JP5541837B2 - Manufacturing method of particle movement type display device - Google Patents

Manufacturing method of particle movement type display device Download PDF

Info

Publication number
JP5541837B2
JP5541837B2 JP2007262870A JP2007262870A JP5541837B2 JP 5541837 B2 JP5541837 B2 JP 5541837B2 JP 2007262870 A JP2007262870 A JP 2007262870A JP 2007262870 A JP2007262870 A JP 2007262870A JP 5541837 B2 JP5541837 B2 JP 5541837B2
Authority
JP
Japan
Prior art keywords
dispersion
substrate
substrates
display device
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007262870A
Other languages
Japanese (ja)
Other versions
JP2009092898A (en
JP2009092898A5 (en
Inventor
勲夫 太田
Original Assignee
勲夫 太田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勲夫 太田 filed Critical 勲夫 太田
Priority to JP2007262870A priority Critical patent/JP5541837B2/en
Priority to PCT/JP2008/002523 priority patent/WO2009034715A1/en
Publication of JP2009092898A publication Critical patent/JP2009092898A/en
Publication of JP2009092898A5 publication Critical patent/JP2009092898A5/ja
Application granted granted Critical
Publication of JP5541837B2 publication Critical patent/JP5541837B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

少なくとも1方は透明な基板間に隔壁が設けられ、帯電ないし磁化した微粒子が液体、液晶またはガス媒体中に分散された分散系が両基板および隔壁で構成されるセル内に充填されており、該微粒子を電界ないし磁界で移動させて、セルの垂直方向の光反射性ないし光透過性を変化させる隔壁型粒子移動型表示装置において、該基板の少なくとも一方は凸状に変形可能な薄型基板であり、該両基板は表示装置周辺部において、分散系注入口部を除いて接着されており、該薄型基板と隔壁との隙間からなる分散系注入口部から該分散系を表示装置に注入し、注入された分散系に働く重力によって該薄型基板を凸状に変形させて該両基板間に所定量の分散系を注入し、該凸状態の基板を平坦化して後、該注入口を封止することを特徴とした粒子移動型表示装置の製造法に関するものである。 At least one is provided with a partition between transparent substrates, and a dispersion system in which charged or magnetized fine particles are dispersed in a liquid, liquid crystal or gas medium is filled in a cell constituted by both substrates and the partition, In the partition type particle movement display device in which the fine particles are moved by an electric field or a magnetic field to change the light reflectivity or light transmittance in the vertical direction of the cell, at least one of the substrates is a thin substrate that can be deformed into a convex shape. The two substrates are bonded at the periphery of the display device except for the dispersion inlet, and the dispersion is injected into the display from the dispersion inlet formed by the gap between the thin substrate and the partition wall. Then, the thin substrate is deformed into a convex shape by gravity acting on the injected dispersion system, a predetermined amount of the dispersion system is injected between the two substrates, the convex substrate is flattened, and then the injection port is sealed. Particle transfer characterized by stopping A manufacturing method of the type display device.

低消費電力ディスプレイとして、電気泳動表示装置や電子粉流体ディスプレイ、磁気表示パネルなど粒子移動型ディスプレイが実用化されている。これらの表示装置は大きく分けて垂直電界型と水平電界型に分けられる。前者は互いに色と帯電極性が異なる粒子分散系が透明な電極付き基板とこれと対向した電極基板との間に挟まれた構成であり、印加電界の極性によってどちらかの粒子を透明電極側に集積させ、他方の粒子を隠蔽することによって反射色を変えるものである。分散媒が液体の場合は、一方の粒子の代わりに分散媒が着色される場合もある。後者は透明な分散媒中に光遮蔽性粒子を分散させておき、粒子を基板に水平方向に移動させて、大きな電極に堆積させて粒子色、小さな電極に堆積させて下基板の色を提示するもの、ないし粒子分散状態で粒子色、線状電極に堆積させて下基板の色など基本的に透過性を変えるものである。磁気表示パネルの場合粒子を垂直ないし水平に移動させるのに磁気力を用いる以外は反射色ないし透過性が変化する原理は電界を用いるものと同じである。 As a low power consumption display, a particle movement type display such as an electrophoretic display device, an electronic powder fluid display, and a magnetic display panel has been put into practical use. These display devices are roughly classified into a vertical electric field type and a horizontal electric field type. The former is a structure in which a particle dispersion system with different colors and charging polarities is sandwiched between a transparent electrode-attached substrate and an opposite electrode substrate, and either particle is placed on the transparent electrode side depending on the polarity of the applied electric field. The reflection color is changed by accumulating and hiding the other particle. When the dispersion medium is a liquid, the dispersion medium may be colored instead of one particle. In the latter case, light-shielding particles are dispersed in a transparent dispersion medium, and the particles are moved horizontally to the substrate and deposited on a large electrode to present a particle color and a small electrode to present the color of the lower substrate. Or the color of the lower substrate by changing the particle color in the dispersed state or the color of the lower substrate. In the case of a magnetic display panel, the principle of changing the reflection color or transmissivity is the same as that using an electric field, except that magnetic force is used to move particles vertically or horizontally.

粒子移動型ディスプレイの各種構成は図1に示される。図1(A)は垂直電界型であり、互いに白色、黒色で帯電極性が異なる微粒子が透明液体ないしガス体に分散されている。駆動電極6−1と共通電極6−2のいずれか一方の電極と基板は透明であり、両電極間に印加する電圧の極性によって図のように粒子を分離でき、反射色を変更することができる。 Various configurations of the particle movement type display are shown in FIG. FIG. 1A shows a vertical electric field type in which fine particles having white and black colors and different charging polarities are dispersed in a transparent liquid or gas body. Either one of the drive electrode 6-1 and the common electrode 6-2 and the substrate are transparent, and particles can be separated as shown in the figure depending on the polarity of the voltage applied between both electrodes, and the reflected color can be changed. it can.

図1(B),(C)は水平電界型表示装置の例であり、光吸収性ないし光散乱性微粒子が透明液体ないしガス体に分散された分散系が用いられる。駆動電極6−1と共通電極6−2間にたとえばAC電圧を印加したセルは不透明、電極6−1に粒子を堆積したセルば透明性となる。電極の構成は図2に示すように互いに対向した櫛型や渦状電極対が用いられる。水平電界型では透明電極を用いる必要はないが、図1(C)の電極6−2は透明なものを用いる場合もある。図1(D)は代表して(C)のパネルの上基板を設ける前の構成を斜視図で示す。図1(A)〜(C)は主として電極の構成が異なるがいずれも隔壁20で分散系は仕切られて不連続相をなしている点で共通している。電極は互いの基板上にある場合と一方の基板のみに設けられている場合とがある。 FIGS. 1B and 1C are examples of a horizontal electric field type display device, and a dispersion system in which light absorbing or light scattering fine particles are dispersed in a transparent liquid or a gas body is used. For example, a cell in which an AC voltage is applied between the drive electrode 6-1 and the common electrode 6-2 is opaque, and a cell in which particles are deposited on the electrode 6-1 is transparent. As shown in FIG. 2, the electrode configuration is a comb-shaped or spiral electrode pair facing each other. In the horizontal electric field type, it is not necessary to use a transparent electrode, but the electrode 6-2 in FIG. 1C may be transparent. FIG. 1D is a perspective view showing a configuration before providing the upper substrate of the panel of FIG. 1 (A) to 1 (C) are different in that the configuration of the electrodes is mainly different, but all are common in that the dispersion system is partitioned by the partition walls 20 to form a discontinuous phase. There are cases where the electrodes are on each other's substrate and cases where the electrodes are provided only on one substrate.

図1(A)〜(C)のパネル構成で、セルギャップは通常5μm〜100μm、電極間距離は5μm〜100μm程度で構成される。表示パネルの開口率を上げるため、隔壁20の幅はできる限り狭いもの(約1μm〜50μm)が望ましく、絶縁性樹脂の印刷、光、電子ビーム、X線を露光光源としたレジストエッチングプロセスなどを利用して形成される。図1(B)の如き平板状電極構造体は一般にLIGAプロセスと呼ばれるX線を用いて孔空けした厚膜レジストの孔を電鋳で積み上げることによって形成できる。 1A to 1C, the cell gap is usually 5 μm to 100 μm, and the distance between the electrodes is about 5 μm to 100 μm. In order to increase the aperture ratio of the display panel, it is desirable that the width of the partition wall 20 be as narrow as possible (about 1 μm to 50 μm), such as printing of insulating resin, resist etching process using light, electron beam, and X-ray as an exposure light source. Formed using. A plate-like electrode structure as shown in FIG. 1B can be formed by accumulating holes in a thick film resist that has been pierced using an X-ray called a LIGA process.

図1(A)〜(C)の表示装置で詳細な図示は省略しているが、表示パネルの各セル(画素)はスタチック駆動、パッシブマトリクス駆動、アクティブマトリクス(AM)駆動など種々の駆動法が採用される。たとえばTFT−AM駆動の場合、基板2側にはa−Siやp−Si、有機半導体などからなるAMアレーが形成されており、各セルの駆動電極はTFTのドレイン端子に接続されている。 Although not shown in detail in the display device of FIGS. 1A to 1C, each cell (pixel) of the display panel can be driven by various driving methods such as static driving, passive matrix driving, and active matrix (AM) driving. Is adopted. For example, in the case of TFT-AM driving, an AM array made of a-Si, p-Si, an organic semiconductor, or the like is formed on the substrate 2 side, and the driving electrode of each cell is connected to the drain terminal of the TFT.

粒子移動型ディスプレイでは画素内で常に粒子濃度が一定に保たれておれば問題がないが、電界、分散媒の流動、分散媒との比重差などにより表示装置面内で次第に粒子濃度の不均一化が発生し易く、結果として表示ムラを発生し、長期信頼性が課題であった。これを解決するため基板間に隔壁を設けて分散系を碁盤目状に隔離するか、分散系をカプセル化して隔離する方法がとられたことによって実用化が進展した。 There is no problem in the particle movement display if the particle concentration is always kept constant in the pixel, but the particle concentration gradually becomes nonuniform in the display device due to the electric field, the flow of the dispersion medium, the specific gravity difference with the dispersion medium, etc. As a result, display unevenness occurs, and long-term reliability has been a problem. In order to solve this problem, practical use has progressed by providing a partition between the substrates and isolating the dispersion system in a grid pattern or encapsulating the dispersion system.

カプセル化は表示装置を固体化できるため取り扱いの容易さ、封止工程、ギャップ形成等の容易さ、隔壁幅を狭くできる結果高開口率表示が実現し易いなどの特徴を有するが、バインダー樹脂、カプセル壁、分散媒の屈折率を完全に等しくするのが困難なため光散乱を完全になくすことが困難で、黒レベルを悪化し易いこと、また粒径の揃った高性能カプセルを製造する技術的困難さ、分散系組成の制約、電極間にカプセル壁が介在することによる駆動電圧減衰などの課題も存在する。 Encapsulation can solidify the display device and has features such as easy handling, sealing process, gap formation, etc., narrow partition wall width, and easy to realize high aperture ratio display. Technology that makes it difficult to completely eliminate light scattering because it is difficult to make the refractive index of the capsule wall and dispersion medium completely equal, and that it is easy to deteriorate the black level, and to produce high-performance capsules with uniform particle sizes There are also problems such as difficulty in driving, restrictions on the composition of the dispersion system, and drive voltage attenuation due to the capsule wall interposed between the electrodes.

本発明は、設計通りの分散系組成を実現し易く、印加電圧が有効に利用できる隔壁型の粒子移動型ディスプレイについて、新規な分散系注入、封止法を提案するものである。 The present invention proposes a novel dispersion injection and sealing method for a partition-type particle movement display that can easily realize a dispersion composition as designed and can effectively use an applied voltage.

広く普及している液晶パネルの液晶注入、封止法としては、(1)液晶パネルの一方の基板の内面に多数の粒状液晶を均一に滴下し、減圧下で他方の基板との間に挟み込み、加圧により両基板間隙を所定ギャップに保ち、あらかじめ周辺部に設けられた接着剤を硬化することによって充填、封止する。または(2)注入口部を残し周辺部で両基板が接着され、スペーサで所定ギャップが形成された空セルを真空槽内に保持し、注入口部を液晶溜めに浸漬し、真空槽を大気圧に戻すことにより液晶をセルに充填して後、注入口部を樹脂で封止する方法 が広く用いられている。 As liquid crystal injection and sealing methods for widely used liquid crystal panels, (1) a large number of granular liquid crystals are uniformly dropped on the inner surface of one substrate of the liquid crystal panel and sandwiched between the other substrate under reduced pressure. Then, the gap between the two substrates is kept at a predetermined gap by pressurization, and the adhesive provided in the peripheral portion is cured in advance to fill and seal. Or (2) The substrate is bonded at the periphery, leaving the injection port, and the empty cell in which the predetermined gap is formed by the spacer is held in the vacuum chamber, and the injection port is immersed in the liquid crystal reservoir, and the vacuum chamber is enlarged. after filled more the liquid crystal cell is returned to atmospheric pressure, an inlet portion that has been widely used a method of sealing with resin.

隔壁型の粒子移動型ディスプレイの分散系注入、封止法については従来図3(A)に示すような方法が用いられている。すなわち、電極、隔壁等を設けた基板2に分散系7を供給しつつ基板1を順次隔壁に密着するように被せてゆく方法であり、いったん分散系を基板間に充填して後、あらかじめ周辺スペーサ上に設けた接着剤を本硬化して封止を完成するものである。両基板を分散系中に浸漬して基板を貼り合わせる場合もある。基板1,2の端子取り出し部の汚染を避けるためあらかじめ樹脂コートで保護しておき、封止完成後樹脂を溶解除去する方法が取られる。液状分散系の場合はパネルが大きくなるほど気泡混入なくパネルを製造する困難さが増大する。図3(B)は基板1がフィルム状であり、ローラ27を矢印方向にころがして基板1と基板2間の分散系を押し出してゆくもので、(A)の如き剛体基板同士よりは操作が容易化するが、やはり気泡混入の危険性は高い。 Conventionally, a method as shown in FIG. 3A is used for the dispersion system injection and sealing method of the partition type particle movement type display. That is, this is a method in which the dispersion system 7 is supplied to the substrate 2 provided with electrodes, partition walls, etc., and the substrate 1 is sequentially covered with the partition walls. The adhesive provided on the spacer is fully cured to complete the sealing. In some cases, the substrates are bonded together by immersing both substrates in a dispersion system. In order to avoid contamination of the terminal take-out portions of the substrates 1 and 2, a method of protecting with a resin coat in advance and dissolving and removing the resin after completion of sealing is used. In the case of a liquid dispersion, the larger the panel is, the more difficult it is to manufacture the panel without mixing bubbles. In FIG. 3B, the substrate 1 is in the form of a film, and the roller 27 is rolled in the direction of the arrow to push out the dispersion system between the substrate 1 and the substrate 2, and the operation is more effective than the rigid substrates as shown in FIG. Although easier, there is still a high risk of air bubbles.

図4には文献1の方法が示されている。分散媒より比重の小さな封止組成物前駆体を分散系7に混入しておき、セルに分散系を充填する。前駆体は分散媒に混じり合わないものが選ばれているので上澄み層26が形成され、UV照射などで硬化することによりシーリング層28となり封止が果たされる。補強用ないし電極付き基板1を接着剤を介して貼り付けて封止パネルが完成する。スマートな方法であるが、前駆体材料、隔壁との封止性など材料選定がキーポイントとなる他、垂直電界型ではやはり分散系層と電極間に介在するシーリング層28および接着樹脂による電圧減衰が課題になる。
特表2005−509690公報
FIG. 4 shows the method of Document 1. A sealing composition precursor having a specific gravity smaller than that of the dispersion medium is mixed in the dispersion system 7, and the cell is filled with the dispersion system. Since the precursor that is not mixed with the dispersion medium is selected, the supernatant layer 26 is formed, and becomes a sealing layer 28 by being cured by UV irradiation or the like, thereby being sealed. The reinforcing or electrode-equipped substrate 1 is attached via an adhesive to complete the sealing panel. Although it is a smart method, the selection of materials such as the precursor material and sealing properties with the barrier ribs is the key point. In the vertical electric field type, the voltage attenuation is also caused by the sealing layer 28 and the adhesive resin interposed between the dispersion layer and the electrode. Becomes an issue.
Special table 2005-509690

粒子移動型ディスプレイでは表示面内で粒子の濃度均一性を確保するため、分散系を両基板と隔壁で形成されるセル内に閉じ込め不連続相とする必要がある。したがって隔壁不要の液晶パネルで用いられているような内部を真空にした空セルに圧力差で分散系を注入する方法を適用することは不可能または困難であった。 In the particle movement type display, in order to ensure the uniformity of the concentration of particles in the display surface, the disperse system needs to be confined in a cell formed by both substrates and partition walls to be a discontinuous phase. Therefore, it has been impossible or difficult to apply a method of injecting a dispersion system with a pressure difference into an empty cell whose interior is evacuated as used in a liquid crystal panel that does not require a partition wall.

上記課題を解決するために、本発明は基板の少なくとも一方は凸状に変形可能な薄型基板であり、該両基板は表示装置周辺部において、分散系注入口部を除いて接着されており、該薄型基板が凸状の状態下において該分散系を表示装置に充填し、該凸状態の基板を平坦化して後、該注入口を封止することを特徴とした粒子移動型表示装置の製造法に関するものである。 In order to solve the above-mentioned problem, at least one of the substrates according to the present invention is a thin substrate that can be deformed into a convex shape, and both the substrates are bonded to each other at the periphery of the display device except for the dispersion inlet portion. A manufacturing method of a particle movement type display device, wherein the thin substrate is filled with the dispersion system in a convex state, the convex substrate is flattened, and then the injection port is sealed. It is about the law.

一般に粒子移動型ディスプレイパネルでは基板1,2の形態によって、G/G型、F/G型、F/F型の3つの形態が存在する。Gは剛体基板を意味し、厚いガラス、厚く硬いプラスチック基板、厚い金属板、シリコン基板などである。Fはフィルムおよび/ないしフレキシブルを意味し、プラスチックフィルム、薄いガラスシート、薄い金属シート、紙などを意味する。いずれも少なくとも一方は透明である。基板2がFET素子からなるAMアレーの形成されたシリコン基板の場合もあれば、ステンレスシートに形成されたa−Siやp−SiからなるAMアレーの場合もある。粒子移動型ディスプレイは投射型ライトバルブなどに用いる1インチ前後のサイズから100インチを越えるサイズまで広範囲のサイズに適用される。またF/F型はいわゆるシートディスプレイ、フレキシブル電子ペーパディスプレイとして有用なものである。従ってすべての形態およびサイズのパネルに対して適用できる量産性に優れた分散系充填、封止法が求められていた。 In general, there are three types of particle transfer type display panels, G / G type, F / G type, and F / F type, depending on the types of substrates 1 and 2. G means a rigid substrate, such as a thick glass, a thick and hard plastic substrate, a thick metal plate, or a silicon substrate. F means film and / or flexible, and means plastic film, thin glass sheet, thin metal sheet, paper and the like. In any case, at least one is transparent. The substrate 2 may be a silicon substrate on which an AM array made of FET elements is formed, or may be an AM array made of a-Si or p-Si formed on a stainless steel sheet. The particle movement type display is applied to a wide range of sizes from a size of about 1 inch used for a projection type light valve to a size exceeding 100 inches. The F / F type is useful as a so-called sheet display or flexible electronic paper display. Accordingly, there has been a demand for a dispersion filling and sealing method excellent in mass productivity that can be applied to panels of all forms and sizes.

本願では最も困難であったG/G型形態のパネルも可能とした注入、封止法であり、図5(A)に断面図で示す通り電極、隔壁、スペーサ等を設けた基板2と、フィルム状で内面に電極付きないし電極なしの薄型基板6はあらかじめパネル周辺スペーサ9部において、分散系注入口10部を除き接着してある。次にたとえば分散系供給槽から細いパイプを通して注入口10から分散系7を注入すれば、分散系流出圧および注入された分散系にかかる重力による圧力と薄型基板6の弾性変形により薄型基板はわずかに凸状に変形し、薄型基板6と隔壁20の間に分散系が通れるわずかの隙間が形成される結果分散系は図5(B)に示す如く基板間に充填できる。試作的には注射器を用いて注射針を注入口に差し込み注入してもよい。基板間がほぼ平行になる時のパネルに充填すべき分散系量はパネルサイズ、セルギャップ、セル面積と個数などからほぼ決まるから、パネルのバラツキも考慮した上で注入量を決定すべきである。ついでローラ27などを用いて薄型基板6と基板2がほぼ均一ギャップになるように加圧してわずかに分散系が溢れる状態で注入口をUV硬化接着剤などを用いて封止すれば分散系7はパネルに注入される(図5(C))。薄型基板6が強度的ないし信頼性面で懸念がある場合は剛体ないしより強度の高いフィルム基板1を接着剤を用いて薄型基板6に貼り付けることによって補強すればよい(図5(D))。こうしてG/G型パネルが形成できる。 This is an injection and sealing method that enables the G / G type panel which was most difficult in the present application, and includes a substrate 2 provided with electrodes, partition walls, spacers, etc. as shown in a sectional view in FIG. A thin substrate 6 having a film shape and having an electrode on the inner surface or without an electrode is previously bonded to a panel peripheral spacer 9 part except for 10 parts of the dispersion injection port. Next, for example, if the dispersion system 7 is injected from the injection port 10 through a thin pipe from the dispersion system supply tank, the thin substrate is slightly caused by the dispersion outflow pressure, the pressure due to gravity applied to the injected dispersion system, and the elastic deformation of the thin substrate 6. As a result, a slight gap through which the dispersion system can pass is formed between the thin substrate 6 and the partition wall 20. As a result, the dispersion system can be filled between the substrates as shown in FIG. As a prototype, an injection needle may be inserted into the injection port and injected using a syringe. Since the amount of dispersion to be filled in the panel when the distance between the substrates is almost parallel is almost determined by the panel size, cell gap, cell area and number, etc., the injection amount should be determined in consideration of panel variation. . Next, when the thin substrate 6 and the substrate 2 are pressurized using a roller 27 or the like so as to form a substantially uniform gap and the dispersion port is slightly overflowed, the injection port is sealed with a UV curing adhesive or the like. Is injected into the panel (FIG. 5C). If the thin substrate 6 is concerned in terms of strength or reliability, it may be reinforced by attaching the rigid or higher strength film substrate 1 to the thin substrate 6 using an adhesive (FIG. 5D). . Thus, a G / G type panel can be formed.

分散媒がガス体の場合も同様にガス分散系状態の流体圧で注入してもよいが、微粒子を液体に均一に分散し、液体分散系の状態で注入、平坦化し、封止前のパネルを真空槽に保持し注入口を通して液体を蒸発させた後に封止ることによってガス分散系を充填することができる。 Similarly, when the dispersion medium is a gas body, it may be injected at a fluid pressure in a gas dispersion state. However, the fine particles are uniformly dispersed in a liquid, injected and flattened in a liquid dispersion state, and the panel before sealing. Can be filled in the gas dispersion system by holding in a vacuum chamber and evaporating the liquid through the inlet and then sealing.

薄型基板の厚みはその材質とパネルサイズに応じて大きく変わり、パネルが大きい場合は薄いガラス基板でも十分適用可能である。分散系中の粒子サイズは通常0.1μm〜5μであり、基板6と隔壁20間のギャップとして数10μmのギャップが形成できれば分散系はすべてのセルに充填可能である。フィルム材質としては弾性変形が元に戻らないと図5(C)の状態で皺になり易いからこれを防止するため弾性復元力の高い材質、厚みを選定すべきである。分散系注入時むやみにギャップを拡げすぎるのも好ましくなく分散系がパネル内に十分行き渡るに必要な最小ギャップにすべきである。ギャップの調整はパネルの傾斜角、分散系供給速度(グラム/秒)によっても可能である。注入口に差し込むパイプは基板6の変形を小さくするようできるだけ薄型にすべきである。図5(E)では注入口は1個だが分散系導入の均一性と速度向上のため勿論複数個設けてもよい。 The thickness of the thin substrate will vary greatly depending on the material and panel size, if the panel is large is sufficiently applicable even thin glass substrate. The particle size in the dispersion is usually 0.1 μm to 5 μm, and if a gap of several tens of μm can be formed as a gap between the substrate 6 and the partition wall 20, the dispersion can be filled in all cells. State high elastic restoring force material to prevent this from tends to wrinkle in the the elastic deformation as a film material does not return to the original FIG. 5 (C), the Ru der should be selected thickness. It is not preferable that the gap is excessively widened when the dispersion is injected, and the minimum gap necessary for the dispersion to sufficiently spread in the panel should be obtained. The gap can be adjusted by the inclination angle of the panel and the dispersion supply rate (gram / second). The pipe inserted into the inlet should be as thin as possible so as to reduce the deformation of the substrate 6. In FIG. 5E, although there is one injection port, a plurality of injection ports may of course be provided in order to improve the uniformity and speed of introduction of the dispersion system.

液体分散系を用いる場合パネルに気泡が残存することは厳に避ける必要がる。図5のプロセスにおいて空パネル(図5(A))を真空槽に入れ、注入口部をクサビで通気できるようにしておき減圧して、パネル内のガスを十分排気して後、真空下で分散系を注入すれば気泡残存防止、分散系の迅速充填に役立つ。特に図1(B)のパネル構成は隔壁、電極が林立しており、ガスが残存し易く分散系の流動性を阻害し易いので脱ガスは極めて有効である。 When using a liquid dispersion system, it is necessary to strictly avoid bubbles remaining in the panel. In the process of FIG. 5, the empty panel (FIG. 5 (A)) is put in a vacuum chamber, the inlet is made to be ventilated with wedge, the pressure is reduced, the gas in the panel is exhausted sufficiently, and then under vacuum Injecting the dispersion helps to prevent residual bubbles and to quickly fill the dispersion. In particular, in the panel structure of FIG. 1B, degassing is extremely effective because partition walls and electrodes are erected, and gas tends to remain and hinder the fluidity of the dispersion system.

F/F型パネルは同様にして全く容易に分散系の充填が可能であり、F/G型も同様である。 The F / F type panel can be filled with a dispersion system quite easily in the same manner, and the F / G type is also the same.

上の説明では薄型基板6と基板2は周辺のスペーサ部で接着されているのみで、隔壁上面と基板6は接着されていない。基板6は分散系が液体や液晶などの場合、分散系と基板間に働く表面張力により容易には引き剥がれることはないが、パネルギャップの均一性向上、気泡混入防止、パネルを長期垂直にした場合の重力による下膨れ現象防止のため隔壁と基板6の間も基板2との間同様に接着されていることが望ましい。こうしたパネルを形成するにはあらかじめ隔壁上面にUV硬化樹脂などを薄く塗布、仮硬化しておき、分散系注入、薄型基板平坦化後ないし封止後(図5(C))の段階で基板6を通して隔壁部にUVを照射して基板6と隔壁上面との間で本硬化して接着すればよい。もちろん接着剤材料として仮硬化状態および本硬化後分散系に溶解しない材料が選ばれる。 In the above description, the thin substrate 6 and the substrate 2 are only bonded by the peripheral spacer portion, and the upper surface of the partition wall and the substrate 6 are not bonded. When the dispersion system is a liquid or liquid crystal, the substrate 6 is not easily peeled off due to the surface tension acting between the dispersion system and the substrate, but the panel gap is more uniform, air bubbles are prevented, and the panel is kept vertical for a long time. In this case, it is desirable that the partition wall and the substrate 6 are similarly bonded to the substrate 2 in order to prevent a downward swelling phenomenon due to gravity. In order to form such a panel, a UV curable resin or the like is thinly applied and temporarily cured on the upper surface of the partition wall in advance, and after the dispersion system injection and thin substrate flattening or sealing (FIG. 5C), the substrate 6 is obtained. The partition wall portion may be irradiated with UV to pass through the main curing between the substrate 6 and the partition wall upper surface. Of course, a material that does not dissolve in the pre-cured state and the dispersion after the main curing is selected as the adhesive material.

粒子移動型表示装置は複屈折を用いる液晶表示装置と比較して表示ムラや応答速度ムラに対するギャップ均一性の許容度が高く一方複屈折現象を利用していないので、複屈折性フィルムも使用できフィルム選択自由度も極めて高いのが特徴である。 Compared with liquid crystal display devices using birefringence, the particle movement type display device has a higher tolerance for gap uniformity against display unevenness and response speed unevenness, but does not use the birefringence phenomenon, so a birefringent film can also be used. The feature is that the degree of freedom of film selection is extremely high.

フィルム材料としてはビニル系のポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリプロピレン、ポリスチレン、フッ素樹脂系など、またポリエステル系のポリカーボネート、ポリエチレンテレフタレートなど、ポリアミド系のナイロン、耐熱性エンジニアリングプラスチックとしてのポリイミド、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンサルファイド、ポリエーテルケトン、ポリエーテルイミドなど種々のものが利用できる。 Film materials include vinyl polyethylene, polyvinyl chloride, polyvinylidene chloride, polypropylene, polystyrene, fluororesin, polyamide polycarbonate, polyethylene terephthalate, polyamide nylon, heat-resistant engineering plastic, polyimide, poly Various materials such as sulfone, polyether sulfone, polyphenylene sulfide, polyether ketone, and polyetherimide can be used.

ポリマーフィルムは一般にガラス等にくらべてガスを透過しやすい。フィルムパネルの信頼性を向上するためにフィルム表面にガスバリア層を設けるのが有効である。ガスバリア層としては酸化ケイ素、窒化ケイ素などの薄膜、およびこれらの膜とビニルアルコール含有重合体などの有機膜との積層膜が有効なことが知られている。 In general, a polymer film is more permeable to gas than glass. In order to improve the reliability of the film panel, it is effective to provide a gas barrier layer on the film surface. As the gas barrier layer, it is known that thin films such as silicon oxide and silicon nitride, and laminated films of these films and organic films such as vinyl alcohol-containing polymers are known.

図1(A)〜(C)では微粒子の移動に電界を用いる例について述べたが、微粒子が磁性を有していれば粒子の集積、分散に磁気力を用いることができ、この場合も図5で示した分散系注入、封止法が採用できる。 In FIGS. 1A to 1C, an example in which an electric field is used for movement of fine particles has been described. However, if the fine particles have magnetism, magnetic force can be used for particle accumulation and dispersion. The dispersion injection and sealing method shown in 5 can be employed.

図5では、単一パネルの分散系充填、封止法について述べたが、F/F型パネルはロールツーロールで製造し易いメリットがある。フィルム基板2上に単個取りないし多数個取りの形で図1(D)の如き状態まで仕上げられたロール状フィルムと、薄型基板6のロール状フィルムを用いて、図5と同様にローツツーロールで連続的にパネルを形成すれば、極めて量産性に優れた製造法となる。 In FIG. 5, the dispersion filling and sealing method of a single panel has been described. However, the F / F type panel has an advantage that it can be easily manufactured by roll-to-roll. Using a roll-like film finished in a single-piece or multi-piece form as shown in FIG. 1D on the film substrate 2 and a roll-like film of the thin substrate 6, as in FIG. If a panel is continuously formed with a roll, it becomes a manufacturing method with extremely excellent mass productivity.

本発明の分散系注入、封止法は薄型基板の材質と厚みを選択することにより1インチ以下から100インチを超える広範囲のサイズに対して適用可能であり、注入時のパネル汚染が少なく、分散系ロスが少なく、量産性に優れた製造法である。G/G型はじめ、F/G型、F/F型のすべてのパネル構成に利用可能であり適用範囲が拡大した。 The dispersion injection and sealing method of the present invention can be applied to a wide range of sizes from 1 inch or less to over 100 inches by selecting the material and thickness of the thin substrate, and there is little panel contamination at the time of injection and dispersion. It is a manufacturing method with low system loss and excellent mass productivity. It can be used for all panel configurations of G / G type, F / G type, and F / F type, and its application range has been expanded.

(A)〜(C)は本発明の製造に用いる粒子移動型表示装置の原理を示す横断面図、(D)は(C)の部分斜視図(A)-(C) is a cross-sectional view which shows the principle of the particle movement type display apparatus used for manufacture of this invention, (D) is a fragmentary perspective view of (C). は図1(B),(C)の水平電界粒子移動型表示装置に用いる電極の正面図Is a front view of electrodes used in the horizontal electric field particle movement type display device of FIGS. (A)、(B)は粒子移動型表示装置に分散系を充填する従来の方法を示す横断面図(A), (B) is a cross-sectional view showing a conventional method of filling a particle transfer type display device with a dispersion system は粒子移動型表示装置に分散系を充填する従来の他の方法を示す横断面図FIG. 4 is a cross-sectional view showing another conventional method of filling a particle transfer type display device with a dispersion system. は隔壁型粒子移動型表示装置に分散系を充填、封止する本発明の製造法を示す図FIG. 3 is a view showing a manufacturing method of the present invention in which a partition type particle movement type display device is filled with a dispersion and sealed.

1 上基板
2 下基板
5 微粒子
6薄型基板
6−1 駆動電極
6−2 共通電極
7 分散系
8 セル
9 スペーサ
10 注入口
20 隔壁
22 分散媒
24 パネル
25 シール
26 上澄み層
27 ローラ
28 シーリング層
DESCRIPTION OF SYMBOLS 1 Upper substrate 2 Lower substrate 5 Fine particle 6 Thin substrate 6-1 Drive electrode 6-2 Common electrode 7 Dispersion system 8 Cell 9 Spacer 10 Inlet 20 Bulkhead 22 Dispersion medium 24 Panel 25 Seal 26 Supernatant layer 27 Roller 28 Sealing layer

Claims (1)

少なくとも1方は透明な基板間に隔壁が設けられ、帯電ないし磁化した微粒子が液体、液晶またはガス媒体中に分散された分散系が両基板および隔壁で構成されるセル内に充填されており、該微粒子を電界ないし磁界で移動させて、セルの垂直方向の光反射性ないし光透過性を変化させる隔壁型粒子移動型表示装置において、該基板の少なくとも一方は凸状に変形可能な薄型基板であり、該両基板は表示装置周辺部において、分散系注入口部を除いて接着されており、該薄型基板と隔壁との隙間からなる分散系注入口部から該分散系を表示装置に注入し、注入された分散系に働く重力によって該薄型基板を凸状に変形させて該両基板間に所定量の分散系を注入し、該凸状態の基板を平坦化して後、該注入口を封止することを特徴とした粒子移動型表示装置の製造法 At least one is provided with a partition between transparent substrates, and a dispersion system in which charged or magnetized fine particles are dispersed in a liquid, liquid crystal or gas medium is filled in a cell constituted by both substrates and the partition, In the partition type particle movement display device in which the fine particles are moved by an electric field or a magnetic field to change the light reflectivity or light transmittance in the vertical direction of the cell, at least one of the substrates is a thin substrate that can be deformed into a convex shape. The two substrates are bonded at the periphery of the display device except for the dispersion inlet, and the dispersion is injected into the display from the dispersion inlet formed by the gap between the thin substrate and the partition wall. Then, the thin substrate is deformed into a convex shape by gravity acting on the injected dispersion system, a predetermined amount of the dispersion system is injected between the two substrates, the convex substrate is flattened, and then the injection port is sealed. Particle transfer characterized by stopping Process for the preparation of type display device
JP2007262870A 2007-09-12 2007-10-09 Manufacturing method of particle movement type display device Expired - Fee Related JP5541837B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007262870A JP5541837B2 (en) 2007-10-09 2007-10-09 Manufacturing method of particle movement type display device
PCT/JP2008/002523 WO2009034715A1 (en) 2007-09-12 2008-09-11 Particle movement type display device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007262870A JP5541837B2 (en) 2007-10-09 2007-10-09 Manufacturing method of particle movement type display device

Publications (3)

Publication Number Publication Date
JP2009092898A JP2009092898A (en) 2009-04-30
JP2009092898A5 JP2009092898A5 (en) 2010-12-09
JP5541837B2 true JP5541837B2 (en) 2014-07-09

Family

ID=40664955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007262870A Expired - Fee Related JP5541837B2 (en) 2007-09-12 2007-10-09 Manufacturing method of particle movement type display device

Country Status (1)

Country Link
JP (1) JP5541837B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085857A (en) * 2009-10-19 2011-04-28 Ricoh Co Ltd Method for manufacturing electrophoretic display element, and electrophoretic display device
JP2014066835A (en) * 2012-09-25 2014-04-17 Fujifilm Corp Method for manufacturing electrowetting display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979222A (en) * 1982-10-29 1984-05-08 Sharp Corp Manufacture of liquid crystal display cell
JP3722357B2 (en) * 2000-06-14 2005-11-30 キヤノン株式会社 Electrophoretic display device

Also Published As

Publication number Publication date
JP2009092898A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP3281362B2 (en) Liquid crystal display panel manufacturing method
US20090046239A1 (en) Liquid crystal display element
US8947604B2 (en) Cholesteric liquid crystal writing tablet with spacer controlled sensitivity
CN202008564U (en) Liquid crystal panel
JP4265652B2 (en) Liquid crystal display element and manufacturing method thereof
TWI457682B (en) Preparation method of electrophoresis display device
JP2006301575A (en) Liquid crystal display device and method for fabricating same
JP2008051881A5 (en)
CN117850105A (en) Method for producing flexible electro-optical element
US20070268446A1 (en) Liquid crystal device and method for forming the same
TW200809397A (en) Resist for soft mold and method for fabricating liquid crystal display using the same
JP4710671B2 (en) Electrophoretic display medium and manufacturing method thereof
JPS62203123A (en) Flexible liquid crystal display element
JP5541837B2 (en) Manufacturing method of particle movement type display device
US20090174855A1 (en) Self-developed micro-relief substrate for uniform cell gap
JP2007272135A (en) Electrophoretic display medium and its manufacturing method
KR101157231B1 (en) Liquid crystal display device and manufacturing method thereof
TW201344322A (en) Base for electrophoretic display and manufacturing method thereof, electrophoretic display, and manufacturing method thereof
CN209911726U (en) Display panel and display device
TW201321881A (en) Electrophoretic display sheet and electrophoretic display medium using same
JP2009517714A (en) Manufacturing method of micro pixel liquid crystal display device
JP5056508B2 (en) Liquid crystal display medium and manufacturing method thereof
JP5664193B2 (en) Liquid crystal display device and manufacturing method thereof
JP2008242032A (en) Flexible liquid crystal element
KR101051513B1 (en) Electronic paper display device and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140502

R150 Certificate of patent or registration of utility model

Ref document number: 5541837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees