JP2007322508A - Manufacturing method of optical modulation element - Google Patents

Manufacturing method of optical modulation element Download PDF

Info

Publication number
JP2007322508A
JP2007322508A JP2006149975A JP2006149975A JP2007322508A JP 2007322508 A JP2007322508 A JP 2007322508A JP 2006149975 A JP2006149975 A JP 2006149975A JP 2006149975 A JP2006149975 A JP 2006149975A JP 2007322508 A JP2007322508 A JP 2007322508A
Authority
JP
Japan
Prior art keywords
cell
synthetic resin
liquid crystal
resin film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006149975A
Other languages
Japanese (ja)
Other versions
JP5032794B2 (en
Inventor
Hiroto Sato
弘人 佐藤
Hideo Fujikake
英夫 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2006149975A priority Critical patent/JP5032794B2/en
Publication of JP2007322508A publication Critical patent/JP2007322508A/en
Application granted granted Critical
Publication of JP5032794B2 publication Critical patent/JP5032794B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an optical modulation element that can be bent at a small curvature. <P>SOLUTION: The manufacturing method of an optical modulation element includes a member forming step to form a front face member, wherein a transparent electrode 111, a non-conductive transparent protective film 121, and a transparent orientation film 131 are laminated on a transparent synthetic resin film 101, and to form a rear-face member wherein an electrode 112 is laminated on a synthetic resin film 102; a projected structure forming step for forming a projected structure 14 in the inside of and along the upper side of an electrode face of the synthetic resin film 101; a cell-generating step for generating a bag-like cell 10 by making the synthetic resin film 102 and the electrode made to face each other, and bonding them after applying an adhesive 15 along both the sides and the lower side of the electrode of the synthetic resin film 101; a liquid crystal injection step for injecting liquid crystal into the cell 10; a pressing and extending step for depressing the cell 10, to press and extend the liquid crystal in the cell to a uniform thickness; and a sealing step for sealing the cell 10 by applying a sealant 17 outside the projected structure 14 of the cell 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光変調素子の製造方法に係り、特に、柔軟性を有する光変調素子の製造方法に関する。   The present invention relates to a method for manufacturing a light modulation element, and more particularly to a method for manufacturing a light modulation element having flexibility.

近年、柔軟性を有する表示装置として、液晶変調素子、有機EL(エレクトロ・ルミネッセンス)、電子インク等を適用した各種の形式が提案されている。   In recent years, various types of liquid crystal modulation elements, organic EL (electroluminescence), electronic ink, and the like have been proposed as flexible display devices.

なかでも、液晶変調素子を適用した表示装置は、透過型、反射型、半透過型のいずれの形式にも適用可能であるだけでなく、動画から静止画まで各種の画像の表示に適用可能であるため有力な表示装置と考えられている。   In particular, a display device using a liquid crystal modulation element can be applied not only to a transmission type, a reflection type, and a semi-transmission type, but also to display various images from moving images to still images. Therefore, it is considered a powerful display device.

柔軟性を有する表示装置に適用する液晶変調素子は、柔軟性を有する2枚のフィルム基板を貼り合せたセル中に一定の厚さの液晶を挟み込んだ構成を有する。   A liquid crystal modulation element applied to a flexible display device has a configuration in which a liquid crystal having a certain thickness is sandwiched between cells in which two flexible film substrates are bonded.

2枚の基板を貼り合せたセル中に液晶を注入する方法としては、真空注入法、ワンドロップフィル法が公知であるが、基板が柔軟性を有する場合には液晶の厚さを一定とすることは困難であった。   As a method for injecting liquid crystal into a cell in which two substrates are bonded, a vacuum injection method and a one-drop fill method are known, but when the substrate has flexibility, the thickness of the liquid crystal is made constant. It was difficult.

上記課題を解決するために、フィルム製セルを使用した場合でも液晶の厚さを一定とすることの可能な液晶表示素子の製造方法が、既に提案されている(例えば、特許文献1参照)。   In order to solve the above problems, a method of manufacturing a liquid crystal display element capable of keeping the thickness of the liquid crystal constant even when a film cell is used has been proposed (for example, see Patent Document 1).

上記製造方法は、一対の長尺フィルムの長辺を貼り合せて筒状の長尺セルを形成する工程、長尺セルに液晶を注入した後加圧ローラーで一定厚さの液晶層を形成する工程、短辺方向に所定間隔で長尺セルをシールして液晶を互いに隔離された複数の領域に分割する工程、シール箇所で長尺セルを切り離す工程から成り立ち、柔軟性を有する液晶表示素子を製造することを可能としている。
特開平11−249158公報([0017]〜[0020]、図1)
The manufacturing method includes a step of bonding a long side of a pair of long films to form a cylindrical long cell, a liquid crystal layer having a constant thickness is formed by a pressure roller after injecting liquid crystal into the long cell. A flexible liquid crystal display element comprising a step, a step of sealing a long cell at a predetermined interval in the short side direction to divide the liquid crystal into a plurality of regions isolated from each other, and a step of separating the long cell at the seal portion It is possible to manufacture.
Japanese Patent Laid-Open No. 11-249158 ([0017] to [0020], FIG. 1)

しかしながら、上記提案に係る液晶表示素子には、透明電極材として無機材料であるITO(インジウム、スズ酸化物)を使用しているため、表示装置を小さい曲率で折り曲げた場合には、電極の剥離あるいは断線が生じ易いという課題があった。   However, since the liquid crystal display element according to the above proposal uses ITO (indium, tin oxide), which is an inorganic material, as a transparent electrode material, the electrode peels off when the display device is bent with a small curvature. Or there existed the subject that disconnection was easy to produce.

本発明は、従来の課題を解決するためになされたものであって、小さい曲率で折り曲げることが可能な柔軟性を有する光変調素子の製造方法を提供することを目的とする。   The present invention has been made to solve the conventional problems, and an object of the present invention is to provide a method of manufacturing a light modulation element having flexibility that can be bent with a small curvature.

本発明の光変調素子の製造方法は、透明な合成樹脂フィルムの面上に透明な有機導電材料製の電極、非導電性の透明な保護膜、および透明な配向膜を前記合成樹脂フィルムの軟化温度以下の雰囲気で順次積層した前面部材と、合成樹脂フィルムの面上に有機導電材料製の電極を前記合成樹脂フィルムの軟化温度以下の雰囲気で積層した裏面部材とを形成する部材形成段階と、前記前面部材および前記裏面部材の少なくとも一方の前記電極面の上辺内側に、前記合成樹脂フィルム上辺に沿って凸状構造物を形成する凸状構造物形成段階と、前記前面部材および前記裏面部材の少なくとも一方の前記電極面の両側辺および下辺に沿って接着剤を塗布した後、他方と前記電極面を対向させて貼付し、袋状のセルを生成するセル生成段階と、前記セルに液晶を注入する液晶注入段階と、前記セルを押下して前記液晶をセル内に均一の厚さに押し拡げる押し拡げ段階と、前記セルの前記凸状構造物の外側に塗布した封止剤により前記セルを封止する封止段階とを含む構成を有している。   The method for producing a light modulation element of the present invention includes softening of the synthetic resin film with an electrode made of a transparent organic conductive material, a non-conductive transparent protective film, and a transparent alignment film on the surface of the transparent synthetic resin film. A member forming step of forming a front member sequentially laminated in an atmosphere below the temperature and a back member laminated on the surface of the synthetic resin film with an electrode made of an organic conductive material in an atmosphere below the softening temperature of the synthetic resin film; A convex structure forming step of forming a convex structure along the upper side of the synthetic resin film on the inner side of the electrode surface of at least one of the front member and the back member; and the front member and the back member A cell generating step of applying a bonding agent along both sides and a lower side of at least one of the electrode surfaces, and then applying the other and the electrode surfaces facing each other to generate a bag-shaped cell; A liquid crystal injection step of injecting liquid crystal, a spreading step of pushing down the cell to spread the liquid crystal to a uniform thickness in the cell, and a sealing agent applied to the outside of the convex structure of the cell And a sealing step for sealing the cell.

この構成により、光変調素子は柔軟性を具備することとなる。   With this configuration, the light modulation element has flexibility.

本発明の光変調素子の製造方法は、前記部材形成段階が、合成樹脂フィルムの面上に透明な有機導電材料製電極を積層した裏面材料、または合成樹脂フィルムの面上に反射性の有機導電材料製電極、もしくは反射材を付加した有機導電材料製電極を積層した裏面部材を形成するものであってもよい。   In the method for producing a light modulation element of the present invention, the member forming step includes a back surface material in which a transparent organic conductive material electrode is laminated on the surface of the synthetic resin film, or a reflective organic conductive material on the surface of the synthetic resin film. You may form the back surface member which laminated | stacked the electrode made from material, or the electrode made from organic electroconductive material which added the reflecting material.

本発明の光変調素子の製造方法は、前記有機導電材料が、ポリチオフェン系の高分子材料であってもよい。   In the method for manufacturing a light modulation element of the present invention, the organic conductive material may be a polythiophene polymer material.

本発明の光変調素子の製造方法は、前記保護膜が、有機材料と無機材料との混合材料の焼成物であってもよい。   In the method for manufacturing a light modulation element of the present invention, the protective film may be a fired product of a mixed material of an organic material and an inorganic material.

本発明の光変調素子の製造方法は、前記押し拡げ段階が、前記セルを柱状物により押下し、あるいは、前記セルをローラーまたはスリットに挟み込んで前記液晶を押し拡げる段階であってもよい。   In the method for manufacturing a light modulation element of the present invention, the expanding step may be a step of pressing the cell with a columnar object, or pressing the cell between a roller or a slit to expand the liquid crystal.

本発明は、電極と配向膜の間に保護膜を、開口部に凸状構造物を設置することにより、小さい曲率で折り曲げても表示性能が悪化しないという効果を有する光変調素子の製造方法を提供することができるものである。   The present invention provides a method for manufacturing a light modulation element having an effect that display performance is not deteriorated even when bent with a small curvature by installing a protective film between an electrode and an alignment film and a convex structure in an opening. It can be provided.

以下、本発明に係る光変調素子の製造方法の実施形態について、図面を用いて説明する。   Hereinafter, an embodiment of a method for manufacturing a light modulation element according to the present invention will be described with reference to the drawings.

即ち、本発明に係る光変調素子の製造方法は、図1および図2の製造流れ図に示すように、以下の6段階から成る。
(A)透明な合成樹脂フィルム101の面上に透明な有機導電材料製の電極111、非導電性の透明な保護膜121、および透明な配向膜131を合成樹脂フィルム101の軟化温度以下の雰囲気で順次積層した前面部材と、透明な合成樹脂フィルム102の面上に透明な有機導電材料製の電極112、非導電性の透明な保護膜122、および透明な配向膜132を合成樹脂フィルム102の軟化温度以下の雰囲気で順次積層した裏面部材とを形成する部材形成段階
なお、合成樹脂フィルム101、102の材料としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアリレート、ポリエーテルイミド、アセチルセルロース、ポリスチレン、ポリエチレンおよびそれらの変性体を使用することが望ましい。
That is, the manufacturing method of the light modulation element according to the present invention includes the following six steps as shown in the manufacturing flow charts of FIGS.
(A) An atmosphere of a transparent organic conductive material electrode 111, a non-conductive transparent protective film 121, and a transparent alignment film 131 on the surface of the transparent synthetic resin film 101 is below the softening temperature of the synthetic resin film 101. And a transparent organic conductive material electrode 112, a non-conductive transparent protective film 122, and a transparent alignment film 132 on the surface of the transparent synthetic resin film 102. Member forming stage for forming the back member laminated in order in the atmosphere below the softening temperature. The synthetic resin films 101 and 102 are made of polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polysulfone, polyethersulfone, polyarylate, poly Ether imide, acetyl cellulose, polystyrene, polyethylene and It is desirable to use modified products thereof.

また、合成樹脂フィルム101、102の厚さは十分な柔軟性を確保するために、100マイクロメートル(μm)以下とすることが望ましい。さらに、合成樹脂フィルム101、102を多層構造とすることによって、フィルムの耐薬品性、耐熱性、耐衝撃性を向上することも可能である。   In addition, the thickness of the synthetic resin films 101 and 102 is preferably set to 100 micrometers (μm) or less in order to ensure sufficient flexibility. Furthermore, it is also possible to improve the chemical resistance, heat resistance, and impact resistance of the film by making the synthetic resin films 101 and 102 have a multilayer structure.

電極111、112の原料である有機導電材料としては、高い柔軟性を有するポリチオフェン系の高分子材料を使用することが好ましい。電極111、112は合成樹脂フィルム101、102の全面を覆うものであっても、画素ごとにパターニングしたものであってもよい。   As the organic conductive material that is a raw material of the electrodes 111 and 112, it is preferable to use a polythiophene-based polymer material having high flexibility. The electrodes 111 and 112 may cover the entire surface of the synthetic resin films 101 and 102 or may be patterned for each pixel.

保護膜121、122は、本発明に係る光変調素子を小さい曲率で折り曲げたときの電極111、112の剥離を防止し、電極111、112の短絡を防止するために設けられるものであって、有機材料と無機材料との混合物を使用することが望ましい。   The protective films 121 and 122 are provided to prevent peeling of the electrodes 111 and 112 when the light modulation element according to the present invention is bent with a small curvature, and to prevent a short circuit of the electrodes 111 and 112. It is desirable to use a mixture of organic and inorganic materials.

そして、有機材料としては室温であっても紫外線照射により硬化する紫外線硬化樹脂を、無機材料としてはごく小径のシリカ粒を使用することが望ましい。   It is desirable to use an ultraviolet curable resin that is cured by ultraviolet irradiation even at room temperature as the organic material, and extremely small-diameter silica particles as the inorganic material.

透明な配向膜131、132としては、ラビング処理または光配向処理したポリイミド樹脂、ポリビニルアルコール樹脂、あるいは斜方蒸着した酸化シリコン(SiO)または二酸化シリコン(SiO2)を使用することが望ましい。 As the transparent alignment films 131 and 132, it is desirable to use a rubbing or photo-alignment processed polyimide resin, polyvinyl alcohol resin, or obliquely deposited silicon oxide (SiO) or silicon dioxide (SiO 2 ).

なお、上記は裏面部材が前面部材と同一構成を有する場合について説明したが、裏面部材は合成樹脂フィルムの面上に少なくとも有機導電材料製の電極を積層したものであればよく、合成樹脂フィルムの面上に反射材および透明な有機導電材料製電極を積層したものであっても、合成樹脂フィルムの面上に反射性の有機導電材料製電極を積層したものであってもよい。また、裏面部材に使用する合成樹脂フィルムは透明であっても非透明であってもよい。
(B)前面部材および裏面部材の少なくとも一方の合成樹脂フィルム101の電極面の上辺101aの内側に合成樹脂フィルム101の上辺に沿って凸状構造物14を形成する凸状構造物形成段階
凸状構造物14の材料としては、室温であっても紫外線照射により硬化する紫外線硬化樹脂を使用することが望ましい。凸状構造物14は、矩形断面、三角形断面、あるいは半円形断面を有する柱状体であることが望ましい。
In addition, although the above demonstrated the case where a back surface member had the same structure as a front surface member, the back surface member should just laminate | stack the electrode made from an organic electroconductive material on the surface of a synthetic resin film, and a synthetic resin film Even if a reflective material and a transparent organic conductive material electrode are laminated on the surface, a reflective organic conductive material electrode may be laminated on the surface of the synthetic resin film. Moreover, the synthetic resin film used for the back member may be transparent or non-transparent.
(B) Convex structure forming step of forming a convex structure 14 along the upper side of the synthetic resin film 101 on the inner side of the upper side 101a of the electrode surface of at least one of the front member and the rear member. As a material of the structure 14, it is desirable to use an ultraviolet curable resin that is cured by ultraviolet irradiation even at room temperature. The convex structure 14 is preferably a columnar body having a rectangular cross section, a triangular cross section, or a semicircular cross section.

なお、凸状構造物14は、フォトリソグラフィ法により形成することもできる。   The convex structure 14 can also be formed by a photolithography method.

図3は一方の合成樹脂フィルム101の平面図であって、凸状構造物14は一方の合成樹脂フィルム101の内側に、上辺101aに沿って形成される。
(C)前面部材および裏面部材の少なくとも一方の合成樹脂フィルム101の電極面の両側辺101b、101dおよび下辺101cに沿って接着剤15を塗布した後、他方と電極面を対向させて貼付し、袋状のセル10を生成するセル生成段階
即ち、図3に示すように、接着剤15は前面部材および裏面部材の少なくとも一方の電極面の両側辺101bおよび101d、ならびに下辺101cに沿って塗布される。
FIG. 3 is a plan view of one synthetic resin film 101, and the convex structure 14 is formed inside the one synthetic resin film 101 along the upper side 101a.
(C) After applying the adhesive 15 along the both sides 101b and 101d and the lower side 101c of the electrode surface of at least one of the synthetic resin film 101 of the front member and the back member, the other and the electrode surface are applied facing each other. Cell Generation Stage for Generating Bag-shaped Cell 10 That is, as shown in FIG. 3, the adhesive 15 is applied along both sides 101b and 101d of the electrode surface of at least one of the front member and the back member, and the lower side 101c. The

接着剤15としては、従来から液晶表示装置のシール剤として使用されている熱硬化樹脂、あるいは光硬化樹脂を使用することが望ましい。なお、熱硬化樹脂は、合成樹脂フィルム101、102の軟化温度以下、一般的には摂氏100度(℃)以下で硬化させることが望ましい。   As the adhesive 15, it is desirable to use a thermosetting resin or a photo-curing resin that has been conventionally used as a sealant for liquid crystal display devices. The thermosetting resin is preferably cured at a temperature equal to or lower than the softening temperature of the synthetic resin films 101 and 102, generally 100 degrees Celsius (° C.) or lower.

なお、合成樹脂フィルム101、102自体が熱硬化性、あるいは光硬化性を有するときは、接着剤15を使用することなく、合成樹脂フィルム101、102を貼付することができる。
(D)セル10に液晶を注入する液晶注入段階
液晶注入の際は、合成樹脂フィルム101、102が相互に接触しないように、セル10の上辺を拡げて液晶をセルの底に注入することが望ましい。これは、合成樹脂フィルム101、102に液晶が付着して、次の段階で液晶を押し拡げるときに液晶層中に気泡が混入することを防止するためである。
In addition, when the synthetic resin films 101 and 102 themselves have thermosetting properties or photocuring properties, the synthetic resin films 101 and 102 can be attached without using the adhesive 15.
(D) Liquid crystal injection step for injecting liquid crystal into the cell 10 When injecting liquid crystal, the top side of the cell 10 may be expanded to inject liquid crystal into the bottom of the cell so that the synthetic resin films 101 and 102 do not contact each other. desirable. This is to prevent bubbles from being mixed into the liquid crystal layer when the liquid crystal adheres to the synthetic resin films 101 and 102 and the liquid crystal is expanded in the next stage.

セル10に注入する液晶としては、ネマティック液晶、強誘電性液晶および反強誘電性液晶を含むスメクティック液晶、コレステリック液晶、あるいはディスコティック液晶を使用することが可能である。
(E)セル10を押下して液晶をセル内に均一の厚さに押し拡げる押し拡げ段階
セル10の押下は、セル10をローラーに挟んで液晶を押し拡げても、セル10をスリットの間を通過させて液晶を押し拡げてもよい。あるいは、セル10を平らな台に載せ、柱状物16をセル10の底辺から上辺に向けて移動させてもよい。
As the liquid crystal injected into the cell 10, it is possible to use a nematic liquid crystal, a smectic liquid crystal including a ferroelectric liquid crystal and an antiferroelectric liquid crystal, a cholesteric liquid crystal, or a discotic liquid crystal.
(E) The expansion stage in which the cell 10 is pressed to expand the liquid crystal into the cell to a uniform thickness. The cell 10 is pressed between the slits even if the cell 10 is sandwiched between rollers and the liquid crystal is expanded. The liquid crystal may be expanded by passing through. Alternatively, the cell 10 may be placed on a flat table, and the columnar object 16 may be moved from the bottom side to the top side of the cell 10.

ローラー、スリット、柱状物16としては、セル10の表面を損傷させないようにゴム等の柔軟性を有する材質製とすることが望ましい。   The rollers, slits, and pillars 16 are preferably made of a material having flexibility such as rubber so as not to damage the surface of the cell 10.

なお、液晶を押し拡げる際に液晶層の厚さを一定に維持するために、ビーズ状のスペーサを使用することが望ましいが、スペーサは予め合成樹脂フィルム101、102の配向膜面に散布しておくことも、スペーサを液晶中に混入しておくことも可能である。スペーサとしては、圧着スペーサを適用すればスペーサの移動による液晶層の変動を防止することが可能となる。   In order to keep the thickness of the liquid crystal layer constant when the liquid crystal is spread, it is desirable to use bead-shaped spacers. However, the spacers are spread on the alignment film surfaces of the synthetic resin films 101 and 102 in advance. It is also possible to mix a spacer in the liquid crystal. If a crimp spacer is used as the spacer, it is possible to prevent the liquid crystal layer from changing due to the movement of the spacer.

液晶中に混入するスペーサの材料としては、光硬化樹脂、熱硬化樹脂、あるいは反応硬化樹脂を使用することができ、メタクリル樹脂、アクリル樹脂、ウレタン樹脂、ポリ塩化ビニル、酢酸ビニル、フェノール樹脂、エポキシ樹脂、セルロース樹脂、ポリエチレン、ポリプロピレン、メラニン樹脂、ポリエステル、ポリビニルブチラール、ポリビニルカルバゾール、ポリビニールアセテート、ポリカーボネート、ポリスチレン、シリコン樹脂、またはこれらの重合体を使用することができる。   As the spacer material mixed in the liquid crystal, photocuring resin, thermosetting resin, or reaction curing resin can be used. Methacrylic resin, acrylic resin, urethane resin, polyvinyl chloride, vinyl acetate, phenol resin, epoxy Resin, cellulose resin, polyethylene, polypropylene, melanin resin, polyester, polyvinyl butyral, polyvinyl carbazole, polyvinyl acetate, polycarbonate, polystyrene, silicon resin, or a polymer thereof can be used.

また、液晶を押し拡げる際に液晶層の厚さを一定に維持するために、少なくとも一方の合成樹脂フィルム101の配向膜131上にフォトリソグラフィ法により柱状のスペーサを形成してもよい。
(F)セル10の凸状構造物14の外側に塗布した封止剤17によりセル10を封止する封止段階
封止剤17としては、従来から液晶表示装置のシール剤として使用されている熱硬化樹脂、あるいは光硬化樹脂を使用することが望ましい。
In addition, in order to keep the thickness of the liquid crystal layer constant when the liquid crystal is expanded, columnar spacers may be formed on the alignment film 131 of at least one synthetic resin film 101 by a photolithography method.
(F) Sealing step of sealing the cell 10 with the sealing agent 17 applied to the outside of the convex structure 14 of the cell 10 The sealing agent 17 has been conventionally used as a sealing agent for liquid crystal display devices. It is desirable to use a thermosetting resin or a photo-curing resin.

封止剤17は凸状構造物14の外側に塗布されるので、封止剤17を硬化する際に封止剤がセル10の中に流入して液晶中に混入して光変調素子の表示特性が劣化することを防止することが可能となる。   Since the encapsulant 17 is applied to the outside of the convex structure 14, when the encapsulant 17 is cured, the encapsulant flows into the cell 10 and is mixed into the liquid crystal to display the light modulation element. It becomes possible to prevent the characteristics from deteriorating.

一例として試作した光変調素子は、合成樹脂フィルム101、102として厚さ40μmのポリエチレンフィルムを使用した。   As an example, a prototype light modulation element uses a polyethylene film having a thickness of 40 μm as the synthetic resin films 101 and 102.

ポリエチレンフィルムの表面に、紫外線洗浄により表面濡れ性を向上させた後スピンコートによりポリチオフェン系の高分子材料(PEDOT/PSS)を塗布し、恒温槽内でポリエチレンの軟化温度(約100℃)より低温である85℃で焼成して電極111、112を形成した。   After improving the surface wettability by UV cleaning on the surface of the polyethylene film, a polythiophene polymer material (PEDOT / PSS) is applied by spin coating, and the temperature is lower than the softening temperature of polyethylene (about 100 ° C) in a constant temperature bath. The electrodes 111 and 112 were formed by baking at 85 ° C.

次に、電極上にシリカ微粒子と紫外線硬化樹脂の混合物を塗布し、85℃以下の温度で紫外線硬化樹脂を硬化させて保護膜121、122を形成した。さらに、保護膜上にポリイミドの配向膜(AL-1254、JSR)131、132を塗布し、ラビング処理した。   Next, a mixture of silica fine particles and an ultraviolet curable resin was applied on the electrode, and the ultraviolet curable resin was cured at a temperature of 85 ° C. or lower to form the protective films 121 and 122. Further, polyimide alignment films (AL-1254, JSR) 131 and 132 were applied on the protective film and rubbed.

そして、セル10の開口部となる合成樹脂フィルム101上の部分に紫外線硬化樹脂を塗布した後に硬化させて凸状構造物14を形成する。   And the convex structure 14 is formed by making it harden, after apply | coating an ultraviolet curable resin to the part on the synthetic resin film 101 used as the opening part of the cell 10. FIG.

次に、合成樹脂フィルム101のセル10の開口部以外の3辺に接着剤15として紫外線硬化樹脂を塗布し、合成樹脂フィルム102を重ね合わせた後、紫外線を照射してセルを形成する。   Next, an ultraviolet curable resin is applied as an adhesive 15 on three sides other than the opening of the cell 10 of the synthetic resin film 101, the synthetic resin film 102 is overlaid, and then irradiated with ultraviolet rays to form a cell.

凸状構造物14の外側に封止剤17である紫外線硬化樹脂を塗布した後、セル最深部に直径6μmのスペーサが混入されたネマティック液晶を滴下し、圧力ローラーで押下してセル中の空気を押し出すとともに液晶の厚さを均一とした。最後に、凸状構造物14の外側の封止剤17である紫外線硬化樹脂を硬化して、セルを封止した。   After applying an ultraviolet curable resin as a sealant 17 to the outside of the convex structure 14, a nematic liquid crystal mixed with a spacer having a diameter of 6 μm is dropped into the deepest part of the cell, and is pressed with a pressure roller to air in the cell. And the thickness of the liquid crystal was made uniform. Finally, the ultraviolet curable resin which is the sealing agent 17 outside the convex structure 14 was cured to seal the cell.

上記の工程で試作した光変調素子では、液晶の厚さが均一であり、液晶が一様に分子配向されていることが確認された。さらに、凸状構造物14を設けたために、セルの開口部付近でも液晶の厚みを一定に維持することが可能となるだけでなく、圧力ローラーによる液晶の押下の際の過度の液晶の流出、および封止剤17である紫外線硬化樹脂が液晶に混入することを防止することも可能となり、表示品質の悪化を防止することができた。   It was confirmed that the light modulation element prototyped in the above process has a uniform liquid crystal thickness and a uniform molecular orientation of the liquid crystal. Furthermore, since the convex structure 14 is provided, not only can the thickness of the liquid crystal be kept constant even in the vicinity of the opening of the cell, but also excessive liquid crystal outflow when the liquid crystal is pressed by the pressure roller, In addition, it is possible to prevent the ultraviolet curable resin as the sealant 17 from being mixed into the liquid crystal, thereby preventing display quality from being deteriorated.

上記光変調素子を偏光板に挟み、電極111と112との間に電圧を印加したところ、図4の光変調素子の特性図に示すように、6ボルトの電圧変化で透過率を0.0から1.0まで制御することができ、従来の光変調素子と同等の性能を有することが確認できた。   When the light modulation element is sandwiched between polarizing plates and a voltage is applied between the electrodes 111 and 112, the transmittance is reduced to 0.0 with a voltage change of 6 volts as shown in the characteristic diagram of the light modulation element in FIG. It was possible to control from 1.0 to 1.0, and it was confirmed that it had the same performance as the conventional light modulation element.

また、電極111、112と配向膜131、132の間に保護膜121、122を設けているため、配向膜131、132形成時の電極111、112の溶解が防止できるだけでなく、ラビング時あるいは光変調素子を半径1mm以下に折り曲げた時にも電極111、112の剥離、あるいは電極111、112の接触を防止できることも確認できた。   In addition, since the protective films 121 and 122 are provided between the electrodes 111 and 112 and the alignment films 131 and 132, the electrodes 111 and 112 can be prevented from being dissolved when the alignment films 131 and 132 are formed. It was also confirmed that peeling of the electrodes 111 and 112 or contact of the electrodes 111 and 112 could be prevented even when the modulation element was bent to a radius of 1 mm or less.

なお、合成樹脂フィルムの一方に、反射板あるいは反射板を兼用できる電気伝導性の電極を付加することにより、低消費電力の反射型の光変調素子を作製することもできる。この場合、合成樹脂フィルムは透明、非透明を問わない。   Note that a reflective light modulation element with low power consumption can be manufactured by adding a reflective plate or an electrically conductive electrode that can also serve as a reflective plate to one of the synthetic resin films. In this case, the synthetic resin film may be transparent or non-transparent.

また、本実施例により作製される光変調素子では、合成樹脂フィルムと電極の間にカラーフィルタやブラックマトリクスなどが設けられていてもよく、従来の光変調素子に用いられる構造は全て適用することができる。   In addition, in the light modulation element manufactured according to this example, a color filter, a black matrix, or the like may be provided between the synthetic resin film and the electrode, and all the structures used in the conventional light modulation element should be applied. Can do.

以上のように、本発明に係る光変調素子の製造方法によれば、軽量かつ柔軟でありながら優れた表示性能および強度を備える光変調素子を提供できるという効果を有し、折り曲げ可能な携帯型ディスプレイあるいはスクリーン型の軽量大型ディスプレイ等として有効である。   As described above, according to the method for manufacturing a light modulation element according to the present invention, there is an effect that it is possible to provide a light modulation element having excellent display performance and strength while being lightweight and flexible. It is effective as a display or a screen-type lightweight large display.

本発明に係る光変調素子の製造工程を示す流れ図(その1)Flowchart showing the manufacturing process of the light modulation device according to the present invention (part 1) 本発明に係る光変調素子の製造工程を示す流れ図(その2)Flowchart showing the manufacturing process of the light modulation device according to the present invention (part 2) 合成樹脂フィルムの平面図Top view of synthetic resin film 本発明に係る光変調素子の特性図Characteristics diagram of light modulation device according to the present invention

符号の説明Explanation of symbols

10 セル
14 凸状構造物
15 接着剤
16 柱状物
17 封止剤
101、102 合成樹脂フィルム
101a 上辺
101c 下辺
101b、101d 両側辺
111、112 電極
121、122 保護膜
131、132 配向膜
10 cell 14 convex structure 15 adhesive 16 columnar 17 sealing agent 101, 102 synthetic resin film 101a upper side 101c lower side 101b, 101d both sides 111, 112 electrode 121, 122 protective film 131, 132 alignment film

Claims (5)

透明な合成樹脂フィルムの面上に透明な有機導電材料製の電極、非導電性の透明な保護膜、および透明な配向膜を前記合成樹脂フィルムの軟化温度以下の雰囲気で順次積層した前面部材と、合成樹脂フィルムの面上に有機導電材料製の電極を前記合成樹脂フィルムの軟化温度以下の雰囲気で積層した裏面部材とを形成する部材形成段階と、
前記前面部材および前記裏面部材の少なくとも一方の前記電極面の上辺内側に、前記合成樹脂フィルム上辺に沿って凸状構造物を形成する凸状構造物形成段階と、
前記前面部材および前記裏面部材の少なくとも一方の前記電極面の両側辺および下辺に沿って接着剤を塗布した後、他方と前記電極面を対向させて貼付し、袋状のセルを生成するセル生成段階と、
前記セルに液晶を注入する液晶注入段階と、
前記セルを押下して前記液晶をセル内に均一の厚さに押し拡げる押し拡げ段階と、
前記セルの前記凸状構造物の外側に塗布した封止剤により前記セルを封止する封止段階とを含む光変調素子の製造方法。
A front member in which an electrode made of a transparent organic conductive material, a non-conductive transparent protective film, and a transparent alignment film are sequentially laminated on the surface of the transparent synthetic resin film in an atmosphere below the softening temperature of the synthetic resin film; Forming a back member in which an electrode made of an organic conductive material is laminated on the surface of the synthetic resin film in an atmosphere below the softening temperature of the synthetic resin film; and
A convex structure forming step of forming a convex structure along the upper side of the synthetic resin film on the inner side of the electrode surface of at least one of the front member and the back member;
Cell generation for generating a bag-shaped cell by applying an adhesive along both sides and a lower side of the electrode surface of at least one of the front member and the back member, and then sticking the other and the electrode surface facing each other. Stages,
A liquid crystal injection step of injecting liquid crystal into the cell;
An expansion step of pressing the cell to expand the liquid crystal to a uniform thickness in the cell;
And a sealing step of sealing the cell with a sealing agent applied to the outside of the convex structure of the cell.
前記部材形成段階が、合成樹脂フィルムの面上に透明な有機導電材料製電極を積層した裏面材料、または合成樹脂フィルムの面上に反射性の有機導電材料製電極、もしくは反射材を付加した有機導電材料製電極を積層した裏面部材を形成するものである請求項1に記載の光変調素子の製造方法。 In the member forming step, an organic material in which a transparent organic conductive material electrode is laminated on the surface of the synthetic resin film, or a reflective organic conductive material electrode or a reflective material is added on the surface of the synthetic resin film. The method for manufacturing a light modulation element according to claim 1, wherein the back member is formed by laminating electrodes made of a conductive material. 前記有機導電材料が、ポリチオフェン系の高分子材料である請求項1または請求項2に記載の光変調素子の製造方法。 The method for manufacturing a light modulation element according to claim 1, wherein the organic conductive material is a polythiophene-based polymer material. 前記保護膜が、有機材料と無機材料との混合材料の焼成物である請求項1から請求項3のいずれか一項に記載の光変調素子の製造方法。 The method for manufacturing a light modulation element according to any one of claims 1 to 3, wherein the protective film is a fired product of a mixed material of an organic material and an inorganic material. 前記押し拡げ段階が、前記セルを柱状物により押下し、あるいは、前記セルをローラーまたはスリットに挟み込んで前記液晶を押し拡げる段階である請求項1から請求項4のいずれか一項に記載の光変調素子の製造方法。 5. The light according to claim 1, wherein the expanding step is a step of pressing the cell with a columnar object, or sandwiching the cell between a roller or a slit to expand the liquid crystal. A method for manufacturing a modulation element.
JP2006149975A 2006-05-30 2006-05-30 Manufacturing method of light modulation element Expired - Fee Related JP5032794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006149975A JP5032794B2 (en) 2006-05-30 2006-05-30 Manufacturing method of light modulation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149975A JP5032794B2 (en) 2006-05-30 2006-05-30 Manufacturing method of light modulation element

Publications (2)

Publication Number Publication Date
JP2007322508A true JP2007322508A (en) 2007-12-13
JP5032794B2 JP5032794B2 (en) 2012-09-26

Family

ID=38855414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149975A Expired - Fee Related JP5032794B2 (en) 2006-05-30 2006-05-30 Manufacturing method of light modulation element

Country Status (1)

Country Link
JP (1) JP5032794B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241730A (en) * 1985-04-19 1986-10-28 Ricoh Co Ltd Liquid crystal display cell and liquid crystal cell used for manufacturing display cell and its manufacture
JPS62203123A (en) * 1986-03-03 1987-09-07 Asahi Chem Ind Co Ltd Flexible liquid crystal display element
JPH08299674A (en) * 1995-04-28 1996-11-19 Toshiba Corp Washing machine
JPH11295747A (en) * 1998-04-06 1999-10-29 Seiko Epson Corp Liquid crystal display device and its manufacture
JP2000347172A (en) * 1999-03-31 2000-12-15 Seiko Epson Corp Liquid crystal device, its manufacture and electronic instrument utilizing the same
JP2002148642A (en) * 2000-11-13 2002-05-22 Casio Comput Co Ltd Liquid crystal display panel and method for manufacturing the same
JP2006047408A (en) * 2004-07-30 2006-02-16 Ricoh Co Ltd Stacked display and writing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241730A (en) * 1985-04-19 1986-10-28 Ricoh Co Ltd Liquid crystal display cell and liquid crystal cell used for manufacturing display cell and its manufacture
JPS62203123A (en) * 1986-03-03 1987-09-07 Asahi Chem Ind Co Ltd Flexible liquid crystal display element
JPH08299674A (en) * 1995-04-28 1996-11-19 Toshiba Corp Washing machine
JPH11295747A (en) * 1998-04-06 1999-10-29 Seiko Epson Corp Liquid crystal display device and its manufacture
JP2000347172A (en) * 1999-03-31 2000-12-15 Seiko Epson Corp Liquid crystal device, its manufacture and electronic instrument utilizing the same
JP2002148642A (en) * 2000-11-13 2002-05-22 Casio Comput Co Ltd Liquid crystal display panel and method for manufacturing the same
JP2006047408A (en) * 2004-07-30 2006-02-16 Ricoh Co Ltd Stacked display and writing device

Also Published As

Publication number Publication date
JP5032794B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
TWI741970B (en) Method for producing a flexible electro-optic cell enclosed by a border seal and filled with an electro-optic material and flexible electro-optic cell enclosed by a border seal
US7554712B2 (en) Edge seals for, and processes for assembly of, electro-optic displays
TWI433071B (en) 3-d curved display device, fabrication method thereof and plastic display panel
TWI616706B (en) Method for manufacturing display panel and system for performing the same
US20070268446A1 (en) Liquid crystal device and method for forming the same
US20050270468A1 (en) Liquid crystal display device and manufacturing method thereof
US20150015934A1 (en) Electrophoretic apparatus, manufacturing method of electrophoretic apparatus, and electronic apparatus
JP4623685B2 (en) Manufacturing method of display device
JP2007004083A (en) Dimming device and method for manufacturing the same
JP2006234885A (en) Manufacturing method of liquid crystal optical modulator, liquid crystal optical modulator and liquid crystal display
JP5032794B2 (en) Manufacturing method of light modulation element
JP2006215349A (en) Liquid crystal optical modulator and liquid crystal display device
TW200827878A (en) Method of manufacturing thick cell gap LC cell
WO2007094082A1 (en) Method of bonding together superior and inferior substrates of display device, bonding apparatus and electronic equipment
JP6379495B2 (en) Method for manufacturing electrophoresis apparatus, electrophoresis apparatus, and electronic apparatus
JP6221435B2 (en) Electrophoresis device, method of manufacturing electrophoresis device, and electronic apparatus
US8873130B2 (en) Electronic paper display device and method of fabricating the same
JP5541837B2 (en) Manufacturing method of particle movement type display device
JP7340163B2 (en) Manufacturing method of laminated glass and laminated glass
KR20080096361A (en) Treating method of plastic substrate and manufacturing method of flexible display using the same
JP2001305553A (en) Liquid crystal display device and method for manufacturing the same
JP2012220877A (en) Method for manufacturing flexible liquid crystal display
US7660026B2 (en) Method for forming electro-optic film
JP2010224388A (en) Liquid crystal display element and method of manufacturing the same
WO2016208127A1 (en) Electrode release film, electrode-attached color filter substrate, and methods for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees