JP2007318645A - Subtraction circuit - Google Patents

Subtraction circuit Download PDF

Info

Publication number
JP2007318645A
JP2007318645A JP2006148410A JP2006148410A JP2007318645A JP 2007318645 A JP2007318645 A JP 2007318645A JP 2006148410 A JP2006148410 A JP 2006148410A JP 2006148410 A JP2006148410 A JP 2006148410A JP 2007318645 A JP2007318645 A JP 2007318645A
Authority
JP
Japan
Prior art keywords
light receiving
signal
receiving element
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006148410A
Other languages
Japanese (ja)
Inventor
Hisayoshi Uchiyama
久嘉 内山
Takahiro Kawashima
貴宏 川島
Rui Kurihara
塁 栗原
Yuki Kiri
由紀 桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006148410A priority Critical patent/JP2007318645A/en
Publication of JP2007318645A publication Critical patent/JP2007318645A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that subtraction processing has been performed after converting each current signal to a voltage signal, in a subtraction circuit of a pickup device in the conventional technology; that the first operational amplifier 5 and the second operational amplifier 6 are required for converting voltages of the first photoelectric current IP1, and the second photoelectric current IP2, respectively; and that, therefore, a large layout area has been required for the subtraction circuit. <P>SOLUTION: The subtraction circuit of the pickup device forms a subtraction signal by reversing a predetermined photoelectric current using a current mirror, and can perform subtraction processing with a current signal as is. Accordingly, only one amplifier is sufficient for voltage conversion regardless of the number of light receiving elements. Therefore, a layout area necessary for a subtraction circuit can be reduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、減算回路に関し、特に、ピックアップ装置に用いられる減算回路に関する。   The present invention relates to a subtracting circuit, and more particularly to a subtracting circuit used in a pickup device.

一般に、ピックアップ装置は、光学式ディスクのデータの読み取り機能だけでなく、トラック方向の誤差検出機能も有する。トラック方向の誤差に基づく誤差信号は、複数の受光素子に光スポットが入射され、各受光素子の受光量の差として出力される。例えば、図3(a)に示すように、光スポット4が、第1の受光素子1と第2の受光素子2とに均等に入射された場合、各受光素子の受光量は等しくなり、誤差信号は検出されない。一方、図3(b)、または図3(c)に示すように、前記光スポット4の入射位置がずれた場合、前記第1の受光素子1と前記第2の受光素子2との受光量には差が生じ、この差が誤差信号として出力される。   In general, the pickup device has not only a function of reading data from an optical disc but also a function of detecting an error in the track direction. An error signal based on the error in the track direction is output as a difference in the amount of light received by each light receiving element when a light spot is incident on the plurality of light receiving elements. For example, as shown in FIG. 3 (a), when the light spot 4 is uniformly incident on the first light receiving element 1 and the second light receiving element 2, the received light amount of each light receiving element becomes equal, resulting in an error. No signal is detected. On the other hand, as shown in FIG. 3B or FIG. 3C, when the incident position of the light spot 4 is shifted, the amount of light received by the first light receiving element 1 and the second light receiving element 2 is shifted. There is a difference between the two, and this difference is output as an error signal.

図4は、2つの受光素子が受光した光量の差を出力する減算回路のブロック図を示す。従来技術に係る減算回路では、各受光素子から電流信号として光電流が出力される。そして、各光電流は、それぞれ電圧変換された後に、電圧モードで信号処理される。以下、従来技術に係る減算回路について、具体的に説明する。   FIG. 4 is a block diagram of a subtracting circuit that outputs the difference between the amounts of light received by the two light receiving elements. In the subtraction circuit according to the prior art, a photocurrent is output as a current signal from each light receiving element. Each photocurrent is subjected to voltage conversion and then subjected to signal processing in a voltage mode. Hereinafter, the subtraction circuit according to the prior art will be described in detail.

先ず、第1の受光素子1、第2の受光素子2は、受光量に応じて、第1の光電流IP1、第2の光電流IP2をそれぞれ出力する。斯かる受光素子として、例えば、フォトダイオードが用いられる。   First, the first light receiving element 1 and the second light receiving element 2 output a first photocurrent IP1 and a second photocurrent IP2, respectively, according to the amount of received light. As such a light receiving element, for example, a photodiode is used.

次に、前記第1の光電流IP1、前記第2の光電流IP2は、第1のオペアンプ5、第2のオペアンプ6により、それぞれ第1の電圧信号VP1、第2の電圧信号VP2に変換される。前記第1の電圧信号VP1、前記第2の電圧信号VP2のゲインは、前記第1のオペアンプ5の帰還抵抗R2、前記第2のオペアンプ6の帰還抵抗R3により、それぞれ設定される。   Next, the first photocurrent IP1 and the second photocurrent IP2 are converted into the first voltage signal VP1 and the second voltage signal VP2 by the first operational amplifier 5 and the second operational amplifier 6, respectively. The The gains of the first voltage signal VP1 and the second voltage signal VP2 are set by a feedback resistor R2 of the first operational amplifier 5 and a feedback resistor R3 of the second operational amplifier 6, respectively.

次に、前記電圧信号VP1は、第3のオペアンプ7の非反転入力に入力される。また、前記電圧信号VP2は、第3のオペアンプ7の反転入力に入力される。すなわち、当該第3のオペアンプ7において、前記第1の電圧信号VP1は、非反転入力に入力されたため加算信号として信号処理され、前記第2の電圧信号VP2は、反転入力に入力されたため、減算信号として信号処理される。そして、斯かる信号処理の結果、前記第3のオペアンプ7から、前記第1の受光素子1、前記第2の受光素子2の受光量の差に基づいた誤差信号が出力される。   Next, the voltage signal VP1 is input to the non-inverting input of the third operational amplifier 7. The voltage signal VP2 is input to the inverting input of the third operational amplifier 7. That is, in the third operational amplifier 7, since the first voltage signal VP1 is input to the non-inverting input, it is signal-processed as an addition signal, and the second voltage signal VP2 is input to the inverting input, and is subtracted. Signal processing is performed as a signal. As a result of such signal processing, the third operational amplifier 7 outputs an error signal based on the difference in the amount of light received by the first light receiving element 1 and the second light receiving element 2.

関連した技術文献としては、例えば以下の特許文献が挙げられる。
特開平7−147023 特開平11−340925
As related technical literatures, for example, the following patent literatures can be cited.
JP-A-7-147023 JP-A-11-340925

上述したように、従来技術に係る減算回路では、電流信号が電圧信号に変換された後に減算処理がされていた。このため、前記第1の光電流IP1と前記第2の光電流IP2とを電圧信号に変換するために、前記第1のオペアンプ5と前記第2のオペアンプ6とがそれぞれ必要であった。   As described above, in the subtraction circuit according to the prior art, the subtraction process is performed after the current signal is converted into the voltage signal. Therefore, in order to convert the first photocurrent IP1 and the second photocurrent IP2 into voltage signals, the first operational amplifier 5 and the second operational amplifier 6 are required.

また、誤差検出に必要な受光素子は、2つとは限らず、より多くが用いられることもある。この場合、減算回路が占めるレイアウト面積は、さらに大きくなる。   Further, the number of light receiving elements necessary for error detection is not limited to two, and more light receiving elements may be used. In this case, the layout area occupied by the subtraction circuit is further increased.

しかしながら、近年の低消費電力、低コストの要求は、益々高まっており、従来技術に係る減算回路を構成する素子を低減する必要があった。   However, the recent demand for low power consumption and low cost has been increasing, and it has been necessary to reduce the number of elements constituting the subtraction circuit according to the prior art.

上記に鑑み、本発明に係る減算回路は、第1の受光素子と、第2の受光素子と、前記第2の受光素子から出力された光電流を反転する反転回路と、前記第1の受光素子の出力と前記反転回路の出力との接続点において合成される、前記第1の受光素子から出力された第1の電流と、前記反転回路から出力された第2の電流との差電流を、電圧に変換するオペアンプと、を備えたことを特徴とする。   In view of the above, the subtraction circuit according to the present invention includes a first light receiving element, a second light receiving element, an inversion circuit that inverts a photocurrent output from the second light receiving element, and the first light receiving element. A difference current between a first current output from the first light receiving element and a second current output from the inversion circuit, which is synthesized at a connection point between the output of the element and the output of the inversion circuit, And an operational amplifier for converting to voltage.

また、前記反転回路は、カレントミラーを備えることを特徴とする。   The inversion circuit includes a current mirror.

また、前記オペアンプのゲインは、前記オペアンプの帰還抵抗に応じて設定されることを特徴とする。   The gain of the operational amplifier is set according to a feedback resistance of the operational amplifier.

本発明に係る減算回路では、反転回路を用いて減算信号を形成するため、電圧信号に変換しないで減算処理が可能である。このため、電圧変換は、減算処理がされた電流のみで足り、オペアンプの設置数を削減することができる。   In the subtraction circuit according to the present invention, since the subtraction signal is formed using the inverting circuit, the subtraction processing can be performed without converting the voltage signal. For this reason, voltage conversion requires only the subtracted current, and the number of operational amplifiers can be reduced.

また、反転回路にミラー回路を備えることにより、反転回路に必要な素子数を少なくすることができる。   Further, by providing the inverting circuit with a mirror circuit, the number of elements required for the inverting circuit can be reduced.

また、オペアンプのゲインは、オペアンプの帰還抵抗に応じて設定できるため、受注に応じて、容易にオペアンプのゲインを変更できる。   Moreover, since the gain of the operational amplifier can be set according to the feedback resistance of the operational amplifier, the gain of the operational amplifier can be easily changed according to the order.

以下、本発明に係る減算回路について、図面を参照して詳細に説明する。   Hereinafter, a subtraction circuit according to the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る減算回路のブロック図を示す。本発明に係る減算回路では、各受光素子から電流信号として光電流が出力される。そして、各光電流は、電流信号のままで信号処理された後、電圧信号に変換される。以下、本発明に係る減算回路について、具体的に説明する。   FIG. 1 shows a block diagram of a subtraction circuit according to the present invention. In the subtraction circuit according to the present invention, a photocurrent is output as a current signal from each light receiving element. Each photocurrent is converted into a voltage signal after being signal-processed as it is. Hereinafter, the subtraction circuit according to the present invention will be specifically described.

先ず、第1の受光素子1、第2の受光素子2は、受光量に応じて、第1の光電流IP11、第2の光電流IP2をそれぞれ出力する。斯かる受光素子として、例えば、フォトダイオードが用いられる。   First, the first light receiving element 1 and the second light receiving element 2 output a first photocurrent IP11 and a second photocurrent IP2, respectively, according to the amount of received light. As such a light receiving element, for example, a photodiode is used.

次に、前記第2の光電流IP2は、トランジスタQ1、及びトランジスタQ2からなるカレントミラーにより反転される。   Next, the second photocurrent IP2 is inverted by a current mirror including a transistor Q1 and a transistor Q2.

すなわち、前記第1の光電流IP1は加算信号として、前記第2の光電流IP2は減算信号として機能する。そして、斯かる加算信号と減算信号は、電流信号のままで減算処理される。   That is, the first photocurrent IP1 functions as an addition signal, and the second photocurrent IP2 functions as a subtraction signal. Then, the addition signal and the subtraction signal are subtracted with the current signal as it is.

次に、減算処理された和信号IP3は、電圧変換アンプ3の反転入力に入力されて、電圧信号に変換される。すなわち、当該電圧変換アンプ3は、前記第1の受光素子1と前記第2の受光素子2との受光量の差に応じた電圧信号V1を出力する。   Next, the subtracted sum signal IP3 is input to the inverting input of the voltage conversion amplifier 3 and converted into a voltage signal. That is, the voltage conversion amplifier 3 outputs a voltage signal V1 corresponding to the difference in the amount of received light between the first light receiving element 1 and the second light receiving element 2.

ここで、前記電圧変換アンプ3のゲインは、前記電圧変換アンプ3の帰還抵抗R1により設定される。以下、前記和信号IP3の電圧変換について、具体的に説明する。   Here, the gain of the voltage conversion amplifier 3 is set by the feedback resistor R 1 of the voltage conversion amplifier 3. Hereinafter, voltage conversion of the sum signal IP3 will be described in detail.

図2は、上記の減算回路について、前記電圧変換アンプ3を具体的に示した回路図である。斯かる回路図において、トランジスタQ3は、前記電圧変換アンプ3の非反転入力に該当し、トランジスタQ4は、前記電圧変換アンプ3の反転入力に該当する。また、図2中の抵抗R1は、図1中の前記電圧変換アンプ3の帰還抵抗R1に該当する。   FIG. 2 is a circuit diagram specifically showing the voltage conversion amplifier 3 in the subtraction circuit. In such a circuit diagram, the transistor Q3 corresponds to the non-inverting input of the voltage conversion amplifier 3, and the transistor Q4 corresponds to the inverting input of the voltage conversion amplifier 3. A resistor R1 in FIG. 2 corresponds to the feedback resistor R1 of the voltage conversion amplifier 3 in FIG.

本回路は、前記トランジスタQ3に印加されるベース電圧(基準電圧Vref)と、前記トランジスタQ4に印加されるベース電圧とは等しくなるように動作する。   This circuit operates so that the base voltage (reference voltage Vref) applied to the transistor Q3 is equal to the base voltage applied to the transistor Q4.

すなわち、前記トランジスタQ4のベース電圧が、前記トランジスタQ3のベース電圧(基準電圧Vref)より高くなると、前記トランジスタQ3と前記トランジスタQ4とは差動接続されているので、前記トランジスタQ3のコレクタ電流が減少し、前記トランジスタQ4のコレクタ電流が増大する。すると、トランジスタQ5、トランジスタQ6からなるカレントミラー回路の出力電流は減少する。このため、エミッタフォロワ回路を成すトランジスタQ7のベース電流は低下する。ここで、前記トランジスタQ7は、このベース電流を電流増幅するので、ベース電流の低下により前記トランジスタQ7のエミッタ電流も低下する。そして、前記トランジスタQ7のエミッタ電流は、前記帰還抵抗R1を介して、前記トランジスタQ4のベースに帰還される。すなわち、帰還電流は、前記帰還抵抗R1で電圧変換され、前記トランジスタQ7のエミッタ電流の低下により、前記トランジスタQ4のベース電圧が低下する。よって、前記トランジスタQ4のベース電圧が、前記トランジスタQ3のベース電圧(基準電圧Vref)より高くなると、前記トランジスタQ4のベース電圧は低下しようとする。同様に、前記トランジスタQ4のベース電圧が、前記トランジスタQ3のベース電圧(基準電圧Vref)より低いと、前記トランジスタQ4のベース電圧は上昇しようとする。   That is, when the base voltage of the transistor Q4 becomes higher than the base voltage (reference voltage Vref) of the transistor Q3, the transistor Q3 and the transistor Q4 are differentially connected, so that the collector current of the transistor Q3 decreases. As a result, the collector current of the transistor Q4 increases. Then, the output current of the current mirror circuit composed of the transistors Q5 and Q6 decreases. For this reason, the base current of the transistor Q7 forming the emitter follower circuit decreases. Here, since the transistor Q7 amplifies the base current, the emitter current of the transistor Q7 also decreases due to the decrease in the base current. The emitter current of the transistor Q7 is fed back to the base of the transistor Q4 via the feedback resistor R1. That is, the feedback current is voltage-converted by the feedback resistor R1, and the base voltage of the transistor Q4 decreases due to the decrease in the emitter current of the transistor Q7. Therefore, when the base voltage of the transistor Q4 becomes higher than the base voltage (reference voltage Vref) of the transistor Q3, the base voltage of the transistor Q4 tends to decrease. Similarly, when the base voltage of the transistor Q4 is lower than the base voltage (reference voltage Vref) of the transistor Q3, the base voltage of the transistor Q4 tends to increase.

つまり、上記のように、前記トランジスタQ4のベースに負帰還がかかることにより、図2の回路は平衡状態になり、前記トランジスタQ4のベース電圧は、前記トランジスタQ3のベース電圧(基準電圧Vref)に等しくなる。   That is, as described above, negative feedback is applied to the base of the transistor Q4, so that the circuit of FIG. 2 is in an equilibrium state, and the base voltage of the transistor Q4 is equal to the base voltage (reference voltage Vref) of the transistor Q3. Will be equal.

したがって、前記第1の受光素子1、及び前記第2の受光素子2に光が入射されていない場合、前記電圧変換アンプ3の出力端子OUTから、基準電圧Vrefが出力される。   Therefore, when no light is incident on the first light receiving element 1 and the second light receiving element 2, the reference voltage Vref is output from the output terminal OUT of the voltage conversion amplifier 3.

一方、前記第1の受光素子1に光が照射された場合、前記第1の光電流IP1が出力される。また、前記第2の受光素子2に光が照射された場合、前記第2の光電流IP2が出力される。そして、前記第1の光電流IP1と、前記トランジスタQ1及び前記トランジスタQ2からなるカレントミラーにより反転された前記第2の光電流IP2との前記和信号IP3が、前記トランジスタQ4のベースと、前記帰還抵抗R1との間に印加される。ここで、前述したように、前記トランジスタQ4のベース電圧は、一定(基準電圧Vref)になるように抑制される。したがって、前記和信号IP3は、全て前記帰還抵抗R1に流れて、前記電圧信号V1に変換される。すなわち、前記電圧変換アンプ3のゲインは、前記帰還抵抗R1により定まる。   On the other hand, when the first light receiving element 1 is irradiated with light, the first photocurrent IP1 is output. Further, when the second light receiving element 2 is irradiated with light, the second photocurrent IP2 is output. The sum signal IP3 of the first photocurrent IP1 and the second photocurrent IP2 inverted by the current mirror composed of the transistor Q1 and the transistor Q2 is the base of the transistor Q4 and the feedback Applied between the resistor R1. Here, as described above, the base voltage of the transistor Q4 is suppressed to be constant (reference voltage Vref). Accordingly, the sum signal IP3 flows through the feedback resistor R1 and is converted into the voltage signal V1. That is, the gain of the voltage conversion amplifier 3 is determined by the feedback resistor R1.

以上、本発明に係る減算回路では、カレントミラーを利用して所定の光電流を反転して減算信号とするため、電流信号のままで減算処理を行うことができる。したがって、電圧変換に必要なアンプは、受光素子の数によらず1つ設置すれば足りる。このため、減算回路に必要なレイアウト面積を小さくすることができる。   As described above, in the subtraction circuit according to the present invention, since a predetermined photocurrent is inverted using the current mirror to obtain a subtraction signal, the subtraction process can be performed with the current signal as it is. Therefore, it is sufficient to install one amplifier necessary for voltage conversion regardless of the number of light receiving elements. For this reason, the layout area required for the subtraction circuit can be reduced.

尚、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiment but by the scope of claims for patent, and all modifications within the meaning and scope equivalent to the scope of claims for patent are included.

例えば、本実施形態に係る減算回路では、受光素子が2つの場合について説明したが、本発明は、受光素子の数によらず適用できる。この場合、減算信号を出力する受光素子を、カレントミラーを介して接続すればよい。   For example, in the subtraction circuit according to this embodiment, the case where there are two light receiving elements has been described, but the present invention can be applied regardless of the number of light receiving elements. In this case, a light receiving element that outputs a subtraction signal may be connected via a current mirror.

本発明の実施形態に係る減算回路のブロック図を示す。The block diagram of the subtraction circuit which concerns on embodiment of this invention is shown. 本発明の実施形態に係る減算回路の回路図を示す。The circuit diagram of the subtraction circuit which concerns on embodiment of this invention is shown. 減算回路の用途を説明するための平面図を示す。The top view for demonstrating the use of a subtraction circuit is shown. 従来技術に係る減算回路のブロック図を示す。The block diagram of the subtraction circuit which concerns on a prior art is shown.

符号の説明Explanation of symbols

1 第1の受光素子
2 第2の受光素子
3 電圧変換アンプ
4 光スポット
5 第1のオペアンプ
6 第2のオペアンプ
7 第3のオペアンプ
R1 帰還抵抗
IP1 第1の光電流
IP2 第2の光電流
IP3 和信号
V1 電圧信号
DESCRIPTION OF SYMBOLS 1 1st light receiving element 2 2nd light receiving element 3 Voltage conversion amplifier 4 Light spot 5 1st operational amplifier 6 2nd operational amplifier 7 3rd operational amplifier R1 Feedback resistor IP1 1st photocurrent IP2 2nd photocurrent IP3 Sum signal V1 Voltage signal

Claims (3)

第1の受光素子と、
第2の受光素子と、
前記第2の受光素子から出力された光電流を反転する反転回路と、
前記第1の受光素子の出力と前記反転回路の出力との接続点において合成される、前記第1の受光素子から出力された第1の電流と、前記反転回路から出力された第2の電流との差電流を、電圧に変換するオペアンプと、を備えたことを特徴とする減算回路。
A first light receiving element;
A second light receiving element;
An inverting circuit for inverting the photocurrent output from the second light receiving element;
The first current output from the first light receiving element and the second current output from the inversion circuit are combined at the connection point between the output of the first light receiving element and the output of the inversion circuit. And an operational amplifier that converts a difference current from the voltage into a voltage.
前記反転回路は、カレントミラーを備えることを特徴とする請求項1に記載の減算回路。   The subtracting circuit according to claim 1, wherein the inverting circuit includes a current mirror. 前記オペアンプのゲインは、前記オペアンプの帰還抵抗に応じて設定されることを特徴とする請求項1に記載の減算回路。   The subtraction circuit according to claim 1, wherein the gain of the operational amplifier is set according to a feedback resistance of the operational amplifier.
JP2006148410A 2006-05-29 2006-05-29 Subtraction circuit Pending JP2007318645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148410A JP2007318645A (en) 2006-05-29 2006-05-29 Subtraction circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148410A JP2007318645A (en) 2006-05-29 2006-05-29 Subtraction circuit

Publications (1)

Publication Number Publication Date
JP2007318645A true JP2007318645A (en) 2007-12-06

Family

ID=38852071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148410A Pending JP2007318645A (en) 2006-05-29 2006-05-29 Subtraction circuit

Country Status (1)

Country Link
JP (1) JP2007318645A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004230A (en) * 2009-06-19 2011-01-06 Sharp Corp Object detecting device and electronic apparatus
JP2014116969A (en) * 2014-01-23 2014-06-26 Seiko Instruments Inc Proximity sensor using optical sensor
CN106325551A (en) * 2015-06-30 2017-01-11 精工半导体有限公司 Electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147023A (en) * 1993-11-22 1995-06-06 Sanyo Electric Co Ltd Error signal generating circuit
JPH10256841A (en) * 1997-03-14 1998-09-25 Sony Corp Photo diode amplifier circuit
JPH11340925A (en) * 1998-05-28 1999-12-10 Sanyo Electric Co Ltd Semiconductor integrated circuit for receiving light
JP2002353747A (en) * 2001-05-24 2002-12-06 Matsushita Electric Ind Co Ltd Optical signal amplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07147023A (en) * 1993-11-22 1995-06-06 Sanyo Electric Co Ltd Error signal generating circuit
JPH10256841A (en) * 1997-03-14 1998-09-25 Sony Corp Photo diode amplifier circuit
JPH11340925A (en) * 1998-05-28 1999-12-10 Sanyo Electric Co Ltd Semiconductor integrated circuit for receiving light
JP2002353747A (en) * 2001-05-24 2002-12-06 Matsushita Electric Ind Co Ltd Optical signal amplifier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004230A (en) * 2009-06-19 2011-01-06 Sharp Corp Object detecting device and electronic apparatus
JP2014116969A (en) * 2014-01-23 2014-06-26 Seiko Instruments Inc Proximity sensor using optical sensor
CN106325551A (en) * 2015-06-30 2017-01-11 精工半导体有限公司 Electronic device
JP2017016329A (en) * 2015-06-30 2017-01-19 エスアイアイ・セミコンダクタ株式会社 Electronic apparatus
CN106325551B (en) * 2015-06-30 2020-12-15 艾普凌科有限公司 Electronic device

Similar Documents

Publication Publication Date Title
US10986296B2 (en) Solid-state image pickup device and control method thereof
JP4247995B2 (en) Data readout circuit for solid-state image sensor, imaging apparatus, and data readout method for solid-state image sensor
JP6904257B2 (en) Control method for solid-state image sensor, electronic device, and solid-state image sensor
JP4277339B2 (en) Active pixel sensor readout channel
US20150042857A1 (en) Photoelectric conversion apparatus, focus detecting apparatus, imaging system, and driving method of photoelectric conversion apparatus
JP4677310B2 (en) Image sensor detection circuit
US8836837B2 (en) Photoelectric conversion apparatus, focus detecting apparatus, and imaging system
JP4243688B2 (en) Amplification type solid-state imaging device
JP2017501628A (en) Variable gain column amplifier adapted for use in imaging arrays
JP2007135106A (en) Photocurrent amplifying circuit, and optical pickup device
JP2010220111A (en) Clamp circuit and solid-state imaging apparatus with same
JP2007318645A (en) Subtraction circuit
JP2006294682A (en) Photoelectric conversion device and electronic equipment
US20180219037A1 (en) Solid-state imaging device
JP4869810B2 (en) Subtraction circuit
US20110254592A1 (en) Sampling circuit and image signal amplifying circuit each including feedback clamp block and image sensor including the image signal amplifying circuit
JP5383465B2 (en) Photoelectric conversion device, focus detection device, and imaging system
JP2009278149A (en) Solid-state imaging device
JPWO2018011877A1 (en) AD converter circuit, imaging device, and endoscope system
JP2005252975A (en) Operation circuit
US7289149B1 (en) Operational transconductance amplifier for high-speed, low-power imaging applications
JP6422319B2 (en) Imaging apparatus and imaging system using the same
US20080002044A1 (en) Image pickup apparatus and amplification circuit
JP2011013037A (en) Array sensor device
JP2008035204A (en) Optical receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308