the solid-liquid mixed substance located in the middle stage of the vessel, perform solid-liquid separation using the specific gravity difference, discharge oil system components from the upper stage of the specific gravity difference separator, The solid substance is settled and separated below. For example, in the case of silicon slurry waste liquid using mineral oil as the coolant, the coolant flows out and separates from the upper stage of the specific gravity difference separator, and the solid matter settles and separates below.

この沈降、分離した固形物を外部へ排出した後、例えば、界面活性剤を含有する水溶液を、回収した固形物に添加、混合、静置することにより、上澄みとして、シリコン切粉及び鉄屑が、また、沈殿として、SiCが分離する。必要に応じて、混合時に超音波を照射すること、上澄み部に磁石を入れること等により、鉄屑を効率的に回収することができる。上記の操作を繰り返し行なうことで、SiCが精製されて、砥粒として、再使用が可能な状態とすることができる。   After discharging the settled and separated solids to the outside, for example, an aqueous solution containing a surfactant is added to the collected solids, mixed, and allowed to stand, so that silicon chips and iron scraps are formed as a supernatant. Also, SiC separates as a precipitate. If necessary, iron scraps can be efficiently recovered by irradiating ultrasonic waves during mixing, putting a magnet in the supernatant, or the like. By repeating the above operation, SiC can be refined and made into a state where it can be reused as abrasive grains.

本発明では、上記比重差分離において、比重差分離溶媒である超臨界二酸化炭素及び/又は液体二酸化炭素の温度及び/又は圧力を変えて、その密度を変化させること及び/又は比重差分離溶媒の流速を調節することで、固液の分離効率を高めることができる。本発明では、本発明の上記基本構成に加え、比重差分離溶媒の圧力、温度、及び/又は流速の条件が、本発明の固液分離混合物質の固液分離操作を行う上で重要な基本ファクターとして位置づけられる。   In the present invention, in the specific gravity difference separation, the density and / or the pressure of the specific gravity difference separation solvent can be changed by changing the temperature and / or pressure of the supercritical carbon dioxide and / or liquid carbon dioxide that is the specific gravity difference separation solvent. By adjusting the flow rate, the solid-liquid separation efficiency can be increased. In the present invention, in addition to the above basic configuration of the present invention, the pressure, temperature, and / or flow rate conditions of the specific gravity difference separation solvent are important basic factors for performing the solid-liquid separation operation of the solid-liquid separation mixed material of the present invention. Positioned as a factor.

例えば、固液混合物質を構成する液体成分(低密度ρ)と固体成分(高密度ρ)を分離する場合、これらの密度と比重差分離溶媒の密度ρCO2は、ρ<ρCO2<ρの関係にあることが必要である。本発明では、比重差分離溶媒の密度を調節することにより、高い分離効率を達成することができる。例えば、シリコンスラリー廃液であって、液体成分であるクーラントの密度が約800kg/mで、固体主成分であるSiCの密度が約3000kg/mである場合、比重差分離溶媒の密度は、800kg/m以上3000kg/m以下であることが求められる。 For example, when the liquid component (low density ρ L ) and the solid component (high density ρ H ) constituting the solid-liquid mixed substance are separated, these density and density ρ CO2 of the specific gravity difference separation solvent are ρ LCO2. <is required to be in the relationship of ρ H. In the present invention, high separation efficiency can be achieved by adjusting the density of the specific gravity difference separation solvent. For example, in the case of silicon slurry waste liquid, the density of the liquid component coolant is about 800 kg / m 3 and the solid main component SiC density is about 3000 kg / m 3 , the density of the specific gravity separation solvent is It is required to be 800 kg / m 3 or more and 3000 kg / m 3 or less.

分離溶媒の密度が800kg/m以上であれば、クーラントを上部に分離することが可能となり、3000kg/m以下であれば、SiCを下部に分離することができる。ただし、二酸化炭素の密度は、3000kg/mを越えることはないので、実質上は、800kg/m以上であればよいことになる(固体二酸化炭素ドライアイスでも、1500kg/m程度)。 If the density of the separation solvent is 800 kg / m 3 or more, the coolant can be separated into the upper part, and if it is 3000 kg / m 3 or less, SiC can be separated into the lower part. However, since the density of carbon dioxide does not exceed 3000 kg / m 3 , it should be substantially 800 kg / m 3 or more (even with solid carbon dioxide dry ice, about 1500 kg / m 3 ).

この条件は、例えば、飽和の液体二酸化炭素の場合、飽和温度17℃(その時の飽和圧力5.3MPa)以下で達成され、また、加圧液体二酸化炭素又は超臨界二酸化炭素の場合、20MPaの時、47℃以下、30MPaの時、67℃以下で達成される。   This condition is achieved, for example, in the case of saturated liquid carbon dioxide at a saturation temperature of 17 ° C. (saturation pressure at that time 5.3 MPa) or less, and in the case of pressurized liquid carbon dioxide or supercritical carbon dioxide, at 20 MPa. 47 ° C. or lower, 30 MPa, and 67 ° C. or lower.

一方、固体粒子の沈降性は、一般に、ストークス式:(ρ−ρ)g・d/18μから計算される限界流速(=終末速度)で評価され、この数値より小さな分離溶媒の上昇速度となるように流速が決定される。例えば、SiCの粒径を10μmと仮定し、分離溶媒として、40℃・20MPaの超臨界二酸化炭素(密度840kg/m)を用いる場合、限界流速、すなわち終末速度は5.4m/hと計算されるので、超臨界二酸化炭素の上昇速度は、これより十分に小さい数値となるように流速を調節することが好ましい。 On the other hand, the sedimentation property of solid particles is generally evaluated by a critical flow velocity (= terminal velocity) calculated from the Stokes equation: (ρ 1 −ρ 2 ) g · d 2 / 18μ, and the rise of the separation solvent is smaller than this value. The flow rate is determined so as to be the speed. For example, assuming that the particle size of SiC is 10 μm and supercritical carbon dioxide (density 840 kg / m 3 ) at 40 ° C. and 20 MPa is used as a separation solvent, the critical flow rate, that is, the end velocity is calculated as 5.4 m / h. Therefore, it is preferable to adjust the flow rate so that the rising speed of the supercritical carbon dioxide becomes a numerical value sufficiently smaller than this.

また、水系スラリーの場合には、液体成分は水であり、密度は、1000kg/mであるので、比重差分離溶媒の密度は、それ以上大きな数値が求められる。この条件は、飽和の液体二酸化炭素の場合、飽和温度−14℃(その時の飽和圧力:2.4MPa)以下で達成され、また、加圧液体二酸化炭素の場合、20MPaの時、5℃以下、30MPaの時、15℃以下で達成され、更に、超臨界二酸化炭素の場合、50MPaの時、36℃以下で達成される。 In the case of an aqueous slurry, since the liquid component is water and the density is 1000 kg / m 3 , a larger numerical value is required for the density of the specific gravity difference separation solvent. This condition is achieved in the case of saturated liquid carbon dioxide at a saturation temperature of −14 ° C. (saturation pressure at that time: 2.4 MPa) or less, and in the case of pressurized liquid carbon dioxide, at 5 MPa or less at 20 MPa, In the case of 30 MPa, it is achieved at 15 ° C. or lower, and in the case of supercritical carbon dioxide, it is achieved at 36 MPa or lower at 50 MPa.

本発明の固液分離操作により、低温度の状態で、脱水、乾燥が可能となり、いずれにしても、固液分離操作が終了した段階で、溶媒、液体成分及び固形物質のうち、再利用が可能な有価物を分離、回収し、再使用することが可能となる。本発明では、比重差分離器の中段の固液混合物質の供給口よりも下から上へ供給する超臨界二酸化炭素又は液体二酸化炭素の密度を、温度及び/又は圧力を変えることにより制御して、該密度を、固液混合物質中の液体密度、及び固液混合物質中の液体と二酸化炭素の混合流体の密度以上にすることにより、固液混合物質中の液体成分の沈降を防止することが可能となる。   The solid-liquid separation operation of the present invention enables dehydration and drying at a low temperature. In any case, when the solid-liquid separation operation is completed, the solvent, liquid component, and solid substance can be reused. Possible valuable materials can be separated, recovered and reused. In the present invention, the density of supercritical carbon dioxide or liquid carbon dioxide supplied from below to above the supply port of the solid-liquid mixed substance in the middle stage of the specific gravity difference separator is controlled by changing the temperature and / or pressure. Preventing the sedimentation of the liquid component in the solid-liquid mixed material by making the density equal to or higher than the liquid density in the solid-liquid mixed material and the density of the mixed fluid of the liquid and carbon dioxide in the solid-liquid mixed material. Is possible.

本発明では、比重差分離器の中段の固液混合物質の供給口よりも上と下を、異なる温度に調整し、比重差分離溶媒の密度を制御して、上部では、固液混合物質の固形物の所定の終末速度を得るために、下部よりも高温で制御して、比重差分離溶媒の密度を小さくし、下部では、上部よりも低温で制御して、比重差分離溶媒の密度を、固液混合物質の液体密度、及び固液混合物質の液体と二酸化炭素の混合流体の密度以上になるようにして、固液混合物質の液体成分の沈降を防止することが好適である。   In the present invention, the upper part and lower part of the solid-liquid mixed substance supply port in the middle stage of the specific gravity difference separator are adjusted to different temperatures, the density of the specific gravity difference separation solvent is controlled, and in the upper part, the solid substance of the solid-liquid mixed substance In order to obtain a predetermined terminal velocity, the density of the specific gravity difference separation solvent is reduced by controlling it at a higher temperature than the lower part, and the density of the specific gravity difference separation solvent is controlled at a lower temperature than that of the upper part. It is preferable to prevent sedimentation of the liquid component of the solid-liquid mixed material so as to be equal to or higher than the liquid density of the liquid-mixed material and the density of the liquid of the solid-liquid mixed material and the mixed fluid of carbon dioxide.

また、本発明では、比重差分離器の上段から流出した固液混合物質中の液体と二酸化炭素を、気液分離器で分離し、分離した二酸化炭素を凝縮し、これを、固液混合物質の供給口よりも下から上へ供給する超臨界二酸化炭素又は液体二酸化炭素として、循環利用することができる。また、本発明では、比重差分離器の上段の排出口にフィルターを設置し、フィルターから流出した流体を、循環流体として、循環・混合ラインを経由して、比重差分離器の中段の固液混合物質の供給口に循環させ、その過程で、この循環流体に固液混合物質を混合し、比重差分離器の固液混合物質の供給口に供給することで、固液混合物質の分離操作を行うことができる。   Further, in the present invention, the liquid and carbon dioxide in the solid-liquid mixed substance flowing out from the upper stage of the specific gravity difference separator are separated by the gas-liquid separator, and the separated carbon dioxide is condensed, and this is separated into the solid-liquid mixed substance. It can be recycled as supercritical carbon dioxide or liquid carbon dioxide supplied from below to above the supply port. Further, in the present invention, a filter is installed at the upper outlet of the specific gravity difference separator, and the fluid flowing out of the filter is used as a circulating fluid via a circulation / mixing line, and the solid liquid in the middle of the specific gravity difference separator. The solid-liquid mixed material is circulated through the supply port of the mixed material, and in this process, the solid-liquid mixed material is mixed with this circulating fluid and supplied to the solid-liquid mixed material supply port of the specific gravity difference separator. It can be performed.

本発明の方法では、比重差分離器の上段から流出した流体を、循環流体として、比重差分離器の中段の固液混合物質の供給口に循環させ、この循環流体に固液混合物質を供給する工程において、循環流体と固液混合物質をミキサーで混合した後、比重差分離器に供給すること、また、循環流体と固液混合物質をミキサーで混合する工程において、乱流混合型のミキサーを使用して混合すること、が好ましい。   In the method of the present invention, the fluid flowing out from the upper stage of the specific gravity difference separator is circulated as a circulating fluid to the solid-liquid mixed substance supply port in the middle stage of the specific gravity difference separator, and the solid-liquid mixed substance is supplied to this circulating fluid. In the step of mixing, the circulating fluid and the solid-liquid mixed substance are mixed with a mixer and then supplied to the specific gravity difference separator. In the step of mixing the circulating fluid and the solid-liquid mixed substance with the mixer, a turbulent mixing mixer is used. It is preferable to mix using.

また、本発明の方法では、比重差分離器の上段から流出した流体を、比重差分離器の中段の固液混合物質の供給口に循環させ、この循環流体に固液混合物質を供給する工程において、循環流体の温度、圧力、及び/又は流速を制御し、循環流体と固液混合物質の混合状態を良好に確保しつつ、比重差分離器内の二酸化炭素の流速が、固形物の所定の終末速度以下になるように制御することにより、固液混合物質を分離することが好ましい。   Further, in the method of the present invention, the fluid flowing out from the upper stage of the specific gravity difference separator is circulated to the supply port of the solid-liquid mixed substance in the middle stage of the specific gravity difference separator, and the solid-liquid mixed substance is supplied to this circulating fluid. The flow rate of carbon dioxide in the specific gravity separator is set to a predetermined level of solids while controlling the temperature, pressure, and / or flow rate of the circulating fluid and ensuring a good mixing state of the circulating fluid and the solid-liquid mixed material. It is preferable to separate the solid-liquid mixed material by controlling it so that the terminal speed is less than or equal to the above.

また、本発明の装置では、比重差分離器の上段から流出した固液混合物質中の液体と二酸化炭素を分離する気液分離器を有し、分離した二酸化炭素を凝縮する手段、該二酸化炭素を比重差分離器の下段に再供給する手段を具備したこと、固液混合物質の供給口よりも下から上へ供給する超臨界二酸化炭素又は液体二酸化炭素の密度を、温度及び/又は圧力を変えることにより制御する手段を有すること、比重差分離器の中段の固液混合物質の供給口より上と下を異なる温度に制御する手段を有すること、が好適である。   Further, the apparatus of the present invention has a gas-liquid separator that separates carbon dioxide from the liquid in the solid-liquid mixed material flowing out from the upper stage of the specific gravity difference separator, and means for condensing the separated carbon dioxide, the carbon dioxide Means for re-feeding to the lower stage of the specific gravity difference separator, the density of supercritical carbon dioxide or liquid carbon dioxide fed from the bottom to the top of the solid-liquid mixed substance feed port, the temperature and / or the pressure. It is preferable to have means for controlling by changing, and to have means for controlling the temperature above and below the supply port of the solid-liquid mixed substance in the middle stage of the specific gravity difference separator to different temperatures.

ここで、本発明を開発した経緯について説明すると、本発明者らは、先に、先行技術として、図1に示す実験装置を用いて、スラリーの固液分離を行う固液分離方法を開発した。該方法では、図2に示されるように、良好な固液分離結果が得られたが、少量のクーラント(6.4%)が、固形物回収槽から回収され、検証により、固形物回収槽に沈降するクーラントは、スラリー廃液の供給時に沈降していることが判明した。そこで、本発明者らは、クーラントの沈降を阻止し、固液完全分離を実施可能にするため、分離プロセスの改善及び分離条件の検討を行って、新しい分離プロセス、特定の分離条件を定めることで、固液の完全分離を可能とする新しい固液分離プロセスを構築することに成功した。   Here, the background of the development of the present invention will be described. The present inventors have previously developed a solid-liquid separation method for performing solid-liquid separation of a slurry using the experimental apparatus shown in FIG. 1 as a prior art. . In this method, as shown in FIG. 2, a good solid-liquid separation result was obtained, but a small amount of coolant (6.4%) was recovered from the solid recovery tank, and the solid recovery tank was verified by verification. It was found that the coolant that settled in the slurry was settled when the slurry waste liquid was supplied. Therefore, the present inventors have determined a new separation process and specific separation conditions by improving the separation process and examining separation conditions in order to prevent coolant settling and enable solid-liquid complete separation. So, we succeeded in building a new solid-liquid separation process that enables complete solid-liquid separation.

本発明の固液分離方法として構築した新しい分離プロセスと、固液分離の結果を、図3、4に示す。本発明の固液分離プロセスでは、1)スラリー供給口よりも下から常にCOを定量供給すること、2)比重差分離器の排出口とスラリー廃液の供給口の間に循環・混合ラインを設け、比重差分離器から流出した流体を、循環流体として、循環させ、この循環流体にスラリー廃液を混合して供給すること、を基本構成としている。分離条件としては、スラリー廃液の供給口よりも下から上へ供給するCOの密度と、クーラントの密度、及びクーラント+COの混合流体の密度の関係を、(クーラント密度)<(CO密度)、(クーラント+COの混合流体の密度)<(CO密度)、に設定することを基本構成としている。 The new separation process constructed as the solid-liquid separation method of the present invention and the results of solid-liquid separation are shown in FIGS. In the solid-liquid separation process of the present invention, 1) a constant amount of CO 2 is always supplied from below the slurry supply port, and 2) a circulation / mixing line is provided between the discharge port of the specific gravity difference separator and the slurry waste solution supply port. The basic configuration is that the fluid flowing out from the specific gravity difference separator is circulated as a circulating fluid, and the slurry waste liquid is mixed and supplied to the circulating fluid. As the separation conditions, the relationship between the density of CO 2 supplied from the bottom to the top of the slurry waste liquid supply port, the density of the coolant, and the density of the mixed fluid of the coolant + CO 2 is expressed as (coolant density) <(CO 2 density). ), (Density of coolant + CO 2 mixed fluid) <(CO 2 density).

図4に示される固液分離の結果から分かるように、本発明の固液分離プロセスでは、クーラントは、固形物回収槽から回収されないこと(回収率:0.0%)、すなわち、比重差分離器の下段におけるクーラントの沈降を完全に阻止できること、が判明した。これにより、本発明は、スラリー廃液を比重差分離により該スラリー廃液を構成する物質ごとに分離するプロセスとして、例えば、スラリー廃液に大量に含まれるSiCとクーラントを再利用することを可能とする固液の完全分離プロセスを確立できることが実証された。   As can be seen from the results of the solid-liquid separation shown in FIG. 4, in the solid-liquid separation process of the present invention, the coolant is not recovered from the solid material recovery tank (recovery rate: 0.0%), that is, the specific gravity difference separation. It has been found that coolant settling in the lower stage of the vessel can be completely prevented. As a result, the present invention provides a process that separates the slurry waste liquid for each substance constituting the slurry waste liquid by specific gravity difference separation, for example, a solid that makes it possible to reuse a large amount of SiC and coolant contained in the slurry waste liquid. It has been demonstrated that a complete liquid separation process can be established.

上記先行技術において、固形物回収槽にクーラントが沈降した原因について、本発明者らが検証した結果、固形物回収槽の上部に、クーラントを含有した固形物が存在するのは、スラリー廃液の供給中に、クーラントとCOの混合流体からなる混合層が徐々に沈降し、固形物回収槽の固形物に接触し、その結果、固形物回収槽の上部の固形物にクーラントが残留したことによるものと考察された。 In the above prior art, as a result of verification by the present inventors about the cause of the coolant settling in the solid matter collection tank, the solid matter containing the coolant is present in the upper part of the solid matter collection tank. The mixed layer composed of the fluid mixture of the coolant and CO 2 gradually settles and comes into contact with the solid matter in the solid matter collecting tank, and as a result, the coolant remains in the solid matter at the top of the solid matter collecting tank. It was considered a thing.

本発明において、比重差分離器に供給された固形物の終末速度とCOの上昇速度の関係は、COの上昇速度<固形物の終末速度、であること、また、比重差分離器に供給されたクーラントの密度とCOの密度の関係は、クーラント+COの混合流体の密度<CO密度、であること、が、本発明の固液分離プロセスの基本原理として重要である。COの密度が、クーラントの密度よりより小さい場合は、固形物回収槽にクーラントが沈降する。一方、COの密度が大きすぎる場合は、COとスラリー廃液の混合状態が良くなくなり、スラリー廃液を効果的に分散できないことになる。 In the present invention, the rising speed of the relationship between the terminal velocity and CO 2 solids supplied to the difference in specific gravity separator, the terminal velocity of the rising speed <solids CO 2 that is, also, the difference in specific gravity separator It is important as a basic principle of the solid-liquid separation process of the present invention that the relationship between the density of the supplied coolant and the density of CO 2 is the density of the mixed fluid of coolant + CO 2 <CO 2 density. When the density of CO 2 is smaller than the density of the coolant, the coolant settles in the solid matter collection tank. On the other hand, when the density of CO 2 is too large, the mixed state of CO 2 and the slurry waste liquid becomes poor, and the slurry waste liquid cannot be effectively dispersed.

本発明の装置については、本発明では、分離溶媒と液体成分を分離する適宜の蒸発手段により、分離溶媒を気体として回収し、冷却、凝縮手段を介して、液体二酸化炭素として再循環させるための、分離溶媒の循環手段を適宜設置することが可能である。また、比重差分離器の下部に回収された固形物質を連続的に排出する手段を設置することもできる。この連続的な排出により、比重差分離器内に固形物質を貯蔵が必要なくなるので、比重差分離器の小型化が可能である。本発明では、本発明の装置を構成する各手段の具体的な構成については、特に制限されるものではなく、固液混合物質の種類、装置の使用目的等に応じて任意に設計することができる。   With regard to the apparatus of the present invention, in the present invention, the separation solvent is recovered as a gas by an appropriate evaporation means for separating the separation solvent and the liquid component, and is recycled as liquid carbon dioxide via the cooling and condensation means. Further, it is possible to appropriately install a circulation means for the separation solvent. In addition, a means for continuously discharging the collected solid substance can be installed at the lower part of the specific gravity difference separator. This continuous discharge eliminates the need to store a solid substance in the specific gravity separator, and thus the specific gravity separator can be miniaturized. In the present invention, the specific configuration of each means constituting the apparatus of the present invention is not particularly limited, and can be arbitrarily designed according to the type of solid-liquid mixed material, the purpose of use of the apparatus, etc. it can.

更に、本発明では、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を混合すること、混合後の流体の密度及び粘性を制御して、その密度及び粘性を適宜調整すること、が可能であり、また、固液混合物質と超臨界二酸化炭素及び/又は液体二酸化炭素を予め混合し、その混合物を、流体の密度及び粘性を制御しながら、比重差分離に適宜供給することが可能である。   Furthermore, in the present invention, mixing the solid-liquid mixed material with supercritical carbon dioxide and / or liquid carbon dioxide, controlling the density and viscosity of the fluid after mixing, and adjusting the density and viscosity as appropriate. It is possible to mix a solid-liquid mixed material and supercritical carbon dioxide and / or liquid carbon dioxide in advance, and supply the mixture to specific gravity separation as appropriate while controlling the density and viscosity of the fluid. It is.

従来、シリコンウェハー製造工程で発生するスラリー廃液中に大量に含まれている使用可能なSiCやクーラントを回収し、再利用する方法が種々提案されている。しかし、何れの方法も、大量の有機溶剤、強酸・強アルカリ、希アルカリ水溶液、界面活性剤等を用いたり、超音波照射等の特別な処理を併用する必要があり、また、新たにそれらの廃液の処理工程が必要となり、実際には、スラリー廃液等からの有価物の回収はほとんど行われていないのが実情であった。   Conventionally, various methods for recovering and reusing usable SiC and coolant contained in a large amount in a slurry waste liquid generated in a silicon wafer manufacturing process have been proposed. However, each method requires the use of a large amount of organic solvent, strong acid / strong alkali, dilute alkaline aqueous solution, surfactant, etc., or special treatment such as ultrasonic irradiation. In actuality, a waste liquid treatment process is required, and in fact, the recovery of valuable materials from slurry waste liquid and the like has hardly been performed.

また、既存の有機溶剤による抽出法に代わる方法として、抽出溶媒として、超臨界二酸化炭素を用いて、スラリー廃液中の固液分離、及び有価物を回収する方法も提案されているが、抽出操作だけで高い分離効率を達成するには、大量の抽出溶媒が必要となり、装置の小型化、抽出効率や有価物の回収率の向上等には大きな制約があった。また、従来の比重差分離方法では、遠心分離機等を使用していたが、この種の方法では、分離効率が悪く、完全な固液分離ができないこと、また、分離効率を良くするために、希釈溶媒の添加等が行われるため、分離操作後に、希釈溶媒を目的物質から分離することや、希釈溶媒の後処理が必要になること、等の問題があった。   In addition, as a method to replace the existing extraction method with an organic solvent, a method of solid-liquid separation in a slurry waste liquid and recovery of valuable materials using supercritical carbon dioxide as an extraction solvent has been proposed. In order to achieve high separation efficiency alone, a large amount of extraction solvent is required, and there are significant restrictions on downsizing the apparatus and improving the extraction efficiency and the recovery rate of valuable materials. In addition, in the conventional specific gravity difference separation method, a centrifuge or the like was used. However, in this type of method, the separation efficiency is poor and complete solid-liquid separation cannot be performed, and in order to improve the separation efficiency. Since the dilution solvent is added, there are problems such as separation of the dilution solvent from the target substance after the separation operation, and post-treatment of the dilution solvent.

これに対し、本発明では、比重差分離溶媒に、常温、常圧で気体となる二酸化炭素を使用するため、分離後の物質に溶媒は残留しない上に、後処理の必要がない。また、本発明は、超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒として用いて、固液混合物質を完全に固液分離することを可能とするものである。特に、超臨界二酸化炭素は、温度、圧力を変えることで簡便かつ容易に密度を変化させられる上に、従来の比重差分離で使用していた分離溶媒の水やアルコール、有機溶媒等より、圧倒的に粘度が低いため、これらの溶媒に比べ、極少量の添加量で高い分離効率が得られる。   On the other hand, in the present invention, carbon dioxide, which is a gas at normal temperature and normal pressure, is used as the specific gravity difference separation solvent, so that the solvent does not remain in the separated substance and there is no need for post-treatment. In addition, the present invention makes it possible to completely separate a solid-liquid mixed material using supercritical carbon dioxide and / or liquid carbon dioxide as a specific gravity difference separation solvent. In particular, the density of supercritical carbon dioxide can be easily and easily changed by changing the temperature and pressure, and it is overwhelmed by water, alcohol, organic solvents, and other separation solvents used in conventional density difference separation. Since the viscosity is low, a high separation efficiency can be obtained with a very small addition amount compared to these solvents.

本発明は、超臨界二酸化炭素及び/又は液体二酸化炭素を比重差分離溶媒として用いることにより、溶媒の使用量の大幅な低減及び装置の小型化と、有価物の分離効率の向上を同時に達成することを可能とするものである。本発明は、固液混合物中の有価物を、超臨界二酸化炭素及び/又は液体二酸化炭素を、比重差分離溶媒として用いて、比重差分離するための高効率分離方法及びその装置を提供するものとして有用である。   By using supercritical carbon dioxide and / or liquid carbon dioxide as a specific gravity difference separation solvent, the present invention achieves a significant reduction in the amount of solvent used, a reduction in the size of the apparatus, and an improvement in the separation efficiency of valuable materials at the same time. It is possible to do that. The present invention provides a high-efficiency separation method and apparatus for separating a specific gravity difference in a solid-liquid mixture using supercritical carbon dioxide and / or liquid carbon dioxide as a specific gravity difference separation solvent. Useful as.

本発明により、次のような効果が奏される。
(1)超臨界二酸化炭素及び/又は液体二酸化炭素を、比重差分離溶媒として用いることで、固液混合物質中の液体成分の比重差分離器の下段への沈降がなく、完全に固液分離ができる。
(2)スラリー廃液から比重差分離による固液分離により、再利用可能な有価成分を高効率で分離回収することができる。
(3)本発明により、例えば、シリコンスラリー廃液のリサイクルプロセスを構築することができる。
(4)本発明の方法及び装置により、従来のSC−CO抽出による固液分離法と比べて、高い効率で有価成分を分離回収することができる。
(5)比重差分離溶媒として、常温、常圧で気体となる二酸化炭素を使用しているので、分離後の物質に溶媒が残留することがなく、後処理の必要もない、という利点が得られる。
(6)超臨界二酸化炭素の密度を、温度及び/又は圧力を変えることで簡便かつ容易に変化させることが可能であり、それにより、被処理物質の密度に対応して、比重差分離の条件を任意に設定することができる。
(7)比重差分離溶媒である超臨界二酸化炭素は、水や有機溶媒等と比べて、粘度がきわめて低いため、従来法と比べて、極少量の溶媒添加量で格段に高い分離効率が得られる。
(8)比重差分離溶媒である二酸化炭素の温度及び/又は圧力を変え、その密度及び粘性を変化させることで、被処理固液混合物質に合わせた分離プロセスの構築及び分離条件の設定を任意にすることができる。
(9)低温(35℃程度)操作が可能であるため、被処理物質を熱変性することなく分離することが可能である。
(10)比重差分離溶媒に二酸化炭素を使用しているので、環境及び人体に対して無害である。
The present invention has the following effects.
(1) By using supercritical carbon dioxide and / or liquid carbon dioxide as the specific gravity difference separation solvent, there is no sedimentation of the liquid component in the solid-liquid mixed material to the lower stage of the specific gravity difference separator, and the solid-liquid separation is completely achieved. Can do.
(2) Reusable valuable components can be separated and recovered with high efficiency by solid-liquid separation by specific gravity difference separation from slurry waste liquid.
(3) According to the present invention, for example, a recycling process of silicon slurry waste liquid can be established.
(4) By the method and apparatus of the present invention, valuable components can be separated and recovered with higher efficiency compared to the conventional solid-liquid separation method by SC-CO 2 extraction.
(5) Since carbon dioxide, which is a gas at normal temperature and normal pressure, is used as the separation solvent for specific gravity difference, there is an advantage that the solvent does not remain in the separated substance and no post-treatment is required. It is done.
(6) The density of the supercritical carbon dioxide can be easily and easily changed by changing the temperature and / or pressure, so that the specific gravity difference separation conditions correspond to the density of the substance to be treated. Can be set arbitrarily.
(7) Supercritical carbon dioxide, which is a specific gravity difference separation solvent, has an extremely low viscosity compared to water and organic solvents, and therefore, a significantly higher separation efficiency can be obtained with a very small amount of solvent addition than conventional methods. It is done.
(8) By changing the temperature and / or pressure of carbon dioxide, which is a specific gravity difference separation solvent, and changing its density and viscosity, it is possible to arbitrarily set up a separation process and set separation conditions according to the solid-liquid mixed material to be treated. Can be.
(9) Since the operation at low temperature (about 35 ° C.) is possible, it is possible to separate the material to be treated without thermal denaturation.
(10) Since carbon dioxide is used for the specific gravity difference separation solvent, it is harmless to the environment and the human body.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

本実施例では、固液混合物質として、シリコンインゴットのスライス工程で発生するスラリー廃液を用いて、固液分離を行った。図5に、本発明で構築し、本実施例で実験を試みたスラリー廃液の分離プロセスを示す。図に示されるように、本分離プロセスは、固液分離工程と、SiC回収工程から構成される。   In this example, solid-liquid separation was performed using a slurry waste liquid generated in a silicon ingot slicing step as a solid-liquid mixed substance. FIG. 5 shows a separation process of slurry waste liquid constructed according to the present invention and tried in the present example. As shown in the figure, the separation process includes a solid-liquid separation step and a SiC recovery step.

固液分離工程では、超臨界二酸化炭素(SC−CO)を比重差分離溶媒として用いたSC−CO比重差分離による分離方法を行い、クーラントを回収し、SiC回収工程では、界面活性剤洗浄による洗浄方法を行い、SiCを回収する。本実施例では、本発明の環境負荷の低い有価物回収プロセスを、これらの二工程を組み合わせることにより実施した。 In the solid-liquid separation process, a separation method by SC-CO 2 specific gravity separation using supercritical carbon dioxide (SC-CO 2 ) as a specific gravity difference separation solvent is performed to recover the coolant, and in the SiC recovery process, a surfactant is used. A cleaning method by cleaning is performed to collect SiC. In this example, the valuable material recovery process with low environmental impact of the present invention was implemented by combining these two steps.

スラリー廃液の種類については、本実施例では、水系のスラリー廃液と比べて、分離が困難とされている油系のスラリー廃液をターゲットとして、固液分離操作を行った。図6に、本実施例で用いたスラリー廃液の写真を示す。該スラリー廃液に含まれる固形物は、密度が大きいものの、クーラントが高粘性であるため、終末速度が小さく、クーラント中に保持され、固液が混濁していることが分かる。本実施例では、このスラリー廃液に含まれるクーラントに、低粘性溶媒である超臨界二酸化炭素を溶解させたクーラントを低粘性化し、固形物(SiC、シリコン屑、鉄屑)と、クーラントを比重差分離により分離することを試みた。   With respect to the type of slurry waste liquid, in this example, solid-liquid separation operation was performed using an oil-based slurry waste liquid that is difficult to separate as compared with an aqueous slurry waste liquid as a target. FIG. 6 shows a photograph of the slurry waste liquid used in this example. Although the solid contained in the slurry waste liquid has a high density, the coolant is highly viscous, so the terminal speed is low, and the solid liquid is turbid because it is retained in the coolant. In this example, the coolant in which supercritical carbon dioxide, which is a low-viscosity solvent, is dissolved in the coolant contained in the slurry waste liquid is reduced in viscosity, and the solids (SiC, silicon scrap, iron scrap) and the coolant have a specific gravity difference. Attempts were made to separate by separation.

通常、スラリー廃液中の砥粒(SiC)は45〜60wt%、クーラント(鉱油)は30〜40wt%、Si屑は15〜10wt%、Fe屑は15〜5wt%である。本実施例においては、スラリー廃液は、総供給量:560gの条件、クーラントは、供給量:165g、密度:810kg/m、粘度:55cpの条件、固形物(SiC、シリコン屑、鉄屑)は、供給量:395g、密度:2550kg/mの条件として、実験を行った。図7に、各実験条件におけるSC−COの密度、粘度を示す。 Usually, the abrasive grains (SiC) in the slurry waste liquid are 45 to 60 wt%, the coolant (mineral oil) is 30 to 40 wt%, the Si scrap is 15 to 10 wt%, and the Fe scrap is 15 to 5 wt%. In this embodiment, the slurry waste liquid is in a condition of total supply amount: 560 g, the coolant is in a supply amount of 165 g, density: 810 kg / m 3 , viscosity: 55 cp, solid matter (SiC, silicon scrap, iron scrap) The experiment was conducted under the conditions of supply amount: 395 g and density: 2550 kg / m 3 . FIG. 7 shows the density and viscosity of SC-CO 2 under each experimental condition.

(実験装置)
本実施例では、上述の図3に示した実験装置と同様の装置を用いて実験を実施した。この実験装置は、縦長で円筒状の比重差分離器(内径50mm、高さ1000mm、容量1963ml、SUS316製)を中心に、供給系及び排出系と、循環・混合ラインを配設した構成を有している。これらの構成のうち、スラリー廃液の供給系は、スラリー貯槽から、スラリーポンプを介して、比重差分離器の中段に至る配管ラインが配設され、また、排出系は、比重差分離器の上段から、高圧フィルター、背圧弁及び気液分離器に至る配管ラインが配設されている。
(Experimental device)
In the present example, an experiment was performed using an apparatus similar to the experimental apparatus shown in FIG. This experimental apparatus has a configuration in which a supply system, a discharge system, and a circulation / mixing line are arranged around a longitudinal and cylindrical specific gravity difference separator (inner diameter 50 mm, height 1000 mm, capacity 1963 ml, manufactured by SUS316). is doing. Among these configurations, the slurry waste liquid supply system is provided with a piping line from the slurry storage tank to the middle stage of the specific gravity difference separator through the slurry pump, and the discharge system is the upper stage of the specific gravity difference separator. To a high pressure filter, a back pressure valve, and a gas-liquid separator.

循環・混合ラインは、比重差分離器の上段から、高圧フィルター、環境ポンプ、及びスラリー廃液が供給、混合される配管を経て、比重差分離器の中段の固液混合物質の供給口に至る配管ラインが配設されている。上記循環・供給ラインには、P−2ポンプ、V−4バルブ及びV−3バルブが設置されている。   The circulation / mixing line is connected from the upper stage of the specific gravity difference separator to the supply port of the solid-liquid mixed material in the middle stage of the specific gravity difference separator through the high pressure filter, environmental pump, and the pipe where slurry waste liquid is supplied and mixed. A line is provided. A P-2 pump, a V-4 valve, and a V-3 valve are installed in the circulation / supply line.

また、二酸化炭素の供給系は、分離溶媒として用いる二酸化炭素が収容された液化炭酸ガスボンベから、予冷却器、予備加熱器を介して、比重差分離器の下段に至る配管ラインが配設されている。更に、比重差分離器の側面には、加熱又は温度調整のために、上半分に温水循環手段が設置され、下半分にヒーターが設置され、気液分離器には、回収したクーラントの貯槽及びクーラントの量を計測するはかりが設置されている。   The carbon dioxide supply system is provided with a piping line from a liquefied carbon dioxide cylinder containing carbon dioxide used as a separation solvent to the lower stage of the specific gravity difference separator through a precooler and a preheater. Yes. Further, on the side of the specific gravity difference separator, a hot water circulation means is installed in the upper half for heating or temperature adjustment, a heater is installed in the lower half, and the gas-liquid separator has a storage tank for recovered coolant and A scale is installed to measure the amount of coolant.

(実験方法)
スラリー廃液を、スラリー貯槽から、スラリーポンプを介して、高圧の循環・混合ラインに供給し、その高圧配管内で超臨界二酸化炭素(SC−CO)と混合した後、比重差分離器の中段に位置する固液混合物質の供給口に供給した。比重差分離器内におけるSC−COの上昇流速を、スラリー廃液に含まれる固形物の終末速度以下とすることで、固形物は、比重差分離器の下の固形物回収槽に沈降し、クーラントは、SC−COに同伴し、背圧弁を経て、気液分離器で回収した。
(experimental method)
The slurry waste liquid is supplied from the slurry storage tank to the high-pressure circulation / mixing line via the slurry pump, mixed with supercritical carbon dioxide (SC-CO 2 ) in the high-pressure pipe, and then the middle stage of the specific gravity difference separator. To the supply port of the solid-liquid mixed substance located in By setting the ascending flow rate of SC-CO 2 in the specific gravity difference separator to be equal to or lower than the terminal velocity of the solids contained in the slurry waste liquid, the solids settle in the solids collection tank below the specific gravity difference separator, The coolant was accompanied by SC-CO 2 , passed through a back pressure valve, and recovered with a gas-liquid separator.

実験条件として、温度を35℃一定とし、圧力を10、15、29MPaの条件として、分離特性の圧力依存性を調べた。また、SC−COは、比重差分離器のスラリー廃液の供給口よりも下から上に常に定量供給した。実験は、始めに、V−1及びV−2の両方のバルブを開け、P−1及びP−2の両方のポンプを使用し、比重差分離器の最下部に配設した供給口から、SC−COを供給し、実験圧力まで昇圧し、同時に、予備加熱器、ヒーター及び温水で、実験温度まで加熱を行った。 As experimental conditions, the temperature was kept constant at 35 ° C., and the pressure was 10, 15, and 29 MPa, and the pressure dependence of the separation characteristics was examined. SC-CO 2 was always supplied in a fixed amount from the bottom to the top of the slurry waste liquid supply port of the specific gravity difference separator. The experiment begins by opening both V-1 and V-2 valves, using both P-1 and P-2 pumps, and from the feed port located at the bottom of the specific gravity separator, SC-CO 2 was supplied, the pressure was increased to the experimental pressure, and at the same time, heating was performed to the experimental temperature with a preheater, a heater, and hot water.

実験条件に到達した後、P−1ポンプのSC−CO流量を5g/minとし、P−2ポンプを一旦停止した。次いで、V−1及びV−2のバルブを閉め、V−3及びV−4のバルブを開けた後、P−2ポンプの流量を12g/minとし、循環・混合ラインを運転した。 After reaching the experimental conditions, the SC-CO 2 flow rate of the P-1 pump was set to 5 g / min, and the P-2 pump was temporarily stopped. Next, the V-1 and V-2 valves were closed and the V-3 and V-4 valves were opened, and then the flow rate of the P-2 pump was set to 12 g / min, and the circulation / mixing line was operated.

次いで、流量5g/minに調節されたスラリー廃液の供給を開始し、スラリー廃液とSC−COを混合した後、比重差分離器の中段の固液混合物質の供給口へ供給した。スラリー廃液を、循環・混合ラインに供給することで、二酸化炭素溶媒、及び二酸化炭素溶媒+クーラント(混合流体)と混合して、クーラントを低粘度化した。スラリー廃液の供給時間は、1.8hrとし、総供給量は、560gとした時点で、スラリー廃液の供給を終了した。図8に、Case1、2の実験条件と固形物回収槽、高圧フィルター、気液分離器の各ポイントで回収した固形物及びクーラントのマスバランスの評価を示した。各ポイントのマスバランスは、各成分の回収率×100/各成分の総供給量、とした。 Next, the supply of the slurry waste liquid adjusted to a flow rate of 5 g / min was started, and after mixing the slurry waste liquid and SC-CO 2 , the slurry was supplied to the solid-liquid mixed substance supply port in the middle stage of the specific gravity difference separator. By supplying the slurry waste liquid to the circulation / mixing line, it was mixed with the carbon dioxide solvent and the carbon dioxide solvent + coolant (mixed fluid) to reduce the viscosity of the coolant. When the supply time of the slurry waste liquid was 1.8 hr and the total supply amount was 560 g, the supply of the slurry waste liquid was finished. FIG. 8 shows the experimental conditions of Cases 1 and 2 and the evaluation of the mass balance of the solids and coolant collected at each point of the solids collection tank, high-pressure filter, and gas-liquid separator. The mass balance at each point was defined as recovery rate of each component × 100 / total supply amount of each component.

上記連続運転による操作で、スラリー廃液の連続供給実験は終了したが、ここで、循環・混合ラインに供給したスラリー廃液の全ての成分を回収する後処理工程を実施するために、スラリー廃液の供給終了後、P−2ポンプを一旦停止し、再度、V−3及びV−4のバルブと、V−1及びV−2のバルブを切り替え、P−1及びP−2の両方のポンプを使用して、比重差分離器の最下部の供給口から、SC−COを1.5hr供給し、比重差分離器内の流体の抽出操作を行った。続いて、SC−COの供給を止め、減圧操作をした後、固形物回収槽及び気液分離器でそれぞれ回収した固形物及びクーラントのマスバランスを評価した。 Although the continuous supply experiment of slurry waste liquid has been completed by the above-described operation by continuous operation, supply of slurry waste liquid is performed here in order to carry out a post-processing step of collecting all components of the slurry waste liquid supplied to the circulation / mixing line. After completion, once stop the P-2 pump, switch the V-3 and V-4 valves and the V-1 and V-2 valves again, and use both the P-1 and P-2 pumps. Then, SC-CO 2 was supplied for 1.5 hr from the lowest supply port of the specific gravity difference separator, and the fluid in the specific gravity difference separator was extracted. Subsequently, after the supply of SC-CO 2 was stopped and the pressure was reduced, the mass balance of the solid and the coolant recovered in the solid recovery tank and the gas-liquid separator was evaluated.

(実験結果)
表1に、各実験(Case1〜3)における圧力、温度と、SC−COの密度、粘度及び最大上昇流速、SiCの終末速度、SC−COとスラリー廃液混合直後の混合部のレイノルズ数、を示す。
(Experimental result)
Table 1 shows the pressure, temperature, density of SC-CO 2 , viscosity and maximum ascending flow rate, final terminal velocity of SiC, Reynolds number of the mixing part immediately after mixing SC-CO 2 and slurry waste liquid in each experiment (Case 1 to 3). , Indicate.

また、表2に、固形物回収槽における固形物回収率、クーラント沈降率、気液分離器におけるクーラント回収率、を示す。また、図9に、Case3の実験条件と、固形物回収槽、高圧フィルター、気液分離器の各ポイントで回収した固形物及びクーラントのマスバランスの評価を示す。各ポイントのマスバランスは、各成分の回収率×100/各成分の総供給量、とした。   Table 2 shows the solid recovery rate in the solid recovery tank, the coolant sedimentation rate, and the coolant recovery rate in the gas-liquid separator. In addition, FIG. 9 shows the test conditions of Case 3, and the evaluation of the mass balance of the solid matter and coolant collected at each point of the solid matter collection tank, the high-pressure filter, and the gas-liquid separator. The mass balance at each point was defined as recovery rate of each component × 100 / total supply amount of each component.

最も良好な結果が得られたのは、15MPa(CO密度:815kg/m)の条件の場合であり、該条件では、固液の完全分離ができることが分かった。10MPa(CO密度:713kg/m)及び29MPa(CO密度:924kg/m)の条件の場合でも、良好な分離結果が得られたが、固形物とともに、僅かなクーラントが回収され、クーラントの固液回収槽への沈降が起こることが分かった。 The best results were obtained under the condition of 15 MPa (CO 2 density: 815 kg / m 3 ). Under these conditions, it was found that solid and liquid could be completely separated. Even under the conditions of 10 MPa (CO 2 density: 713 kg / m 3 ) and 29 MPa (CO 2 density: 924 kg / m 3 ), good separation results were obtained, but with the solids, a slight amount of coolant was recovered, It was found that the coolant settled into the solid-liquid recovery tank.

これは、29MPaの条件では、15MPaの条件に比べて、混合部のレイノルズ数が小さく、SC−COとスラリー廃液との混合が不十分であったこと、SC−COの流速に対して、固形物の終末速度が十分に得られなかったこと、が原因であると考えられる。10MPaの条件では、CO密度よりも、クーラント密度が大きいために、クーラントが沈降したものと考えられる。 This is because the Reynolds number of the mixing part was small under the condition of 29 MPa compared with the condition of 15 MPa, the mixing of SC-CO 2 and the slurry waste liquid was insufficient, and the flow rate of SC-CO 2 It is thought that this is caused by the fact that the terminal velocity of the solid matter was not sufficiently obtained. Under the condition of 10 MPa, it is considered that the coolant has settled because the coolant density is larger than the CO 2 density.

クーラントは、二酸化炭素とともに、比重差分離器の上段から排出系を経て、気液分離装置で回収されるが、クーラントが固形物回収槽に沈降しないようにするためには、比重差分離器のスラリー廃液の供給口よりも下から上にSC−COを常に定量供給すること、また、下から上に供給するCOの密度が、クーラントの密度より大きいこと、固液分離器内の圧力は、35℃では15MPa程度であること、が重要であることが判明した。 The coolant, together with carbon dioxide, passes through the discharge system from the upper part of the specific gravity separator and is recovered by the gas-liquid separator. In order to prevent the coolant from settling in the solids recovery tank, the specific gravity separator is used. SC-CO 2 is always quantitatively supplied from the bottom to the top of the slurry waste liquid supply port, and the density of CO 2 supplied from the bottom to the top is greater than the density of the coolant, and the pressure in the solid-liquid separator It was found that it is about 15 MPa at 35 ° C.

(実験方法)
本実施例では、実施例1と同じ実験装置を用いて、比重差分離器の中段のスラリー廃液の供給口の上部と下部で、比重差分離器内の温度条件を変えて、スラリー廃液の固液分離を行った。スラリー廃液としては、実施例1と同じものを用いた。
(experimental method)
In this example, using the same experimental apparatus as in Example 1, the temperature conditions in the specific gravity difference separator were changed at the upper and lower portions of the slurry waste liquid supply port in the middle stage of the specific gravity difference separator, thereby solidifying the slurry waste liquid. Liquid separation was performed. As the slurry waste liquid, the same one as in Example 1 was used.

実施例1の結果に基づいて、SC−COとスラリー廃液との混合流体の混合部でのレイノルズ数を大きくするために、比重差分離器へのSC−COの供給圧力は、10MPaとし、比重差分離器の下部のヒーターによる加熱部分を25℃とし、比重差分離器の上部を35℃とする実験条件を設定した。これらの条件以外は、実施例1と同様とした。 Based on the result of Example 1, in order to increase the Reynolds number in the mixing part of the mixed fluid of SC-CO 2 and slurry waste liquid, the supply pressure of SC-CO 2 to the specific gravity difference separator is 10 MPa. The experimental conditions were set such that the portion heated by the heater at the bottom of the specific gravity difference separator was 25 ° C. and the top of the specific gravity difference separator was 35 ° C. The conditions were the same as in Example 1 except for these conditions.

(実験結果)
表3に、固形物回収槽及び気液分離器における固形物回収率とクーラント回収率を示す。35℃では、10MPaより高圧で29MPaより低圧の条件であり、15MPa程度が好ましいこと、が分かった。また、温度条件を変えれば、圧力条件も変わるが、例えば、低圧(10MPa)で操作するには、クーラントの沈降を抑制するために、比重差分離器の下部のみを低温(35℃以下)として、クーラント密度≦CO密度、とすることも有効であることが分かった。
(Experimental result)
Table 3 shows the solid recovery rate and coolant recovery rate in the solid recovery tank and the gas-liquid separator. It was found that at 35 ° C., the pressure was higher than 10 MPa and lower than 29 MPa, and about 15 MPa was preferable. In addition, if the temperature condition is changed, the pressure condition also changes. For example, in order to operate at a low pressure (10 MPa), only the lower part of the specific gravity difference separator is set to a low temperature (35 ° C. or lower) in order to suppress the settling of the coolant. It has also been found that it is effective to set the coolant density ≦ CO 2 density.

低圧(10MPa)であっても、比重差分離器の上部を35℃として、下部を低温(25℃以下)として、温度条件を変えたことにより、比重差分離器の全域が35℃の場合よりも、固形物回収槽へのクーラントの沈降を抑制できることが分かった。   Even at a low pressure (10 MPa), the upper part of the specific gravity difference separator is set to 35 ° C., the lower part is set to a low temperature (25 ° C. or less), and the temperature conditions are changed. It was also found that the settling of the coolant into the solid matter collection tank can be suppressed.

(SiCの回収)
本実施例では、固形物回収槽に回収された固形物から、SiCを回収した。実験では、1%ノニオン界面活性剤水溶液に固形物を投入した後、超音波を約5分照射した。固形物が液中に十分分散した状態で、約5分静置させるとともに、液面に磁石を接触させ、Fe屑を回収した。静置後、界面活性剤水溶液とSi屑の混濁液を排出し、沈澱したSiCを回収した。SiCの純度を高めるため、沈澱したSiCに、再度、界面活性剤を投入し、洗浄、混濁液の排出を、繰り返し3回行った。図10に、SiC回収工程、回収SiCの写真及びSEM像を示す。
(SiC recovery)
In the present example, SiC was recovered from the solid collected in the solid collection tank. In the experiment, a solid was put into a 1% nonionic surfactant aqueous solution and then irradiated with ultrasonic waves for about 5 minutes. While the solid was sufficiently dispersed in the liquid, it was allowed to stand for about 5 minutes, and a magnet was brought into contact with the liquid surface to collect Fe scraps. After standing, the turbid liquid of the surfactant aqueous solution and Si waste was discharged, and the precipitated SiC was recovered. In order to increase the purity of SiC, the surfactant was again added to the precipitated SiC, and washing and discharging of the turbid liquid were repeated three times. FIG. 10 shows a SiC recovery process, a photograph of the recovered SiC, and an SEM image.

(実験結果)
回収SiCの粒度分布を図11に示す。回収SiCの平均粒子径は、10μmで、シャープな分布を有しており、表面を露出した再利用可能なSiCが回収された。図12に、シリコン切断スラリー廃液からの有価物回収の分離プロセスの全貌を示す。
(Experimental result)
The particle size distribution of the recovered SiC is shown in FIG. The average particle diameter of the recovered SiC was 10 μm and had a sharp distribution. Reusable SiC with the exposed surface was recovered. FIG. 12 shows an overall view of the separation process for recovering valuable materials from the silicon cutting slurry waste liquid.

以上の本発明の実施例の実験結果から、SC−COを比重差分離器の最下部の供給口から定量供給しつつ、固液分離後の流体を循環させ、上記循環・混合ラインを経て、比重差分離器の中段の固液混合物質の供給口に供給して、比重差分離を利用して、スラリー廃液の固液分離操作を連続的に行うことにより、クーラントの沈降を抑制して、固液分離を行うことが可能であることが判明した。これらは、本発明の分離プロセスを採用することにより、クーラントの沈降がなく、クーラント、SiCの回収率が極めて高く、回収したSiCも、平均粒子径が10μmで、シャープな分布を有し、再利用可能な回収SiCとして有用であることを実証するものである。 From the above experimental results of the embodiment of the present invention, the SC-CO 2 was circulated through the fluid after solid-liquid separation while quantitatively supplying SC-CO 2 from the lowest supply port of the specific gravity difference separator, and passed through the circulation / mixing line. , By supplying the solid-liquid mixed substance supply port in the middle stage of the specific gravity difference separator and using the specific gravity difference separation, the solid-liquid separation operation of the slurry waste liquid is continuously performed, thereby suppressing the settling of the coolant. It was found that solid-liquid separation can be performed. By adopting the separation process of the present invention, there is no settling of coolant, the recovery rate of coolant and SiC is extremely high, and the recovered SiC also has a sharp distribution with an average particle diameter of 10 μm, It proves useful as an available recovered SiC.

本実施例の結果を総合すると、乱流混合型のミキサーを使用する場合は、ミキシングの観点から、混合部のレイノルズ数を大きくするために、同じ温度条件では低圧が有効であり、固形物分離の観点から、固形物の終末速度とSC−CO上昇流速の差を大きくするためには、同じ温度条件では低圧が有効である。しかし、クーラント分離の観点から、クーラントが固形物回収槽に沈降しないようにするためには、クーラントの密度以上の二酸化炭素の密度が必要であり、これらの条件をバランスさせることが重要であることが分かる。 To summarize the results of this example, when using a turbulent mixing type mixer, from the viewpoint of mixing, low pressure is effective under the same temperature conditions in order to increase the Reynolds number of the mixing section, and solids separation In view of the above, a low pressure is effective under the same temperature condition in order to increase the difference between the solid end velocity and the SC-CO 2 ascending flow rate. However, from the viewpoint of coolant separation, in order to prevent the coolant from settling in the solids collection tank, it is necessary to have a density of carbon dioxide that is higher than the density of the coolant, and it is important to balance these conditions. I understand.

以上詳述したように、本発明は、超臨界二酸化炭素又は液体二酸化炭素を分離溶媒として用いた比重差分離による固液混合物質の固液分離方法及びその装置に係るものであり、本発明により、超臨界二酸化炭素及び/又は液体二酸化炭素を、比重差分離溶媒として用いることで、固液混合物質中の液体成分が比重差分離器の下段への沈降がなく、完全に固液分離ができる。本発明の方法及び装置により、従来のSC−CO抽出による固液分離法と比べて、高い効率で有価成分を分離回収することができる。本発明は、例えば、シリコンウェハー製造工程で発生するスラリー廃液等の完全固液分離プロセスを構築して、該スラリー廃液等の固液混合物を完全に固液分離してその有価物を高効率で回収することを可能とする新しい固液混合物の固液分離技術を提供するものとして有用である。 As described above in detail, the present invention relates to a solid-liquid separation method of solid-liquid mixed material by specific gravity difference separation using supercritical carbon dioxide or liquid carbon dioxide as a separation solvent, and an apparatus therefor. By using supercritical carbon dioxide and / or liquid carbon dioxide as the specific gravity difference separation solvent, the liquid component in the solid-liquid mixed material does not settle to the lower stage of the specific gravity difference separator and can be completely solid-liquid separated. . By the method and apparatus of the present invention, valuable components can be separated and recovered with high efficiency compared to the conventional solid-liquid separation method by SC-CO 2 extraction. In the present invention, for example, a complete solid-liquid separation process such as slurry waste liquid generated in a silicon wafer manufacturing process is established, and a solid-liquid mixture such as slurry waste liquid is completely solid-liquid separated, and its valuables are efficiently collected. The present invention is useful for providing a solid-liquid separation technique for a new solid-liquid mixture that can be recovered.

先行技術の実験装置を示す。1 shows a prior art experimental apparatus. SiC回収槽、高圧フィルター、気液分離器の各ポイントでの回収物質と回収率を示す。The recovered materials and recovery rates at each point of the SiC recovery tank, high-pressure filter, and gas-liquid separator are shown. 実施例で用いた連続的固液分離装置フロー図を示す。The flow chart of the continuous solid-liquid separator used in the example is shown. 本発明による固液分離結果を示す。The solid-liquid separation result by this invention is shown. 本実施例で実験を試みたスラリー廃液の分離プロセスを示す。The separation process of the slurry waste liquid which experimented in the present Example is shown. クーラントの写真を示す。A photograph of the coolant is shown. 実験条件と、SC−COの密度、粘度を示す。Experimental conditions, density and viscosity of SC-CO 2 are shown. Case1、2の実験結果と各ポイントでのマスバランスの評価を示す。The experimental results of Case 1 and 2 and the evaluation of mass balance at each point are shown. Case3の実験結果と各ポイントでのマスバランスの評価を示す。The experimental results of Case 3 and the evaluation of mass balance at each point are shown. SiC回収工程、回収SiCの写真、SEMを示す。An SiC recovery process, a photograph of recovered SiC, and an SEM are shown. 回収SiCの粒度分布を示す。The particle size distribution of recovered SiC is shown. シリコン切断スラリー廃液からの有価物回収の分離プロセスの全貌を示す。The whole picture of the separation process of valuables recovery from silicon cutting slurry waste liquid is shown.

Claims (12)

超臨界二酸化炭素又は液体二酸化炭素を比重差分離溶媒として用いる固液混合物質の比重差分離方法において、比重差分離器の中段の供給口から固液混合物質を供給し、該比重差分離器の上段から固液混合物質中の液体と二酸化炭素を流出させ、固形物を下に沈降させて回収し、比重差分離器の中段の固液混合物質の供給口よりも下から上へ密度が固液混合物質中の液体の密度以上の超臨界二酸化炭素又は液体二酸化炭素を定量供給し、上記比重差分離器から流出した流体を、循環流体として、上記固液混合物質の供給口に循環させ、この循環流体に固液混合物質を乱流混合し、比重差分離器に供給することにより、固液混合物質中の液体の上記固液混合物質の供給口よりも下への沈降を防止して連続的に固液分離することを特徴とする固液混合物質の比重差分離方法。 In a specific gravity difference separation method of a solid-liquid mixed material using supercritical carbon dioxide or liquid carbon dioxide as a specific gravity difference separation solvent, the solid-liquid mixed material is supplied from a middle supply port of the specific gravity difference separator, and the specific gravity difference separator The liquid and carbon dioxide in the solid-liquid mixed substance are flowed out from the upper stage, the solid matter is settled down and collected, and the density is fixed from the bottom to the upper side of the solid-liquid mixed substance supply port in the middle stage of the specific gravity difference separator. Supercritical carbon dioxide or liquid carbon dioxide having a density equal to or higher than the density of the liquid in the liquid mixed substance is quantitatively supplied, and the fluid flowing out from the specific gravity difference separator is circulated as a circulating fluid to the supply port of the solid-liquid mixed substance, The solid-liquid mixed substance is turbulently mixed with this circulating fluid and supplied to the specific gravity difference separator to prevent the liquid in the solid-liquid mixed substance from sinking below the supply port of the solid-liquid mixed substance. Solid-liquid separation characterized by continuous solid-liquid separation The difference in specific gravity separation method of case material. 上記固液混合物質が、シリコンウェハー製造工程で発生するスラリー廃液、又は研磨・切削スラリー廃液である、請求項1に記載の比重差分離方法。   The specific gravity difference separation method according to claim 1, wherein the solid-liquid mixed material is a slurry waste liquid generated in a silicon wafer manufacturing process or a polishing / cutting slurry waste liquid. 超臨界二酸化炭素又は液体二酸化炭素の密度を、温度及び/又は圧力を変えることにより制御する際に、比重差分離器の固液混合物質の供給口よりも上部では、固液混合物質の固形物の所定の終末速度を得るために下部よりも高温で制御して比重差分離溶媒の密度を小さくし、下部では、上部よりも低温で制御して、比重差分離溶媒の密度を、固液混合物質の液体の密度、及び固液混合物質の液体と二酸化炭素の混合流体の密度以上となるようにして、固液混合物質中の液体の上記固液混合物質の供給口よりも下への沈降を防止する、請求項に記載の比重差分離方法。 When the density of supercritical carbon dioxide or liquid carbon dioxide is controlled by changing the temperature and / or pressure, the solid matter of the solid-liquid mixed substance is located above the solid-liquid mixed substance supply port of the specific gravity difference separator. In order to obtain a predetermined terminal velocity, the density of the specific gravity difference separation solvent is reduced by controlling it at a higher temperature than the lower part, and at the lower part, the density of the specific gravity difference separation solvent is controlled at a lower temperature than that of the upper part. Settling of the liquid in the solid-liquid mixed substance below the solid-liquid mixed substance supply port so that the density of the liquid of the substance is equal to or higher than the density of the liquid of the solid-liquid mixed substance and the mixed fluid of carbon dioxide. The specific gravity difference separation method according to claim 1 , wherein 比重差分離器から流出した固液混合物質中の液体と二酸化炭素を、気液分離器で分離し、分離した二酸化炭素を凝縮し、該二酸化炭素を、固液混合物質の供給口よりも下から上へ供給する超臨界二酸化炭素又は液体二酸化炭素として循環利用する、請求項1に記載の比重差分離方法。   The liquid and carbon dioxide in the solid-liquid mixed material flowing out from the specific gravity separator are separated by a gas-liquid separator, the separated carbon dioxide is condensed, and the carbon dioxide is placed below the solid-liquid mixed material supply port. The specific gravity difference separation method according to claim 1, wherein the separation is carried out as supercritical carbon dioxide or liquid carbon dioxide supplied from above to the top. 比重差分離器の上段の排出口からフィルターを介して流出した流体を、循環流体として、比重差分離器の固液混合物質の供給口に循環させる、請求項1からのいずれかに記載の比重差分離方法。 The fluid that flows out through the filter from the upper outlet of the difference in specific gravity separators, as the circulating fluid, circulating in the feed opening of the solid-liquid substance mixture of a specific gravity difference separation unit, according to any of claims 1 3 Specific gravity difference separation method. 比重差分離器の上段から流出した流体を、循環流体として、比重差分離器の固液混合物質の供給口に循環させ、この循環流体に固液混合物質を混合する工程において、上記循環流体と固液混合物質をミキサーで混合する、請求項1からのいずれかに記載の比重差分離方法。 In the step of circulating the fluid flowing out from the upper stage of the specific gravity difference separator as a circulating fluid to the solid-liquid mixed substance supply port of the specific gravity difference separator and mixing the solid-liquid mixed substance with this circulating fluid, The specific gravity difference separation method according to any one of claims 1 to 5 , wherein the solid-liquid mixed substance is mixed with a mixer. 比重差分離器の上段から流出した流体を、循環流体として、比重差分離器の固液混合物質の供給口に循環させ、この循環流体に固液混合物質を混合する工程において、循環流体の温度、圧力、及び/又は流速を制御し、循環流体と固液混合物質の混合を確保しつつ、比重差分離器内の二酸化炭素及び固液混合物質中の液体と二酸化炭素の混合流体の流速が、固形物の所定の終末速度以下になるように制御する、請求項1からのいずれかに記載の比重差分離方法。 In the step of circulating the fluid flowing out from the upper stage of the specific gravity difference separator as a circulating fluid to the solid-liquid mixed substance supply port of the specific gravity difference separator, and mixing the solid-liquid mixed substance with this circulating fluid, the temperature of the circulating fluid The flow rate of the mixed fluid of carbon dioxide in the specific gravity difference separator and the liquid and carbon dioxide in the solid-liquid mixed material is controlled while controlling the pressure and / or flow rate and ensuring the mixing of the circulating fluid and the solid-liquid mixed material. The specific gravity difference separation method according to any one of claims 1 to 6 , wherein the separation is controlled so as to be equal to or lower than a predetermined terminal velocity of the solid substance. 超臨界二酸化炭素又は液体二酸化炭素を比重差分離溶媒として用いて、比重差分離器の中段から固液混合物質を供給し、該比重差分離器の上段から固液混合物質中の液体と二酸化炭素を流出させ、固形物を下に沈降させて回収して、固液混合物質を連続的に固液分離する固液混合物質の比重差分離装置であって、
比重差分離器の中断の固液混合物質の供給口よりも下の位置に、下から上へ密度が固液混合物質中の液体の密度以上の超臨界二酸化炭素又は液体二酸化炭素を定量供給する供給手段を有し、比重差分離器から流出した流体を、循環流体として、上記固液混合物質の供給口に循環する手段、及びこの循環流体に固液混合物質を乱流混合して、比重差分離器に供給する手段を具備し、固液混合物質中の液体の上記固液混合物質の供給口よりも下への沈降を防止して連続的に固液分離するようにしたことを特徴とする固液混合物質の連続比重差分離装置。
Using supercritical carbon dioxide or liquid carbon dioxide as the specific gravity difference separation solvent, the solid-liquid mixed substance is supplied from the middle stage of the specific gravity difference separator, and the liquid and carbon dioxide in the solid-liquid mixed substance are supplied from the upper stage of the specific gravity difference separator. A solid-liquid mixed substance specific gravity difference separation device that continuously solid-liquid separates the solid-liquid mixed substance by collecting the solid by settling down and recovering,
Quantitatively supply supercritical carbon dioxide or liquid carbon dioxide whose density is higher than the density of the liquid in the solid-liquid mixed material, from the bottom to the top, at a position below the supply port of the solid-liquid mixed material at the interruption of the specific gravity difference separator A means for circulating the fluid that has flowed out of the specific gravity difference separator as a circulating fluid to the supply port of the solid-liquid mixed material, and a turbulent mixing of the solid-liquid mixed material with the circulating fluid, A means for supplying to the differential separator is provided, and the liquid in the solid-liquid mixed substance is continuously solid-liquid separated by preventing sedimentation below the supply port of the solid-liquid mixed substance. A continuous specific gravity difference separation apparatus for solid-liquid mixed materials.
比重差分離器の上段から流出した固液混合物質中の液体と二酸化炭素を分離する気液分離器を有し、分離した二酸化炭素を凝縮する手段、該二酸化炭素を比重差分離器に再供給して利用する手段を具備した、請求項に記載の連続比重差分離装置。 A gas-liquid separator that separates carbon dioxide from the liquid in the solid-liquid mixed material that has flowed out from the upper stage of the specific gravity difference separator, means for condensing the separated carbon dioxide, and re-supplying the carbon dioxide to the specific gravity difference separator The continuous specific gravity difference separation device according to claim 8 , comprising means for use in a continuous manner. 比重差分離型の固液混合物質の供給口よりも下から上へ供給する超臨界二酸化炭素又は液体二酸化炭素の密度を、温度及び/又は圧力を変えることにより調整する手段を有する、請求項に記載の連続比重差分離装置。 The density of the supercritical carbon dioxide or liquid carbon dioxide is supplied from the bottom than the supply port of the gravity difference separation type of the solid-liquid mixed material includes means for adjusting by changing the temperature and / or pressure, according to claim 8 The continuous specific gravity difference separation device described in 1. 比重差分離器の固液混合物質の供給口よりも上部と下部を異なる温度に制御する手段を有する、請求項に記載の連続比重差分離装置。 The continuous specific gravity difference separation device according to claim 8 , further comprising means for controlling the upper part and the lower part of the specific gravity difference separator at different temperatures from the supply port of the solid-liquid mixed material. 比重差分離器から流出した流体を、循環流体として、比重差分離器の固液混合物質の供給口に循環させ、この循環流体に固液混合物質を混合する装置において、循環流体と固液混合物質を混合するミキサー手段を有する、請求項から11のいずれかに記載の連続比重差分離装置。 In the device that circulates the fluid flowing out from the specific gravity difference separator as a circulating fluid to the solid-liquid mixed material supply port of the specific gravity difference separator and mixes the solid-liquid mixed material with this circulating fluid, the circulating fluid and the solid-liquid mixing The continuous specific gravity difference separation device according to any one of claims 8 to 11 , further comprising a mixer means for mixing substances.
JP2008156003A 2008-06-13 2008-06-13 Solid-liquid separation method and apparatus of solid-liquid mixed material by specific gravity difference separation using supercritical carbon dioxide Active JP5109012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156003A JP5109012B2 (en) 2008-06-13 2008-06-13 Solid-liquid separation method and apparatus of solid-liquid mixed material by specific gravity difference separation using supercritical carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008156003A JP5109012B2 (en) 2008-06-13 2008-06-13 Solid-liquid separation method and apparatus of solid-liquid mixed material by specific gravity difference separation using supercritical carbon dioxide

Publications (2)

Publication Number Publication Date
JP2009297665A JP2009297665A (en) 2009-12-24
JP5109012B2 true JP5109012B2 (en) 2012-12-26

Family

ID=41545122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156003A Active JP5109012B2 (en) 2008-06-13 2008-06-13 Solid-liquid separation method and apparatus of solid-liquid mixed material by specific gravity difference separation using supercritical carbon dioxide

Country Status (1)

Country Link
JP (1) JP5109012B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6785031B2 (en) * 2015-02-20 2020-11-18 昭和電工ガスプロダクツ株式会社 Drying method of fine particle dispersion
CA3008883C (en) 2017-06-19 2022-09-06 Icm, Inc. Fractionated stillage separation and feed products
CN113582181B (en) * 2021-07-27 2022-11-25 江苏吉星新材料有限公司 Method for recovering boron carbide in sapphire grinding waste liquid, boron carbide recovery suspension and sapphire grinding liquid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1669140B1 (en) * 2003-10-03 2010-11-03 Mitsubishi Gas Chemical Company, Inc. Method of washing solid grain
JP4904514B2 (en) * 2006-05-19 2012-03-28 独立行政法人産業技術総合研究所 Highly efficient separation method and apparatus for solid-liquid mixture with supercritical carbon dioxide and / or liquid carbon dioxide

Also Published As

Publication number Publication date
JP2009297665A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5722601B2 (en) Silicon cutting waste treatment method
EP2207869B1 (en) Method for treating spent abrasive slurry
KR100441648B1 (en) Reuse system of water-soluble slurry waste liquid
JP2006315099A (en) Recovery treatment method of waste liquid of silicon cutting slurry
JP2011502346A (en) Method and system for manufacturing wafer-like slices from substrate material
WO2000001519A1 (en) Method for the separation, regeneration and reuse of an exhausted glycol-based slurry
JP4904514B2 (en) Highly efficient separation method and apparatus for solid-liquid mixture with supercritical carbon dioxide and / or liquid carbon dioxide
JP2003340719A (en) Slurry regenerating method
JP2008290897A (en) Method and apparatus for recovering silicon
JP4520331B2 (en) Method for producing hydrogen gas
JP5109012B2 (en) Solid-liquid separation method and apparatus of solid-liquid mixed material by specific gravity difference separation using supercritical carbon dioxide
JP4966938B2 (en) Silicon regeneration method
JPH11156719A (en) Wire saw abrasive grain regeneration method and device
JP2010047443A (en) Silicon refining method, silicon refining apparatus and recycled abrasive grain
KR100975877B1 (en) Water cutting oils and the production system and the method thereof for silicon ingot
KR101047383B1 (en) Waste Slurry Recycling Method and Device
KR101020151B1 (en) Device and method for recycling slurry
JPH09109144A (en) Abrasive recovering method from silicon cutting waste fluid
JP4414364B2 (en) Method for recovering silicon-containing material
TWI481441B (en) Method and system for recovery of glycol solution from silicon sluury waste
WO2018016297A1 (en) Grinding fluid
JP2017119781A (en) Dispersion liquid for loose abrasive grains
KR20050096329A (en) Recycling system for waste oil sludge
JP2015139861A (en) Coolant recycling method and recycled coolant intermediate product
JPH09109145A (en) Abrasive recovering apparatus from silicon cutting waste fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120521

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5109012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250