JP2007326388A - Box for control device of electric rolling stock and its manufacturing method - Google Patents

Box for control device of electric rolling stock and its manufacturing method Download PDF

Info

Publication number
JP2007326388A
JP2007326388A JP2006157269A JP2006157269A JP2007326388A JP 2007326388 A JP2007326388 A JP 2007326388A JP 2006157269 A JP2006157269 A JP 2006157269A JP 2006157269 A JP2006157269 A JP 2006157269A JP 2007326388 A JP2007326388 A JP 2007326388A
Authority
JP
Japan
Prior art keywords
plate
box
electric vehicle
control device
bottom plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006157269A
Other languages
Japanese (ja)
Inventor
Riichi Karita
利一 狩田
Yoichi Hisamori
洋一 久森
Taku Kameda
卓 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006157269A priority Critical patent/JP2007326388A/en
Publication of JP2007326388A publication Critical patent/JP2007326388A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To secure strength of a box and to reduce weight of it concerning the box for a control device of an electric rolling stock arranged on the electric rolling stock and in which control equipment is stored and its manufacturing method. <P>SOLUTION: This box for the control device of the electric rolling stock is arranged on the electric rolling stock, stores the control equipment of the electric rolling stock, has inspection ports to inspect the control equipment on the left and right side surfaces in the travelling direction, comprises a top plate 5 of a top surface, a bottom plate 6 of a bottom surface, each of side plates 7, 8 arranged on fore and aft in the travelling direction of the electric rolling stock and connecting the top plate 5 and the bottom plate 6 and the left and right partition plates 9, 10 partitioning the area between the top plate 5 and the bottom plate 6 into left and right of the travelling direction and connecting the top plate 5, the bottom plate 6 and each of the side plates 7, 8 to each other, and the thickness of each of plates 5 to 10 is determined in consideration of weight of the control equipment and vibration at the travelling of the electric rolling stock. In this constitution the plate thickness of the top plate 5, the bottom plate 6 and each of the side plates 7, 8 is made thinner by 30 to 50% than the thickness of the left and right partition plates 9, 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、電気車の車上に配置されて制御機器が収納される電気車の制御装置用箱体及びその製造方法に関するものである。   The present invention relates to a box for a control device of an electric vehicle which is arranged on the electric vehicle and accommodates a control device, and a manufacturing method thereof.

従来の電気車の制御装置用箱体においては、天板と底板及び左右一対の側板を相互に締結することにより箱状に成形されている。また、天板と底板との間には中央仕切板が介装されると共に、中央仕切板と左右一対の側板との間には左右仕切板が介装されて箱体の全体強度を高めるようにされている(例えば、特許文献1参照)。   A conventional box for a control device for an electric vehicle is formed into a box shape by fastening a top plate, a bottom plate, and a pair of left and right side plates to each other. In addition, a central partition plate is interposed between the top plate and the bottom plate, and left and right partition plates are interposed between the central partition plate and the pair of left and right side plates so as to increase the overall strength of the box. (For example, refer to Patent Document 1).

特開2002−120720号公報JP 2002-120720 A

従来の電気車の制御装置用箱体では、箱体の振動強度を確保するために天板、底板、中央仕切板及び左右仕切板が同じ板厚で構成されている。これは、制御装装置用箱体に収納される電力変換器、トランス等の制御機器の質量による鉛直方向(上下方向)の撓みを抑制すること、及び電気車の走行時における振動を考慮して設計がなされている。従って、電気車の走行における省エネルギー対策として箱体の軽量化を図るのが困難であるという問題点があった。   In a conventional box for a control device of an electric vehicle, the top plate, the bottom plate, the central partition plate, and the left and right partition plates are configured with the same thickness in order to ensure the vibration strength of the box. In consideration of vibration during running of an electric vehicle, it is possible to suppress bending in the vertical direction (up and down direction) due to the mass of a control device such as a power converter or a transformer housed in a control equipment box. Designed. Therefore, there has been a problem that it is difficult to reduce the weight of the box as an energy saving measure in traveling of an electric vehicle.

この発明は、上述のような課題を解決するためになされたもので、箱体の強度を確保すると共に、軽量化を図ることができる電気車の制御装置用箱体及びその製造方法を提供することを目的としたものである。   The present invention has been made to solve the above-described problems, and provides a box for a control device for an electric vehicle and a method for manufacturing the same that can ensure the strength of the box and reduce the weight. It is for the purpose.

この発明に係わる電気車の制御装置用箱体は、電気車の車上に配置されて電気車の制御機器が収納され、進行方向の左右の側面に制御機器を点検するための点検口を有し、上面の天板、下面の底板、電気車の進行方向の前後に配置されて天板と底板とを連結した各側板、天板と底板との間を進行方向の左右に仕切り天板、底板、及び各側板と連結した左右仕切板で構成し、各板の板厚を制御機器の重量と電気車の走行時の振動を考慮して決定する電気車の制御装置用箱体において、天板、底板及び各側板の板厚を左右仕切板の板厚よりも30〜50%薄くしたものである。   The box for an electric vehicle control device according to the present invention is arranged on the electric vehicle to store the electric vehicle control device, and has an inspection port for checking the control device on the left and right sides in the traveling direction. The top plate on the top surface, the bottom plate on the bottom surface, each side plate that is arranged before and after the traveling direction of the electric vehicle and connects the top plate and the bottom plate, and the top plate is divided between the top plate and the bottom plate in the lateral direction of the traveling direction, In a box for a control device of an electric vehicle, comprising a bottom plate and left and right partition plates connected to each side plate, the plate thickness of each plate being determined in consideration of the weight of the control device and vibration during running of the electric vehicle. The plate thickness of the plate, bottom plate and each side plate is 30-50% thinner than the plate thickness of the left and right partition plates.

この発明は、天板、底板及び側板の板厚を左右仕切板より薄くしたことにより、箱体の軽量化を図ることができる。   According to the present invention, the thickness of the top plate, the bottom plate, and the side plates is made thinner than that of the left and right partition plates, so that the weight of the box can be reduced.

実施の形態1.
図1は、電気車の制御装置用箱体を搭載した電気車の側面図である。図2は、この発明を実施するための実施の形態1における電気車の制御装置用箱体の斜視図、図3は図2の制御装置用箱体を分解した斜視図である。なお、以下の説明においては図2に示すように、電気車の進行方向をX(前後)方向、鉛直方向をZ(上下)方向、進行方向及び鉛直方向に直交する方向をY(左右)方向と言う。
図1から図3において、電気車1に搭載される制御装置用箱体2の収納室3には、電気車1の制御を行う電力変換器、遮断機、トランス(図示せず)等が収納される。箱体2は進行方向Xの左右の側面に制御機器を点検するための開口した点検口4を有し、作業孔5aを有する上面の天板5、下面の底板6、進行方向の前後に配置されて天板5と底板6とを連結した各側板7,8、天板5と底板6との間を進行方向の左右を仕切る天板5、底板6、及び各側板7,8とを開口9aを有する左右仕切板9と左右仕切板10で連結している。天板5と底板6との間にはY―Z面に前後仕切板11が配置され、天板5及び底板6と接合されている。天板5の作業孔5aにはカバー12が設けられる。各点検口4には点検カバー13が装着される。そして、箱体2は取付座14を介して電気車1の床下に取り付けられる。なお、天板5、底板6、各側板7,8及び前後仕切板11の板厚は、左右仕切板9,10の板厚よりも30〜50%薄くしてある。
このように構成された箱体2は図1に示すように、電気車1の床下に取付座14を介してボルト(図示せず)で固定される。
箱体2は、図2の矢印に示すように電気車1の運転時には、加速及び減速時に進行方向Xの加速度による負荷を受ける。また、カーブでは遠心力によりY方向に負荷を受ける。さらに、鉛直方向Zに重力負荷を受ける。
Embodiment 1 FIG.
FIG. 1 is a side view of an electric vehicle on which an electric vehicle control device box is mounted. 2 is a perspective view of a control device box for an electric vehicle according to Embodiment 1 for carrying out the present invention, and FIG. 3 is an exploded perspective view of the control device box of FIG. In the following description, as shown in FIG. 2, the traveling direction of the electric vehicle is the X (front / rear) direction, the vertical direction is the Z (up / down) direction, and the direction perpendicular to the traveling direction and the vertical direction is the Y (left / right) direction. Say.
1 to 3, a power converter, a circuit breaker, a transformer (not shown) and the like for controlling the electric vehicle 1 are stored in the storage chamber 3 of the control device box 2 mounted on the electric vehicle 1. Is done. The box 2 has inspection openings 4 that are opened on the left and right side surfaces of the traveling direction X for inspecting the control device, and is arranged on the top plate 5 on the upper surface having the work holes 5a, the bottom plate 6 on the lower surface, and front and rear in the traveling direction. Opened are the side plates 7 and 8 that connect the top plate 5 and the bottom plate 6, the top plate 5 that separates the left and right of the traveling direction between the top plate 5 and the bottom plate 6, the bottom plate 6, and the side plates 7 and 8. The left and right partition plates 9 having 9 a are connected by the left and right partition plates 10. A front and rear partition plate 11 is disposed on the YZ plane between the top plate 5 and the bottom plate 6 and joined to the top plate 5 and the bottom plate 6. A cover 12 is provided in the work hole 5 a of the top plate 5. An inspection cover 13 is attached to each inspection port 4. The box 2 is attached under the floor of the electric vehicle 1 via the mounting seat 14. The top plate 5, the bottom plate 6, the side plates 7, 8 and the front and rear partition plates 11 are 30 to 50% thinner than the left and right partition plates 9 and 10.
As shown in FIG. 1, the box 2 configured in this manner is fixed to the lower floor of the electric vehicle 1 with a bolt (not shown) via a mounting seat 14.
As shown by the arrow in FIG. 2, the box 2 is subjected to a load due to acceleration in the traveling direction X during acceleration and deceleration during operation of the electric vehicle 1. Also, the curve receives a load in the Y direction due to centrifugal force. Furthermore, it receives a gravity load in the vertical direction Z.

このようなX、Y、Z方向の負荷による変形を閉じた方程式により解析的に解くことは困難であり、試作品による検証も大型機器であることから労力を要するので、有限要素法による数値解析による検討を実施した。有限要素法の計算プログラムとしては、この分野では著名な米国SDRC社のI−DEASを用いて線形の変形解析を行った。
箱体1の寸法は、進行方向X(前後)の長さをx=2000mm、進行方向及び鉛直方向に直交する方向Y(左右)の長さをy=1800mm、鉛直方向Z(上下)の長さをz=600mmとし、収納室3内には、電力変換器(質量20kg)、遮断機(質量5kg)やトランス(質量30kg)等を配置した数値解析モデルを作成し、構成部材の自重も考慮して解析を行った。
箱体2を構成する天板5、底板6、各側板7,8、左右仕切板9及び前後仕切板11は、基本仕様として全て板厚を4.5mmのSS400鋼板とした。箱体2を構成する天板5、底板6、各側板7,8、左右仕切板9の板厚を、箱体2に収納される制御機器の重量と電気車1の走行時の振動を考慮して決定したものを基本仕様とした。なお、変形の解析に関し、カバー12や、点検カバー12は、強固に固定結合される部材では無いので強度部材としての影響が少ないと考え、モデルから除外して解析を実施した。
It is difficult to solve such deformation due to loads in the X, Y, and Z directions analytically with closed equations, and because verification by a prototype is a large device, labor is required, so numerical analysis by the finite element method The examination by was carried out. As a calculation program of the finite element method, linear deformation analysis was performed using I-DEAS of SDRC Inc., which is famous in this field.
The dimensions of the box 1 are the length in the traveling direction X (front and back) x = 2000 mm, the length in the direction Y (left and right) perpendicular to the traveling direction and the vertical direction y = 1800 mm, and the length in the vertical direction Z (up and down). A numerical analysis model in which a power converter (mass 20 kg), a breaker (mass 5 kg), a transformer (mass 30 kg), etc. are arranged in the storage chamber 3 is set to z = 600 mm. The analysis was performed in consideration.
The top plate 5, the bottom plate 6, the side plates 7 and 8, the left and right partition plates 9 and the front and rear partition plates 11 constituting the box body 2 are all SS400 steel plates having a thickness of 4.5 mm as basic specifications. The thickness of the top plate 5, the bottom plate 6, the side plates 7, 8, and the left and right partition plates 9 constituting the box body 2 is considered in consideration of the weight of the control device housed in the box body 2 and the vibration when the electric vehicle 1 travels. The specifications were determined as basic specifications. Regarding the analysis of deformation, the cover 12 and the inspection cover 12 are not members that are firmly fixed and coupled, so that they are considered to have little influence as strength members, and the analysis was performed by excluding them from the model.

先ず、第一の負荷条件として、X、Y、Zの各方向に自重負荷が作用する場合を想定し、図2の矢印に示すように箱体2の全構成部材にX、Y、Zの各方向にそれぞれ9.8m/s2の加速度を作用させて変形量と変形モードを解析した。固定条件は、箱体2が電気車1の床下に取付座14の取付穴14aを介してボルト締結して吊り下げられることを想定して、取付座14の取付穴14aを拘束した。
図4に解析結果により得られた変形モードを示す。破線は負荷前、実線は負荷時の変形を示し、変形モードが分かり易いように実際の変形量よりも誇張して表示している。電気車1の箱体2の変形のモードとして、X方向に矢印の加速度が作用する場合は、Y方向から見てせん断(平行四辺形)の変形モードとなる(図4(a))。Y方向に矢印の加速度が作用する場合は、X方向から見てせん断(平行四辺形)の変形モードとなる(図4(b))。Z方向に加速度が矢印の方向に作用する場合、Y方向から見て、箱体の天板5及び底板6は、取付座14の位置を節としてU字状に撓むモードとなる(図4(c))。
また、図4には最大変位箇所に変形量を無次元化して記載している。無次元変形量は、各負荷モードでの最大変位量を鉛直方向(Z方向)負荷時の最大変位量で割って無次元化したものである。X、Y,Zの各負荷方向の無次元最大変形量をそれぞれδx、δy、δzで表すと、無次元化の定義からδz=1として、それぞれδx=1.17、δy=1.00となり、X方向の変形量δxは、鉛直方向の変位δzや、Y方向の変位δyに対し、20%近く大きくなることが分かった。
次に、第二の負荷条件として、動的な振動による変形についても解析を行った。有限要素モデルは上記と同じものを用い、計算プログラムのI−DEASにて周波数5Hz〜150Hzの範囲で固有振動モード解析を実施した。得られた固有振動モードの影響評価指標として有効質量比を用いる。有効質量とは、各振動モードの応答値に対する寄与率を知る上で重要な指標であり、構造物の全質量のうち、どれだけの質量が各振動モードの変形に寄与しているかを示すものである。そして、全質量に対する各振動モードの有効質量の比率を有効質量比(最大値は1.0となる)と呼ぶ。したがって有効質量比が大きいほど振動の応答が大きいことを示す。
First, as a first load condition, it is assumed that a self-weight load acts in each of the X, Y, and Z directions, and X, Y, and Z are applied to all components of the box 2 as indicated by arrows in FIG. The amount of deformation and the deformation mode were analyzed by applying an acceleration of 9.8 m / s 2 in each direction. As for the fixing condition, the mounting hole 14a of the mounting seat 14 was constrained on the assumption that the box 2 was suspended by being bolted to the electric vehicle 1 through the mounting hole 14a of the mounting seat 14.
FIG. 4 shows the deformation mode obtained from the analysis result. A broken line indicates the deformation before the load, and a solid line indicates the deformation at the time of the load. When the acceleration of the arrow acts in the X direction as a deformation mode of the box 2 of the electric vehicle 1, the deformation mode is a shear (parallelogram) as viewed from the Y direction (FIG. 4A). When the acceleration of the arrow acts in the Y direction, the deformation mode is a shear (parallelogram) when viewed from the X direction (FIG. 4B). When acceleration acts in the direction of the arrow in the Z direction, the top plate 5 and the bottom plate 6 of the box are in a mode of bending in a U shape with the position of the mounting seat 14 as a node when viewed from the Y direction (FIG. 4). (C)).
Further, FIG. 4 shows a non-dimensional deformation amount at the maximum displacement location. The dimensionless deformation amount is obtained by dividing the maximum displacement amount in each load mode by the maximum displacement amount in the vertical direction (Z direction) load, thereby making it dimensionless. When the dimensionless maximum deformation amounts in the load directions of X, Y, and Z are represented by δx, δy, and δz, respectively, δx = 1.17 and δy = 1.00, respectively, assuming that δz = 1 from the definition of dimensionlessness. The deformation amount δx in the X direction was found to be nearly 20% larger than the displacement δz in the vertical direction and the displacement δy in the Y direction.
Next, as a second load condition, the deformation due to dynamic vibration was also analyzed. The same finite element model as described above was used, and natural vibration mode analysis was performed in the frequency range of 5 Hz to 150 Hz by the calculation program I-DEAS. The effective mass ratio is used as an influence evaluation index of the obtained natural vibration mode. Effective mass is an important index for knowing the contribution rate to the response value of each vibration mode, and indicates how much of the total mass of the structure contributes to deformation of each vibration mode. It is. The ratio of the effective mass of each vibration mode to the total mass is called the effective mass ratio (the maximum value is 1.0). Therefore, the larger the effective mass ratio, the greater the vibration response.

固有周波数(共振周波数)と有効質量比の関係は図5に示すようなものとなった。図5(a)のシンボルマーク○がX方向、図5(b)の□がY方向、図5(c)の×がZ方向の有効質量比を示す。有効質量比は、固有振動周波数50Hz付近でのX方向の振動モードが最大となって突出しており、この変形モードは、図4(a)に示したY方向から見てせん断(平行四辺形)になっている。固有振動モードにおけるX、Y、Z各方向の支配的な振動モードは、図4に示した静的な加速度による変形モードと同様である。
以上の静的及び動的負荷条件による解析結果から、電気車1の床下に取付座14を介してボルト締結し吊り下げられた箱体2は、X方向に負荷が作用する場合のY方向から見たせん断変形(図4(a))が一番大きくなることがわかる。この理由は、電気車1の箱体2は、取付座14で電気車1の床下に吊下げ状態で固定されており、かつ、箱体2の進行方向Xに対して側面側には、大きな開口の点検口4が設けられている為、構造上弱くなっており、特に進行方向(X方向)に負荷が作用する場合、内蔵機器を載せた底板6に連結された側板7,8及び前後仕切板11は、Y方向から見て、取付座14を支点として回転(せん断変形)しやすい構造となっている為である。
以上の観点から、電気車1の箱体2の剛性を高める為には、左右仕切板9,10のせん断剛性を上げることが効果的であることが明白である。逆に言えば、この変形モードに寄与が少ない左右仕切板9,10以外の構成部材の剛性を下げることも可能である。
これを確認する為、本実施例では、構成部材の板厚をパラメータとして解析を実施した。表1は、電気車1の箱体2の主要構成部材を種々の板厚で組合せたときのX、Y、Z各方向の最大有効質量比の関係示すものである。
The relationship between the natural frequency (resonance frequency) and the effective mass ratio is as shown in FIG. The symbol mark ◯ in FIG. 5A indicates the effective mass ratio in the X direction, the square in FIG. 5B indicates the Y direction, and the X in FIG. 5C indicates the effective mass ratio in the Z direction. The effective mass ratio protrudes with the maximum vibration mode in the X direction near the natural vibration frequency of 50 Hz, and this deformation mode is sheared (parallelogram) when viewed from the Y direction shown in FIG. It has become. The dominant vibration modes in the X, Y, and Z directions in the natural vibration mode are the same as the deformation mode by static acceleration shown in FIG.
From the analysis results under the static and dynamic load conditions described above, the box body 2 that is bolted and suspended under the floor of the electric vehicle 1 via the mounting seat 14 is from the Y direction when a load acts in the X direction. It can be seen that the shear deformation seen (FIG. 4A) is the largest. The reason is that the box 2 of the electric vehicle 1 is fixed in a suspended state below the floor of the electric vehicle 1 with a mounting seat 14, and the side of the box 2 with respect to the traveling direction X is large. Since the inspection port 4 of the opening is provided, the structure is weak, especially when a load acts in the traveling direction (X direction), the side plates 7 and 8 connected to the bottom plate 6 on which the built-in equipment is placed, and the front and rear This is because the partition plate 11 has a structure that is easy to rotate (shear deformation) with the mounting seat 14 as a fulcrum when viewed from the Y direction.
From the above viewpoint, it is apparent that increasing the shear rigidity of the left and right partition plates 9 and 10 is effective in increasing the rigidity of the box 2 of the electric vehicle 1. In other words, it is possible to reduce the rigidity of the constituent members other than the left and right partition plates 9 and 10 that have little contribution to the deformation mode.
In order to confirm this, in this example, the analysis was performed using the plate thickness of the constituent member as a parameter. Table 1 shows the relationship between the maximum effective mass ratios in the X, Y, and Z directions when the main structural members of the box 2 of the electric vehicle 1 are combined with various plate thicknesses.

Figure 2007326388
Figure 2007326388

表1において仕様1、仕様2及び仕様3は、左右仕切板9,10の板厚のみを最大とした実施例である。仕様1から仕様3示す構成部材のいずれの板厚の組合せにおいても、最大有効質量比は、X方向加振の振動によるものがY方向やZ方向加振に比べ3倍から5倍大きい。仕様1から仕様3は、何れも左右仕切板9,10以外の板厚を基本仕様の4.5mmに対し、3.2mmから2.3mmに薄くしたものである。しかし、仕様1から仕様3におけるX方向の最大有効質量比は、基本仕様に対して5%増以内の値で有り、基本仕様と遜色が無い。さらに、仕様3に示すように、左右仕切板9,10及び各構成部材の板厚を仕様1や仕様2よりもさらに薄くした場合も同等の最大有効質量比となっている。さらに仕様3では、Z方向の最大有効質量では、むしろ小さくなっているので箱体2の系全体の質量が減ったことが振動変形に対し有利になっている。このことから、本実施例の仕様3での左右仕切板9,10のみを3.2mmに厚くする構成は、左右仕切板9,10のせん断剛性が高いので、X加振せん断剛性を確保に奏功している。
一方、左右仕切板9,10を含む、全ての構成部材の板厚を2.3mmとした仕様4の場合では、X方向の最大有効質量は0.67となり、基本仕様の最大有効質量に対し10%以上大きくなった。また、仕様4では、X方向の静的な負荷による発生応力は、所要の安全率を考慮した場合、材料の引張り強度を超える部位が発生した。
以上のように、本実施例では、箱体2に作用する静的負荷による応力に所要の安全率を考慮して材料の引張応力以下となるよう構成部材を選定し組合せて箱体2を製作する場合に、左右仕切板9,10の板厚よりも天板5、底板6及び各側板7,8の板厚を30〜50%薄くしても、電気車1の走行時に想定されるX方向の負荷による箱体2のY方向から見た静的・動的なせん断変形が、全構成部材を同じ板厚で構成した場合と同等の剛性を有する。さらに、同等のせん断剛性を有しながら箱体2の総質量としては、表1に示すように20%乃至40%軽量化出来るので、低コストで製作出来る効果がある。
また、箱体2の全質量と進行方向の振動モードに対して左右仕切板9,10の進行方向の変形に寄与する質量との比率を有効質量比としたときの最大有効質量比が、天板5、底板6、各側板7,8、及び左右仕切板9,10を同じ板厚で構成したときの最大有効質量比の5%増以内になるように天板5、底板6及び各側板7,8の板厚を左右仕切板9,10の板厚より薄くしたことにより、箱体2の重量を軽減できる。
実施の形態1において、箱体2の構成部材の材質をSS400鋼とし電弧溶接で箱体2を製作する場合について述べたが、例えば、構成部材の材質をアルミ合金とし、電弧溶接の代わりに各構成部材の端部に折り曲げフランジとリベット接合用の穴を設けてリベット締結構造とする場合も、左右仕切板9,10の板厚を他の構成部材よりも板厚を厚くして構成することでの同様の効果が期待出来る。
さらに、実施の形態1において、前後仕切板11を設けたものについて説明したが、前後仕切板11は振動変形に対しては寄与していないので、強度上はなくてもよい。
In Table 1, specifications 1, 2 and 3 are examples in which only the thickness of the left and right partition plates 9 and 10 is maximized. In any combination of the plate thicknesses of the constituent members shown in the specifications 1 to 3, the maximum effective mass ratio is 3 to 5 times larger due to the vibration in the X direction than in the Y direction or the Z direction. In the specifications 1 to 3, all the thicknesses other than the left and right partition plates 9 and 10 are reduced from 3.2 mm to 2.3 mm with respect to 4.5 mm of the basic specification. However, the maximum effective mass ratio in the X direction in the specifications 1 to 3 is a value within 5% of the basic specifications and is not inferior to the basic specifications. Furthermore, as shown in the specification 3, when the plate thicknesses of the left and right partition plates 9 and 10 and each component are made thinner than those of the specification 1 and the specification 2, the same maximum effective mass ratio is obtained. Furthermore, in the specification 3, the maximum effective mass in the Z direction is rather small, so that the overall mass of the box 2 is reduced, which is advantageous for vibration deformation. From this, the configuration in which only the left and right partition plates 9 and 10 in the specification 3 of this embodiment are thickened to 3.2 mm ensures the shear shear stiffness of the left and right partition plates 9 and 10 so that X excitation shear stiffness is ensured. It is successful.
On the other hand, in the case of the specification 4 in which the thickness of all the components including the left and right partition plates 9 and 10 is 2.3 mm, the maximum effective mass in the X direction is 0.67, which is larger than the maximum effective mass of the basic specification. Increased by more than 10%. Moreover, in the specification 4, when the required safety factor was considered, the site | part beyond the tensile strength of material generate | occur | produced the stress generated by the static load of a X direction.
As described above, in this embodiment, the box 2 is manufactured by selecting and combining the constituent members so that the stress due to the static load acting on the box 2 is less than the tensile stress of the material in consideration of the required safety factor. In this case, even if the thickness of the top plate 5, the bottom plate 6 and the side plates 7 and 8 is 30 to 50% thinner than the thicknesses of the left and right partition plates 9 and 10, X is assumed when the electric vehicle 1 travels. The static and dynamic shear deformation as seen from the Y direction of the box body 2 due to the load in the direction has the same rigidity as when all the constituent members are configured with the same plate thickness. Further, the total mass of the box body 2 while having equivalent shear rigidity can be reduced by 20% to 40% as shown in Table 1, so that there is an effect that it can be manufactured at low cost.
Further, the maximum effective mass ratio when the ratio of the total mass of the box 2 and the mass contributing to the deformation in the traveling direction of the left and right partition plates 9 and 10 to the vibration mode in the traveling direction is the effective mass ratio is The top plate 5, the bottom plate 6, and the side plates so that the maximum effective mass ratio is within 5% when the plate 5, the bottom plate 6, the side plates 7 and 8, and the left and right partition plates 9 and 10 are configured with the same plate thickness. By making the plate thicknesses 7 and 8 thinner than those of the left and right partition plates 9 and 10, the weight of the box 2 can be reduced.
In Embodiment 1, the case where the material of the structural member of the box 2 is SS400 steel and the box 2 is manufactured by arc welding has been described. For example, the material of the structural member is aluminum alloy, Even when a bent flange and a rivet joint hole are provided at the end of a component member to form a rivet fastening structure, the plate thickness of the left and right partition plates 9 and 10 is made thicker than the other component members. The same effect can be expected.
Furthermore, in Embodiment 1, although what provided the front-and-back partition plate 11 was demonstrated, since the front-and-back partition plate 11 does not contribute to vibration deformation, it does not need to be strong.

実施の形態2.
図6はこの発明を実施するための実施の形態2における電気車の制御装置用箱体を分解した斜視図である。図6において、5〜8,11〜14は実施の形態1のものと同様のものである。
箱体15は天板5、底板6、進行方向の前後に配置されて天板5と底板6とを連結した各側板7,8、天板5と底板6との間を進行方向の左右を仕切るように天板5、底板6、及び各側板7,8とを左右仕切板16,17で連結している。なお、X−Z面に配置された開口16bを有する左右仕切板16及び左右仕切板17のX方向(進行方向)の両端に、鉛直方向Zの断面がコの字状になるように折り曲げて縁折16a,17aが成形されている。このように断面をコの字状にすることで、箱体2は実施の形態1で述べたようなX方向の負荷条件に対し、Y方向から見たせん断変形を小さくすることが出来る。
箱体15は実施の形態1と同様の寸法とし、天板5、底板6、側板7,8、前後仕切板11、左右仕切板15,16をSS400鋼の2.3mmの板厚で構成した。
実施の形態1と同様に、有限要素法の計算プログラムとしては、米国SDRC社のI−DEASを用いて線形の変形解析を行った。この結果、板厚2.3mmの左右仕切板16,17の前後方向の両端に幅100mmで高さ50mmの縁折16a,17aを設けたので、最大有効質量比は、0.62と表1における基本仕様と同等となり、発生応力も所要の安全率を考慮しても材料の引張強度を超えなかった。さらに、箱体15の質量は、左右仕切板16,17の板厚を2.3mmに出来たので実施の形態1の仕様3よりも軽くなった(基本仕様の質量を1としたとき0.53)。
Embodiment 2. FIG.
FIG. 6 is an exploded perspective view of a control device box for an electric vehicle according to Embodiment 2 for carrying out the present invention. In FIG. 6, 5 to 8 and 11 to 14 are the same as those in the first embodiment.
The box body 15 is arranged on the top plate 5, the bottom plate 6, and the side plates 7 and 8 which are arranged before and after the traveling direction to connect the top plate 5 and the bottom plate 6, and between the top plate 5 and the bottom plate 6 on the left and right in the traveling direction. The top plate 5, the bottom plate 6, and the side plates 7 and 8 are connected by left and right partition plates 16 and 17 so as to partition. The left and right partition plates 16 and the left and right partition plates 17 having openings 16b arranged on the X-Z plane are bent at both ends in the X direction (traveling direction) so that the cross section in the vertical direction Z becomes a U-shape. Edge folds 16a and 17a are formed. Thus, by making the cross section U-shaped, the box 2 can reduce the shear deformation seen from the Y direction against the load condition in the X direction as described in the first embodiment.
The box 15 has the same dimensions as in the first embodiment, and the top plate 5, the bottom plate 6, the side plates 7 and 8, the front and rear partition plates 11 and the left and right partition plates 15 and 16 are made of SS400 steel with a thickness of 2.3 mm. .
As in the first embodiment, linear deformation analysis was performed using I-DEAS of SDRC, Inc., as the finite element method calculation program. As a result, since the edge folds 16a and 17a having a width of 100 mm and a height of 50 mm are provided at both ends of the left and right partition plates 16 and 17 having a plate thickness of 2.3 mm, the maximum effective mass ratio is 0.62. The generated stress was not exceeding the tensile strength of the material even considering the required safety factor. Further, the mass of the box 15 is lighter than the specification 3 of the first embodiment because the thickness of the left and right partition plates 16 and 17 can be 2.3 mm (0. 53).

実施の形態2において、左右仕切板16,17の縁折16a,17aを仕切板16,17の端部を一体曲げして成形したが、コの字状の縁折を別に作成して、左右仕切板16,17の端部に一体化してもよい。
また、実施の形態2において、左右仕切板16,17の縁折16a,17aは左右仕切板16,17の前後方向の端部に設けたものについて説明したが、左右仕切板16,17の上下(天板側と底板側)にも追加してもよい。さらに、前後および左右に設けた縁折を左右仕切板16,17の角部でつなげて、左右仕切板16,17の周囲にコの字状の縁折を形成してもよい。
さらに、実施の形態2において、箱体15の構成部材の材質をSS400鋼とし電弧溶接で箱体15を製作する場合について説明したが、例えば、構成部材の材質をアルミ合金とし、電弧溶接の代わりに各構成部材の端部に折り曲げフランジとリベット接合用の穴を設けてリベット締結構造とする場合も、左右仕切板16,17の前後方向の両端を鉛直方向Zの断面がコの字状になるように折り曲げて成形された縁折16a,17aを設けても同様の効果が期待出来る。
In the second embodiment, the edge folds 16a and 17a of the left and right partition plates 16 and 17 are formed by bending the end portions of the partition plates 16 and 17 integrally. You may integrate with the edge part of the partition plates 16 and 17. FIG.
In the second embodiment, the edge folds 16a and 17a of the left and right partition plates 16 and 17 have been described as being provided at end portions in the front-rear direction of the left and right partition plates 16 and 17. It may also be added to the (top plate side and bottom plate side). Furthermore, edge folding provided in the front and rear and left and right may be connected at the corners of the left and right partition plates 16 and 17 to form a U-shaped edge fold around the left and right partition plates 16 and 17.
Further, in the second embodiment, the case where the material of the component of the box 15 is SS400 steel and the box 15 is manufactured by arc welding has been described. For example, the material of the component is aluminum alloy, instead of arc welding. Even in the case of providing a rivet fastening structure by providing a bent flange and a rivet joint hole at the end of each component member, both the front and rear ends of the left and right partition plates 16 and 17 have a U-shaped cross section in the vertical direction Z. The same effect can be expected even if the edge folds 16a and 17a formed by bending are formed.

実施の形態3.
図7はこの発明を実施するための実施の形態3における電気車の制御装置用箱体を分解した斜視図である。図7において、5〜8,11〜14は実施の形態1のものと同様のものである。
箱体18は天板5、底板6、進行方向の前後に配置されて天板5と底板6とを連結した各側板7,8、天板5と底板6との間を進行方向の左右を仕切るように天板5、底板6、及び各側板7,8とを開口19cを有する左右仕切板19及び左右仕切板20で連結している。左右仕切板19,20の上下及び前後をコの字状にして縁折19a,19b,20a,20bを形成して、四隅にX方向に巾を有し、鉛直Z方向に対しほぼ45度の傾斜を有する架橋板21,22が設けられている。架橋板21,22は、天板5と側板7,8、天板5と前後仕切板11、底板6と側板7,8、及び底板6と前後仕切板11を架橋している。
このように架橋板21,22を設けたことにより箱体18は、X方向(進行方向)の負荷条件に対し、Y方向から見たせん断変形を小さくすることが出来る。
箱体18は実施の形態1と同様の寸法とし、天板5、底板6、側板7,8、前後仕切板11、左右仕切板19,20をSS400鋼の2.3mmの板厚で構成した。
Embodiment 3 FIG.
FIG. 7 is an exploded perspective view of a control device box for an electric vehicle according to Embodiment 3 for carrying out the present invention. In FIG. 7, reference numerals 5 to 8 and 11 to 14 are the same as those in the first embodiment.
The box 18 is arranged on the top plate 5, the bottom plate 6, front and rear in the traveling direction, and the side plates 7 and 8 that connect the top plate 5 and the bottom plate 6, and the left and right in the traveling direction between the top plate 5 and the bottom plate 6. The top plate 5, the bottom plate 6, and the side plates 7 and 8 are connected by a left and right partition plate 19 and a left and right partition plate 20 having an opening 19 c so as to partition. The left and right partition plates 19 and 20 have U-shapes at the top and bottom and front and back to form edge folds 19a, 19b, 20a, and 20b. The four corners have a width in the X direction and are approximately 45 degrees with respect to the vertical Z direction. Inclined bridging plates 21 and 22 are provided. The bridge plates 21 and 22 bridge the top plate 5 and the side plates 7 and 8, the top plate 5 and the front and rear partition plates 11, the bottom plate 6 and the side plates 7 and 8, and the bottom plate 6 and the front and rear partition plates 11.
By providing the bridging plates 21 and 22 in this way, the box 18 can reduce the shear deformation seen from the Y direction with respect to the load condition in the X direction (traveling direction).
The box 18 has the same dimensions as in the first embodiment, and the top plate 5, the bottom plate 6, the side plates 7 and 8, the front and rear partition plates 11 and the left and right partition plates 19 and 20 are made of SS400 steel with a thickness of 2.3 mm. .

実施の形態1と同様に、有限要素法の計算プログラムとしては、米国SDRC社のI−DEASを用いて線形の変形解析を行った。
板厚2.3mmの左右仕切板19,20の四隅に架橋板21,22を設けたので、最大有効質量比は、0.61となり表1における基本仕様と同等で、発生応力も所要の安全率を考慮しても材料の引張強度を超えなかった。さらに、箱体18の質量は、左右仕切板21,22の板厚を2.3mmに出来たので実施の形態1の仕様3よりも軽くなった(基本仕様の質量を1としたとき0.54)。
実施の形態3において、箱体18の構成部材の材質をSS400鋼とし電弧溶接で箱体18を製作する場合について説明したが、例えば、構成部材の材質をアルミ合金とし、電弧溶接の代わりに各構成部材の端部を折り曲げて、フランジとリベット接合用の穴を設けてリベット締結構造とする場合も、左右仕切板21,22の四隅に架橋板21,22を設けることで同様の効果が期待出来る。
As in the first embodiment, linear deformation analysis was performed using I-DEAS of SDRC, Inc., as the finite element method calculation program.
Since the bridge plates 21 and 22 are provided at the four corners of the left and right partition plates 19 and 20 having a plate thickness of 2.3 mm, the maximum effective mass ratio is 0.61, which is the same as the basic specifications in Table 1, and the generated stress is the required safety. The tensile strength of the material was not exceeded even considering the rate. Furthermore, the mass of the box 18 is lighter than the specification 3 of the first embodiment because the plate thickness of the left and right partition plates 21 and 22 can be 2.3 mm (0. 54).
In the third embodiment, the case where the material of the structural member of the box 18 is SS400 steel and the box 18 is manufactured by arc welding has been described. For example, the material of the structural member is aluminum alloy, The same effect can be expected by providing the bridging plates 21 and 22 at the four corners of the left and right partition plates 21 and 22 even when the ends of the component members are bent and the flange and the rivet joint hole are provided to form a rivet fastening structure. I can do it.

実施の形態4.
図8は、この発明を実施するための実施の形態3における電気車の制御装置用箱体を分解した斜視図である。図8において、5〜8,11〜14は実施の形態1のものと同様のものである。
箱体23は天板5、底板6、進行方向の前後に配置されて天板5と底板6とを連結した各側板7,8、天板5と底板6との間を進行方向の左右を仕切るように天板5、底板6、及び各側板7,8とをX−Z面に配置された左右仕切板24,25で連結している。なお、左右仕切板24には箱体23内に収納された制御機器間を電気的に連結する為の開口24aが設けられている構造となっている。左右仕切板24,25のX―Z面には、対角線上に板厚3.2mm、巾100mmの筋交26,27が接合されている。なお、筋交26は断面をコの字状とし、筋交26断面をL字状としたものを示したが、いずれかの形状に統一しても良い。
箱体23は実施の形態1と同様の寸法とし、天板5、底板6、側板7,8、前後仕切板11をSS400鋼の2.3mmの板厚で構成した。開口24aを有する左右仕切板24及び左右仕切板25は、強度を確保する為に板厚を3.2mmとし、SS400鋼で構成した。
実施の形態1と同様に、有限要素法の計算プログラムとしては、米国SDRC社のI−DEASを用いて線形の変形解析を行った。
この結果、最大有効質量比は0.62であり、表1における基本仕様と同等となり、静的な降伏強度も超えなかった。
このように筋交26,27を設けたことにより、箱体23はX方向(進行方向)の負荷条件に対し、Y方向から見たせん断変形を小さくすることが出来る。
実施の形態4において、箱体23の構成部材の材質をSS400鋼とし電弧溶接で箱体23を製作する場合について説明したが、例えば、構成部材の材質をアルミ合金とし、電弧溶接の代わりに各構成部材の端部を折り曲げフランジとリベット接合用の穴を設けてリベット締結構造とする場合も、左右仕切板24,25に筋交26,27を設けることにより同様の効果が期待出来る。
Embodiment 4 FIG.
FIG. 8 is an exploded perspective view of a box for a control device for an electric vehicle according to Embodiment 3 for carrying out the present invention. In FIG. 8, 5 to 8 and 11 to 14 are the same as those in the first embodiment.
The box body 23 is arranged on the top plate 5, the bottom plate 6, front and rear in the traveling direction, and the side plates 7 and 8 that connect the top plate 5 and the bottom plate 6, and the left and right in the traveling direction between the top plate 5 and the bottom plate 6. The top plate 5, the bottom plate 6, and the side plates 7 and 8 are connected by left and right partition plates 24 and 25 arranged on the XZ plane so as to partition. The left and right partition plates 24 have a structure in which an opening 24a for electrically connecting the control devices stored in the box 23 is provided. On the XZ plane of the left and right partition plates 24 and 25, bracings 26 and 27 having a plate thickness of 3.2 mm and a width of 100 mm are joined diagonally. The bracing 26 has a U-shaped cross section and an L-shaped cross section, but may be unified to any shape.
The box body 23 had the same dimensions as in the first embodiment, and the top plate 5, the bottom plate 6, the side plates 7 and 8, and the front and rear partition plates 11 were made of SS400 steel with a thickness of 2.3 mm. The left and right partition plates 24 and the left and right partition plates 25 having the openings 24a were made of SS400 steel with a plate thickness of 3.2 mm in order to ensure strength.
As in the first embodiment, linear deformation analysis was performed using I-DEAS of SDRC, Inc., as the finite element method calculation program.
As a result, the maximum effective mass ratio was 0.62, which was equivalent to the basic specifications in Table 1, and did not exceed the static yield strength.
By providing the braces 26 and 27 in this way, the box body 23 can reduce the shear deformation seen from the Y direction with respect to the load condition in the X direction (traveling direction).
In Embodiment 4, although the case where the material of the structural member of the box body 23 is SS400 steel and the box body 23 is manufactured by electric arc welding has been described, for example, the material of the structural member is an aluminum alloy and each of them is replaced by electric arc welding. The same effect can be expected by providing bracings 26 and 27 in the left and right partition plates 24 and 25 even when the ends of the component members are bent to provide a rivet fastening structure with a flange and a rivet joint hole.

電気車の制御装置用箱体を搭載した電気車の側面図である。It is a side view of the electric vehicle carrying the box for control devices of an electric vehicle. この発明を実施するための実施の形態1における電気車の制御装置用箱体の斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a control device box for an electric vehicle according to Embodiment 1 for carrying out the present invention. 図2の箱体を分解した斜視図である。It is the perspective view which decomposed | disassembled the box of FIG. 図2の箱体の変形モードを示す説明図である。It is explanatory drawing which shows the deformation | transformation mode of the box of FIG. 図2の箱体の強震周波数と有効質量比との関係を示す説明図である。It is explanatory drawing which shows the relationship between the strong motion frequency and effective mass ratio of the box of FIG. この発明を実施するための実施の形態2における電気車の制御装置用箱体を分解した斜視図である。It is the perspective view which decomposed | disassembled the box for electric vehicle control apparatuses in Embodiment 2 for implementing this invention. この発明を実施するための実施の形態3における電気車の制御装置用箱体を分解した斜視図である。It is the perspective view which decomposed | disassembled the box for control apparatuses of the electric vehicle in Embodiment 3 for implementing this invention. この発明を実施するための実施の形態3における電気車の制御装置用箱体を分解した斜視図である。It is the perspective view which decomposed | disassembled the box for control apparatuses of the electric vehicle in Embodiment 3 for implementing this invention.

符号の説明Explanation of symbols

1 電気車、2,15,18,23 箱体、4 点検口、5 天板、6 底板、
7,8 側板、9,10,16,17,19,20,24,25 左右仕切板、
16a,17a,19a,19b,20a,20b 縁折、26,27 筋交。
1 Electric car, 2, 15, 18, 23 Box, 4 Inspection port, 5 Top plate, 6 Bottom plate,
7, 8 side plate, 9, 10, 16, 17, 19, 20, 24, 25 left and right partition plates,
16a, 17a, 19a, 19b, 20a, 20b Folding, 26, 27 Braces.

Claims (5)

電気車の車上に配置されて上記電気車の制御機器が収納され、上記電気車の進行方向の左右の側面に上記制御機器を点検するための点検口を有し、上面の天板、下面の底板、上記進行方向の前後に配置されて上記天板と上記底板とを連結した各側板、上記天板と上記底板との間を上記進行方向の左右に仕切ると共に上記天板、上記底板、及び上記各側板と連結した左右仕切板で構成し、上記各板の板厚を上記制御機器の重量と上記電気車の走行時の振動を考慮して決定する電気車の制御装置用箱体において、上記天板、上記底板及び上記各側板の板厚を上記左右仕切板の板厚よりも30〜50%薄くしたことを特徴とする電気車の制御装置用箱体。   The control device for the electric vehicle is housed on the electric car, and has inspection ports on the left and right side surfaces in the traveling direction of the electric vehicle for checking the control device. Bottom plate, each side plate arranged before and after the traveling direction and connecting the top plate and the bottom plate, partitioning the top plate and the bottom plate left and right in the traveling direction and the top plate, the bottom plate, And a left and right partition plate connected to each side plate, and the thickness of each plate is determined in consideration of the weight of the control device and vibration during travel of the electric vehicle. A box for a control device for an electric vehicle, characterized in that the top plate, the bottom plate, and the side plates have thicknesses 30 to 50% thinner than those of the left and right partition plates. 請求項1に記載の電気車の制御装置用箱体において、上記左右仕切板の上記進行方向の前後の端部を鉛直方向に沿って折り曲げたことを特徴とする電気車の制御装置用箱体。   The box for an electric vehicle control device according to claim 1, wherein the front and rear end portions of the left and right partition plates in the traveling direction are bent along a vertical direction. . 請求項1に記載の電気車の制御装置用箱体において、上記左右仕切板の上下及び上記進行方向の前後の端部をコの字状にして縁折を形成し、上記縁折の四隅を接合したことを特徴とする電気車の制御装置用箱体。   The box for a control device for an electric vehicle according to claim 1, wherein the upper and lower ends of the left and right partition plates and the front and rear end portions in the traveling direction are formed in a U-shape to form an edge fold, and the four corners of the edge fold are formed. A box for a control device of an electric vehicle characterized by being joined. 請求項1に記載の電気車の制御装置用箱体において、上記左右仕切板の面の対角線上に筋交を設けたことを特徴とする電気車の制御装置用箱体。   The box for a control device for an electric vehicle according to claim 1, wherein a bracing is provided on a diagonal line of the surface of the left and right partition plates. 電気車の車上に配置されて上記電気車の制御機器が収納され、上記電気車の進行方向の左右の側面に上記制御機器を点検するための開口部を有し、上面の天板、下面の底板、上記進行方向の前後に配置されて上記天板と上記底板とを連結した各側板、上記天板と上記底板との間を上記進行方向の左右に仕切ると共に上記天板、上記底板、及び上記各側板と連結した左右仕切板で構成し、上記各板の板厚を上記制御機器の重量と上記電気車の走行時の振動を考慮して決定する電気車の制御装置用箱体の製造方法において、上記箱体の全質量と上記進行方向の振動モードに対して上記左右仕切板の上記進行方向の変形に寄与する質量との比率を有効質量比としたときの最大有効質量比が、上記天板、上記底板、上記各側板、及び上記左右仕切板を同じ板厚で構成したときの上記最大有効質量比の5%増以内になるように上記天板、上記底板及び上記各側板の板厚を上記左右仕切板の板厚より薄くしたことを特徴とする電気車の制御装置用箱体の製造方法。   Arranged on the electric vehicle, the electric vehicle control device is accommodated, and there are openings for checking the control device on the left and right side surfaces in the traveling direction of the electric vehicle. Bottom plate, each side plate arranged before and after the traveling direction and connecting the top plate and the bottom plate, partitioning the top plate and the bottom plate left and right in the traveling direction and the top plate, the bottom plate, And a left and right partition plate connected to each side plate, and the thickness of each plate is determined in consideration of the weight of the control device and the vibration during running of the electric vehicle. In the manufacturing method, the maximum effective mass ratio when the ratio between the total mass of the box and the mass contributing to the deformation in the traveling direction of the left and right partition plates with respect to the vibration mode in the traveling direction is an effective mass ratio. The top plate, the bottom plate, the side plates, and the left and right partition plates. The plate thickness of the top plate, the bottom plate, and the side plates is made thinner than the plate thickness of the left and right partition plates so that the maximum effective mass ratio is less than 5% when configured with the same plate thickness. Of manufacturing a box for a control device of an electric vehicle.
JP2006157269A 2006-06-06 2006-06-06 Box for control device of electric rolling stock and its manufacturing method Pending JP2007326388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157269A JP2007326388A (en) 2006-06-06 2006-06-06 Box for control device of electric rolling stock and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157269A JP2007326388A (en) 2006-06-06 2006-06-06 Box for control device of electric rolling stock and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007326388A true JP2007326388A (en) 2007-12-20

Family

ID=38927191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157269A Pending JP2007326388A (en) 2006-06-06 2006-06-06 Box for control device of electric rolling stock and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007326388A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066900A (en) * 2011-09-21 2013-04-18 Hitachi Ltd Thin plate constituting casing structure for housing railway vehicle electric component, casing for housing railway vehicle electric component using the same, and railway vehicle electrical instrument
CN103101544A (en) * 2011-11-10 2013-05-15 中国北车股份有限公司大连电力牵引研发中心 Train central control unit (CCU) installation box, train control device and train control cabinet
JP2013121831A (en) * 2011-11-10 2013-06-20 Hitachi Ltd Electric equipment for railway vehicle
JP2013199270A (en) * 2012-03-23 2013-10-03 Bombardier Transportation Gmbh Composite self-supporting housing for railway car
DE102014113829A1 (en) * 2014-09-24 2016-03-24 Bombardier Transportation Gmbh Modular system for attaching an underfloor component to different car bodies, method for mounting an underfloor component to a car body, and rail vehicle fleet
WO2018179603A1 (en) * 2017-03-30 2018-10-04 株式会社東芝 Control box and method for manufacturing control box
EP3197037A4 (en) * 2014-09-18 2018-12-05 Kabushiki Kaisha Toshiba Power conversion device
WO2019082379A1 (en) * 2017-10-27 2019-05-02 三菱電機株式会社 Casing for railroad vehicle device
JP2019135126A (en) * 2018-02-05 2019-08-15 富士電機株式会社 Power conversion device housing, housing of railway vehicle power conversion device, and power conversion device
JP2020006772A (en) * 2018-07-05 2020-01-16 日本車輌製造株式会社 Vibration-proof support structure for outfit fitted to railway vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167054A (en) * 1996-12-16 1998-06-23 Hitachi Ltd Controller box for vehicle
JP2002120720A (en) * 2000-10-19 2002-04-23 Toshiba Transport Eng Inc Box for control device of rolling stock

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167054A (en) * 1996-12-16 1998-06-23 Hitachi Ltd Controller box for vehicle
JP2002120720A (en) * 2000-10-19 2002-04-23 Toshiba Transport Eng Inc Box for control device of rolling stock

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066900A (en) * 2011-09-21 2013-04-18 Hitachi Ltd Thin plate constituting casing structure for housing railway vehicle electric component, casing for housing railway vehicle electric component using the same, and railway vehicle electrical instrument
CN103101544A (en) * 2011-11-10 2013-05-15 中国北车股份有限公司大连电力牵引研发中心 Train central control unit (CCU) installation box, train control device and train control cabinet
JP2013121831A (en) * 2011-11-10 2013-06-20 Hitachi Ltd Electric equipment for railway vehicle
CN103101544B (en) * 2011-11-10 2015-11-25 中国北车股份有限公司 Train central control unit install bin, Train Control equipment and Train Control cabinet
JP2013199270A (en) * 2012-03-23 2013-10-03 Bombardier Transportation Gmbh Composite self-supporting housing for railway car
EP3197037A4 (en) * 2014-09-18 2018-12-05 Kabushiki Kaisha Toshiba Power conversion device
EP3197741A1 (en) * 2014-09-24 2017-08-02 Bombardier Transportation GmbH Modular system for fastening an underfloor component to different vehicle bodies, method for mounting an underfloor component on a vehicle body, and rail vehicle fleet
EP3197741B1 (en) * 2014-09-24 2021-06-02 Bombardier Transportation GmbH Modular system for fastening an underfloor component to different vehicle bodies, method for mounting an underfloor component on a vehicle body, and rail vehicle fleet
DE102014113829A1 (en) * 2014-09-24 2016-03-24 Bombardier Transportation Gmbh Modular system for attaching an underfloor component to different car bodies, method for mounting an underfloor component to a car body, and rail vehicle fleet
WO2018179603A1 (en) * 2017-03-30 2018-10-04 株式会社東芝 Control box and method for manufacturing control box
JP2018170879A (en) * 2017-03-30 2018-11-01 株式会社東芝 Control box and control box assembly method
CN110139774B (en) * 2017-03-30 2023-01-10 株式会社东芝 Control box and manufacturing method thereof
CN110139774A (en) * 2017-03-30 2019-08-16 株式会社东芝 The manufacturing method of control cabinet and control cabinet
WO2019082379A1 (en) * 2017-10-27 2019-05-02 三菱電機株式会社 Casing for railroad vehicle device
JPWO2019082379A1 (en) * 2017-10-27 2020-05-28 三菱電機株式会社 Railcar equipment enclosure
CN111263716A (en) * 2017-10-27 2020-06-09 三菱电机株式会社 Housing for a device for a rail vehicle
US11597412B2 (en) 2017-10-27 2023-03-07 Mitsubishi Electric Corporation Casing for railroad vehicle device
JP7021548B2 (en) 2018-02-05 2022-02-17 富士電機株式会社 Power conversion device housing, railroad vehicle power conversion device housing, and power conversion device
JP2019135126A (en) * 2018-02-05 2019-08-15 富士電機株式会社 Power conversion device housing, housing of railway vehicle power conversion device, and power conversion device
JP2020006772A (en) * 2018-07-05 2020-01-16 日本車輌製造株式会社 Vibration-proof support structure for outfit fitted to railway vehicle
JP7211671B2 (en) 2018-07-05 2023-01-24 日本車輌製造株式会社 Anti-vibration support structure for mounting equipment on railway vehicles

Similar Documents

Publication Publication Date Title
JP2007326388A (en) Box for control device of electric rolling stock and its manufacturing method
JP6977307B2 (en) Vehicle undercarriage
JP7181165B2 (en) car body structure
JP7044013B2 (en) Vehicle undercarriage
JP5097744B2 (en) Car body rear structure
JP6034698B2 (en) Railway vehicle
DE112010003108T5 (en) A structure for arranging an electronic component in the vehicle for an electronic component for the electric motor for driving the vehicle
US8899642B2 (en) Bumper-stay mounting structure and load transmission member
US2747887A (en) Box frame bulkhead
JP5290793B2 (en) Railcar body
JP2020044997A (en) Suspension sub frame structure
JP2010260537A (en) Seat frame for vehicle seat
JP2015202805A (en) Support structure of battery tray for vehicle
JP6829157B2 (en) Battery support structure
JP2015039981A (en) Vehicle front structure
JP6174969B2 (en) Construction machinery cab support structure
JP2009255665A (en) Cross member of vehicle
JP5900302B2 (en) Console structure
JP7396217B2 (en) electric vehicle
CN105644625B (en) Subframe constructs afterwards
JP6323289B2 (en) Body frame joint structure and joint parts
JP2011016444A (en) Front underrun protector
JP2003261072A (en) Vehicular frame member structure
RU2648559C1 (en) Method for mounting a longitudinal component on a vehicle chassis, a vehicle with a longitudinal component and a longitudinal component system
JP2015123773A (en) On-vehicle apparatus mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A131 Notification of reasons for refusal

Effective date: 20110705

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111108

Free format text: JAPANESE INTERMEDIATE CODE: A02