JP2007326756A - Porous body material for honeycomb, porous body material mixture, suspension to be supported on honeycomb, catalytic body, and method of manufacturing mixed reaction gas using the catalytic body - Google Patents

Porous body material for honeycomb, porous body material mixture, suspension to be supported on honeycomb, catalytic body, and method of manufacturing mixed reaction gas using the catalytic body Download PDF

Info

Publication number
JP2007326756A
JP2007326756A JP2006161023A JP2006161023A JP2007326756A JP 2007326756 A JP2007326756 A JP 2007326756A JP 2006161023 A JP2006161023 A JP 2006161023A JP 2006161023 A JP2006161023 A JP 2006161023A JP 2007326756 A JP2007326756 A JP 2007326756A
Authority
JP
Japan
Prior art keywords
honeycomb
porous
catalyst
porous material
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006161023A
Other languages
Japanese (ja)
Other versions
JP5446060B2 (en
Inventor
Nariya Kobayashi
斉也 小林
Shinji Takahashi
真司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2006161023A priority Critical patent/JP5446060B2/en
Publication of JP2007326756A publication Critical patent/JP2007326756A/en
Application granted granted Critical
Publication of JP5446060B2 publication Critical patent/JP5446060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous body for honeycomb which can be industrially mass-produced and has excellent sulfur poisoning resistance, a porous body material mixture using the porous body, a honeycomb catalytic body, and a method of producing the mixed reaction gas of C1 components and hydrogen from a hydrocarbon raw material containing sulfur using the honeycomb catalytic body. <P>SOLUTION: The porous body material for honeycomb is a multiple oxide comprising at least aluminum and magnesium and has 10-300 m<SP>2</SP>/g BET specific surface area, ≤300 Å fine pore diameter and ≥0.1 cm<SP>3</SP>/g fine pore volume. A catalyst used for converting the sulfur-containing hydrocarbon into the mixed reaction gas of the C1 component and hydrogen is prepared by mixing silica, boehmite, titania, zirconia or the like with a porous support and supporting active metallic species on the porous support. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、工業的に大量に生産可能な耐硫黄被毒性に優れたハニカム用多孔質体材料、及び該多孔質体材料を用いた多孔質体材料混合物、触媒体、該触媒を用いた硫黄を含んだ炭化水素原料からC1成分及び水素の混合反応ガスの製造方法の提供を目的とする。   The present invention relates to a porous material for a honeycomb excellent in sulfur poisoning resistance that can be industrially produced in large quantities, a porous material mixture using the porous material, a catalyst body, and sulfur using the catalyst It aims at providing the manufacturing method of the mixed reaction gas of C1 component and hydrogen from the hydrocarbon raw material containing this.

大きな発電装置を用いエネルギー源として石炭や石油に偏っている現況は、地震などの天災や原料価格高騰、テロや戦争による影響を受けやすいことから、早急なるエネルギー源の多様化並びに分散電源化が叫ばれている。   The current situation of biasing to coal and oil as an energy source using a large power generation device is easily affected by natural disasters such as earthquakes, rising raw material prices, terrorism and war. Screamed.

発電所で電気エネルギーを発生させ送電線・電線を経由して各家庭・事業所等に配分するよりも、電気を必要とする場所においてコジェネレーションシステムでお湯とともに発電することはエネルギー利用効率が高く、二酸化炭素などの発生量を削減できるため、地球環境や資源の枯渇の面からも大きな期待を寄せられている。このうち、もっとも期待されているのは、水素を利用した燃料電池システムによる発電であり、近年のうちにまさに実用化されつつある。   Rather than generating electrical energy at a power plant and allocating it to households and business establishments via transmission lines and electric wires, it is more efficient to use a cogeneration system to generate electricity with hot water in places where electricity is needed. Because it can reduce the amount of carbon dioxide generated, there are great expectations from the viewpoint of global environment and resource depletion. Of these, the most promising is power generation by a fuel cell system using hydrogen, which is being put into practical use in recent years.

燃料電池に用いる水素の発生燃料源としては、灯油、イソオクタン、ガソリン等の石油系、LPG、都市ガスなど幅広い炭化水素原料が検討されている。   As a fuel source for generating hydrogen used in fuel cells, a wide range of hydrocarbon raw materials such as petroleum, such as kerosene, isooctane, and gasoline, LPG, and city gas have been studied.

しかしながら、石油系原料には原料自体に、また、LPGや都市ガスには後添加によって、全硫黄含有量としておおよそ10ppm〜100ppmあるいはそれ以上の硫黄が含有される。   However, petroleum-based raw materials contain about 10 ppm to 100 ppm or more of sulfur as a total sulfur content in the raw materials themselves, and LPG and city gas by post-addition.

炭化水素原料を水素リッチな混合ガスに改質する場合、炭化水素原料中に硫黄分が多量に存在すると燃料電池システムにおける改質器の触媒を被毒し触媒活性を劣化させることから、大量の脱硫触媒や高価な脱硫システムを燃料電池システムの上流側に設置しなければならない。この結果、システム全体のコストが割高となってしまい、将来の燃料電池システム普及妨害要素の一つとなっている。   When reforming a hydrocarbon feedstock to a hydrogen-rich mixed gas, a large amount of sulfur in the hydrocarbon feedstock poisons the reformer catalyst in the fuel cell system and degrades the catalytic activity. A desulfurization catalyst and an expensive desulfurization system must be installed upstream of the fuel cell system. As a result, the cost of the entire system becomes high, which is one of the factors that obstruct the spread of fuel cell systems in the future.

そのため耐硫黄被毒性の高い触媒体を用いることによってコストを低減させる検討が進められている。触媒活性金属自身への耐硫黄被毒性の付与は、触媒活性金属を担持させる担体の改良によって主に行われている(特許文献1乃至4)。また、炭化水素の水蒸気改質触媒として、マグネシウムとアルミニウムとを含有するものが知られている(特許文献5、6)。   Therefore, studies are underway to reduce the cost by using a catalyst body with high sulfur poisoning resistance. Giving sulfur-resistant poisoning to the catalytically active metal itself is mainly carried out by improving the carrier for supporting the catalytically active metal (Patent Documents 1 to 4). Moreover, what contains magnesium and aluminum as a steam reforming catalyst of hydrocarbon is known (patent documents 5 and 6).

一方、システムに充填する触媒の形状として数mmサイズの成形体が一般に用いられている。成形体を用いる利点としては、システムの改質器の形状を実験的にあるいは実機の型式を変更しても大きな問題が起きないことである。しかしながら、ある程度改質器の形さえ決まってしまえば、使用する触媒量を大きく減らすことができ、製造コストダウンできるハニカム形状触媒に軍配が上がる。   On the other hand, a molded body having a size of several mm is generally used as the shape of the catalyst filled in the system. An advantage of using the molded body is that no major problem occurs even if the shape of the reformer of the system is experimentally changed or the model of the actual machine is changed. However, once the shape of the reformer is determined to some extent, the amount of catalyst to be used can be greatly reduced, leading to an increase in the honeycomb-shaped catalyst that can reduce the manufacturing cost.

上記の理由から、将来的には耐硫黄被毒性に優れたハニカム触媒体が望まれる。   For the above reasons, a honeycomb catalyst body excellent in sulfur poisoning resistance is desired in the future.

特開平9−173842号公報JP-A-9-173842 特開2001−340759号公報JP 2001-340759 A 特開2004−900号公報JP 2004-900 A 特開2004−82034号公報JP 2004-82034 A 特開昭55−139836号公報Japanese Patent Application Laid-Open No. 55-139836 特開2003−225566号公報Japanese Patent Application Laid-Open No. 2003-225566

上記特許文献1乃至4記載の技術では、耐硫黄被毒性の向上は得られるものの、未だ十分とは言い難いものである。また、特許文献5、6には、耐硫黄被毒性については考慮されていない。   Although the techniques described in Patent Documents 1 to 4 improve sulfur poisoning resistance, they are still not sufficient. Patent Documents 5 and 6 do not consider sulfur poisoning resistance.

また、特に水素を得るための水蒸気改質反応は600℃以上の高温の反応場温度で行われるため、担体自身の細孔や表面積が少なくなり活性種金属のガス接触確率が損なわれやすくなるだけではなく、活性種金属のシンタリングも同時に促進されるので、加速度的に触媒活性が低下してしまうこととなり、触媒体の耐久性に大きな影響を与える。   In particular, since the steam reforming reaction for obtaining hydrogen is performed at a high reaction field temperature of 600 ° C. or more, the pores and surface area of the support itself are reduced, and the gas contact probability of the active species metal is easily impaired. Instead, since the sintering of the active species metal is promoted at the same time, the catalytic activity is accelerated and the durability of the catalyst body is greatly affected.

高性能な耐硫黄被毒性を触媒に付与し、細孔や表面積を高温でも維持できるハニカム担体用の多孔質体材料が求められてはいるものの十分な効果、性能並びに耐久性を持つものが得られていないのが現状である。   Although there is a need for a porous material for a honeycomb carrier that imparts high-performance sulfur poisoning resistance to the catalyst and can maintain pores and surface area even at high temperatures, it has sufficient effect, performance, and durability. The current situation is not.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

本発明は、少なくともアルミニウムとマグネシウムから構成された化合物であり、BET比表面積が10〜300m/gであって、平均細孔径が300Å以下であり、且つ、細孔容積が0.1cm/g以上であることを特徴とするハニカム用多孔質体材料である(本発明1)。 The present invention is a compound composed of at least aluminum and magnesium, has a BET specific surface area of 10 to 300 m 2 / g, an average pore diameter of 300 mm or less, and a pore volume of 0.1 cm 3 / g. It is a porous material for honeycombs characterized by being g or more (Invention 1).

また、本発明は、上記の多孔質体材料と、ケイ素、アルミニウム、ジルコニウム、セリウム、チタン、コバルト、鉄、銅、亜鉛、バナジウム、マンガン、白金、金、銀、イリジウム、ロジウム、パラジウム、イットリウムやスカンジウムを含む希土類元素、第Ia族元素及び第IIa族元素の金属、酸化物、水酸化物、炭酸塩、含水酸化物、粘土鉱物のいずれか一種以上との混合物であり、前記混合物中のMg含有量がMg換算で10〜55wt%であることを特徴とするハニカム用多孔質体材料混合物である(本発明2)。   The present invention also includes the above porous material, silicon, aluminum, zirconium, cerium, titanium, cobalt, iron, copper, zinc, vanadium, manganese, platinum, gold, silver, iridium, rhodium, palladium, yttrium, It is a mixture of any one or more of scandium-containing rare earth elements, metals of Group Ia elements and Group IIa elements, oxides, hydroxides, carbonates, hydrous oxides, and clay minerals, and Mg in the mixture A porous material mixture for honeycombs, wherein the content is 10 to 55 wt% in terms of Mg (Invention 2).

また、本発明は、上記の多孔質体材料に、平均粒径が50nm以下のルテニウム、白金、金、銀、ロジウム、イリジウム、パラジウム、コバルト、ニッケル、鉄、銅、バナジウム、マンガンから選ばれた一種又は二種以上の活性種金属を担持させたハニカム用多孔質体触媒材料である(本発明3)。   In the present invention, the porous material is selected from ruthenium, platinum, gold, silver, rhodium, iridium, palladium, cobalt, nickel, iron, copper, vanadium, and manganese having an average particle size of 50 nm or less. It is a porous catalyst material for honeycombs on which one or more active species metals are supported (Invention 3).

また、本発明は、上記の多孔質体材料混合物に、平均粒径が50nm以下のルテニウム、白金、金、銀、ロジウム、イリジウム、パラジウム、コバルト、ニッケル、鉄、銅、バナジウム、マンガンから選ばれた一種又は二種以上の活性種金属を担持させたハニカム用多孔質体触媒材料混合物である(本発明4)。   In the present invention, the porous material mixture is selected from ruthenium, platinum, gold, silver, rhodium, iridium, palladium, cobalt, nickel, iron, copper, vanadium, and manganese having an average particle size of 50 nm or less. Or a porous catalyst material mixture for a honeycomb supporting one or more active species metals (Invention 4).

また、本発明は、溶媒中に、本発明1の多孔質体材料若しくは本発明3の多孔質体触媒材料又は本発明2の多孔質体材料混合物若しくは本発明4の多孔質体触媒材料混合物のいずれかを含有することを特徴とするハニカム担持用懸濁液である(本発明5)。   In addition, the present invention provides the porous material of the present invention 1, the porous catalyst material of the present invention 3, the porous material mixture of the present invention 2, or the porous material catalyst material of the present invention 4 in a solvent. A suspension for supporting a honeycomb characterized by containing any of them (Invention 5).

また、本発明は、本発明5のハニカム担持用懸濁液であって、該懸濁液をE型粘度計で測定した粘度が1.5〜150mPa・secであることを特徴とするハニカム担持用懸濁液である(本発明6)。   Further, the present invention is a honeycomb supporting suspension according to the present invention 5, wherein the suspension has a viscosity measured by an E-type viscometer of 1.5 to 150 mPa · sec. (Invention 6).

また、本発明は、ハニカム構造体に、本発明1記載の多孔質体材料若しくは本発明3記載の多孔質体触媒材料又は本発明2記載の多孔質体材料混合物若しくは本発明4記載の多孔質体触媒材料混合物のいずれかを存在させたハニカム触媒体であって、前記多孔質材料又は多孔質材料混合物の存在量が、ハニカム構造体1cc容積単位当たりの換算で、0.0075〜0.65g/ccであることを特徴とするハニカム触媒体である(本発明7)。   Further, the present invention provides a honeycomb structure having a porous material according to the present invention 1, a porous material according to the present invention 3, a porous material mixture according to the present invention 2, or a porous material according to the present invention 4. A honeycomb catalyst body in which any of the body catalyst material mixture is present, wherein the abundance of the porous material or the porous material mixture is 0.0075 to 0.65 g in terms of 1 cc volume unit of the honeycomb structure. / Cc is a honeycomb catalyst body (Invention 7).

また、本発明は、ガス空間速度10,000h−1に相当する窒素ガスを本発明7記載のハニカム触媒体に30分間流通させた場合、窒素ガス流通前後の触媒体の重量変化が20wt%以下であることを特徴とするハニカム触媒体である(本発明8)。 Further, in the present invention, when nitrogen gas corresponding to a gas space velocity of 10,000 h −1 is passed through the honeycomb catalyst body according to the present invention 7 for 30 minutes, the weight change of the catalyst body before and after the nitrogen gas flow is 20 wt% or less. This is a honeycomb catalyst body (Invention 8).

また、本発明は、本発明1記載の多孔質体材料若しくは本発明3記載の多孔質体触媒材料又は本発明2記載の多孔質体材料混合物若しくは本発明4記載の多孔質体触媒材料混合物のいずれかをハニカム状に構造化したハニカム触媒体である(本発明9)。   The present invention also relates to the porous body material according to the present invention 1, the porous body catalyst material according to the present invention 3, the porous body material mixture according to the present invention 2, or the porous body catalyst material mixture according to the present invention 4. One of these is a honeycomb catalyst body structured in a honeycomb shape (Invention 9).

また、本発明は、ガス空間速度10,000h−1に相当する窒素ガスを本発明9記載のハニカム触媒体に30分間流通させた場合、窒素ガス流通前後の触媒体の重量変化が10wt%以下であることを特徴とするハニカム触媒体である(本発明10)。 Further, according to the present invention, when nitrogen gas corresponding to a gas space velocity of 10,000 h −1 is circulated through the honeycomb catalyst body according to the present invention 9 for 30 minutes, the weight change of the catalyst body before and after the nitrogen gas circulation is 10 wt% or less. This is a honeycomb catalyst body (Invention 10).

また、本発明は、本発明7〜10いずれかのハニカム触媒体を用いて炭化水素原料からC1成分及び水素の混合反応ガスを得ることを特徴とする反応混合ガスの製造方法である(本発明11)。   Further, the present invention is a method for producing a reaction mixed gas, characterized in that a mixed reaction gas of C1 component and hydrogen is obtained from a hydrocarbon raw material using any one of the honeycomb catalyst bodies of the present invention 7 to 10 (the present invention). 11).

本発明に係る多孔質体材料若しくは多孔質体触媒材料又は多孔質体材料混合物若しくは多孔質体触媒材料混合物を用いたハニカム触媒は、多孔質担体及び活性種金属の焼結が抑制され、高性能な触媒活性はもちろん、優れた耐硫黄被毒性を長時間にわたり維持することができる。   The honeycomb catalyst using the porous body material or the porous body catalyst material or the porous body material mixture or the porous body catalyst material mixture according to the present invention suppresses the sintering of the porous carrier and the active species metal, and has a high performance. In addition to excellent catalytic activity, excellent sulfur poisoning resistance can be maintained for a long time.

本発明に係るハニカム担持用懸濁液は、E型粘度計で測定した粘度が1.5〜150mPa・secに制御されているので、ハニカムに塗布する際の懸濁液として好適である。   The suspension for supporting a honeycomb according to the present invention is suitable as a suspension for application to a honeycomb because the viscosity measured with an E-type viscometer is controlled to 1.5 to 150 mPa · sec.

従って、本発明においては、微量の硫黄を含有する炭化水素原料であっても効率よく水蒸気改質を行って、C1成分と水素との混合ガスを製造することができる。   Therefore, in this invention, even if it is a hydrocarbon raw material containing a trace amount sulfur, steam reforming can be performed efficiently and the mixed gas of C1 component and hydrogen can be manufactured.

先ず、本発明に係る多孔質体材料について述べる。   First, the porous material according to the present invention will be described.

本発明に係る多孔質体材料は少なくともアルミニウムとマグネシウムから構成された化合物である。アルミニウムとマグネシウム元素の他に特に限定されないが、ナトリウム、カルシウム、ケイ素、鉄、ニッケル、亜鉛などの元素が含まれても良い。   The porous material according to the present invention is a compound composed of at least aluminum and magnesium. Although it does not specifically limit besides aluminum and magnesium element, elements, such as sodium, calcium, silicon, iron, nickel, zinc, may be contained.

本発明1に係る多孔質体材料のBET比表面積は10〜300m/gである。BET比表面積が10m/g未満の場合、平均細孔径が大きくなり担持させる活性種金属のシンタリングを十分に抑制させることができない。300m/gを超えたものは工業的な生産ができないため現実的ではない。好ましくは20〜280m/g、より好ましくは23〜270m/gである。 The BET specific surface area of the porous material according to the present invention 1 is 10 to 300 m 2 / g. When the BET specific surface area is less than 10 m 2 / g, the average pore diameter becomes large and sintering of the active species metal to be supported cannot be sufficiently suppressed. Those exceeding 300 m 2 / g are not realistic because they cannot be industrially produced. Preferably it is 20-280 m < 2 > / g, More preferably, it is 23-270 m < 2 > / g.

本発明1に係る多孔質体材料の平均細孔径は300Å以下である。平均細孔径が300Åを超えると活性種金属のシンタリングを十分に抑制できないだけではなく耐硫黄被毒性の特性を十分に発揮できない。好ましくは290Å以下、より好ましくは280Å以下である。   The average pore diameter of the porous material according to the present invention 1 is 300 mm or less. When the average pore diameter exceeds 300 mm, not only the sintering of the active species metal cannot be sufficiently suppressed but also the characteristics of sulfur poisoning resistance cannot be sufficiently exhibited. Preferably it is 290 mm or less, more preferably 280 mm or less.

本発明1に係る多孔質体材料の細孔容積は0.1cm/g以上である。0.1cm/g未満の場合、十分な触媒活性が得られないだけではなく耐硫黄被毒性の特性を十分に発揮できない。好ましくは0.12cm/gである。 The pore volume of the porous material according to the first aspect of the present invention is 0.1 cm 3 / g or more. When it is less than 0.1 cm 3 / g, not only a sufficient catalytic activity cannot be obtained, but also the characteristics of sulfur poisoning resistance cannot be exhibited sufficiently. Preferably it is 0.12 cm 3 / g.

本発明1に係る多孔質材料のMg含有量は15〜60wt%が好ましい。15wt%未満では十分な触媒活性が得られないだけではなく耐硫黄被毒性の特性を十分に発揮できない。60wt%を超えると本発明に係る多孔質体材料が得られない。好ましくは18〜57wt%、より好ましくは20〜55wt%である。   As for Mg content of the porous material which concerns on this invention 1, 15-60 wt% is preferable. If it is less than 15 wt%, not only a sufficient catalytic activity cannot be obtained, but also the characteristics of sulfur poisoning resistance cannot be fully exhibited. If it exceeds 60 wt%, the porous material according to the present invention cannot be obtained. Preferably it is 18-57 wt%, More preferably, it is 20-55 wt%.

次に、本発明1に係る多孔質材料の製造方法について述べる。   Next, a method for manufacturing a porous material according to the first aspect of the present invention will be described.

本発明に係る多孔質材料は、少なくともアルミニウム原料とマグネシウム原料とを混合し、pH8以上で沈澱させることによって得られる含水複水酸化物、又は、該含水複水酸化物とアルミニウム化合物及び/又はマグネシウム化合物とからなる混合生成物を、350〜1250℃にて熱処理することによって得られる。   The porous material according to the present invention is a hydrated double hydroxide obtained by mixing at least an aluminum raw material and a magnesium raw material and precipitating at a pH of 8 or higher, or the hydrated double hydroxide and an aluminum compound and / or magnesium. It can be obtained by heat-treating a mixed product comprising a compound at 350 to 1250 ° C.

本発明においては、後述する本発明3におけるルテニウム、白金、金、銀、ロジウム、イリジウム、パラジウム、コバルト、ニッケル、鉄、銅、バナジウム、マンガンから選ばれた一種又は二種以上の活性種金属の原料を、前記含水複水酸化物を得る反応の途中に添加するか、又は熱処理前の混合物に含有させてもよい。   In the present invention, ruthenium, platinum, gold, silver, rhodium, iridium, palladium, cobalt, nickel, iron, copper, vanadium, or manganese selected from one or more active species metals in the present invention 3 described later. The raw material may be added during the reaction for obtaining the hydrated double hydroxide, or may be contained in the mixture before the heat treatment.

アルミニウム原料、マグネシウム原料、各種活性種金属の原料としては、硫酸塩、硝酸塩、塩化物塩、水酸化物、酸化物、オキシ水酸化物、アルコキシド化合物、クエン酸などの錯体などを用いることができる。   As raw materials for aluminum raw materials, magnesium raw materials and various active species metals, sulfates, nitrates, chloride salts, hydroxides, oxides, oxyhydroxides, alkoxide compounds, complexes of citric acid, etc. can be used. .

本発明1に係る多孔質材料のMg含有量は15〜60wt%が好ましいので、得られる多孔質材料のMg含有量が上記範囲となるように各種原料を配合する。   Since Mg content of the porous material which concerns on this invention 1 has preferable 15-60 wt%, various raw materials are mix | blended so that Mg content of the porous material obtained may become the said range.

反応液中のpHを8以上にするためにはアンモニアや尿素、又は、マグネシウム、カリウム、ナトリウム等のアルカリ金属元素やアルカリ土類金属元素の水酸化物、炭酸塩、酸化物などを利用することができる。   To make the pH of the reaction solution 8 or more, use ammonia, urea, hydroxides, carbonates or oxides of alkali metal elements or alkaline earth metal elements such as magnesium, potassium and sodium. Can do.

沈澱させる温度は10〜300℃、好ましくは15〜280℃、さらに好ましくは20〜250℃である。300℃を超えると工業的な生産が難しくなる。10℃よりも低い温度には冷却装置が必要となりコスト的な問題が発生する。
熱処理温度が1250℃を超えると細孔径が大きくなり、細孔容積が減少し、BET比表面積も減少するため、触媒の活性の低下、耐硫黄被毒性の効果の低下が起きてしまう。350℃よりも低い場合には多孔質な担体にならない。好ましくは370〜1230℃、より好ましくは400〜1210℃である。
The temperature for precipitation is 10 to 300 ° C, preferably 15 to 280 ° C, more preferably 20 to 250 ° C. If it exceeds 300 ° C., industrial production becomes difficult. A temperature lower than 10 ° C. requires a cooling device, which causes a cost problem.
When the heat treatment temperature exceeds 1250 ° C., the pore diameter increases, the pore volume decreases, and the BET specific surface area also decreases, resulting in a decrease in the activity of the catalyst and a decrease in the effect of sulfur poisoning resistance. When it is lower than 350 ° C., it does not become a porous carrier. Preferably it is 370-1230 degreeC, More preferably, it is 400-1210 degreeC.

本発明に係る多孔質体材料の平均細孔径及び細孔容積は、反応溶液中での沈澱反応の条件、Mg含有量及び熱処理温度の3条件により大きく影響を受け、本発明で指定したこれら条件のいずれか又は全てを逸脱すると、得られる多孔質材料の平均細孔径及び細孔容積が本発明の範囲外となる。   The average pore diameter and pore volume of the porous material according to the present invention are greatly influenced by the three conditions of precipitation reaction, Mg content and heat treatment temperature in the reaction solution, and these conditions specified in the present invention. If any or all of these are deviated, the average pore diameter and pore volume of the resulting porous material are outside the scope of the present invention.

なお、成形体を作製する際は、常法に従って、製造すればよいが、例えば、コージェライトハニカム体やアルミナ板上、ステンレス系金属板上への塗布や、圧縮成型機あるいは押出成形機によるビーズ形状の成型体の作製方法などを用いればよい。   In addition, when producing a molded body, it may be produced according to a conventional method. For example, it is applied to a cordierite honeycomb body, an alumina plate, a stainless steel metal plate, or a bead by a compression molding machine or an extrusion molding machine. A method for producing a shaped molded body may be used.

本発明2に係る多孔質体材料混合物は、本発明1に係る多孔質体材料にケイ素、アルミニウム、ジルコニウム、セリウム、チタン、コバルト、鉄、銅、亜鉛、バナジウム、マンガン、白金、金、銀、イリジウム、ロジウム、パラジウム、イットリウムやスカンジウムを含む希土類元素、第Ia族元素及び第IIa族元素の金属、酸化物、水酸化物、炭酸塩、含水酸化物、粘土鉱物のいずれか一種以上との混合物であり、前記混合物中のMg含有量がMg換算で10〜55wt%である。混合物中のMg含有量が10wt%未満では十分な触媒活性が得られないだけではなく耐硫黄被毒性の特性を十分に発揮できない。55wt%を超えると本発明に係る多孔質体材料が得られない。好ましくは15〜52wt%、より好ましくは20〜50wt%である。また、混合される化合物は特に限定されず、懸濁液状、ペースト状、粉状、塊状、成形体いずれでも良い。   The porous material mixture according to the present invention 2 includes the porous material according to the present invention 1 with silicon, aluminum, zirconium, cerium, titanium, cobalt, iron, copper, zinc, vanadium, manganese, platinum, gold, silver, A mixture of rare earth elements including iridium, rhodium, palladium, yttrium and scandium, metals of group Ia elements and group IIa elements, oxides, hydroxides, carbonates, hydrous oxides, and clay minerals. And the Mg content in the mixture is 10 to 55 wt% in terms of Mg. If the Mg content in the mixture is less than 10 wt%, not only a sufficient catalytic activity cannot be obtained, but also the characteristics of sulfur poisoning resistance cannot be exhibited sufficiently. If it exceeds 55 wt%, the porous material according to the present invention cannot be obtained. Preferably it is 15-52 wt%, More preferably, it is 20-50 wt%. The compound to be mixed is not particularly limited, and may be any of suspension, paste, powder, lump, and molded body.

本発明2の多孔質材料の混合物は、常法に従って、多孔質材料と、例えばシリカやベーマイト等とを混合すればよい。また、本発明の多孔質担体と例えばシリカやベーマイト等とを混合した後、成形したものであってもよい。   The mixture of the porous material of the present invention 2 may be prepared by mixing a porous material with, for example, silica or boehmite according to a conventional method. Further, it may be formed by mixing the porous carrier of the present invention with, for example, silica or boehmite.

本発明3に係る多孔質体触媒材料は、本発明1記載の多孔質体材料に平均粒径が50nm以下のルテニウム、白金、金、銀、ロジウム、イリジウム、パラジウム、コバルト、ニッケル、鉄、銅、バナジウム、マンガンから選ばれた一種又は二種以上の活性種金属が存在するものである。平均粒径が50nmを超えると触媒活性が著しく低下する。好ましくは40nm以下、より好ましくは30nm以下である。
上記活性種金属は、本発明1の多孔質体材料を作製する際に同時に含ませることもできるし、多孔質体材料作製後に担持させても良く、特に限定されるものではない。担持方法に関しても特に限定されず、スプレードライ法や含浸法など一般に行われている手法で良い。
The porous catalyst material according to the present invention 3 is ruthenium, platinum, gold, silver, rhodium, iridium, palladium, cobalt, nickel, iron, copper having an average particle size of 50 nm or less in the porous material according to the present invention 1. , One or more active species metals selected from vanadium and manganese are present. When the average particle size exceeds 50 nm, the catalytic activity is significantly reduced. Preferably it is 40 nm or less, More preferably, it is 30 nm or less.
The active species metal can be included at the same time as the production of the porous material of the first aspect of the present invention, or may be supported after the production of the porous material, and is not particularly limited. The supporting method is not particularly limited, and a generally performed method such as a spray drying method or an impregnation method may be used.

本発明に係る多孔質体触媒材料混合物は、本発明2記載の多孔質体材料混合物に平均粒径が50nm以下のルテニウム、白金、金、銀、ロジウム、イリジウム、パラジウム、コバルト、ニッケル、鉄、銅、バナジウム、マンガンから選ばれた一種又は二種以上の活性金属が担持されている。平均粒径が50nmを超えると触媒活性が著しく低下する。好ましくは40nm以下、より好ましくは30nm以下である。
また、上記活性種金属は、本発明1記載の多孔質体材料を作製する際に同時に含ませることもできるし、多孔質体材料作製後に担持させても良く、特に限定されるものではない。担持方法に関しても特に限定されず、スプレードライ法や含浸法など一般に行われている手法で良い
The porous catalyst material mixture according to the present invention includes ruthenium, platinum, gold, silver, rhodium, iridium, palladium, cobalt, nickel, iron, an average particle diameter of 50 nm or less in the porous material mixture according to the present invention 2, One or more active metals selected from copper, vanadium, and manganese are supported. When the average particle size exceeds 50 nm, the catalytic activity is significantly reduced. Preferably it is 40 nm or less, More preferably, it is 30 nm or less.
In addition, the active species metal may be included at the same time when the porous material according to the first aspect of the present invention is produced, or may be supported after the production of the porous material, and is not particularly limited. There is no particular limitation on the supporting method, and a generally used method such as a spray drying method or an impregnation method may be used.

本発明に係るハニカム体への担持に用いる懸濁液は、本発明1〜4のいずれか一種以上を用いることができ、該懸濁液のE型粘度計で測定した粘度が1.5〜150mPa・secである。懸濁液の粘度が1.5mPa・sec未満の場合には、ハニカム担体に担持されずに抜け出てしまう懸濁液量が多すぎて生産的ではない。150mPa・secを超えると、ハニカム担体のセルの目詰まりを起こしてしまう。好ましくは2〜125mPa・sec、より好ましくは2.5〜115mPaである。なお、ハニカム担体のセル数に合わせて、適当な粘度の懸濁液を選択すればよい。   As the suspension used for supporting the honeycomb body according to the present invention, any one or more of the present inventions 1 to 4 can be used, and the viscosity of the suspension measured with an E-type viscometer is 1.5 to 150 mPa · sec. When the viscosity of the suspension is less than 1.5 mPa · sec, the amount of the suspension that comes out without being supported on the honeycomb carrier is too much, and it is not productive. If it exceeds 150 mPa · sec, the cells of the honeycomb carrier will be clogged. Preferably it is 2-125 mPa * sec, More preferably, it is 2.5-115 mPa. A suspension having an appropriate viscosity may be selected according to the number of cells of the honeycomb carrier.

本発明に係るハニカム担持用懸濁液の濃度は、上記粘度を満たす範囲であれば任意に設定することができるが、好ましくは10〜65wt%である。   The concentration of the suspension for supporting a honeycomb according to the present invention can be arbitrarily set as long as it satisfies the above viscosity, but is preferably 10 to 65 wt%.

本発明に係るハニカム担持用懸濁液は、溶媒として、例えば、水、エタノール、メタノール、プロパノール、ブタノール、アセトン、メチルエチルケトン、ベンゼン、ジエチルエーテル、ポリエチレングリコール、グリセリン、プロピレングリコール、エチレングリコール等を用いることができ、その中の2種以上を併用してもよい。   The suspension for supporting a honeycomb according to the present invention uses, for example, water, ethanol, methanol, propanol, butanol, acetone, methyl ethyl ketone, benzene, diethyl ether, polyethylene glycol, glycerin, propylene glycol, ethylene glycol or the like as a solvent. And two or more of them may be used in combination.

懸濁液への添加剤として特に限定されないが、例えば、ステアリン酸塩、オレイン酸塩、PVA系樹脂、セルロース系樹脂、ウレタン系樹脂、マレイン酸、リンゴ酸、酢酸、蓚酸、マルトース、デンプン等を必要に応じて選択し使用できる。この際、本発明の懸濁液の粘度に適正化する必要がある。   Although it is not particularly limited as an additive to the suspension, for example, stearate, oleate, PVA resin, cellulose resin, urethane resin, maleic acid, malic acid, acetic acid, succinic acid, maltose, starch, etc. You can select and use as needed. At this time, it is necessary to optimize the viscosity of the suspension of the present invention.

本発明7に係るハニカム触媒体は、ハニカム構造体に担持する上記の多孔質体材料若しくは多孔質体触媒材料又は多孔質体材料混合物若しくは多孔質体触媒材料混合物の存在量が、ハニカム構造体1cc容積単位当たりの換算で、0.0075〜0.65g/ccである。
ハニカム構造体への担持量は、ハニカム構造体1cc容積単位当たりの換算で0.0075g/cc未満では触媒としての初期活性が不十分である。0.65g/ccを超えるとセルが詰まりガスの流通が不可能である。好ましくは0.03〜0.63g/cc、より好ましくは0.05〜0.6g/ccである。
支持体となるハニカム構造体の材質や形状、大きさは特に限定されるものではなく、例えば、コージェライト材質、アルミナ材質、又は、オーステナイト系やフェライト系、マルテンサイト系若しくは析出硬化系等の金属材質で良く、円柱状や四角柱などの形状で良く、ガス流通断面方向の大きさが20mmや150mm、ガス流通方向の大きさが50mmや500mmで良い。
The honeycomb catalyst body according to the present invention 7 has an amount of the porous material, the porous catalyst material, the porous material mixture, or the porous catalyst material mixture supported on the honeycomb structure in an amount of 1 cc of the honeycomb structure. It is 0.0075 to 0.65 g / cc in terms of volume unit.
If the amount supported on the honeycomb structure is less than 0.0075 g / cc in terms of 1 cc volume unit of the honeycomb structure, the initial activity as a catalyst is insufficient. If it exceeds 0.65 g / cc, the cell is clogged and gas distribution is impossible. Preferably it is 0.03-0.63 g / cc, More preferably, it is 0.05-0.6 g / cc.
The material, shape, and size of the honeycomb structure to be the support are not particularly limited. For example, cordierite material, alumina material, or austenite, ferrite, martensite, or precipitation hardened metal The material may be a cylindrical shape or a quadrangular prism, the size in the gas flow section direction may be 20 mm or 150 mm, and the size in the gas flow direction may be 50 mm or 500 mm.

また上記したハニカム構造体に多孔質体材料若しくは多孔質体触媒材料又は多孔質体材料混合物若しくは多孔質体触媒材料混合物を担持したハニカム触媒体は、該ハニカム触媒体の体積に対してガス空間速度10,000h−1に相当する窒素ガスを30分間流通させた前後の重量変化は20wt%以下であることが好ましい。20wt%を超えた場合、触媒活性の低下を招くだけではなく、実機での使用の際に後工程への粉害を与え、最悪配管の閉塞などを起こす可能性がある。好ましくは17wt%以下、より好ましくは15wt%以下である。 Further, the honeycomb catalyst body in which the porous body material, the porous body catalyst material, the porous body material mixture or the porous body catalyst material mixture is supported on the honeycomb structure described above has a gas space velocity relative to the volume of the honeycomb catalyst body. It is preferable that the weight change before and after flowing nitrogen gas corresponding to 10,000 h −1 for 30 minutes is 20 wt% or less. If it exceeds 20 wt%, not only will the catalyst activity be reduced, but it may cause powder damage to the subsequent process when used in an actual machine, causing the worst pipe to be blocked. Preferably it is 17 wt% or less, More preferably, it is 15 wt% or less.

本発明7に係るハニカム触媒体は、常法に従って、上記支持体となるハニカム構造体に対し、本発明5に係る懸濁液を用いて所望の担持量となるように塗布すればよい。   The honeycomb catalyst body according to the present invention 7 may be applied to the honeycomb structure serving as the support by using the suspension according to the present invention 5 so as to have a desired carrying amount according to a conventional method.

担持される物質が上記の多孔質体材料若しくは多孔質体材料混合物である場合には、触媒活性種金属をその層表面あるいはこれら物質と混合した状態で塗布しても良く、手法や触媒活性種金属量は適宜選択することができる。   When the substance to be supported is the above porous body material or porous body material mixture, the catalytically active species metal may be applied on the surface of the layer or in a mixed state with these substances. The amount of metal can be selected as appropriate.

本発明9に係るハニカム状に構造化したハニカム触媒体は、上記の多孔質体材料若しくは多孔質体触媒材料又は多孔質体材料混合物若しくは多孔質体触媒材料混合物をそのままハニカム状に成形したものである。成型方法は特に限定されないが、一般には、有機無機バインダーや、さらに水や有機物溶液などを加え、ミキサーやニーダーによる混合・混練後、押出成形機などでハニカム形状にする方法がとられている。ハニカム材料として多孔質体材料又は多孔質体材料混合物を用いた場合には、ハニカム形状化後に触媒活性種金属をさらに担持すれば良い。   A honeycomb catalyst body structured in a honeycomb shape according to the present invention 9 is obtained by directly forming a porous material, a porous catalyst material, a porous material mixture or a porous catalyst material mixture into a honeycomb shape. is there. The forming method is not particularly limited, but generally, an organic / inorganic binder, water, an organic solution, or the like is added, mixed and kneaded with a mixer or kneader, and then formed into a honeycomb shape with an extruder or the like. When a porous material or a porous material mixture is used as the honeycomb material, a catalytically active seed metal may be further supported after forming the honeycomb shape.

本発明9に係るハニカム触媒体に、該ハニカム触媒体の体積に対してガス空間速度10,000h−1に相当する窒素ガスを30分間流通させた前後の重量変化は10wt%以下であることが好ましい。10wt%を超えた場合、触媒活性の低下を招くだけではなく、実機での使用の際に後工程への粉害を与え、最悪配管の閉塞などを起こす可能性がある。好ましくは7wt%以下、より好ましくは5wt%以下である。 In the honeycomb catalyst body according to the ninth aspect of the present invention, the weight change before and after the nitrogen gas corresponding to the gas space velocity of 10,000 h −1 is circulated for 30 minutes with respect to the volume of the honeycomb catalyst body is 10 wt% or less. preferable. If it exceeds 10 wt%, not only will the catalyst activity be reduced, but it may cause powder damage to the subsequent process when used in an actual machine, causing the worst pipe to be blocked. Preferably it is 7 wt% or less, More preferably, it is 5 wt% or less.

次に、本発明に係るハニカム触媒体を用いた反応混合ガスの製造方法について述べる。   Next, a method for producing a reaction gas mixture using the honeycomb catalyst body according to the present invention will be described.

本発明に係るハニカム触媒体を気体状又は液体状の炭化水素原料に接触させることでC1成分及び水素を主成分とした反応混合ガスを得られる。炭化水素原料としては、例としてメタン、都市ガス、LPG、灯油、イソオクタン、ガソリン等が挙げられる。これらをガス化した状態を用いることが望ましく、例えば、水蒸気改質反応、オートサーマル改質反応、あるいは水蒸気を使用しない部分改質反応を利用し、本発明のハニカム触媒体に接触させることでC1成分及び水素を主成分とした反応混合ガスを得ることができる。   By bringing the honeycomb catalyst body according to the present invention into contact with a gaseous or liquid hydrocarbon raw material, a reaction mixed gas mainly composed of a C1 component and hydrogen can be obtained. Examples of the hydrocarbon raw material include methane, city gas, LPG, kerosene, isooctane, and gasoline. It is desirable to use a state in which these are gasified. For example, by utilizing a steam reforming reaction, an autothermal reforming reaction, or a partial reforming reaction not using steam, the C1 is brought into contact with the honeycomb catalyst body of the present invention. A reaction gas mixture mainly composed of components and hydrogen can be obtained.

本発明に係るハニカム触媒体は、耐硫黄被毒性に優れているので、前記炭化水素原料中に硫黄化合物が含まれていても、高い活性を維持することができる。   Since the honeycomb catalyst body according to the present invention is excellent in sulfur poisoning resistance, high activity can be maintained even if the hydrocarbon raw material contains a sulfur compound.

本発明においては、上記炭化水素原料中に硫黄が含有されてもよく、炭化水素原料に含まれる硫黄を含んだ化合物としては、例えば、メチルメルカプタン、エチルメルカプタン、イソブチルメルカプタン、メテルエチルサルファイド、硫化ジメチル、ターシャリーブチルメルカプタン、sec−ブチルメルカプタン、n−ブチルメルカプタン、イソプロピルメルカプタン、n−プロピルメルカプタン、イソアミルメルカプタン、n−アミルメルカプタン、α−メチルブチルメルカプタン、α−エチルプロピルメルカプタン、n−ヘキシルメルカプタン、2−メチルカプトヘキサン、3−メルカプトヘキサン、テトラヒドロチオフェンなどがある。   In the present invention, sulfur may be contained in the hydrocarbon raw material. Examples of the compound containing sulfur contained in the hydrocarbon raw material include methyl mercaptan, ethyl mercaptan, isobutyl mercaptan, methyl ethyl sulfide, and dimethyl sulfide. , Tertiary butyl mercaptan, sec-butyl mercaptan, n-butyl mercaptan, isopropyl mercaptan, n-propyl mercaptan, isoamyl mercaptan, n-amyl mercaptan, α-methylbutyl mercaptan, α-ethylpropyl mercaptan, n-hexyl mercaptan, 2 -Methylcaptohexane, 3-mercaptohexane, tetrahydrothiophene and the like.

本発明に係るハニカム触媒体を用いて炭化水素原料を分解してC1成分及び水素を主成分とした反応混合ガスを得る工程は、全硫黄含有量が50ppm以下のガス状の炭化水素原料の場合、GHSVが100〜1,000,000h−1、反応温度が300〜800℃、S/Cが1.0〜6.0である。 The step of obtaining a reaction mixed gas mainly composed of C1 component and hydrogen by decomposing a hydrocarbon raw material using the honeycomb catalyst body according to the present invention is a gaseous hydrocarbon raw material having a total sulfur content of 50 ppm or less. , GHSV is 100 to 1,000,000 h −1 , reaction temperature is 300 to 800 ° C., and S / C is 1.0 to 6.0.

炭化水素原料中の全硫黄含有量が50ppmを超えるとコーキングが起こりやすくなる。   If the total sulfur content in the hydrocarbon feed exceeds 50 ppm, coking tends to occur.

ガス状の炭化水素原料は、メタン、エタンや、気化させたプロパン、イソオクタン、灯油、ガソリン系など幅広い炭化水素化合物である。   Gaseous hydrocarbon raw materials are a wide variety of hydrocarbon compounds such as methane, ethane, vaporized propane, isooctane, kerosene, and gasoline.

GHSVが100h−1よりも低い場合は得られるC1成分及び水素が少なすぎて現実的ではない。GHSVが1,000,000h−1を超えた場合には反応で引き起こされる吸熱に対して十分な熱源を与えることができない。好ましくは150〜800,000h−1、より好ましくは200〜500,000h−1である。 When GHSV is lower than 100 h −1, the obtained C1 component and hydrogen are too small, which is not practical. When GHSV exceeds 1,000,000 h −1 , a sufficient heat source cannot be provided for the endotherm caused by the reaction. Preferably it is 150-800,000h < -1 >, More preferably, it is 200-500,000h- 1 .

反応温度が300℃を下回るとC1成分及び水素への転換がほとんど進まない。800℃を超えると触媒の反応缶の材質がインコネル等の高価な材料となり現実的ではない。好ましくは300〜780℃、より好ましくは320〜750℃である。   When the reaction temperature is below 300 ° C., the conversion to the C1 component and hydrogen hardly proceeds. If it exceeds 800 ° C., the material of the catalyst reactor becomes an expensive material such as Inconel, which is not realistic. Preferably it is 300-780 degreeC, More preferably, it is 320-750 degreeC.

S/Cが1.0よりも低い場合には炭化水素自身の分解が進みコーキングや炭素析出が大きく進んでしまう。S/Cが6.0を超えると得られるC1成分や水素の分率が低く現実的ではない。   When S / C is lower than 1.0, the decomposition of the hydrocarbon itself proceeds and coking and carbon deposition progress greatly. If the S / C exceeds 6.0, the C1 component and hydrogen fraction obtained are low and not realistic.

本発明に係るハニカム触媒体を用いて炭化水素原料を分解してC1成分及び水素を主成分とした反応混合ガスを得る工程は、全硫黄含有量が50ppm以下の液状の炭化水素原料の場合、LHSVが5h−1以下、反応温度が300〜800℃、S/Cが1.0〜6.0である。 The step of decomposing a hydrocarbon raw material using the honeycomb catalyst body according to the present invention to obtain a reaction mixed gas mainly composed of C1 component and hydrogen is a liquid hydrocarbon raw material having a total sulfur content of 50 ppm or less. LHSV is 5 h −1 or less, reaction temperature is 300 to 800 ° C., and S / C is 1.0 to 6.0.

液状の炭化水素原料は、プロパン、イソオクタン、灯油、ガソリン系など幅広い炭化水素化合物である。   Liquid hydrocarbon raw materials are a wide variety of hydrocarbon compounds such as propane, isooctane, kerosene, and gasoline.

LHSVが5h−1を超えると活性種金属と炭化水素原料が十分に接触できない。 If the LHSV exceeds 5h- 1 , the active species metal and the hydrocarbon raw material cannot be sufficiently contacted.

反応温度が300℃を下回るとC1成分及び水素への転換がほとんど進まない。800℃を超えると触媒の反応缶の材質がインコネル等の高価な材料となり現実的ではない。好ましくは310〜800℃、より好ましくは320〜800℃である。   When the reaction temperature is below 300 ° C., the conversion to the C1 component and hydrogen hardly proceeds. If it exceeds 800 ° C., the material of the catalyst reactor becomes an expensive material such as Inconel, which is not realistic. Preferably it is 310-800 degreeC, More preferably, it is 320-800 degreeC.

S/Cが1.0よりも低い場合には炭化水素自身の分解が進みコーキングや炭素析出が大きく進んでしまう。S/Cが6.0を超えると得られるC1成分や水素の分率が低く現実的ではない。   When S / C is lower than 1.0, the decomposition of the hydrocarbon itself proceeds and coking and carbon deposition progress greatly. If the S / C exceeds 6.0, the C1 component and hydrogen fraction obtained are low and not realistic.

<作用>
本発明に係るハニカム構造体若しくはハニカム触媒体が耐硫黄被毒性に優れる理由は未だ明らかではないが、本発明者は次のように推定している。
<Action>
The reason why the honeycomb structure or honeycomb catalyst body according to the present invention is excellent in sulfur poisoning resistance is not yet clear, but the present inventor estimates as follows.

即ち、本発明に係るハニカム用多孔質体材料若しくはハニカム用多孔質体混合物に含まれる十分な量のマグネシウムが、活性種金属に結合しようとする硫黄化合物を先に捕捉し吸着する。大部分は吸着したままであるが、アルミニウムが一部の硫黄化合物を触媒より放出させる。しかも、該多孔質担体が適度なBET比表面積、平均細孔径及び細孔容積を有することから、高活性な触媒活性を長時間維持することができるものと本発明者は推定している。   That is, a sufficient amount of magnesium contained in the honeycomb porous material or the honeycomb porous material mixture according to the present invention captures and adsorbs the sulfur compound to be bound to the active species metal first. Most remain adsorbed, but aluminum releases some sulfur compounds from the catalyst. Moreover, since the porous carrier has an appropriate BET specific surface area, average pore diameter, and pore volume, the inventor presumes that highly active catalytic activity can be maintained for a long time.

本発明に係る懸濁液を使用すれば、固体成分濃度や粘度が最良化されており、ハニカムに担持される固体成分量を最適化できるだけではなく、高い空間速度のガスがハニカムに流通させても剥離することなく、且つ、触媒活性も良好で、また炭化水素に含まれる含硫黄化合物による触媒劣化に優れた耐性を持つことができる。   By using the suspension according to the present invention, the solid component concentration and viscosity are optimized, not only can the amount of the solid component supported on the honeycomb be optimized, but also high space velocity gas can be circulated through the honeycomb. In addition, the catalyst activity is good without being peeled off, and the catalyst can have excellent resistance to catalyst deterioration due to the sulfur-containing compound contained in the hydrocarbon.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

BET比表面積値は、窒素によるB.E.T.法により測定した。   The BET specific surface area value is the B.R. E. T. T. et al. Measured by the method.

担持された活性種金属のサイズは透過型電子顕微鏡(日本電子(株)、JEM−1200EXII)を用いて測定した。   The size of the supported active metal was measured using a transmission electron microscope (JEOL Ltd., JEM-1200EXII).

Mg及び活性種金属の含有量は、試料を酸で溶解し、プラズマ発光分光分析装置(セイコー電子工業(株)、SPS4000)を用い分析して求めた。   The contents of Mg and active species metal were determined by dissolving a sample with an acid and analyzing it using a plasma emission spectroscopic analyzer (Seiko Electronics Co., Ltd., SPS4000).

細孔径、細孔容積は高速比表面積/細孔分布測定装置(マイクロメリティックス社製、ASAP2010)を用いて75Kにおける窒素の吸着等温線を作成し、該吸着等温線から、BJH法により細孔分布曲線を得て求めた。   For the pore diameter and pore volume, an adsorption isotherm of nitrogen at 75K was prepared using a high-speed specific surface area / pore distribution measuring device (ASAP2010, manufactured by Micromeritics), and the adsorption isotherm was reduced by the BJH method. The pore distribution curve was obtained and obtained.

懸濁液の粘度は、E型粘度計(東機産業(株)、TV−30形粘度計)を用いて、温度25℃の条件で測定した。   The viscosity of the suspension was measured using an E-type viscometer (Toki Sangyo Co., Ltd., TV-30 viscometer) at a temperature of 25 ° C.

水蒸気改質反応はラボレベルの単管固定床流通式を用いた。一般に市販されているものでもよいが、自作した装置にて本発明の検討を実施した。改質後の成分分析はガスクロマトグラフを用いた。   For the steam reforming reaction, a laboratory-level single pipe fixed bed flow type was used. Although what is generally marketed may be sufficient, examination of this invention was implemented with the self-made apparatus. A gas chromatograph was used for component analysis after the modification.

実施例1 <担体の調製>
Mg(NO・6HO 68.4gとAl(NO・9HO 50.0g、Ni(NO・6HO 7.8gとを水で溶解させ600mlとした。別にNaOH 71ml(14mol/L濃度)とNaCO 14.1gを溶解させたものを合わせた400mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、80℃で4.5時間熟成を行って含水複水酸化物を得た。これを濾別分離し、乾燥して、粉砕し、580℃にて4h熱処理を行った。得られた触媒担体(ハニカム用多孔質体材料)のBETは80.0m/gであり、平均細孔径は234Å、細孔容積は0.57cm/gであった。
Example 1 <Preparation of carrier>
68.4 g of Mg (NO 3 ) 2 · 6H 2 O, 50.0 g of Al (NO 3 ) 3 · 9H 2 O and 7.8 g of Ni (NO 3 ) 2 · 6H 2 O were dissolved in water to make 600 ml. . Separately, a mixed solution of 400 ml of alkali was prepared by combining 71 ml of NaOH (concentration of 14 mol / L) and 14.1 g of Na 2 CO 3 . A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 80 ° C. for 4.5 hours to obtain a hydrated double hydroxide. This was separated by filtration, dried, pulverized, and heat-treated at 580 ° C. for 4 hours. The obtained catalyst carrier (porous material for honeycomb) had a BET of 80.0 m 2 / g, an average pore diameter of 234 mm, and a pore volume of 0.57 cm 3 / g.

<触媒の調製>
上記ハニカム用多孔質体材料に、粒状アルミナとスプレードライシリカを混合した。このときMg含有量は分析の結果26.9wt%であった。これにエチレングリコールを35g加えてペイントシェーカーにて混合粉砕して、粘度が5.3mPa・secの懸濁液を得た。
これを直径20mm×高さ35mm、200cpsiのオーステナイト系SUSハニカム構造体に0.370g/cc担持させて、103℃で乾燥後、800℃で1.5h空気中にて熱処理し、さらに800℃にて0.5h水素中で還元処理を行って、ニッケル金属を担持したハニカム触媒体を得た。さらに、硝酸ルテニウム溶液にこのハニカム触媒体を浸し、60℃で乾燥後、500℃で空気中にて1h熱処理し、さらに700℃で1h水素中にて還元処理を行った。
得られたハニカム触媒体中のニッケルとルテニウムの金属粒径は20nm以下であった。
これにガス空間速度10,000h−1に相当する窒素を30分間流通させた前後の該ハニカム触媒体の重量変化は8wt%であった。
<Preparation of catalyst>
Granular alumina and spray-dried silica were mixed with the honeycomb porous material. At this time, the Mg content was 26.9 wt% as a result of analysis. 35 g of ethylene glycol was added thereto and mixed and ground by a paint shaker to obtain a suspension having a viscosity of 5.3 mPa · sec.
This was supported at 0.370 g / cc on an austenitic SUS honeycomb structure having a diameter of 20 mm × height of 35 mm and 200 cpsi, dried at 103 ° C., heat-treated in air at 800 ° C. for 1.5 hours, and further heated to 800 ° C. Then, reduction treatment was performed in hydrogen for 0.5 h to obtain a honeycomb catalyst body supporting nickel metal. Further, this honeycomb catalyst body was immersed in a ruthenium nitrate solution, dried at 60 ° C., heat-treated in air at 500 ° C. for 1 h, and further reduced in hydrogen at 700 ° C. for 1 h.
The metal particle size of nickel and ruthenium in the obtained honeycomb catalyst body was 20 nm or less.
The change in the weight of the honeycomb catalyst body before and after flowing nitrogen corresponding to a gas space velocity of 10,000 h −1 for 30 minutes was 8 wt%.

<触媒活性評価>
得られたハニカム触媒体を流通式固定床触媒反応装置で、ターシャリーブチルメルカプタンを用いて全硫黄含有量が3ppmの純メタンガスをGHSV=1,500h−1で流し、温度700℃、S/C=2.8にて触媒の水蒸気改質活性評価を行った。反応時間24hでもC1成分と水素のみが確認され、初期のC1転化率と比較して5%以内の劣化であった。
<Catalyst activity evaluation>
The obtained honeycomb catalyst body was flowed at a flow rate fixed bed catalyst reactor using tertiary butyl mercaptan with a pure methane gas having a total sulfur content of 3 ppm at GHSV = 1,500 h −1 at a temperature of 700 ° C., S / C. The steam reforming activity of the catalyst was evaluated at = 2.8. Even at a reaction time of 24 h, only the C1 component and hydrogen were confirmed, and the deterioration was within 5% compared to the initial C1 conversion.

実施例2
実施例1同様にして、Mg(NO・6HO 82.1gとAl(NO・9HO 30.0g、NaOH 63.0ml(14mol/L濃度)とNaCO 8.48gを用いて90℃にて10h反応を行った。850℃にて1h熱処理を行った。得られた触媒担体(ハニカム用多孔質体材料)のBETは35m/gであり、平均細孔径は250Å、細孔容積は0.27cm/gであった。
Example 2
In the same manner as in Example 1, 82.1 g of Mg (NO 3 ) 2 .6H 2 O, 30.0 g of Al (NO 3 ) 3 .9H 2 O, 63.0 ml of NaOH (14 mol / L concentration), and Na 2 CO 3 The reaction was performed at 90 ° C. for 10 hours using 8.48 g. Heat treatment was performed at 850 ° C. for 1 h. The obtained catalyst support (porous material for honeycomb) had a BET of 35 m 2 / g, an average pore diameter of 250 mm, and a pore volume of 0.27 cm 3 / g.

上記ハニカム用多孔質体材料に、ジルコニアを混合した。このときMg含有量は分析の結果42.5wt%であった。これに水を25g加えてペイントシェーカーにて混合粉砕して、粘度が112mPa・secの懸濁液を得た。
これを直径30mm×高さ50mm、予め1000℃で3h熱処理した400cpsiのフェライト系SUSハニカム構造体に0.182g/cc担持させて、80℃で乾燥後、800℃で1.5h空気中にて熱処理し、さらに800℃にて0.5h水素中で還元処理を行って、ニッケル金属を担持したハニカム触媒体を得た。
得られたハニカム触媒体中のニッケル金属粒径は8nm以下であった。これにガス空間速度10,000h−1に相当する窒素を30分間流通させた前後の該ハニカム触媒体の重量変化は12wt%であった。
得られたハニカム触媒体を流通式固定床触媒反応装置で、ターシャリーブチルメルカプタンを用いて全硫黄含有量が5ppmの都市ガスをGHSV=700h−1で流し、温度650℃、S/C=3.0にて触媒の水蒸気改質活性評価を行った。反応時間8hでもC1成分と水素のみが確認され、初期のC1転化率と比較して5%以内の劣化であった。
Zirconia was mixed with the honeycomb porous material. At this time, the Mg content was 42.5 wt% as a result of analysis. 25 g of water was added to this and mixed and pulverized with a paint shaker to obtain a suspension having a viscosity of 112 mPa · sec.
0.182 g / cc was supported on a 400 cpsi ferritic SUS honeycomb structure 30 mm in diameter × 50 mm in height and heat-treated at 1000 ° C. for 3 h in advance, dried at 80 ° C., and then in air at 800 ° C. for 1.5 h. The honeycomb catalyst body carrying nickel metal was obtained by heat treatment and reduction treatment in hydrogen at 800 ° C. for 0.5 h.
The nickel metal particle size in the obtained honeycomb catalyst body was 8 nm or less. The change in weight of the honeycomb catalyst body before and after flowing nitrogen corresponding to a gas space velocity of 10,000 h −1 for 30 minutes was 12 wt%.
The obtained honeycomb catalyst body was flowed at a flow rate fixed bed catalyst reactor using a tertiary butyl mercaptan and a city gas having a total sulfur content of 5 ppm at GHSV = 700 h −1 at a temperature of 650 ° C. and S / C = 3. The steam reforming activity of the catalyst was evaluated at 0.0. Only the C1 component and hydrogen were confirmed even at the reaction time of 8 h, and the deterioration was within 5% compared to the initial C1 conversion.

実施例3
実施例1同様にして、Mg(NO・6HO 76.3gとAl(NO・9HO 38.5g、NaOH 63.8ml(14mol/L濃度)とNaCO 10.87gを用いて55℃にて4h反応を行った。630℃にて1.5h熱処理を行った。得られた触媒担体(ハニカム用多孔質体材料)のBETは145m/gであり、平均細孔径は280Å、細孔容積は0.95cm/gであった。
Example 3
In the same manner as in Example 1, 76.3 g of Mg (NO 3 ) 2 .6H 2 O, 38.5 g of Al (NO 3 ) 3 .9H 2 O, 63.8 ml of NaOH (14 mol / L concentration), and Na 2 CO 3 The reaction was performed at 55 ° C. for 4 hours using 10.87 g. Heat treatment was performed at 630 ° C. for 1.5 hours. The obtained catalyst support (porous material for honeycomb) had a BET of 145 m 2 / g, an average pore diameter of 280 mm, and a pore volume of 0.95 cm 3 / g.

上記ハニカム用多孔質体材料に、カオリナイトを混合した。このときMg含有量は分析の結果31.9wt%であった。これに水、エチレングリコール、エタノール(1:1:1)を12.7g加えてニーダー混練後、押出成形機にて、直径30mm×高さ50mm、400cpsiのハニカム構造体として140℃で乾燥後、1000℃で5.5h空気中にて熱処理した。さらに、硝酸ルテニウム及び硝酸銀の混合溶液にこのハニカム体を浸し、60℃で乾燥後、500℃で空気中にて0.5h熱処理し、さらに700℃で1h水素中にて還元処理を行った。得られたハニカム触媒体中のルテニウム及び銀の金属粒径は9nm以下であった。これにガス空間速度10,000h−1に相当する窒素を30分間流通させた前後の該ハニカム触媒体の重量変化は1.5wt%であった。
得られたハニカム触媒体を流通式固定床触媒反応装置で、ターシャリーブチルメルカプタンを用いて全硫黄含有量が5ppmの純プロパンガスをGHSV=1,000h−1で流し、温度670℃、S/C=3.5にて触媒の水蒸気改質活性評価を行った。反応時間15hでもC1成分と水素のみが確認され、初期のC1転化率と比較して5%以内の劣化であった。
Kaolinite was mixed into the honeycomb porous material. At this time, the Mg content was 31.9 wt% as a result of analysis. After adding 12.7 g of water, ethylene glycol, and ethanol (1: 1: 1) to this, kneader kneading, and drying at 140 ° C. as a honeycomb structure having a diameter of 30 mm × height of 50 mm and 400 cpsi in an extruder, It heat-processed in the air at 1000 degreeC for 5.5 hours. Further, this honeycomb body was immersed in a mixed solution of ruthenium nitrate and silver nitrate, dried at 60 ° C., heat-treated in air at 500 ° C. for 0.5 h, and further reduced in hydrogen at 700 ° C. for 1 h. The metal particle size of ruthenium and silver in the obtained honeycomb catalyst body was 9 nm or less. The change in the weight of the honeycomb catalyst body before and after flowing nitrogen corresponding to a gas space velocity of 10,000 h −1 for 30 minutes was 1.5 wt%.
The obtained honeycomb catalyst body was flowed at a flow rate fixed bed catalyst reactor using a tertiary butyl mercaptan with a pure propane gas having a total sulfur content of 5 ppm at GHSV = 1,000 h −1 at a temperature of 670 ° C., S / The steam reforming activity of the catalyst was evaluated at C = 3.5. Even at a reaction time of 15 hours, only the C1 component and hydrogen were confirmed, and the deterioration was within 5% compared to the initial C1 conversion.

実施例4
実施例1同様にして、Mg(NO・6HO 77.6gとAl(NO・9HO 36.6g、Ni(NO・6HO 9.22g、NaOH 60.7ml(14mol/L濃度)とNaCO 8.27gを用いて40℃にて4h反応を行い、640℃にて1h熱処理を行った。得られた触媒担体(ハニカム用多孔質体材料)のBETは204m/gであり、平均細孔径は244Å、細孔容積は1.22cm/gであった。
Example 4
In the same manner as in Example 1, 77.6 g of Mg (NO 3 ) 2 .6H 2 O, 36.6 g of Al (NO 3 ) 3 .9H 2 O, 9.22 g of Ni (NO 3 ) 2 .6H 2 O, NaOH Using 60.7 ml (14 mol / L concentration) and 8.27 g of NaCO 3, a reaction was performed at 40 ° C. for 4 h, and a heat treatment was performed at 640 ° C. for 1 h. The obtained catalyst carrier (porous material for honeycomb) had a BET of 204 m 2 / g, an average pore diameter of 244 mm, and a pore volume of 1.22 cm 3 / g.

上記ハニカム用多孔質体材料に、酸化ランタンとシリカを混合した。このときMg含有量は分析の結果40.0wt%であった。これに水、エチレングリコール、エタノール(1.33:1:0.92)を11.9g加えてニーダー混練後、押出成形機にて、20mm角×高さ50mm、500cpsiのハニカム構造体として110℃で乾燥後、1020℃で6.5h空気中にて熱処理した。続けて800℃で2h水素中にて還元処理を行った。得られたハニカム触媒体中のニッケル金属粒径は15nm以下であった。これにガス空間速度10,000h−1に相当する窒素を30分間流通させた前後の該ハニカム触媒体の重量変化は1wt%であった。
得られたハニカム触媒体を流通式固定床触媒反応装置で、メチルメルカプタンを用いて全硫黄含有量が5ppmの都市ガスをGHSV=800h−1で流し、温度680℃、S/C=2.7にて触媒の水蒸気改質活性評価を行った。反応時間11hでもC1成分と水素のみが確認され、初期のC1転化率と比較して5%以内の劣化であった。
Lanthanum oxide and silica were mixed into the honeycomb porous material. At this time, the Mg content was 40.0 wt% as a result of analysis. 11.9 g of water, ethylene glycol, and ethanol (1.33: 1: 0.92) was added thereto, and after kneader kneading, a honeycomb structure of 20 mm square × height 50 mm, 500 cpsi was formed at 110 ° C. using an extruder. And dried at 1020 ° C. for 6.5 hours in air. Subsequently, reduction treatment was performed in hydrogen at 800 ° C. for 2 hours. The nickel metal particle size in the obtained honeycomb catalyst body was 15 nm or less. The change in weight of the honeycomb catalyst body before and after flowing nitrogen corresponding to a gas space velocity of 10,000 h −1 for 30 minutes was 1 wt%.
The resulting honeycomb catalyst body was flowed through a fixed bed catalytic reactor using methyl mercaptan and a city gas having a total sulfur content of 5 ppm was flowed at GHSV = 800 h −1 , temperature 680 ° C., S / C = 2.7. The steam reforming activity of the catalyst was evaluated. Only the C1 component and hydrogen were confirmed even at the reaction time of 11 h, and the deterioration was within 5% compared to the initial C1 conversion.

比較例1
BETが175m/gであり、平均細孔径154Å、細孔容積0.883cm/gのγアルミナ30gに、水+18vol%エタノールを55g加えてホモジナイザーで粉砕混合して、粘度が26mPa・secの懸濁液を得た。これを15mm×25mm×高さ40mmのアルミナシリケート製300cpsiのハニカムに0.233g/cc担持させて、100℃で乾燥後、1050℃で2h空気中にて熱処理した。これを硝酸ルテニウム溶液に浸し、60℃で乾燥後、500℃で1h熱処理し、さらに500℃で水素中にて1h還元処理を行い、ルテニウム金属を担持したハニカム触媒体を得た。得られたハニカム触媒体中のルテニウム金属粒径は17nm以下であった。これにガス空間速度10,000h−1に相当する窒素を30分間流通させた前後の該ハニカム触媒体の重量変化は11wt%であった。
得られたハニカム触媒体を流通式固定床触媒反応装置で、メチルメルカプタンを用いて全硫黄含有量が3ppmの純メタンガスをGHSV=1,000h−1で流し、温度680℃、S/C=3.1にて触媒の水蒸気改質活性評価を行った。反応時間18h後ではC1成分と水素のみが確認されたものの、初期のC1転化率と比較して20%の劣化が確認された。
Comparative Example 1
55 g of water + 18 vol% ethanol was added to 30 g of γ-alumina having a BET of 175 m 2 / g, an average pore diameter of 154 mm, and a pore volume of 0.883 cm 3 / g, and pulverized and mixed with a homogenizer, and the viscosity was 26 mPa · sec. A suspension was obtained. This was supported on 0.233 g / cc of an alumina silicate 300 cpsi honeycomb having a size of 15 mm × 25 mm × height 40 mm, dried at 100 ° C., and heat-treated in air at 1050 ° C. for 2 hours. This was immersed in a ruthenium nitrate solution, dried at 60 ° C., heat-treated at 500 ° C. for 1 h, and further subjected to reduction treatment in hydrogen at 500 ° C. for 1 h to obtain a honeycomb catalyst body carrying a ruthenium metal. The ruthenium metal particle size in the obtained honeycomb catalyst body was 17 nm or less. The change in weight of the honeycomb catalyst body before and after flowing nitrogen corresponding to a gas space velocity of 10,000 h −1 for 30 minutes was 11 wt%.
The obtained honeycomb catalyst body was flown at a fixed bed catalytic reactor using a methyl mercaptan, and pure methane gas having a total sulfur content of 3 ppm was flowed at GHSV = 1,000 h −1, at a temperature of 680 ° C. and S / C = 3. The steam reforming activity of the catalyst was evaluated at. Although only the C1 component and hydrogen were confirmed after the reaction time of 18 h, deterioration of 20% was confirmed as compared with the initial C1 conversion rate.

工業的に大量に生産可能な耐硫黄被毒性に優れたハニカム用多孔質体材料を提供でき、さらにはハニカム触媒体とすることで、硫黄を含んだ炭化水素原料からC1成分及び水素の混合反応ガスを製造する場合に非常に有用である。

A honeycomb porous body material excellent in sulfur poisoning resistance that can be produced industrially in large quantities can be provided. Furthermore, by making a honeycomb catalyst body, a mixture reaction of C1 component and hydrogen from a hydrocarbon raw material containing sulfur It is very useful when producing gas.

Claims (11)

少なくともアルミニウムとマグネシウムから構成された化合物であり、BET比表面積が10〜300m/gであって、平均細孔径が300Å以下であり、且つ、細孔容積が0.1cm/g以上であることを特徴とするハニカム用多孔質体材料。 It is a compound composed of at least aluminum and magnesium, has a BET specific surface area of 10 to 300 m 2 / g, an average pore diameter of 300 mm or less, and a pore volume of 0.1 cm 3 / g or more. A porous material for honeycombs, characterized by the above. 前記請求項1記載の多孔質体材料と、ケイ素、アルミニウム、ジルコニウム、セリウム、チタン、コバルト、鉄、銅、亜鉛、バナジウム、マンガン、白金、金、銀、イリジウム、ロジウム、パラジウム、イットリウムやスカンジウムを含む希土類元素、第Ia族元素及び第IIa族元素の金属、酸化物、水酸化物、炭酸塩、含水酸化物、粘土鉱物のいずれか一種以上との混合物であり、前記混合物中のMg含有量がMg換算で10〜55wt%であることを特徴とするハニカム用多孔質体材料混合物。   The porous material according to claim 1 and silicon, aluminum, zirconium, cerium, titanium, cobalt, iron, copper, zinc, vanadium, manganese, platinum, gold, silver, iridium, rhodium, palladium, yttrium and scandium. A rare earth element, a group Ia element and a metal of group IIa element, oxide, hydroxide, carbonate, hydrated oxide, a mixture with one or more of clay minerals, and the Mg content in the mixture Is a porous body material mixture for a honeycomb, characterized by being 10 to 55 wt% in terms of Mg. 請求項1記載の多孔質体材料に、平均粒径が50nm以下のルテニウム、白金、金、銀、ロジウム、イリジウム、パラジウム、コバルト、ニッケル、鉄、銅、バナジウム、マンガンから選ばれた一種又は二種以上の活性種金属を存在させたハニカム用多孔質体触媒材料。   The porous material according to claim 1, wherein one or two selected from ruthenium, platinum, gold, silver, rhodium, iridium, palladium, cobalt, nickel, iron, copper, vanadium, and manganese having an average particle diameter of 50 nm or less. A porous catalyst material for a honeycomb in which at least one kind of active species metal is present. 請求項2記載の多孔質体材料混合物に、平均粒径が50nm以下のルテニウム、白金、金、銀、ロジウム、イリジウム、パラジウム、コバルト、ニッケル、鉄、銅、バナジウム、マンガンから選ばれた一種又は二種以上の活性種金属を存在させたハニカム用多孔質体触媒材料混合物。   The porous material mixture according to claim 2, wherein the average particle size is selected from ruthenium, platinum, gold, silver, rhodium, iridium, palladium, cobalt, nickel, iron, copper, vanadium, and manganese having an average particle size of 50 nm or less A porous catalyst material mixture for honeycombs in which two or more kinds of active species metals are present. 溶媒中に、請求項1記載の多孔質体材料若しくは請求項3記載の多孔質体触媒材料又は請求項2記載の多孔質体材料混合物若しくは請求項4記載の多孔質体触媒材料混合物のいずれかを含有することを特徴とするハニカム担持用懸濁液。   Either the porous material according to claim 1, the porous catalyst material according to claim 3, the porous material mixture according to claim 2, or the porous catalyst material mixture according to claim 4 in a solvent. A suspension for supporting a honeycomb, comprising: 請求項5記載のハニカム担持用懸濁液であって、該懸濁液をE型粘度計で測定した粘度が1.5〜150mPa・secであることを特徴とするハニカム担持用懸濁液。   The suspension for supporting a honeycomb according to claim 5, wherein the suspension has a viscosity of 1.5 to 150 mPa · sec as measured by an E-type viscometer. ハニカム構造体に、請求項1記載の多孔質体材料若しくは請求項3記載の多孔質体触媒材料又は請求項2記載の多孔質体材料混合物若しくは請求項4記載の多孔質体触媒材料混合物のいずれかを存在させたハニカム触媒体であって、前記多孔質材料又は多孔質材料混合物の存在量が、ハニカム構造体1cc容積単位当たりの換算で、0.0075〜0.65g/ccであることを特徴とするハニカム触媒体。   In the honeycomb structure, any one of the porous body material according to claim 1, the porous body catalyst material according to claim 3, the porous body material mixture according to claim 2, or the porous body catalyst material mixture according to claim 4. A honeycomb catalyst body in which the porous material or the porous material mixture is present in an amount of 0.0075 to 0.65 g / cc in terms of 1 cc volume unit of the honeycomb structure. A honeycomb catalyst body characterized. ガス空間速度10,000h−1に相当する窒素ガスを上記請求項7記載のハニカム触媒体に30分間流通させた場合、窒素ガス流通前後の触媒体の重量変化が20wt%以下であることを特徴とするハニカム触媒体。 When nitrogen gas corresponding to a gas space velocity of 10,000 h- 1 is passed through the honeycomb catalyst body according to claim 7 for 30 minutes, the weight change of the catalyst body before and after the nitrogen gas flow is 20 wt% or less. A honeycomb catalyst body. 請求項1記載の多孔質体材料若しくは請求項3記載の多孔質体触媒材料又は請求項2記載の多孔質体材料混合物若しくは請求項4記載の多孔質体触媒材料混合物のいずれかをハニカム状に構造化したハニカム触媒体。   Any one of the porous material according to claim 1, the porous catalyst material according to claim 3, the porous material mixture according to claim 2, or the porous catalyst material mixture according to claim 4 is formed in a honeycomb shape. Structured honeycomb catalyst body. ガス空間速度10,000h−1に相当する窒素ガスを上記請求項9記載のハニカム触媒体に30分間流通させた場合、窒素ガス流通前後の触媒体の重量変化が10wt%以下であることを特徴とするハニカム触媒体。 When nitrogen gas corresponding to a gas space velocity of 10,000 h -1 is passed through the honeycomb catalyst body according to claim 9 for 30 minutes, the weight change of the catalyst body before and after the nitrogen gas flow is 10 wt% or less. A honeycomb catalyst body. 請求項7〜10のいずれかに記載のハニカム触媒体を用いて炭化水素原料からC1成分及び水素の混合反応ガスを得ることを特徴とする反応混合ガスの製造方法。   A method for producing a reaction mixed gas, wherein a mixed reaction gas of a C1 component and hydrogen is obtained from a hydrocarbon raw material using the honeycomb catalyst body according to any one of claims 7 to 10.
JP2006161023A 2006-06-09 2006-06-09 Porous material for honeycomb, porous material mixture, suspension for supporting honeycomb, catalyst body, and method for producing mixed reaction gas using the catalyst body Active JP5446060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161023A JP5446060B2 (en) 2006-06-09 2006-06-09 Porous material for honeycomb, porous material mixture, suspension for supporting honeycomb, catalyst body, and method for producing mixed reaction gas using the catalyst body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006161023A JP5446060B2 (en) 2006-06-09 2006-06-09 Porous material for honeycomb, porous material mixture, suspension for supporting honeycomb, catalyst body, and method for producing mixed reaction gas using the catalyst body

Publications (2)

Publication Number Publication Date
JP2007326756A true JP2007326756A (en) 2007-12-20
JP5446060B2 JP5446060B2 (en) 2014-03-19

Family

ID=38927494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161023A Active JP5446060B2 (en) 2006-06-09 2006-06-09 Porous material for honeycomb, porous material mixture, suspension for supporting honeycomb, catalyst body, and method for producing mixed reaction gas using the catalyst body

Country Status (1)

Country Link
JP (1) JP5446060B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011133A1 (en) * 2007-07-19 2009-01-22 Toda Kogyo Corporation Catalyst for decomposing hydrocarbon
EP2226308A1 (en) * 2007-12-28 2010-09-08 Toda Kogyo Corporation Molded porous article, method for production thereof, catalyst carrier, and catalyst
CN111644179A (en) * 2020-03-05 2020-09-11 王金波 Honeycomb ceramic load rare earth doped copper-manganese oxide catalyst for catalytic combustion of organic waste gas and preparation method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139836A (en) * 1979-04-16 1980-11-01 Toyota Central Res & Dev Lab Inc Catalyst for steam modification and its production
JPS59131569A (en) * 1982-11-29 1984-07-28 アトランテイツク・リツチフイ−ルド・カンパニ− Manufacture of spinel composition containing alkali earth metal and aluminum
JPS59131568A (en) * 1982-11-29 1984-07-28 アトランテイツク・リツチフイ−ルド・カンパニ− Manufacture of spinel composition containing alkali earth metal and aluminum
JPS60122779A (en) * 1983-12-01 1985-07-01 工業技術院長 Manufacture of ceramic porous body
JPS60212229A (en) * 1984-04-09 1985-10-24 Toyota Central Res & Dev Lab Inc Catalyst for partial oxidation of hydrocarbon
JPH10156180A (en) * 1996-11-26 1998-06-16 Ube Ind Ltd Porous bivalent metal-aluminate based catalyst carrier and production of carboxylic acid diester
JP2000044251A (en) * 1998-07-24 2000-02-15 Chiyoda Corp Spinel type multiple oxide and its production
JP2001048529A (en) * 1999-08-04 2001-02-20 Toyota Central Res & Dev Lab Inc Spinel powder and spinel slurry
JP2003225566A (en) * 2002-02-01 2003-08-12 Hiroshima Industrial Promotion Organization Catalyst for decomposing hydrocarbon and production method therefor
JP2003290657A (en) * 2002-01-31 2003-10-14 National Institute Of Advanced Industrial & Technology Catalyst for reforming hydrocarbon, manufacture method therefor, method for manufacturing synthetic gas and catalyst precursor
JP2004000900A (en) * 2002-03-25 2004-01-08 Nippon Steel Corp Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP2004082034A (en) * 2002-08-28 2004-03-18 Nippon Oil Corp Steam reforming catalyst, steam reforming method and fuel battery system
JP2004217444A (en) * 2003-01-10 2004-08-05 Japan Science & Technology Agency Porous composite derived from hydrotalcite-like compound, its manufacturing method, and ordinary temperature reduction catalyst of nitrogen oxide comprised of the same
JP2005288259A (en) * 2004-03-31 2005-10-20 Teikoku Oil Co Ltd Catalyst for reforming methane-containing gas and method for manufacturing synthetic gas

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139836A (en) * 1979-04-16 1980-11-01 Toyota Central Res & Dev Lab Inc Catalyst for steam modification and its production
JPS59131569A (en) * 1982-11-29 1984-07-28 アトランテイツク・リツチフイ−ルド・カンパニ− Manufacture of spinel composition containing alkali earth metal and aluminum
JPS59131568A (en) * 1982-11-29 1984-07-28 アトランテイツク・リツチフイ−ルド・カンパニ− Manufacture of spinel composition containing alkali earth metal and aluminum
JPS60122779A (en) * 1983-12-01 1985-07-01 工業技術院長 Manufacture of ceramic porous body
JPS60212229A (en) * 1984-04-09 1985-10-24 Toyota Central Res & Dev Lab Inc Catalyst for partial oxidation of hydrocarbon
JPH10156180A (en) * 1996-11-26 1998-06-16 Ube Ind Ltd Porous bivalent metal-aluminate based catalyst carrier and production of carboxylic acid diester
JP2000044251A (en) * 1998-07-24 2000-02-15 Chiyoda Corp Spinel type multiple oxide and its production
JP2001048529A (en) * 1999-08-04 2001-02-20 Toyota Central Res & Dev Lab Inc Spinel powder and spinel slurry
JP2003290657A (en) * 2002-01-31 2003-10-14 National Institute Of Advanced Industrial & Technology Catalyst for reforming hydrocarbon, manufacture method therefor, method for manufacturing synthetic gas and catalyst precursor
JP2003225566A (en) * 2002-02-01 2003-08-12 Hiroshima Industrial Promotion Organization Catalyst for decomposing hydrocarbon and production method therefor
JP2004000900A (en) * 2002-03-25 2004-01-08 Nippon Steel Corp Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP2004082034A (en) * 2002-08-28 2004-03-18 Nippon Oil Corp Steam reforming catalyst, steam reforming method and fuel battery system
JP2004217444A (en) * 2003-01-10 2004-08-05 Japan Science & Technology Agency Porous composite derived from hydrotalcite-like compound, its manufacturing method, and ordinary temperature reduction catalyst of nitrogen oxide comprised of the same
JP2005288259A (en) * 2004-03-31 2005-10-20 Teikoku Oil Co Ltd Catalyst for reforming methane-containing gas and method for manufacturing synthetic gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011133A1 (en) * 2007-07-19 2009-01-22 Toda Kogyo Corporation Catalyst for decomposing hydrocarbon
JPWO2009011133A1 (en) * 2007-07-19 2010-09-16 戸田工業株式会社 Catalyst for cracking hydrocarbons
US8268289B2 (en) 2007-07-19 2012-09-18 Toda Kogyo Corporation Hydrocarbon-decomposing catalyst, process for decomposing hydrocarbons and process for producing hydrogen using the catalyst, and power generation system
JP5531615B2 (en) * 2007-07-19 2014-06-25 戸田工業株式会社 Catalyst for cracking hydrocarbons
EP2226308A1 (en) * 2007-12-28 2010-09-08 Toda Kogyo Corporation Molded porous article, method for production thereof, catalyst carrier, and catalyst
EP2226308A4 (en) * 2007-12-28 2011-11-30 Toda Kogyo Corp Molded porous article, method for production thereof, catalyst carrier, and catalyst
US9388082B2 (en) 2007-12-28 2016-07-12 Toda Kogyo Corporation Porous molded product and process for producing the same, carrier for catalysts, and catalyst
CN111644179A (en) * 2020-03-05 2020-09-11 王金波 Honeycomb ceramic load rare earth doped copper-manganese oxide catalyst for catalytic combustion of organic waste gas and preparation method thereof

Also Published As

Publication number Publication date
JP5446060B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
Dasireddy et al. The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity
Teh et al. Recent progress in ceria-based catalysts for the dry reforming of methane: A review
Shen et al. Essential role of the support for nickel-based CO2 methanation catalysts
Lv et al. Recent progresses in constructing the highly efficient Ni based catalysts with advanced low-temperature activity toward CO2 methanation
Sun et al. Direct and highly selective conversion of captured CO2 into methane through integrated carbon capture and utilization over dual functional materials
Hussain et al. Recent advances in catalytic systems for CO2 conversion to substitute natural gas (SNG): Perspective and challenges
Younas et al. Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2
Li et al. A crucial role of O2− and O22− on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33
Sankir et al. Hydrogen production technologies
JP5666777B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the same
Chawl et al. Production of synthesis gas by carbon dioxide reforming of methane over nickel based and perovskite catalysts
Zhang et al. Regulation the reaction intermediates in methanation reactions via modification of nickel catalysts with strong base
JP5354142B2 (en) Steam reforming catalyst and reaction gas production method
US20070167323A1 (en) Porous carrier for steam-reforming catalysts, steam-reforming catalyst and process for producing reactive mixed gas
Zeng et al. Ni–Ce–Al composite oxide catalysts synthesized by solution combustion method: Enhanced catalytic activity for CO methanation
Hakim et al. Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts
CN102574103B (en) Porous catalytic object for decomposing hydrocarbon and process for producing same, process for producing hydrogen-containing mixed reformed gas from hydrocarbon, and fuel cell system
Bagheri et al. Cerium (IV) oxide nanocomposites: Catalytic properties and industrial application
Akbari et al. Preparation and evaluation of A/BaO‐MnOx catalysts (A: Rh, Pt, Pd, Ru) in lean methane catalytic combustion at low temperature
Ghungrud et al. Improved hydrogen production from sorption-enhanced steam reforming of ethanol (SESRE) using multifunctional materials of cobalt catalyst and Mg-, Ce-, and Zr-modified CaO sorbents
Chih et al. Statistical optimization of hydrogen production from bio-methanol steam reforming over Ni-Cu/Al2O3 catalysts
Byeon et al. Promotion of methanation suppression by alkali and alkaline earth metals in Ni-CeO2 catalysts for water–gas shift reaction using waste-derived synthesis gas
Chu et al. Hydrogen production from formaldehyde steam reforming using recyclable NiO/NaCl catalyst
Abd El-Hafiz et al. Methane Bi-reforming for direct ethanol production over smart Cu/Mn-ferrite catalysts
Liang et al. Impacts of metal loading in Ni/attapulgite on distribution of the alkalinity sites and reaction intermediates in CO2 methanation reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5446060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250