JP2007318150A - Method for manufacturing rare earth permanent magnet - Google Patents

Method for manufacturing rare earth permanent magnet Download PDF

Info

Publication number
JP2007318150A
JP2007318150A JP2007145476A JP2007145476A JP2007318150A JP 2007318150 A JP2007318150 A JP 2007318150A JP 2007145476 A JP2007145476 A JP 2007145476A JP 2007145476 A JP2007145476 A JP 2007145476A JP 2007318150 A JP2007318150 A JP 2007318150A
Authority
JP
Japan
Prior art keywords
chamber
deoiling
rare earth
permanent magnet
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007145476A
Other languages
Japanese (ja)
Other versions
JP4613186B2 (en
Inventor
Kimio Uchida
公穂 内田
Masahiro Takahashi
昌弘 高橋
Fumitake Taniguchi
文丈 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007145476A priority Critical patent/JP4613186B2/en
Publication of JP2007318150A publication Critical patent/JP2007318150A/en
Application granted granted Critical
Publication of JP4613186B2 publication Critical patent/JP4613186B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of efficiently deoiling and sintering a rare earth permanent magnet compact formed by a wet forming method. <P>SOLUTION: In the process of forming the rare earth permanent magnet, an R-Fe-B (R is not less than a kind of rare earth element including Y) base permanent magnet coarse powder is pulverized in the gas flow of N<SB>2</SB>or Ar that contains oxygen of ≤0.01%. Fine powder obtained is collected in a mineral oil belonging to the fourth second petroleum having inflammation point of ≥21°C and <70°C as defined by the fire protection law, or in a synthetic oil to directly make a slurry in one atomic pressure without contacting to atmosphere. The slurried raw material was wet formed in magnetic field. The obtained compact was introduced into a deoling chamber and the chamber was evacuated. Evacuation was stopped and an inert gas was introduced into the deoiling chamber. The compact was heated while mixing the introduced inert gas. Further, the deoil chamber was evacuated and the compact was heated for deoiling. The deoiled formed body is sintered. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高性能希土類永久磁石焼結体の製造に関するものである。   The present invention relates to the manufacture of a high-performance rare earth permanent magnet sintered body.

希土類永久磁石の高性能化の手段の内、低酸素化は磁気特性の改善に寄与する効果が大きいため、その方法については、長年に渡って研究が続けられており、多くの提案がなされている。   Among the means to improve the performance of rare earth permanent magnets, low oxygen has a great effect on improving magnetic properties. Therefore, research on the method has been continued for many years, and many proposals have been made. Yes.

これらの提案の内、最近特に注目を集めている低酸素化技術として湿式成形法がある。この方法は、実質的な無酸素雰囲気下で希土類永久磁石用原料微粉を作製し、これを大気に触れさせることなくある種の鉱物油、合成油中に回収してスラリー状の原料とし、この原料を磁界中で湿式成形して成形体とし、一定の条件下で、成形体から油を除去した後これを大気に触れさせることなく直接焼結し、焼結体を製作するというものである。こうして得られた焼結体の含有酸素量は、それ以外の従来方法で製作された焼結体のものに比べ格段に少なく、このため高い磁気特性を実現することができる。   Among these proposals, there is a wet molding method as a low oxygen reduction technology that has recently attracted particular attention. In this method, a raw material powder for a rare earth permanent magnet is produced under a substantially oxygen-free atmosphere, and this is recovered in a certain kind of mineral oil or synthetic oil without being exposed to the atmosphere to obtain a slurry-like raw material. The raw material is wet-molded in a magnetic field to form a molded body. Under certain conditions, oil is removed from the molded body and then directly sintered without exposure to the atmosphere to produce a sintered body. . The amount of oxygen contained in the sintered body thus obtained is much smaller than that of sintered bodies produced by other conventional methods, and thus high magnetic properties can be realized.

湿式成形法で成形した成形体は、成形条件等によって含有量は異なるが、一般的には重量百分比率で2〜20%の鉱物油、合成油、あるいは植物油又はこれらの2種類以上の混合から作られる混合油を含んでいる。従って成形体を焼結する前段階で、これら含有油を成形体から除去する必要がある。これは油の除去なしに直接焼結した場合、油に由来する炭素が希土類元素と反応して炭化物を形成し、これによって磁気特性の低下を招くからである。   Although the content of the molded body molded by the wet molding method varies depending on molding conditions, etc., it is generally from 2 to 20% by weight percentage of mineral oil, synthetic oil, vegetable oil, or a mixture of two or more of these. Contains blended oil made. Therefore, it is necessary to remove these oils from the molded body before the molded body is sintered. This is because, when directly sintered without removing the oil, carbon derived from the oil reacts with the rare earth element to form a carbide, thereby causing a decrease in magnetic properties.

上記湿式成形に使用する鉱物油と合成油としては、例えば1気圧における引火点が70 ℃以上で200 ℃未満の消防法で定めるところの第3石油類に属し、かつ分留点が400 ℃以下の常温での動粘度が10 cSt以下、であるものが使用される(特許文献1を参照)。従って、成形体からこの様な鉱物油、合成油を除去するには、分留点近傍での温度で加熱する方法が効果的である。ただし、酸化しやすい希土類元素を多量に含有する成形体であるため、実質的な真空中あるいは非酸化性ガス雰囲気中で行う必要がある。また、脱油処理後の成形体は、酸化防止のための油が失われた状態であるためその表面は酸素に対して活性になっている。従って、大気に触れることなく引き続き焼結する必要がある。   The mineral oil and synthetic oil used in the above-mentioned wet molding belong to, for example, the 3rd petroleum defined by the Fire Service Law with a flash point at 1 atm of 70 ° C or more and less than 200 ° C, and the fractional distillation point is 400 ° C or less. In which the kinematic viscosity at room temperature is 10 cSt or less is used (see Patent Document 1). Therefore, in order to remove such mineral oil and synthetic oil from the molded body, a method of heating at a temperature in the vicinity of the fractional distillation point is effective. However, since it is a molded body containing a large amount of rare earth elements that are easily oxidized, it is necessary to carry out in a substantial vacuum or in a non-oxidizing gas atmosphere. In addition, the molded body after the deoiling treatment is in a state in which oil for preventing oxidation is lost, so that the surface thereof is active against oxygen. Therefore, it is necessary to continue sintering without exposure to the atmosphere.

しかし、大量生産において処理する成形体とそれに付随する容器、搬送機構からなる被加熱物の量が多く、これらの総熱容量が大きくなった場合には、第4類第3石油類に属する鉱物油、合成油の除去には長時間を要し、生産効率上問題があった。   However, if there is a large amount of the object to be heated consisting of a molded body to be processed in mass production, a container accompanying it, and a transport mechanism, and the total heat capacity thereof becomes large, mineral oil belonging to Class 4 and Class 3 petroleums The removal of synthetic oil took a long time, and there was a problem in production efficiency.

特願平7−214667号公報Japanese Patent Application No. 7-214667

本発明は、従来の提案が持つ、以上の問題点を解決し、湿式成形法で成形した希土類永久磁石用成形体を効率よく脱油・焼結する方法を提案しようとするものである。   The present invention is intended to solve the above problems of the conventional proposal and to propose a method for efficiently deoiling and sintering a molded body for a rare earth permanent magnet molded by a wet molding method.

本発明では酸素濃度が0.01%以下のN2ガス又はArガス気流中で、R-Fe-B(RはYを含む希土類元素のうちの1種類以上)系永久磁石用粗粉を微粉砕し、得られた微粉を大気に触れさせずに直接1気圧における引火点が21℃以上で70℃未満の消防法で定めるところの第4類第2石油類に属する鉱物油あるいは合成油中に回収してスラリー化し、このスラリー化した原料を磁界中で湿式成形し、得られた成形体を脱油室に搬入して真空排気後、真空排気を停止して不活性ガスを脱油室に導入し、導入した不活性ガスを攪拌しながら成形体を加熱した後、更に脱油室内を真空排気した状態で加熱することにより脱油処理を行い、得られた脱油処理後の成形体を焼結して焼結体とすることを特徴とする。 In the present invention, R-Fe-B (R is one or more of rare earth elements including Y) -based permanent magnets are finely pulverized in an N 2 gas or Ar gas stream having an oxygen concentration of 0.01% or less. The obtained fine powder is recovered directly in mineral oil or synthetic oil belonging to Class 4 and Class 2 Petroleum as defined by the Fire Service Act with a flash point of 1 atm. The slurry is then wet-molded in a magnetic field, and the resulting molded product is carried into a deoiling chamber, evacuated, and then evacuated and the inert gas introduced into the deoiling chamber. Then, after heating the molded body while stirring the introduced inert gas, the deoiling chamber is further heated in a vacuum evacuated state, and the resulting deoiled molded body is fired. It is characterized by being sintered.

消防法で定めるところの第4類第2石油類(引火点が21℃以上で70℃未満)に属する鉱物油、合成油としては、具体的には灯油、軽油、キシレン、テレビン油などがあげられる。これらの鉱物油、合成油は、消防法に定めるところの第4類第3石油類に属する鉱物油、合成油に比べて分子量が小さく、蒸気圧も高いため、より低温で除去が可能である。真空加熱による鉱物油、合成油の除去では、加熱効率が悪く、脱油処理に長時間を要するのが欠点であるが、処理量が多い大量生産ではこの問題がより顕著となる。第4類第2石油類に属する鉱物油、合成油の使用によって、より低温で即ちより短時間で除去可能となり、大量生産に適する。   Mineral oils and synthetic oils belonging to Class 4 and 2 Petroleum (as flash point is 21 ℃ or more and less than 70 ℃) as defined by the Fire Service Act include kerosene, light oil, xylene and turpentine oil. . These mineral oils and synthetic oils can be removed at lower temperatures because they have lower molecular weight and higher vapor pressure than mineral oils and synthetic oils belonging to Class 4 and 3 petroleums as stipulated in the Fire Service Law. . Removal of mineral oil and synthetic oil by vacuum heating is disadvantageous in that the heating efficiency is poor and it takes a long time for the deoiling treatment, but this problem becomes more noticeable in mass production with a large amount of treatment. Use of mineral oils and synthetic oils belonging to the 4th class 2nd petroleum makes it possible to remove at a lower temperature, that is, in a shorter time, and is suitable for mass production.

以上の第4類第2石油類に属する鉱物油、合成油を含有した成形体からの油の除去方法に特に制限は無いが、真空加熱の温度としては40〜120 ℃が望ましい。加熱温度が40 ℃未満では、除去効率が低下する。また、120℃より高い加熱温度は、大量処理の場合長時間を要するため好ましくない。真空度としては5×10-1 torr以下、より好ましくは5×10-2 torr以下が望ましい。 There is no particular limitation on the method for removing the oil from the molded product containing the mineral oil and the synthetic oil belonging to the above-mentioned fourth and second petroleums, but the temperature for vacuum heating is preferably 40 to 120 ° C. If the heating temperature is less than 40 ° C, the removal efficiency decreases. Also, heating temperatures higher than 120 ° C. are not preferable because a long time is required for mass processing. The degree of vacuum is preferably 5 × 10 −1 torr or less, more preferably 5 × 10 −2 torr or less.

また、上記真空加熱に際し、脱油処理時間をさらに短縮するために、真空排気を停止後加熱開始から成形体の品温がある段階に達するまでの間、脱油室にアルゴン等の不活性ガスを導入すると共に導入した不活性ガスを攪拌しつつ加熱して伝熱性を高め、その後所定の温度に達し保持する時間を上記真空度下で真空加熱することが必要である。   Further, in order to further shorten the deoiling treatment time in the vacuum heating, an inert gas such as argon is provided in the deoiling chamber from the start of heating after the vacuum exhaust is stopped until the product temperature reaches a certain stage. In addition, the introduced inert gas is heated with stirring to enhance heat transfer, and then it is necessary to heat the vacuum at the above degree of vacuum for a time to reach and maintain a predetermined temperature.

油が除去された成形体は、大気に触れさせることなく、直接焼結される。この場合の焼結条件も特に限定されるものではなく、特に焼結温度は希土類永久磁石の組成によって選定されるものであるが、一般に焼結温度は1000〜1150 ℃の範囲とされる。また、真空焼結を採用する場合には、その真空度は5×10-3 torr以下、より好ましくは5×10-4 torr以下とされる。Ar雰囲気での焼結も、場合によっては採用される。 The molded body from which the oil has been removed is directly sintered without being exposed to the atmosphere. The sintering conditions in this case are also not particularly limited. Particularly, the sintering temperature is selected according to the composition of the rare earth permanent magnet, but the sintering temperature is generally in the range of 1000 to 1150 ° C. When vacuum sintering is employed, the degree of vacuum is 5 × 10 −3 torr or less, more preferably 5 × 10 −4 torr or less. Sintering in an Ar atmosphere is also used in some cases.

第4類第2石油類に属する鉱物油、合成油選択のもう一つの利点は、第4類第3石油類に属する鉱物油、合成油に比べて分子量が小さいため、焼結後の残留炭素量の水準がより少なくなるという点である。これは永久磁石の保磁力の安定化に、極めて有利となる。   Another advantage of the selection of mineral oils and synthetic oils belonging to Group 4 and 2 petroleums is that the residual carbon after sintering is low because the molecular weight is smaller than mineral oils and synthetic oils belonging to Group 4 and 3 petroleums. The level of quantity will be less. This is extremely advantageous for stabilizing the coercive force of the permanent magnet.

本発明では、微粉砕にジェットミルを用いることが好ましい。微粉砕での粉砕媒体であるN2ガス又はArガス中の酸素濃度は0.01%以下、好ましくは0.005%以下、さらに好ましくは0.002%以下とされる。酸素濃度が0.01%より多い場合、粉砕中の微粉の酸化が激しくなり、最終的に得られる焼結体中の酸素量が多くなって、良好な保磁力が得られない。 In the present invention, it is preferable to use a jet mill for fine pulverization. The oxygen concentration in the N 2 gas or Ar gas, which is a pulverization medium in fine pulverization, is 0.01% or less, preferably 0.005% or less, more preferably 0.002% or less. When the oxygen concentration is higher than 0.01%, the fine powder during the pulverization becomes intensely oxidized, the amount of oxygen in the finally obtained sintered body increases, and a good coercive force cannot be obtained.

粉砕後の微粉は、ジェットミル等の微粉砕装置の微粉排出口に設置された第2石油類に属する鉱物油あるいは合成油中に、大気に触れさせずに直接回収され、スラリー化される。微粉の表面は鉱物油あるいは合成油によって被覆され、大気と遮断されるため、スラリー状の原料を大気中で取りあつかっても酸化は防止される。この様にして作製したスラリー状の原料を磁界中で湿式成形し、得られた成形体を前述した除去条件下で脱油処理し、次いで焼結することによって、酸素量と炭素量が共に少ない高磁気特性を有する希土類永久磁石焼結体を製造することができる。   The fine powder after pulverization is directly collected and slurried in mineral oil or synthetic oil belonging to the second petroleum installed in the fine powder discharge port of a fine pulverization apparatus such as a jet mill without being exposed to the atmosphere. Since the surface of the fine powder is covered with mineral oil or synthetic oil and shielded from the atmosphere, oxidation is prevented even if the slurry-like raw material is handled in the atmosphere. The slurry-like raw material thus prepared is wet-molded in a magnetic field, and the resulting molded body is deoiled under the above-described removal conditions, and then sintered, so that both the amount of oxygen and the amount of carbon are small. A rare earth permanent magnet sintered body having high magnetic properties can be produced.

本発明におけるR-Fe-B系永久磁石の組成は、特定のものに限定されるものではないが、低い焼結体酸素量、炭素量という本発明の効果をより発現させるためには、希土類元素の含有量は重量百分比率で28.0〜31.5%、より好ましくは28.5〜30.5%とする必要がある。希土類元素の含有量が28.0%未満では、保磁力が低下する。また、31.5%より多い場合には、残留磁束密度Brが低下する。また、Bの含有量は重量百分比率で0.9〜1.5%、より好ましくは0.95〜1.2%とされる。Bの含有量が0.9%未満では保磁力が低下する。また、1.5%より多い場合には、残留磁束密度Brが低下する。さらに、Feの一部をCo、Al、Nb、Ga、Cuの元素の内の少なくとも一種類によって置換することができる。置換後の各元素の含有量は、R-Fe-B系永久磁石焼結体の組成全体に対する重量百分比率でCoは0.5〜5.0%、Alは0.02〜0.3%、Nbは0.2〜2.0%、Gaは0.02〜0.2%、Cuは0.02〜0.2%であることが好ましい。   The composition of the R—Fe—B permanent magnet in the present invention is not limited to a specific one. However, in order to further manifest the effects of the present invention such as a low sintered body oxygen content and carbon content, a rare earth element is used. The elemental content should be 28.0-31.5% by weight percentage, more preferably 28.5-30.5%. When the rare earth element content is less than 28.0%, the coercive force decreases. On the other hand, if it exceeds 31.5%, the residual magnetic flux density Br decreases. The B content is 0.9 to 1.5%, more preferably 0.95 to 1.2% by weight. When the B content is less than 0.9%, the coercive force decreases. On the other hand, if it exceeds 1.5%, the residual magnetic flux density Br decreases. Furthermore, a part of Fe can be replaced by at least one of the elements of Co, Al, Nb, Ga, and Cu. The content of each element after the substitution is 0.5 to 5.0% by weight with respect to the total composition of the R-Fe-B permanent magnet sintered body, 0.5 to 5.0% for Co, 0.02 to 0.3% for Al, 0.2 to 2.0% for Nb, Ga is preferably 0.02 to 0.2%, and Cu is preferably 0.02 to 0.2%.

本発明でジェットミル粉砕に供するR-Fe-B系永久磁石用粗粉の製造方法も、特に限定されるものではない。最終的に得ようとするR-Fe-B系永久磁石焼結体の組成を溶解組成として、鋳造法でインゴットを作製し、これを所定の粒度まで粉砕して使用する。必要に応じて、インゴットに熱処理を施す、水素吸蔵処理を施すなどを行い、粉砕性を高める方法も採られる。また、急冷法のいわゆるストリップキャスト法で、所定組成を有する薄帯状の合金を作製し、これを所定の粒度まで粉砕して使用してもよい。この場合も、必要に応じて、薄帯状合金に熱処理や水素吸蔵処理が施される。またさらに組成の異なる2種類以上のインゴットや薄帯状合金を用意し、これらを上記の方法で粗粉化した後、最終的に得ようとするR-Fe-B系永久磁石焼結体の組成になるように、これらの粗粉を混合して組成を調整し、粉砕用の粗粉とすることもできる。   The method for producing the coarse powder for R—Fe—B permanent magnets used for jet mill pulverization in the present invention is not particularly limited. The composition of the R-Fe-B permanent magnet sintered body to be finally obtained is used as a melting composition, an ingot is produced by a casting method, and this is pulverized to a predetermined particle size and used. If necessary, a method of increasing the pulverizability by subjecting the ingot to heat treatment, hydrogen storage treatment, or the like is also employed. Further, a ribbon-like alloy having a predetermined composition may be produced by a so-called strip casting method of a rapid cooling method, and this may be used after being pulverized to a predetermined particle size. Also in this case, the ribbon-shaped alloy is subjected to heat treatment or hydrogen storage treatment as necessary. Furthermore, two or more types of ingots and ribbon-like alloys with different compositions are prepared, and after these are coarsened by the above method, the composition of the R-Fe-B permanent magnet sintered body to be finally obtained Thus, these coarse powders can be mixed to adjust the composition to obtain coarse powder for pulverization.

以上に述べたように、本発明によって、油を多量に含むR-Fe-B系希土類永久磁石用成形体を大量に効率良く脱油・焼結処理することが可能である。これによって、含有酸素量と炭素量が少なくかつ高い磁気特性を有するR-Fe-B系希土類永久磁石が工業的に量産できることになり、その意義は真に大きい。   As described above, according to the present invention, it is possible to efficiently deoil and sinter a large amount of R-Fe-B rare earth permanent magnet compacts containing a large amount of oil. As a result, R-Fe-B rare earth permanent magnets with low oxygen content and carbon content and high magnetic properties can be industrially mass-produced, and its significance is truly great.

以上本発明の製造方法の詳細を説明した。以下は実施例によって、その効果を明らかにする。なお、本発明はこの実施例によってその範囲を制約されるものではない。   The details of the manufacturing method of the present invention have been described above. The effect will be clarified by the following examples. The scope of the present invention is not limited by this embodiment.

(参考例1)
重量百分比率でNd 22.5 %、Pr 6.3 %、Dy 1.0 %、B 1.0 %、Co 2.2 %、Al 0.08%、C 0.01 %、O 0.12 %、N 0.007%、残部FeからなるNd-Fe-B系原料粗粉を酸素濃度が0.001 %の窒素ガス中でジェットミル粉砕し、これを粉砕機の微粉排出口に設置した容器中の軽油中に大気に触れさせることなく直接回収してスラリー状原料とした。
(Reference Example 1)
Nd-Fe-B system consisting of Nd 22.5%, Pr 6.3%, Dy 1.0%, B 1.0%, Co 2.2%, Al 0.08%, C 0.01%, O 0.12%, N 0.007%, balance Fe The raw material coarse powder is jet mill pulverized in nitrogen gas with an oxygen concentration of 0.001%, and this is recovered directly without exposure to the air in light oil in a container installed at the fine powder discharge port of the pulverizer. did.

この原料を磁界中で湿式成形し、50 mm×50 mm×10 mm(110 g/ケ)の成形体とした。この成形体中には、重量百分率で10 %の軽油が含有されていた。この成形体合計110 kgと、これを設置する容器、搬送機構を合せ、総重量250 kgの被加熱物6とした。この被加熱物6を図1の焼結炉の片側の成形体保管室1に設置し、真空排気後、同じく真空排気されている脱油室2に搬送した。内部加熱ヒータ、外部加熱ヒータを通電して、それぞれ被加熱物6と脱油室2の内壁を加熱した。真空排気を継続しながら内部加熱ヒータにて加熱を続けたところ通電開始から3時間後に成形体温度は100 ℃に達した。この時の脱油室2の内壁面の温度は120 ℃であった。この段階での脱油室2内の真空度は4×10-2 torrであった。後の調査では、蒸発した油による室内の汚染は見られなかった。脱油処理が終了した被加熱物6をあらかじめ真空排気してある調整室3を経由して焼結室4に搬送した。焼結室4では真空排気の条件下で昇温を開始し、2時間後に成形体の温度は1090 ℃に達した。この時の室内の真空度は5×10-4 torrであった。この温度で3時間保持した後加熱を停止し、成形体の温度が900 ℃に達した時点で、あらかじめ真空に排気してあった冷却室5に搬送した。冷却室5ではヘリウムガスを被加熱物6に吹き付け、強制的に冷却した。3時間後被加熱物6を炉外へ出炉した。 This raw material was wet-molded in a magnetic field to obtain a molded body of 50 mm × 50 mm × 10 mm (110 g / ke). This molded body contained 10% by weight of light oil. The molded body total 110 kg, the container in which the molded body is installed, and the transport mechanism are combined to obtain a heated object 6 having a total weight of 250 kg. This heated object 6 was placed in the compact storage chamber 1 on one side of the sintering furnace shown in FIG. 1, and after vacuum evacuation, it was transported to a deoiling chamber 2 that was also evacuated. The internal heater and the external heater were energized to heat the heated object 6 and the inner wall of the deoiling chamber 2, respectively. When heating was continued with the internal heater while continuing evacuation, the temperature of the compact reached 100 ° C. 3 hours after the start of energization. The temperature of the inner wall surface of the deoiling chamber 2 at this time was 120 ° C. The degree of vacuum in the deoiling chamber 2 at this stage was 4 × 10 −2 torr. Later investigations did not show any indoor contamination with evaporated oil. The article 6 to be heated after the deoiling treatment was transferred to the sintering chamber 4 via the adjustment chamber 3 that had been evacuated in advance. In the sintering chamber 4, the temperature was raised under vacuum exhaust conditions, and after 2 hours, the temperature of the compact reached 1090 ° C. The degree of vacuum in the room at this time was 5 × 10 −4 torr. After holding at this temperature for 3 hours, heating was stopped, and when the temperature of the molded body reached 900 ° C., it was transferred to the cooling chamber 5 that had been evacuated in advance. In the cooling chamber 5, helium gas was blown onto the object 6 to be cooled forcibly. After 3 hours, the article 6 to be heated was taken out of the furnace.

焼結体は良好な形態であり、その分析値は重量百分比率で Nd 22.5 %、Pr 6.3 %、Dy 1.0 %、B 1.0 %、Co 2.2 %、Al 0.08 %、C 0.05 %、O 0.15 %、N 0.055 %、残部Feであった。焼結体密度は7.62 g/ccであった。   The sintered body is in good shape, and the analysis values are Nd 22.5%, Pr 6.3%, Dy 1.0%, B 1.0%, Co 2.2%, Al 0.08%, C 0.05%, O 0.15% in weight percentage. N 0.055%, balance Fe. The sintered compact density was 7.62 g / cc.

この焼結体を熱処理し、その磁気特性を測定したところ、Br 13.9 kG、iHc 14.4 kOe、(BH)max 46.3 MGOeという良好な値が得られた。上記ロットを追う形で、同一内容の成形体を同量、この焼結炉の他の1系統の脱油室2で処理し、以降の工程も同一の手順で行った。こちらの処理ロットについても良好な結果を得た。   When this sintered body was heat-treated and its magnetic properties were measured, good values of Br 13.9 kG, iHc 14.4 kOe, (BH) max 46.3 MGOe were obtained. In the form of following the lot, the same amount of the molded body was processed in the other oil removal chamber 2 of this sintering furnace, and the subsequent steps were also performed in the same procedure. Good results were also obtained for this processing lot.

(実施例1)
重量百分比率でNd 23.5 %、Pr 4.3%、Dy 1.8%、B 1.1 %、Co 2.2 %、Al 0.12%、Ga 0.1%、Cu 0.1%、C 0.02%、O 0.014 %、N 0.008 %、残部FeからなるNd-Fe-B系原料粗粉を酸素濃度が0.0005%のアルゴンガス中でジェットミル粉砕し、これを粉砕機の微粉排出口に設置した容器中のテレビン油中に大気に触れさせることなく直接回収してスラリー状原料とした。この原料を参考例1と同一の条件で湿式成形し、50 mm×50 mm×10 mmの成形体を合計165 Kg準備した。容器と搬送機構を合わせて合計330 Kgの被加熱物12を構成し、図2に示す焼結炉の成形体保管室7、調整室8を経由して脱油室9の一方に搬入した。脱油室9では、真空排気を停止した後アルゴンガスを650 mmHgまで導入し、これを撹拌しながら、内部加熱ヒータ、外部加熱ヒータを通電して、それぞれ被加熱物12と脱油室9の内壁を加熱した。成形体の温度が45 ℃に到達した段階で、再度真空排気を行い、先に導入したアルゴンガスを除去した。この時の脱油室9の内壁面の温度は80 ℃であった。真空排気を継続しながら内部加熱ヒータにて加熱を続けたところ通電開始から2時間後に成形体温度は80 ℃、室内の真空度は3×10-2torrに到達した。この時の脱油室9の内壁面の温度は120 ℃であった。後の調査では、蒸発した油による室内の汚染は見られなかった。
Example 1
Nd 23.5%, Pr 4.3%, Dy 1.8%, B 1.1%, Co 2.2%, Al 0.12%, Ga 0.1%, Cu 0.1%, C 0.02%, O 0.014%, N 0.008%, balance Fe Nd-Fe-B raw material coarse powder consisting of Nd-Fe-B raw material is milled by jet mill in argon gas with an oxygen concentration of 0.0005%, and this is not exposed to the atmosphere in turpentine oil in a container installed at the fine powder outlet of the grinder The slurry was directly recovered and used as a slurry raw material. This raw material was wet-molded under the same conditions as in Reference Example 1 to prepare a total of 165 kg of 50 mm × 50 mm × 10 mm molded bodies. A total of 330 Kg of the object to be heated 12 was configured by combining the container and the transport mechanism, and was carried into one of the deoiling chambers 9 via the compact storage chamber 7 and the adjustment chamber 8 of the sintering furnace shown in FIG. In the oil removal chamber 9, after evacuation is stopped, argon gas is introduced up to 650 mmHg, and the internal heater and the external heater are energized while stirring the gas. The inner wall was heated. When the temperature of the molded body reached 45 ° C., evacuation was performed again to remove the previously introduced argon gas. The temperature of the inner wall surface of the deoiling chamber 9 at this time was 80 ° C. When heating was continued with the internal heater while continuing evacuation, the temperature of the compact reached 80 ° C. and the degree of vacuum in the room reached 3 × 10 −2 torr 2 hours after the start of energization. At this time, the temperature of the inner wall surface of the deoiling chamber 9 was 120 ° C. Later investigations did not show any indoor contamination with evaporated oil.

被加熱物12を再び調達室8を経由して焼結室10に搬送し、参考例1と同様の手順で焼結した。昇温開始後3時間で成形体の温度が1080 ℃に達したため、この温度で4時間保持し焼結した。1080 ℃での炉内の真空度は4×10-4 torrであった。通電停止後焼結体の温度が900 ℃に達したのを確認後、冷却室11に搬送し、参考例1と同じ方法で強制冷却した。被加熱物12はこの4時間後、炉外に出炉した。 The article to be heated 12 was transferred again to the sintering chamber 10 via the procurement chamber 8 and sintered in the same procedure as in Reference Example 1. Since the temperature of the molded body reached 1080 ° C. 3 hours after the start of temperature increase, the temperature was maintained at this temperature for 4 hours and sintered. The degree of vacuum in the furnace at 1080 ° C. was 4 × 10 −4 torr. After confirming that the temperature of the sintered body reached 900 ° C. after stopping the energization, the sintered body was transferred to the cooling chamber 11 and forcedly cooled in the same manner as in Reference Example 1. The article to be heated 12 was taken out of the furnace after 4 hours.

焼結体は良好な焼結形態であり、その分析値はNd 23.5 %、Pr 4.3 %、Dy 1.8 %、B 1.1 %、Co 2.2 %、Al 0.12 %、Ga 0.1 %、Cu 0.1 %、C 0.05 %、O 0.17 %、N 0.006 %、残部Feであった。この焼結体の密度は7.61 g/ccであった。焼結体を熱処理し、その磁気特性を測定したところ、Br 13.6 KG、iHc 15.9 KOe、(BH)max 44.8 MGOeという良好な値を得た。このロットを追う形で、同一内容の成形体の同量からなる第2ロットを用意し、これを図2の焼結炉のもう一方の脱油室9で処理し、以降の工程も同一の手順を行った。その結果、上記と同じく、良好な結果を得た。   The sintered body is a good sintered form, and the analysis values are Nd 23.5%, Pr 4.3%, Dy 1.8%, B 1.1%, Co 2.2%, Al 0.12%, Ga 0.1%, Cu 0.1%, C 0.05 %, O 0.17%, N 0.006%, and the balance Fe. The density of this sintered body was 7.61 g / cc. When the sintered body was heat-treated and its magnetic properties were measured, good values of Br 13.6 KG, iHc 15.9 KOe, (BH) max 44.8 MGOe were obtained. Following this lot, a second lot consisting of the same amount of compacts having the same contents is prepared and processed in the other deoiling chamber 9 of the sintering furnace of FIG. 2, and the subsequent steps are also the same. The procedure was performed. As a result, good results were obtained as described above.

(参考例2)
重量百分比率でNd 25.5 %、Dy 4.5 %、B 1.1 %、Nb 0.25 %、Al 0.08 %、Co 2.0 %、Ga 0.08 %、Cu 0.1 %、C 0.01 %、O 0.14 %、N 0.007 %、残部FeからなるNd-Fe-B系原料粗粉を酸素濃度が0.0001%以下(検出限界以下)の窒素ガス中でジェットミル粉砕し、これを粉砕機の微粉排出口に設置した容器中の灯油中に、大気に直接触れさせることなく直接回収して、スラリー状原料とした。この原料を参考例1と同一の条件で成形し、50 mm×50 mm×10 mmの成形体を合計50 Kg準備した。容器と搬送機構を合わせて合計170 Kgの被加熱物19を構成し、図3に示す焼結炉の成形体保管室13に設置し、真空排気後脱油室14に搬送した。脱油室14では、参考例1と同一の手順で脱油処理を行い、通電開始から1時間後に成形体の温度は60 ℃、室内の真空度は3×10-2torrに到達した。この時の、脱油室14の内壁面の温度は120 ℃であった。後の調査では、蒸発した油による室内の汚染は見られなかった。脱油処理後、被加熱物19を焼結室15に搬送し、真空排気下で昇温した。昇温開始後1.5時間で、成形体の温度は1090 ℃、炉内真空度は5.0×10-4torrに到達した。この温度で2時間保持した時点で真空排気を停止し、炉内にアルゴンガスを500 mmHgになるまで導入し、次いで焼結温度を1100 ℃まで上昇した。この温度で2時間保持した後、通電を停止した。この間、炉内アルゴンガスの内圧が500 mmHgを越えないよう、排気系16、17で自動制御を行った。通常停止後焼結体の温度が900 ℃以下に達したのを確認し、冷却室18に搬送し、参考例1と同様に強制冷却した。被加熱物19は2時間後、炉外へ出炉した。焼結体は良好な焼結形態であり、その分析値はNd 25.5 %、Dy 4.5 %、B 1.1 %、Nb 0.25 %、Al 0.08 %、Co 2.0 %、Ga 0.08 %、Cu 0.1 %、C 0.04 %、O 0.18 %、N 0.06 %、残部Feであった。この焼結体の密度は7.64 g/ccであった。焼結体を熱処理し、その磁気特性を測定したところ、Br 12.9 KG、iHc 22 KOe、(BH)max 40.1 MGOeという良好な値を得た。このロットを追う形で、同一内容の成形体の同量からなるロットを用意し、これを図3の焼結炉で順次上記と同一条件で処理したところ、全てのロットにおいて、上記と同じく良好な結果が得られた。
(Reference Example 2)
Nd 25.5%, Dy 4.5%, B 1.1%, Nb 0.25%, Al 0.08%, Co 2.0%, Ga 0.08%, Cu 0.1%, C 0.01%, O 0.14%, N 0.007%, balance Fe The Nd-Fe-B raw material coarse powder is crushed by jet mill in nitrogen gas with an oxygen concentration of 0.0001% or less (below the detection limit), and this is put into kerosene in a container installed at the fine powder outlet of the pulverizer The slurry was directly recovered without direct contact with the atmosphere to obtain a slurry-like raw material. This raw material was molded under the same conditions as in Reference Example 1, and a total of 50 kg of 50 mm × 50 mm × 10 mm molded bodies were prepared. A total of 170 kg of the object to be heated 19 was constituted by combining the container and the transport mechanism, and was placed in the compact storage chamber 13 of the sintering furnace shown in FIG. In the deoiling chamber 14, the deoiling treatment was performed in the same procedure as in Reference Example 1. One hour after the start of energization, the temperature of the molded body reached 60 ° C., and the degree of vacuum in the chamber reached 3 × 10 −2 torr. At this time, the temperature of the inner wall surface of the deoiling chamber 14 was 120 ° C. Later investigations did not show any indoor contamination with evaporated oil. After deoiling treatment, the object to be heated 19 was transferred to the sintering chamber 15 and heated up under vacuum exhaust. After 1.5 hours from the start of temperature increase, the temperature of the compact reached 1090 ° C. and the vacuum in the furnace reached 5.0 × 10 −4 torr. When this temperature was maintained for 2 hours, evacuation was stopped, and argon gas was introduced into the furnace until it reached 500 mmHg, and then the sintering temperature was raised to 1100 ° C. After holding at this temperature for 2 hours, the energization was stopped. During this time, automatic control was performed by the exhaust systems 16 and 17 so that the internal pressure of the argon gas in the furnace did not exceed 500 mmHg. After the normal stop, it was confirmed that the temperature of the sintered body reached 900 ° C. or less, and it was conveyed to the cooling chamber 18 and forcedly cooled in the same manner as in Reference Example 1. The object to be heated 19 was taken out of the furnace after 2 hours. The sintered body is a good sintered form, and the analysis values are Nd 25.5%, Dy 4.5%, B 1.1%, Nb 0.25%, Al 0.08%, Co 2.0%, Ga 0.08%, Cu 0.1%, C 0.04 %, O 0.18%, N 0.06%, and the balance Fe. The density of this sintered body was 7.64 g / cc. When the sintered body was heat-treated and its magnetic properties were measured, good values of Br 12.9 KG, iHc 22 KOe, (BH) max 40.1 MGOe were obtained. Following this lot, a lot consisting of the same amount of compacts of the same content was prepared and processed in the sintering furnace in FIG. 3 under the same conditions as above. Results were obtained.

参考例1を実施するための焼結炉を示す平面図である。It is a top view which shows the sintering furnace for enforcing the reference example 1. FIG. 実施例1を実施するための焼結炉を示す平面図である。1 is a plan view showing a sintering furnace for carrying out Example 1. FIG. 参考例2を実施するための焼結炉を示す平面図である。It is a top view which shows the sintering furnace for enforcing the reference example 2. FIG.

符号の説明Explanation of symbols

1 成形体保管室、 2 脱油室、 3 調整室、 4 焼結室、
5 冷却室、 6 被加熱物、7 成形体保管室、8 調整室、9 脱油室
10 焼結室、11 冷却室、 12 被加熱物、13 成形体保管室、
14 脱油室、15 焼結室、 16 メカニカルブースタポンプ、
17 ロータリーポンプ、 18 冷却室、 19 被加熱物、
20 導入ガス配管、21 加熱ヒータ、22 ロータリーポンプ、
23 加圧冷却装置、24 断熱扉、25 メカニカルブースタポンプ
26 ロータリーポンプ
1 molded body storage room, 2 deoiling room, 3 adjustment room, 4 sintering room,
5 Cooling room, 6 Object to be heated, 7 Molded body storage room, 8 Adjustment room, 9 Deoiling room, 10 Sintering room, 11 Cooling room, 12 Object to be heated, 13 Molded object storage room,
14 deoiling chamber, 15 sintering chamber, 16 mechanical booster pump,
17 Rotary pump, 18 Cooling chamber, 19 Object to be heated,
20 introduction gas piping, 21 heater, 22 rotary pump,
23 Pressure Cooling Device, 24 Thermal Insulation Door, 25 Mechanical Booster Pump 26 Rotary Pump

Claims (2)

酸素濃度が0.01%以下のN2ガス又はArガス気流中で、R-Fe-B(RはYを含む希土類元素のうちの1種類以上)系永久磁石用粗粉を微粉砕し、得られた微粉を大気に触れさせずに直接1気圧における引火点が21℃以上で70℃未満の消防法で定めるところの第4類第2石油類に属する鉱物油あるいは合成油中に回収してスラリー化し、このスラリー化した原料を磁界中で湿式成形し、得られた成形体を脱油室に搬入して真空排気後、真空排気を停止して不活性ガスを脱油室に導入し、導入した不活性ガスを攪拌しながら成形体を加熱した後、更に脱油室内を真空排気した状態で成形体を加熱することにより脱油処理を行い、得られた脱油処理後の成形体を焼結することを特徴とする希土類永久磁石の製造方法。 Obtained by finely pulverizing R-Fe-B (R is one or more of rare earth elements including Y) -based permanent magnets in an N 2 or Ar gas stream with an oxygen concentration of 0.01% or less. Without being exposed to the atmosphere, the fine powder is recovered directly in mineral oil or synthetic oil belonging to the 4th class 2nd class petroleum oil as defined by the Fire Service Act with a flash point of 21 ° C or higher and less than 70 ° C at 1 atm. The slurryed raw material is wet-molded in a magnetic field, and the resulting molded product is carried into a deoiling chamber and evacuated. Then, evacuation is stopped and an inert gas is introduced into the deoiling chamber. The molded body is heated while stirring the inert gas, and then the deoiling treatment is performed by heating the molded body in a state where the deoiling chamber is evacuated, and the resulting molded body after deoiling treatment is baked. A method for producing a rare earth permanent magnet. 請求項1に記載の希土類永久磁石の製造方法において、導入した不活性ガスがアルゴンガスであることを特徴とする希土類永久磁石の製造方法。 2. The method for producing a rare earth permanent magnet according to claim 1, wherein the introduced inert gas is an argon gas.
JP2007145476A 2007-05-31 2007-05-31 Rare earth permanent magnet manufacturing method Expired - Lifetime JP4613186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007145476A JP4613186B2 (en) 2007-05-31 2007-05-31 Rare earth permanent magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007145476A JP4613186B2 (en) 2007-05-31 2007-05-31 Rare earth permanent magnet manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8166442A Division JPH1012473A (en) 1996-06-26 1996-06-26 Manufacture of rare-earth permanent magnet

Publications (2)

Publication Number Publication Date
JP2007318150A true JP2007318150A (en) 2007-12-06
JP4613186B2 JP4613186B2 (en) 2011-01-12

Family

ID=38851669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007145476A Expired - Lifetime JP4613186B2 (en) 2007-05-31 2007-05-31 Rare earth permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP4613186B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107397A1 (en) * 2008-02-28 2009-09-03 日立金属株式会社 Process for producing r-fe-b rare-earth sintered magnet and rare-earth sintered magnet produced by the process
CN108376607A (en) * 2017-12-31 2018-08-07 江西荧光磁业有限公司 A kind of preparation method reducing heavy rare earth sintered NdFeB

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147905A (en) * 1990-10-08 1992-05-21 Juki Corp Manufacture of sintered body of glanular material
JPH0681004A (en) * 1992-09-03 1994-03-22 Daido Steel Co Ltd Method for powder metallurgy
JPH07130566A (en) * 1993-11-05 1995-05-19 Inter Metallics Kk Method of compression-molding permanent magnet powder
JPH0888134A (en) * 1994-09-20 1996-04-02 Hitachi Metals Ltd Manufacture of rare earth element permanent magnet
JPH08130142A (en) * 1994-11-01 1996-05-21 Hitachi Metals Ltd Manufacturing for rear-earth magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147905A (en) * 1990-10-08 1992-05-21 Juki Corp Manufacture of sintered body of glanular material
JPH0681004A (en) * 1992-09-03 1994-03-22 Daido Steel Co Ltd Method for powder metallurgy
JPH07130566A (en) * 1993-11-05 1995-05-19 Inter Metallics Kk Method of compression-molding permanent magnet powder
JPH0888134A (en) * 1994-09-20 1996-04-02 Hitachi Metals Ltd Manufacture of rare earth element permanent magnet
JPH08130142A (en) * 1994-11-01 1996-05-21 Hitachi Metals Ltd Manufacturing for rear-earth magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107397A1 (en) * 2008-02-28 2009-09-03 日立金属株式会社 Process for producing r-fe-b rare-earth sintered magnet and rare-earth sintered magnet produced by the process
JP5348124B2 (en) * 2008-02-28 2013-11-20 日立金属株式会社 Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
CN108376607A (en) * 2017-12-31 2018-08-07 江西荧光磁业有限公司 A kind of preparation method reducing heavy rare earth sintered NdFeB

Also Published As

Publication number Publication date
JP4613186B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
EP2388350B1 (en) Method for producing r-t-b sintered magnet
JP5477282B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP5856953B2 (en) Rare earth permanent magnet manufacturing method and rare earth permanent magnet
JP4811143B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
KR102527128B1 (en) R-T-B rare earth permanent magnet material, manufacturing method and application
US8317937B2 (en) Alloy for sintered R-T-B-M magnet and method for producing same
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
WO2006112403A1 (en) Rare earth sintered magnet and process for producing the same
JP4865100B2 (en) Permanent magnet and method for manufacturing permanent magnet
CN106024236B (en) R-T-B based rare earth sintered magnet and method for producing same
JP6521391B2 (en) Method of manufacturing RTB based sintered magnet
JP2007266038A (en) Manufacturing method of rare-earth permanent magnet
JP2012079726A (en) Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet
JP5146552B2 (en) R-Fe-B rare earth sintered magnet and method for producing the same
JP4730550B2 (en) Lubricant removal method
JP4613186B2 (en) Rare earth permanent magnet manufacturing method
CN111091945B (en) R-T-B series permanent magnetic material, raw material composition, preparation method and application
JP2005285859A (en) Rare-earth magnet and its manufacturing method
JP2011082365A (en) R-t-b-based sintered magnet
JPH1012473A (en) Manufacture of rare-earth permanent magnet
JP2007234953A (en) Lubricant removing method, and rare earth sintered magnet manufacturing method
JP2009084627A (en) Method for producing sintered compact, and neodymium-iron-boron based sintered magnet produced by using method for producing sintered compact
JP2009038197A (en) Manufacturing method of sintered body, and neodymium iron boron-based sintered magnet manufactured by the method
JP4415683B2 (en) Manufacturing method of rare earth sintered magnet
JPH09289127A (en) Manufacture of rare earth permanent magnet, and the rare earth permanent magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080430

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term