JP2007318032A - Wiring substrate and semiconductor device mounting structure using the same - Google Patents

Wiring substrate and semiconductor device mounting structure using the same Download PDF

Info

Publication number
JP2007318032A
JP2007318032A JP2006148577A JP2006148577A JP2007318032A JP 2007318032 A JP2007318032 A JP 2007318032A JP 2006148577 A JP2006148577 A JP 2006148577A JP 2006148577 A JP2006148577 A JP 2006148577A JP 2007318032 A JP2007318032 A JP 2007318032A
Authority
JP
Japan
Prior art keywords
wiring board
fiber bundle
fiber
woven fabric
linear expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006148577A
Other languages
Japanese (ja)
Other versions
JP5132085B2 (en
Inventor
Yutaka Tsukada
裕 塚田
Katsura Hayashi
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006148577A priority Critical patent/JP5132085B2/en
Publication of JP2007318032A publication Critical patent/JP2007318032A/en
Application granted granted Critical
Publication of JP5132085B2 publication Critical patent/JP5132085B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring substrate which has a low linear expansion coefficient close to a linear expansion coefficient of a semiconductor device, and a semiconductor device mounting structure which has a high performance. <P>SOLUTION: The wiring substrate includes: a first woven cloth where a plurality of first fiber bundles which are located along a first direction, and a plurality of a second fiber bundles which are located along a second direction different from the first direction and have a sectional area smaller and/or an array space larger than that of the first fiber, are woven to form a textile; a resin board which holds the first woven cloth inside; and a plurality of wiring conductors which are located on the resin board. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、各種オーディオビジュアル(略称AV:Audio Visual)機器や家電機器,通信機器,コンピュータ装置およびその周辺機器などの電子機器に使用される配線基板およびそれを用いた半導体素子の実装構造に関するものである。   The present invention relates to a wiring board used in various audio visual (abbreviated as AV: Audio Visual) devices, home appliances, communication devices, computer devices and peripheral devices, and a mounting structure of a semiconductor element using the same. It is.

従来より、IC(Integrated Circuit),LSI(Large Scale Integration)などの半導体素子などを上面に搭載する配線基板として、樹脂製の配線基板が用いられている。   Conventionally, resin wiring boards have been used as wiring boards on which semiconductor elements such as IC (Integrated Circuit) and LSI (Large Scale Integration) are mounted.

ところが、樹脂製の配線基板は、樹脂の特性に起因して、その線膨張係数が半導体素子の線膨張係数に比べて大きい。このため、樹脂製の配線基板上に半導体素子を実装すると、両者の線膨張係数の差に起因して両者間に大きな熱応力が印加され、配線基板と半導体素子との接続状態が不安定となり、歩留まり低下が懸念される。   However, a resin wiring board has a larger linear expansion coefficient than that of a semiconductor element due to the characteristics of the resin. For this reason, when a semiconductor element is mounted on a resin wiring board, a large thermal stress is applied between the two due to the difference in coefficient of linear expansion between the two, and the connection state between the wiring board and the semiconductor element becomes unstable. There is a concern about the yield drop.

それ故、半導体素子の線膨張係数に近い低線膨張係数の配線基板及び半導体素子の実装構造体を実現することが求められている。   Therefore, it is required to realize a wiring board having a low linear expansion coefficient close to that of the semiconductor element and a semiconductor element mounting structure.

本発明の第1の配線基板は、第1方向に沿って配置される複数の第1繊維束と、前記第1方向と異なる第2方向に沿って配置され、前記第1繊維束よりも小さな断面積を有する複数の第2繊維束と、を編み込んで構成される第1織布と、前記第1織布を内部に収容する樹脂板と、前記樹脂板上に配置される複数の配線導体と、を備えている。   The first wiring board of the present invention is arranged along a plurality of first fiber bundles arranged along a first direction and a second direction different from the first direction, and is smaller than the first fiber bundle. A first woven fabric formed by weaving a plurality of second fiber bundles having a cross-sectional area, a resin plate that accommodates the first woven fabric therein, and a plurality of wiring conductors disposed on the resin plate And.

また、本発明の第1の配線基板は、上記第1の配線基板において、前記第1方向と異なる第3方向に沿って配置される複数の第3繊維束と、前記第2方向及び前記第3方向とは異なる第4方向に沿って配置され、前記第3繊維束よりも小さな断面積を有する複数の第4繊維束と、を編み込んで構成され、前記樹脂板内に収容されるように配置される第2織布を、更に備えている。   The first wiring board of the present invention includes a plurality of third fiber bundles arranged along a third direction different from the first direction, the second direction, and the first wiring board in the first wiring board. A plurality of fourth fiber bundles arranged along a fourth direction different from the three directions and having a smaller cross-sectional area than the third fiber bundle, and are accommodated in the resin plate. A second woven fabric is further provided.

さらに、本発明の第1の配線基板は、上記第1の配線基板において、前記第3繊維束は、前記第4繊維束よりも線膨張係数が小さい。   Furthermore, in the first wiring board of the present invention, in the first wiring board, the third fiber bundle has a smaller linear expansion coefficient than the fourth fiber bundle.

また、本発明の第1の配線基板は、上記第1の配線基板において、前記第1繊維束は、前記第2繊維束よりも線膨張係数が小さい。   In the first wiring board of the present invention, in the first wiring board, the first fiber bundle has a smaller coefficient of linear expansion than the second fiber bundle.

さらに、本発明の第1の配線基板は、上記第1の配線基板において、前記第1方向と前記第4方向とが互いに略平行に配置され、前記第2方向と前記第3方向とが互いに略平行に配置される。   Furthermore, in the first wiring board of the present invention, in the first wiring board, the first direction and the fourth direction are arranged substantially parallel to each other, and the second direction and the third direction are It arrange | positions substantially parallel.

また、本発明の第1の配線基板は、上記第1の配線基板において、前記第1織布の数と前記第2織布の数が等しい。   In the first wiring board of the present invention, the number of the first woven cloths is equal to the number of the second woven cloths in the first wiring board.

さらに、本発明の第1の配線基板は、上記第1の配線基板において、前記第1繊維束と前記第2繊維束との交差領域の幅は、前記第1繊維束と前記第2繊維束との非交差領域の幅よりも大きく、前記第3繊維束と前記第4繊維束との交差領域の幅は、前記第3繊維束と前記第4繊維束との非交差領域の幅よりも大きい。   Furthermore, in the first wiring board of the present invention, in the first wiring board, the width of the intersecting region between the first fiber bundle and the second fiber bundle may be the first fiber bundle and the second fiber bundle. The width of the intersection region between the third fiber bundle and the fourth fiber bundle is larger than the width of the non-intersection region between the third fiber bundle and the fourth fiber bundle. large.

また、本発明の第1の配線基板は、上記第1の配線基板において、前記第1繊維束乃至前記第4繊維束は、各々がその長手方向と略直交する方向に沿って間隔を空けて配列されており、前記第2繊維束の配列ピッチは前記第1繊維束の配列ピッチよりも大きく設定され、前記第4繊維束の配列ピッチは前記第3繊維束の配列ピッチよりも大きく設定されている。   In the first wiring board of the present invention, in the first wiring board, the first fiber bundle to the fourth fiber bundle are spaced from each other along a direction substantially orthogonal to the longitudinal direction. The arrangement pitch of the second fiber bundle is set larger than the arrangement pitch of the first fiber bundle, and the arrangement pitch of the fourth fiber bundle is set larger than the arrangement pitch of the third fiber bundle. ing.

一方、本発明の第2の配線基板は、第1方向に沿って配置され、該第1方向と略直交する方向に間隔を空けて配列される複数の第1繊維束と、前記第1方向とは異なる第2方向に沿って配置され、該第2方向と略直交する方向に間隔を空けて配列される複数の第2繊維束と、を編み込んで構成され、前記第2繊維束の配列ピッチが前記第1繊維束の配列ピッチよりも大きく設定された第1織布と、前記第1織布を内部に収容する樹脂板と、前記樹脂板上に配置される複数の配線導体と、を備えている。   On the other hand, the second wiring board of the present invention is arranged along the first direction, and a plurality of first fiber bundles arranged at intervals in a direction substantially orthogonal to the first direction, and the first direction A plurality of second fiber bundles arranged along a second direction different from the second direction and arranged at intervals in a direction substantially orthogonal to the second direction, and the arrangement of the second fiber bundles A first woven fabric in which the pitch is set larger than the arrangement pitch of the first fiber bundles, a resin plate that houses the first woven fabric, and a plurality of wiring conductors disposed on the resin plate; It has.

また、本発明の第2の配線基板は、上記第2の配線基板において、前記第1方向と異なる第3方向に沿って配置され、該第3方向と略直交する方向に間隔を空けて配列される複数の第3繊維束と、前記第2方向及び前記第3方向とは異なる第4方向に沿って配置され、該第4方向と略直交する方向に間隔を空けて配列される複数の第4繊維束と、を編み込んで構成されるとともに、前記第4繊維束の配列ピッチが前記第3繊維束の配列ピッチよりも大きく設定され、前記樹脂板の内部に収容される第2織布と、を備えている。   Further, the second wiring board of the present invention is arranged along a third direction different from the first direction in the second wiring board, and is arranged with an interval in a direction substantially orthogonal to the third direction. A plurality of third fiber bundles, and a plurality of third fiber bundles arranged along a fourth direction different from the second direction and the third direction, and arranged at intervals in a direction substantially orthogonal to the fourth direction. A second woven fabric that is configured by weaving a fourth fiber bundle, and in which the arrangement pitch of the fourth fiber bundle is set larger than the arrangement pitch of the third fiber bundle, and is accommodated inside the resin plate. And.

さらに、本発明の第2の配線基板は、上記第2の配線基板において、前記第3繊維束は、前記第4繊維束よりも線膨張係数が小さい。   Furthermore, in the second wiring board of the present invention, in the second wiring board, the third fiber bundle has a smaller linear expansion coefficient than the fourth fiber bundle.

また、本発明の第2の配線基板は、上記第2の配線基板において、前記第1繊維束は、前記第2繊維束よりも線膨張係数が小さい。   In the second wiring board of the present invention, in the second wiring board, the first fiber bundle has a smaller coefficient of linear expansion than the second fiber bundle.

さらに、本発明の第2の配線基板は、上記第2の配線基板において、前記第1方向と前記第4方向とが互いに略平行に配置され、前記第2方向と前記第3方向とが互いに略平行に配置される。   Furthermore, in the second wiring board of the present invention, in the second wiring board, the first direction and the fourth direction are arranged substantially parallel to each other, and the second direction and the third direction are It arrange | positions substantially parallel.

また、本発明の第2の配線基板は、上記第2の配線基板において、前記第1織布の数と前記第2織布の数が等しい。   In the second wiring board of the present invention, the number of the first woven cloths is equal to the number of the second woven cloths in the second wiring board.

さらに、本発明の第2の配線基板は、上記第2の配線基板において、前記第1繊維束と前記第2繊維束との交差領域の幅は、前記第1繊維束と前記第2繊維束との非交差領域の幅よりも大きく、前記第3繊維束と前記第4繊維束との交差領域の幅は、前記第3繊維束と前記第4繊維束との非交差領域の幅よりも大きい。   Furthermore, the second wiring board of the present invention is the above-mentioned second wiring board, wherein the width of the intersecting region between the first fiber bundle and the second fiber bundle is the first fiber bundle and the second fiber bundle. The width of the intersection region between the third fiber bundle and the fourth fiber bundle is larger than the width of the non-intersection region between the third fiber bundle and the fourth fiber bundle. large.

そして、本発明の半導体素子の実装構造体は、上述の第1または第2の配線基板と、該配線基板の配線導体に接続される半導体素子と、を備えている。   The semiconductor element mounting structure of the present invention includes the first or second wiring board described above and a semiconductor element connected to the wiring conductor of the wiring board.

本発明によれば、樹脂板により構成される配線基板の線膨張係数を低減することができる。また、配線基板内における線膨張係数に関して、方向によるばらつきを抑制することが可能となる。その結果、接続状態が良好な高性能の半導体素子の実装構造体が実現される。   According to the present invention, it is possible to reduce the linear expansion coefficient of a wiring board made of a resin plate. Further, it is possible to suppress the variation due to the direction with respect to the linear expansion coefficient in the wiring board. As a result, a high-performance semiconductor element mounting structure with a good connection state is realized.

本願発明者は、異なる方向に配置される複数の繊維束を編み込んで成る織布を適用し、該織布をエポキシ樹脂等の樹脂材料から成る樹脂板と、該樹脂板に形成される配線導体と、を有する配線基板を提案している。かかる配線基板は、線膨張係数が大きな樹脂板の伸びを線膨張係数が小さな材料から成る織布によって抑制し、配線基板全体としての線膨張係数の低減を図るものである。   The present inventor applies a woven fabric formed by weaving a plurality of fiber bundles arranged in different directions, and uses the woven fabric as a resin plate made of a resin material such as an epoxy resin, and a wiring conductor formed on the resin plate. And a wiring board having the following. In such a wiring board, the expansion of a resin plate having a large linear expansion coefficient is suppressed by a woven fabric made of a material having a small linear expansion coefficient, and the linear expansion coefficient of the entire wiring board is reduced.

しかしながら、配線基板の線膨張係数には、織布の構成材料のみが関係するのではなく、織布を構成する繊維束の形状や配列ピッチ等が大きく関係していることが判明し、本発明が案出された。以下、図面を参照しながら本発明を実施するための形態を説明する。   However, it has been found that the linear expansion coefficient of the wiring board is not only related to the constituent material of the woven fabric, but is greatly related to the shape and arrangement pitch of the fiber bundles constituting the woven fabric. Was devised. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は、本発明の実施形態に係る半導体素子の実装構造体の断面図、図2の(a)は、図1に示す配線基板に用いられる織布の平面図、図2の(b)は、(a)に示す織布のA−A線断面図である。なお、図2(a)は、便宜上、織布を1枚のみ図示している。
(First embodiment)
1 is a cross-sectional view of a semiconductor element mounting structure according to an embodiment of the present invention, FIG. 2A is a plan view of a woven fabric used for the wiring board shown in FIG. 1, and FIG. These are AA sectional view taken on the line of the woven fabric shown to (a). Note that FIG. 2A shows only one woven fabric for convenience.

本実施形態に係る半導体素子の実装構造体は、大略的に、配線基板1と、該配線基板1上に搭載されるIC、LSI等の半導体素子6で構成されている。ここでは、半導体素子6は、半田等の接合材7を介して配線基板1にフリップチップ実装されている。以下、配線基板1を中心に説明する。   The semiconductor element mounting structure according to the present embodiment is generally composed of a wiring board 1 and a semiconductor element 6 such as an IC or LSI mounted on the wiring board 1. Here, the semiconductor element 6 is flip-chip mounted on the wiring substrate 1 via a bonding material 7 such as solder. Hereinafter, the wiring board 1 will be mainly described.

配線基板1は、たとえば各種オーディオビジュアル(略称AV:Audio Visual)機器や家電機器,通信機器,コンピュータ装置およびその周辺機器などの電子機器に使用されるものであり、複数の織布2と、該織布2を収容する樹脂板3と、該樹脂板3に形成される配線導体4と、を備えた構成を有している。   The wiring board 1 is used for electronic devices such as various audio visual (AV: Audio Visual) devices, home appliances, communication devices, computer devices, and peripheral devices thereof, and includes a plurality of woven fabrics 2, It has a configuration including a resin plate 3 that accommodates the woven fabric 2 and a wiring conductor 4 formed on the resin plate 3.

・織布
複数の織布2は、x方向に対して略平行に配置される複数の繊維束2xと、y方向に対して略平行に配置される複数の繊維束2yとを互いに交差させた形で編み込んで構成されており、各繊維束2xは、図2(b)に示すように周期的に繊維束2yの上面側、下面側に交互に配置され、全体としてz方向にうねった波状に形成されている。一方、各繊維束2yは、図2(b)に示すように周期的に繊維束2xの上面側、下面側に交互に配置され、全体としてz方向にうねった波状に形成されている。なお、x方向、y方向、z方向は互いに直交しているものとする。
The woven fabric 2 includes a plurality of fiber bundles 2x arranged substantially parallel to the x direction and a plurality of fiber bundles 2y arranged substantially parallel to the y direction. Each fiber bundle 2x is alternately arranged on the upper surface side and the lower surface side of the fiber bundle 2y as shown in FIG. 2 (b), and as a whole wavy in the z direction. Is formed. On the other hand, as shown in FIG. 2B, the fiber bundles 2y are alternately arranged periodically on the upper surface side and lower surface side of the fiber bundle 2x, and are formed in a wavy shape as a whole in the z direction. It is assumed that the x direction, the y direction, and the z direction are orthogonal to each other.

このような織布2は、z方向に積層された形で樹脂板3の内部に収容されており、線膨張係数の大きな樹脂板3の伸縮を抑え、配線基板1の線膨張係数を小さくするためのものである。樹脂板3の表面より織布2の一部が露出していても良いが、織布2の露出部に対して樹脂板3上に配線導体4を形成すると、配線導体4が樹脂板3より剥離しやすくなることから、織布2は樹脂板2に完全に収容されていることが好ましい。   Such a woven fabric 2 is housed inside the resin plate 3 in a stacked manner in the z direction, suppresses expansion and contraction of the resin plate 3 having a large linear expansion coefficient, and reduces the linear expansion coefficient of the wiring board 1. Is for. Although a part of the woven fabric 2 may be exposed from the surface of the resin plate 3, if the wiring conductor 4 is formed on the resin plate 3 with respect to the exposed portion of the woven fabric 2, the wiring conductor 4 is more than the resin plate 3. It is preferable that the woven fabric 2 is completely accommodated in the resin plate 2 because it is easy to peel off.

織布2の数は単数であっても構わないが、樹脂板3に対する織布2の体積比率(織布2の体積V2、樹脂板3の体積Vとすると、V/V)は、45%以上70%以下に設定することが好ましい。織布2の体積比率が45%未満であると、樹脂板2の伸びを織布2が抑制する力が小さくなり、一方、織布2の体積比率が70%を超えると、樹脂板3の体積が不足するため、繊維束2x、2yとの間、あるいは、繊維束2x、2yを構成する複数の単繊維5の間に、樹脂が充填されない空隙が多数発生するおそれがあり、その結果、絶縁不良や樹脂板の膨れなどが生じて不良の原因となり易いからである。 The number of fabric 2 may be singular, the volume ratio of the woven fabric 2 against the resin plate 3 (the volume V 2 of the fabric 2, when the volume V 3 of the resin plate 3, V 2 / V 3) Is preferably set to 45% or more and 70% or less. When the volume ratio of the woven fabric 2 is less than 45%, the force by which the woven fabric 2 suppresses the elongation of the resin plate 2 becomes small. On the other hand, when the volume ratio of the woven fabric 2 exceeds 70%, Since the volume is insufficient, a large number of voids not filled with resin may occur between the fiber bundles 2x and 2y or between the plurality of single fibers 5 constituting the fiber bundles 2x and 2y. This is because defective insulation and swelling of the resin plate are likely to cause failure.

織布2を構成する繊維束2x、2yは、図3に示すように、各々が樹脂板3よりも線膨張係数が小さな材料からなる複数の単繊維5を束にして構成されており、繊維束2xのy方向に関する配列ピッチと、繊維束2yのx方向に関する配列ピッチとが略等しく設定されている。一方、繊維束2yの断面積は、繊維束2xの断面積よりも小さく設定されている。   As shown in FIG. 3, the fiber bundles 2x and 2y constituting the woven fabric 2 are formed by bundling a plurality of single fibers 5 each made of a material having a smaller linear expansion coefficient than the resin plate 3. The arrangement pitch in the y direction of the bundle 2x and the arrangement pitch in the x direction of the fiber bundle 2y are set to be approximately equal. On the other hand, the cross-sectional area of the fiber bundle 2y is set smaller than the cross-sectional area of the fiber bundle 2x.

ここで、繊維束の配列ピッチとは、隣り合う繊維束同士の中心軸間の間隔(隣り合う一対の繊維束同士で間隔が不均一である場合は最大間隔)をいう。図11に示す織布のように各繊維束の配列ピッチが織布2内でばらつきがある場合を考慮し、基本的には配列ピッチは繊維束間の配列ピッチの平均値のことをいう。ただし、全ての配列ピッチを測定しなくとも、連続して配列される任意の10本の中での繊維束の配列ピッチの平均値を採用しても良い。   Here, the arrangement pitch of the fiber bundles refers to an interval between the central axes of adjacent fiber bundles (the maximum interval when the interval between the pair of adjacent fiber bundles is not uniform). Considering the case where the arrangement pitch of each fiber bundle varies within the woven cloth 2 as in the woven cloth shown in FIG. 11, the arrangement pitch basically means the average value of the arrangement pitch between the fiber bundles. However, the average value of the arrangement pitches of the fiber bundles in arbitrary 10 pieces arranged in succession may be adopted without measuring all the arrangement pitches.

また、繊維束の断面積とはz方向に平行な断面の面積(1本の繊維束で断面積が不均一である場合は断面積の最大値)をいい、基本的には平均値をとるが、連続して配列される任意の5本の繊維束の断面積の平均値を採用しても良い。   The cross-sectional area of the fiber bundle refers to the cross-sectional area parallel to the z-direction (the cross-sectional area is the maximum when the cross-sectional area is not uniform for one fiber bundle), and basically takes an average value. However, you may employ | adopt the average value of the cross-sectional area of the arbitrary five fiber bundles arranged continuously.

繊維束2yの断面積を繊維束2xの断面積よりも小さく設定するには、単繊維5の数を繊維束2xよりも繊維束2yで小さくするか、あるいは、単繊維5の断面積を繊維束2xよりも繊維束2yで小さくすれば良い。   In order to set the cross-sectional area of the fiber bundle 2y to be smaller than the cross-sectional area of the fiber bundle 2x, the number of single fibers 5 is made smaller in the fiber bundle 2y than the fiber bundle 2x, or the cross-sectional area of the single fiber 5 is set to fiber. What is necessary is just to make it small with the fiber bundle 2y rather than the bundle 2x.

このようにx方向、y方向に対して単に同じ断面積の繊維束を用いるのではなく、繊維束2yの断面積を繊維束2xに比べて小さくしたことから、繊維束2yに対して編みこまれる繊維束2xのz方向へのうねりが小さくなる。うねりが小さいと、繊維束のばね性が損なわれ、その結果、繊維束がx方向に伸びようとする力が小さくなる。それ故、繊維束2xのx方向への伸びは低減されることとなり、織布2のx方向に関する線膨張係数を小さくすることが可能となる。   In this way, instead of simply using fiber bundles having the same cross-sectional area in the x and y directions, the cross-sectional area of the fiber bundle 2y is smaller than that of the fiber bundle 2x. The undulation in the z direction of the fiber bundle 2x is reduced. When the undulation is small, the spring property of the fiber bundle is impaired, and as a result, the force with which the fiber bundle tries to extend in the x direction becomes small. Therefore, the elongation in the x direction of the fiber bundle 2x is reduced, and the linear expansion coefficient of the woven fabric 2 in the x direction can be reduced.

なお、繊維束2yの断面積Syに対する繊維束2xの断面積Sxの比率Sx/Syは3〜100の範囲に設定することが好ましい。Sx/Syが3よりも小さいと、繊維束2xのz方向へのうねりをそれほど小さくできないため、繊維束2xの構成材料を比較的低線膨張係数の材料で構成されることとなり、材料の選択の幅が狭くなるおそれがあり、一方、Sx/Syが100よりも大きいと、繊維束2yが繊維束2xを保持する力が相対的に弱くなるため、繊維束2yと繊維束2xとがずれ易くなり、いわゆる目ずれと呼ばれる現象が生じる。目ずれが起きるとこの部分で基板に不均一な変形が生じ、微細高精度の配線形成が困難になる。   The ratio Sx / Sy of the cross-sectional area Sx of the fiber bundle 2x to the cross-sectional area Sy of the fiber bundle 2y is preferably set in the range of 3-100. When Sx / Sy is smaller than 3, the waviness of the fiber bundle 2x in the z direction cannot be reduced so much, and the constituent material of the fiber bundle 2x is made of a material having a relatively low linear expansion coefficient. On the other hand, if Sx / Sy is larger than 100, the force that the fiber bundle 2y holds the fiber bundle 2x becomes relatively weak, so that the fiber bundle 2y and the fiber bundle 2x are displaced from each other. It becomes easy and a phenomenon called so-called misalignment occurs. When misalignment occurs, nonuniform deformation of the substrate occurs at this portion, making it difficult to form fine and highly accurate wiring.

また、繊維束2x、2yの幅は、図4に示すように、繊維束2x、2yが交差していない非交差領域よりも繊維束2x、2yが交差している交差領域Cで広く形成されている。すなわち、交差領域Cにおける繊維束2x、2yの幅2xw、2ywは非交差領域における繊維束2x、2yの幅2xw、2ywよりも広く形成されている。この場合、交差領域Cの接触面積が大きくなるので、繊維束2xと繊維束2yとの密着強度が高まり、織布2の強度を長期にわたり高く維持することが可能となる。したがって、繊維束2x、2yの幅は、非交差領域よりも繊維束2x、2yが交差している交差領域Cで広く形成することが好ましい。 Further, as shown in FIG. 4, the width of the fiber bundles 2x and 2y is formed wider in the intersecting region C where the fiber bundles 2x and 2y intersect than in the non-intersecting region where the fiber bundles 2x and 2y do not intersect. ing. That is, the widths 2xw 1 and 2yw 1 of the fiber bundles 2x and 2y in the intersecting region C are formed wider than the widths 2xw 2 and 2yw 2 of the fiber bundles 2x and 2y in the non-intersecting region. In this case, since the contact area of the intersecting region C is increased, the adhesion strength between the fiber bundle 2x and the fiber bundle 2y is increased, and the strength of the woven fabric 2 can be maintained high over a long period of time. Therefore, the width of the fiber bundles 2x and 2y is preferably formed wider in the intersecting region C where the fiber bundles 2x and 2y intersect than in the non-intersecting region.

繊維束2x、2yを構成する単繊維5の材料としては、ヤング率が10GPa以上の材料が適用されることが好ましい。さらに、単繊維5の長手方向の線膨張係数(25℃以上200℃以下)は、−10ppm/℃以上0ppm/℃以下のものが好ましい。   As a material of the single fiber 5 constituting the fiber bundles 2x and 2y, a material having a Young's modulus of 10 GPa or more is preferably applied. Furthermore, the linear expansion coefficient (25 ° C. or more and 200 ° C. or less) in the longitudinal direction of the single fiber 5 is preferably −10 ppm / ° C. or more and 0 ppm / ° C. or less.

単繊維5の長手方向の線膨張係数は、低いほど繊維束2x、2yの長手方向の線膨張係数が低くなり、樹脂板3の伸びを抑制する効果が大きくなるため、線膨張係数は0ppm/℃以下であることが好ましい。   The lower the linear expansion coefficient in the longitudinal direction of the single fiber 5, the lower the linear expansion coefficient in the longitudinal direction of the fiber bundles 2x and 2y, and the greater the effect of suppressing the elongation of the resin plate 3, so the linear expansion coefficient is 0 ppm / It is preferable that it is below ℃.

なお、繊維束2xの断面積は繊維束2yの断面積よりも大きいため、繊維束2xの線膨張係数は繊維束2yの線膨張係数が小さい方が織布2の線膨張係数の低減という観点で好ましい。   In addition, since the cross-sectional area of the fiber bundle 2x is larger than the cross-sectional area of the fiber bundle 2y, the smaller the linear expansion coefficient of the fiber bundle 2y, the smaller the linear expansion coefficient of the fiber bundle 2y, the viewpoint that the linear expansion coefficient of the woven fabric 2 is reduced. Is preferable.

ヤング率が10GPa以上で、長手方向の線膨張係数(25℃以上200℃以下)が−10ppm/℃以上0ppm/℃以下の単繊維4aを構成する材料としては、全芳香族ポリエステル繊維、全芳香族ポリアミド、ポリベンズオキサゾール、液晶ポリマーを主成分とする有機繊維が良好に用いられる。織布を樹脂以外の材料で形成する場合、ヤング率が10GPa以上で、長手方向の線膨張係数(25℃以上200℃以下)が−10ppm/℃以上0ppm/℃以下の材料として、Sガラス、Tガラスを適用することも可能である。Eガラスも適用可能であるが、線膨張係数がSガラス、Tガラスよりも大きいため、Sガラス、Tガラスを適用することが好ましい。   The material constituting the single fiber 4a having a Young's modulus of 10 GPa or more and a linear expansion coefficient in the longitudinal direction (25 ° C. or more and 200 ° C. or less) of −10 ppm / ° C. or more and 0 ppm / ° C. or less includes wholly aromatic polyester fibers and wholly aromas. Organic fibers mainly composed of a group polyamide, polybenzoxazole, and a liquid crystal polymer are preferably used. When the woven fabric is formed of a material other than resin, the Young's modulus is 10 GPa or more, and the longitudinal linear expansion coefficient (25 ° C. or more and 200 ° C. or less) is −10 ppm / ° C. or more and 0 ppm / ° C. or less as S glass, It is also possible to apply T-glass. Although E glass can also be applied, it is preferable to use S glass or T glass because the linear expansion coefficient is larger than that of S glass or T glass.

・樹脂板
織布2を被覆する樹脂板3は、例えば、非金属無機フィラー(たとえば球状シリカ)を20wt%以上80wt%以下含有するエポキシ樹脂により形成されている。かかる構成により、20ppm/℃〜60ppm/℃の線膨張係数、2GPa〜5GPaのヤング率を実現できる。なお、樹脂板3は、単層であってもよいし、複数層で構成されていても良い。
-The resin board 3 which coat | covers the resin board woven fabric 2 is formed with the epoxy resin which contains 20 to 80 wt% of nonmetallic inorganic fillers (for example, spherical silica), for example. With this configuration, a linear expansion coefficient of 20 ppm / ° C. to 60 ppm / ° C. and a Young's modulus of 2 GPa to 5 GPa can be realized. The resin plate 3 may be a single layer or may be composed of a plurality of layers.

樹脂板3の線膨張係数は低いほど良いが、10ppm/℃よりも小さい線膨張係数を有するものは現在市販されていないため試験ができていない。従って、現時点では、樹脂板3の線膨張係数は10ppm/℃以上60ppm/℃以下のものが好適に用いられる。樹脂板3の線膨張係数が60ppm/℃を超えると、配線基板1全体の熱膨張率をシリコンと同等にすることが困難となるためである。また、樹脂板5は、ヤング率が小さいほど単繊維4aによって樹脂板5の膨張が抑制されやすくなるため、ヤング率は5GPa以下が好ましい。また、樹脂板5のヤング率が小さすぎると、配線基板の剛性が不足気味になる傾向にあるため、樹脂板5のヤング率は0.05GPa以上のものが好ましい。   The lower the linear expansion coefficient of the resin plate 3 is, the better. However, a resin plate having a linear expansion coefficient smaller than 10 ppm / ° C. is not commercially available and has not been tested. Therefore, at the present time, the linear expansion coefficient of the resin plate 3 is preferably 10 ppm / ° C. or more and 60 ppm / ° C. or less. This is because if the linear expansion coefficient of the resin plate 3 exceeds 60 ppm / ° C., it is difficult to make the thermal expansion coefficient of the entire wiring board 1 equal to that of silicon. Moreover, since the expansion of the resin plate 5 becomes easy to be suppressed by the single fiber 4a, the Young's modulus is preferably 5 GPa or less. Further, if the Young's modulus of the resin plate 5 is too small, the rigidity of the wiring board tends to be insufficient, so that the Young's modulus of the resin plate 5 is preferably 0.05 GPa or more.

本実施形態では、樹脂板5の材料としてエポキシ樹脂を使用しているが、勿論、エポキシ樹脂だけに限定されるものではない。たとえば、シアネート樹脂、ビスマレイミドトリアジンなどの樹脂材料を樹脂板の材料として適用可能である。ただし、ヤング率、線膨張係数については、前記エポキシ樹脂で適用した数値範囲と同一の数値範囲が好適な範囲である。非金属無機フィラーの量は、樹脂板5を構成する樹脂材料の種類に応じて適宜変更する。また、非金属無機フィラーとしては、シリカ以外には、水酸化アルミニウム、酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の材料を使用することができる。   In the present embodiment, an epoxy resin is used as the material of the resin plate 5, but of course it is not limited to the epoxy resin. For example, a resin material such as cyanate resin or bismaleimide triazine can be used as a material for the resin plate. However, for the Young's modulus and the linear expansion coefficient, the same numerical ranges as those applied with the epoxy resin are suitable ranges. The amount of the nonmetallic inorganic filler is appropriately changed according to the type of resin material constituting the resin plate 5. In addition to silica, materials such as aluminum hydroxide, aluminum oxide, magnesium hydroxide, and calcium hydroxide can be used as the nonmetallic inorganic filler.

・ヤング率の測定方法
単繊維5、繊維束2x、2yおよび樹脂板3のヤング率は、次のような方法で計測可能である。単繊維5のヤング率は、織布2を構成する繊維束2x、2yをほぐして、一本の単繊維5を取出し、この単繊維5について引張り試験機により測定して得られた単位断面積あたりの引張り応力を単繊維の伸び量で割ることで計測できる。また、繊維束2x、2yのヤング率は、繊維束2x、2yを引張り試験機により測定して得られた単位断面積あたりの引張り応力を繊維束2x、2yの伸び量で割ることで計測できる。そして、樹脂板3の場合、配線基板1を作製するときと同条件で硬化して作成したフィルムを矩形状の試験片に切り出し、この試験片を引張り試験機で測定して得られた単位断面積あたりの引張り応力を樹脂の伸び量で割ることにより計測できる。また従来周知のナノインデンテーション法を用いて計測することもできる。
-Measuring method of Young's modulus The Young's modulus of the single fiber 5, the fiber bundles 2x, 2y, and the resin plate 3 can be measured by the following method. The Young's modulus of the single fiber 5 is a unit cross-sectional area obtained by loosening the fiber bundles 2x and 2y constituting the woven fabric 2, taking out one single fiber 5, and measuring the single fiber 5 with a tensile tester. It can be measured by dividing the tensile stress per unit by the elongation of the single fiber. The Young's modulus of the fiber bundles 2x and 2y can be measured by dividing the tensile stress per unit cross-sectional area obtained by measuring the fiber bundles 2x and 2y with a tensile tester by the elongation amount of the fiber bundles 2x and 2y. . In the case of the resin plate 3, a unit piece obtained by cutting a film prepared by curing under the same conditions as the wiring board 1 into a rectangular test piece and measuring the test piece with a tensile tester. It can be measured by dividing the tensile stress per area by the amount of elongation of the resin. Moreover, it can also measure using a conventionally well-known nanoindentation method.

一方、配線基板1となった状態から単繊維5および樹脂板3のヤング率を計測することもできる。単繊維5のヤング率は、樹脂板3を除去して繊維束2x、2yを取り出した後、該繊維束2x、2yをほぐして一本の単繊維5を取出し、この単繊維5について引張り試験機により測定して得られた単位断面積あたりの引張り応力を繊維の伸び量で割ることで計測できる。また、繊維束2x、2yのヤング率は、樹脂板3を除去して取り出した繊維束2x、2yを引っ張り試験機により測定して得られた単位断面積あたりの引っ張り応力を繊維の伸び量で割ることで計測できる。樹脂板3のヤング率は、樹脂板3を薄片状に切り出し、四角柱や三角錐などの圧子を薄片表面に押し込み、その時の圧子にかかる荷重と圧子の下の射影面積から求める。なお、繊維束2x、2yのヤング率は、予め測定した樹脂板3のヤング率と、樹脂板3と単繊維5との複合体の状態でヤング率とを測定し、この複合体のヤング率と樹脂板3のヤング率とから、シミュレーションにより繊維束2x、2yのヤング率を計測することもできる。   On the other hand, the Young's modulus of the single fiber 5 and the resin plate 3 can be measured from the state in which the wiring board 1 is formed. The Young's modulus of the single fiber 5 is determined by removing the resin plate 3 and taking out the fiber bundles 2x and 2y, then loosening the fiber bundles 2x and 2y, and taking out one single fiber 5, and subjecting the single fiber 5 to a tensile test. It can be measured by dividing the tensile stress per unit cross-sectional area obtained by measuring with a machine by the amount of elongation of the fiber. The Young's modulus of the fiber bundles 2x and 2y is the tensile stress per unit cross-sectional area obtained by measuring the fiber bundles 2x and 2y taken out after removing the resin plate 3 with a tensile tester as the amount of elongation of the fibers. It can be measured by dividing. The Young's modulus of the resin plate 3 is obtained from the load applied to the indenter and the projected area under the indenter at the time when the resin plate 3 is cut into a thin piece and an indenter such as a square pole or a triangular pyramid is pushed into the surface of the thin piece. The Young's modulus of the fiber bundles 2x and 2y is determined by measuring the Young's modulus of the resin plate 3 measured in advance and the Young's modulus in the state of the composite of the resin plate 3 and the single fiber 5, and the Young's modulus of this composite. From the Young's modulus of the resin plate 3, the Young's modulus of the fiber bundles 2x and 2y can be measured by simulation.

・線膨張係数の測定方法
また、単繊維5及び繊維束2x、2yの長手方向の線膨張係数及び樹脂板3の線膨張係数は、次のような方法で計測可能である。単繊維5の線膨張係数は、繊維束2x、2yから単繊維5を取り出し、これを寸法測定用のプローブに取り付け、単繊維5を引っ張る方向に加重を加えながら温度を上げ、温度変化による寸法変化を測定することにより計測できる。繊維束2x、2yの線膨張係数は、繊維束2x、2yを寸法測定用のプローブに取り付け、繊維束2x、2yを引っ張る方向に加重を加えながら温度を上げ、温度変化による寸法変化を測定することにより計測できる。樹脂板3の線膨張係数は、たとえば2mm×3mm×15mmの試験片を切り出し、この試験片に寸法測定用のプローブを接触させつつ温度を上げ、温度変化による寸法変化を測定することにより計測できる。
-Measuring method of linear expansion coefficient Moreover, the linear expansion coefficient of the longitudinal direction of the single fiber 5 and fiber bundle 2x, 2y and the linear expansion coefficient of the resin board 3 are measurable with the following method. The linear expansion coefficient of the single fiber 5 is determined by taking out the single fiber 5 from the fiber bundles 2x and 2y, attaching it to a probe for measuring dimensions, raising the temperature while applying a load in the direction of pulling the single fiber 5, and measuring the dimension due to the temperature change. It can be measured by measuring the change. The linear expansion coefficient of the fiber bundles 2x and 2y is determined by attaching the fiber bundles 2x and 2y to a dimensional measurement probe, increasing the temperature while applying a load in the direction of pulling the fiber bundles 2x and 2y, and measuring the dimensional change due to the temperature change. Can be measured. The linear expansion coefficient of the resin plate 3 can be measured, for example, by cutting out a test piece of 2 mm × 3 mm × 15 mm, raising the temperature while contacting the test piece with a dimensional measurement probe, and measuring the dimensional change due to the temperature change. .

一方、配線基板1となった状態から単繊維5、繊維束2x、2y及び樹脂板3の線膨張係数を計測することもできる。単繊維5の線膨張係数は、樹脂板3を除去して繊維束2x、2yを取り出した後、繊維束2x、2yから単繊維5を取り出し、該単繊維5を寸法測定用のプローブに取り付け、単繊維5を引っ張る方向に加重を加えながら温度を上げ、温度変化による寸法変化を測定することにより計測できる。繊維束2x、2yの線膨張係数は、樹脂板3を除去して繊維束2x、2yを取り出し、繊維束2x、2yを寸法測定用のプローブを取り付け、繊維束2x、2yを引っ張りながら温度を上昇させ、温度変化による寸法変化を測定することにより計測できる。樹脂板3の線膨張係数は、樹脂板3を適当な大きさの薄片状に切り出し、この薄片を試験片として寸法測定用のプローブに取り付け、試験片を引っ張る方向に加重を加えながら温度を上げ、温度変化による寸法変化を測定することにより計測できる。なお、繊維束2x、2yの線膨張係数は、予め樹脂板3の線膨張係数を測定するとともに、樹脂板3と繊維束2x、2yの複合体の状態で線膨張係数を測定し、この複合体の線膨張係数と樹脂板3の線膨張係数とから、シミュレーションにより繊維束2x、2yの線膨張係数を計測することもできる。   On the other hand, the linear expansion coefficients of the single fibers 5, the fiber bundles 2 x and 2 y and the resin plate 3 can be measured from the state where the wiring board 1 is formed. The linear expansion coefficient of the single fiber 5 is such that after removing the resin plate 3 and taking out the fiber bundles 2x and 2y, the single fiber 5 is taken out from the fiber bundles 2x and 2y, and the single fiber 5 is attached to a probe for measuring dimensions. It can be measured by increasing the temperature while applying a load in the direction of pulling the single fiber 5 and measuring the dimensional change due to the temperature change. The linear expansion coefficient of the fiber bundles 2x and 2y is determined by removing the resin plate 3 and taking out the fiber bundles 2x and 2y, attaching the probe for measuring the dimensions of the fiber bundles 2x and 2y, and pulling the fiber bundles 2x and 2y. It can be measured by raising and measuring the dimensional change due to temperature change. The linear expansion coefficient of the resin plate 3 is determined by cutting the resin plate 3 into a thin piece of appropriate size, attaching the thin piece as a test piece to a dimensional measurement probe, and increasing the temperature while applying a load in the direction of pulling the test piece. It can be measured by measuring a dimensional change due to a temperature change. The linear expansion coefficient of the fiber bundles 2x and 2y is determined in advance by measuring the linear expansion coefficient of the resin plate 3 and measuring the linear expansion coefficient in the state of the composite of the resin plate 3 and the fiber bundles 2x and 2y. From the linear expansion coefficient of the body and the linear expansion coefficient of the resin plate 3, the linear expansion coefficients of the fiber bundles 2x and 2y can be measured by simulation.

・配線導体
配線導体4は、樹脂板3の上面や内部、場合によっては下面にも形成されており、銅や 銀、金、アルミニウム、ニッケル、クロム等の導電性材料により所定パターンに形成されている。かかる配線導体4は、配線基板1に搭載されるICやLSI等の半導体素子に電気的に接続されており、該半導体素子に電力を供給する給電配線として機能する。なお、配線導体4としては、スルーホール導体や電極パッドを含んでも良い。
-Wiring conductor The wiring conductor 4 is also formed on the upper surface and inside of the resin plate 3 and in some cases on the lower surface. It is formed in a predetermined pattern by a conductive material such as silver, gold, aluminum, nickel, or chromium. The wiring conductor 4 is electrically connected to a semiconductor element such as an IC or LSI mounted on the wiring board 1 and functions as a power supply wiring for supplying power to the semiconductor element. The wiring conductor 4 may include a through-hole conductor and an electrode pad.

・配線基板の製造方法
本実施形態に係る配線基板1は、例えば、以下の工程を経て製作される。
-Wiring board manufacturing method The wiring board 1 according to the present embodiment is manufactured through the following steps, for example.

(1)まず、織布2を形成する。織布2は、単繊維5を束ねて糸状とすることで断面積の異なる繊維束2x、2yを形成する。次に、繊維束2x、2yを互いの配列ピッチが略等しくなるように織機を用いて平織りにすることで繊維束2x、2yを編みこみ、織布2を形成する。繊維束2x、2yの交差領域において繊維束2x、2yの幅を広くしたい場合は、プレス装置等を用いて織布2をz方向に加熱プレスする。以上の方法によって織布2が完成する。   (1) First, the woven fabric 2 is formed. The woven fabric 2 forms fiber bundles 2x and 2y having different cross-sectional areas by bundling the single fibers 5 into a thread shape. Next, the fiber bundles 2x and 2y are woven into a plain weave using a loom so that the arrangement pitches of the fiber bundles 2x and 2y are substantially equal to each other, and the fiber bundles 2x and 2y are knitted to form the woven fabric 2. When it is desired to increase the width of the fiber bundles 2x and 2y in the intersecting region of the fiber bundles 2x and 2y, the woven fabric 2 is heated and pressed in the z direction using a press device or the like. The woven fabric 2 is completed by the above method.

(2)次に、樹脂板3を構成する樹脂材料(例えばエポキシ樹脂の前駆体)を準備し、これに予めシランカップリング処理を行った球状シリカ粉末と溶剤を混合することでワニスを作製する。そして、作製したワニスを織布2に含浸させ、樹脂シート(プリプレグ)を作製する。   (2) Next, a resin material (for example, a precursor of an epoxy resin) constituting the resin plate 3 is prepared, and a varnish is prepared by mixing a spherical silica powder that has been previously subjected to silane coupling treatment and a solvent. . And the produced varnish is impregnated in the woven fabric 2, and a resin sheet (prepreg) is produced.

(3)続いて、得られた樹脂シートを複数積層して、その表裏に金属箔(たとえば銅箔)を被着させ、これを樹脂シートの厚み方向に加熱プレスを行い、更に、レーザーやドリル等で形成された貫通孔に対して無電解めっきや電気めっき等によりスリーホール導体を形成する。そして、銅箔を従来周知のフォトリソグラフィー及びエッチングにより所定パターンに加工することによって織布2を内部に収容した樹脂板2を有する配線基板1が完成する。   (3) Subsequently, a plurality of the obtained resin sheets are laminated, and a metal foil (for example, a copper foil) is deposited on the front and back, and this is heated and pressed in the thickness direction of the resin sheet. A three-hole conductor is formed by electroless plating, electroplating or the like on the through-hole formed by, for example. Then, the copper substrate is processed into a predetermined pattern by photolithography and etching that are conventionally known, thereby completing the wiring substrate 1 having the resin plate 2 in which the woven fabric 2 is accommodated.

この後、得られた配線基板上にビルドアップ法で樹脂層及び配線層を積層し、多層基板を作製しても良いし、配線基板1上にICやLSI等の半導体素子を実装し、半導体素子の実装構造体を形成しても良い。   Thereafter, a resin layer and a wiring layer may be laminated on the obtained wiring board by a build-up method to produce a multilayer board, or a semiconductor element such as an IC or LSI may be mounted on the wiring board 1, and the semiconductor An element mounting structure may be formed.

(第2の実施形態)
図5は、第2の実施形態に係る配線基板の織布を示す平面図である。以下では、本実施形態が第1の実施形態と異なる構成について主に説明し、共通する構成に関する説明は原則的に省略する。
(Second Embodiment)
FIG. 5 is a plan view showing a woven fabric of a wiring board according to the second embodiment. In the following, the configuration of the present embodiment that is different from that of the first embodiment will be mainly described, and the description of the common configuration will be omitted in principle.

本実施形態における織布2は、繊維束2x、2yの断面積が略等しく、繊維束2xの配列ピッチを繊維束2yの配列ピッチよりも小さく設定している。かかる構成とすることにより、単位長さあたりの繊維束2xの数を多くすることができ、x方向への樹脂板3の伸びを抑制する力を、繊維束2x、2yの配列ピッチを互いに等しくする場合に比べて大きくすることが可能となる。その結果、織布2全体の線膨張係数を低減できる。   In the woven fabric 2 in the present embodiment, the cross-sectional areas of the fiber bundles 2x and 2y are substantially equal, and the arrangement pitch of the fiber bundles 2x is set smaller than the arrangement pitch of the fiber bundles 2y. With this configuration, the number of the fiber bundles 2x per unit length can be increased, and the force for suppressing the elongation of the resin plate 3 in the x direction is equal to the arrangement pitch of the fiber bundles 2x and 2y. It becomes possible to enlarge compared with the case where it does. As a result, the linear expansion coefficient of the entire woven fabric 2 can be reduced.

繊維束2yの配列ピッチPyに対する繊維束2xの配列ピッチPxの比率Px/Pyは1/100〜1/3の範囲に設定することが好ましい。Px/Pyが1/100よりも小さいと、繊維束2yのz方向へのうねり回数が多くなり、繊維束2yのばね性が増大し、線膨張係数の低減効果が小さくなる場合がある。一方、Px/Pyが1/3よりも大きいと、繊維束2xのx方向の線膨張係数の低減効果がそれほど顕著ではないため、配線基板1全体の線膨張係数を大幅に低減する際には、繊維束2xの選択材料を十分に考慮する必要があり、繊維束2xの選択材料の幅が狭くなる。   The ratio Px / Py of the arrangement pitch Px of the fiber bundle 2x to the arrangement pitch Py of the fiber bundle 2y is preferably set in the range of 1/100 to 1/3. When Px / Py is smaller than 1/100, the number of undulations in the z direction of the fiber bundle 2y increases, the spring property of the fiber bundle 2y increases, and the effect of reducing the linear expansion coefficient may be reduced. On the other hand, when Px / Py is larger than 1/3, the effect of reducing the linear expansion coefficient in the x direction of the fiber bundle 2x is not so remarkable. Therefore, when the linear expansion coefficient of the entire wiring board 1 is significantly reduced. Therefore, it is necessary to sufficiently consider the selection material of the fiber bundle 2x, and the width of the selection material of the fiber bundle 2x becomes narrow.

(第3の実施形態)
図6は、第3の実施形態に係る配線基板の織布を示す平面図である。以下では、本実施形態が第1の実施形態と異なる構成について主に説明し、共通する構成に関する説明は原則的に省略する。
(Third embodiment)
FIG. 6 is a plan view showing a woven fabric of a wiring board according to the third embodiment. In the following, the configuration of the present embodiment that is different from that of the first embodiment will be mainly described, and the description of the common configuration will be omitted in principle.

本実施形態における織布2は、繊維束2x、2yの断面積の関係は第1の実施形態と同様に、繊維束2yの断面積を繊維束2xの断面積よりも小さく設定されているが、繊維束2xの配列ピッチが繊維束2yの配列ピッチよりも小さく設定されている。かかる構成とすることにより、繊維束2xのz方向へのうねりを小さく抑制しつつ、単位長さあたりの繊維束2xの数を多くすることができる。その結果、x方向に伸びようとする樹脂板3を抑制する力が第1実施形態や第2実施形態よりも大きくなり、ひいては織布2全体の線膨張係数の低減化につながる。   In the woven fabric 2 in this embodiment, the cross-sectional area relationship between the fiber bundles 2x and 2y is set to be smaller than the cross-sectional area of the fiber bundle 2x, as in the first embodiment. The arrangement pitch of the fiber bundle 2x is set smaller than the arrangement pitch of the fiber bundle 2y. By setting it as this structure, the number of the fiber bundles 2x per unit length can be increased, suppressing the wave | undulation to the z direction of the fiber bundle 2x small. As a result, the force that suppresses the resin plate 3 that tries to extend in the x direction is greater than that in the first and second embodiments, which leads to a reduction in the linear expansion coefficient of the entire woven fabric 2.

(第4の実施形態)
図7は、第4の実施形態に係る配線基板の織布を示す平面図である。以下では、本実施形態が第1の実施形態と異なる構成について主に説明し、共通する構成に関する説明は原則的に省略する。
(Fourth embodiment)
FIG. 7 is a plan view showing a woven fabric of a wiring board according to the fourth embodiment. In the following, the configuration of the present embodiment that is different from that of the first embodiment will be mainly described, and the description of the common configuration will be omitted in principle.

本実施形態における配線基板は、第1の実施形態における織布2に相当する織布2A上に、該織布2Aと略同様の構成を有する織布2Bを約90度(±10度、すなわち80度〜100度まで許容されるとする)右方向(時計回り)に回転させた形で配置し、これら織布2A、2Bを樹脂板3の内部に収容した構成を有している。すなわち、織布2Aを構成する繊維束2Ax、2Ayは、互いに配列ピッチが略等しく、繊維束2Ayの断面積は繊維束2Axの断面積よりも小さく設定されているが、織布2Bを構成する繊維束2Bx、2Byは、互いに配列ピッチが略等しいが、繊維束2Byの断面積は繊維束2Bxの断面積よりも大きく設定されており、繊維束の断面積の大小関係が織布2Aと織布2Bとで逆になっている。   In the wiring board in the present embodiment, a woven fabric 2B having a configuration substantially the same as that of the woven fabric 2A is placed on the woven fabric 2A corresponding to the woven fabric 2 in the first embodiment at about 90 degrees (± 10 degrees, ie, The woven fabrics 2 </ b> A and 2 </ b> B are accommodated inside the resin plate 3 and arranged in a form rotated in the right direction (clockwise). That is, the fiber bundles 2Ax and 2Ay constituting the woven fabric 2A have substantially the same arrangement pitch, and the cross-sectional area of the fiber bundle 2Ay is set smaller than the cross-sectional area of the fiber bundle 2Ax, but constitutes the woven fabric 2B. The fiber bundles 2Bx and 2By have substantially the same arrangement pitch, but the cross-sectional area of the fiber bundle 2By is set larger than the cross-sectional area of the fiber bundle 2Bx, and the cross-sectional area of the fiber bundle is woven with the woven fabric 2A. The cloth 2B is reversed.

このような構成を採用するに至った理由は以下の通りである。すなわち、第1の実施形態に係る織布2をそのままz方向に積層する場合、確かに配線基板全体の線膨張係数を低減できるが、x方向に関する配線基板1の線膨張係数とy方向に関する配線基板1の線膨張係数との差が拡大する傾向にある。このような傾向は、配線基板1の歪みの原因となるものであるが、かかる傾向は配線基板1が多層配線基板の用途に用いられる場合に特に強くなるため、あまり好ましくない。それ故、配線基板1の線膨張係数を低く抑えつつもx方向に関する配線基板1の線膨張係数とy方向に関する配線基板1の線膨張係数との差を小さくすることが望まれる。   The reason for adopting such a configuration is as follows. That is, when the woven fabric 2 according to the first embodiment is laminated in the z direction as it is, the linear expansion coefficient of the entire wiring board can surely be reduced, but the linear expansion coefficient of the wiring board 1 with respect to the x direction and the wiring with respect to the y direction. The difference from the linear expansion coefficient of the substrate 1 tends to increase. Such a tendency causes the distortion of the wiring board 1, but such a tendency becomes particularly strong when the wiring board 1 is used for a multilayer wiring board. Therefore, it is desired to reduce the difference between the linear expansion coefficient of the wiring board 1 in the x direction and the linear expansion coefficient of the wiring board 1 in the y direction while keeping the linear expansion coefficient of the wiring board 1 low.

そこで、本実施形態に係る配線基板1により、織布2Aでx方向に関する配線基板1の線膨張係数を低減するとともに、織布2Bでy方向に関する配線基板1の線膨張係数を低減することができる。その結果、配線基板全体の線膨張係数を低減しつつ、x方向とy方向の線膨張係数の差に起因した配線基板1の歪みが良好に抑制される。したがって、特に配線基板を多層配線基板の用途や、半導体素子のフリップチップ実装用の配線基板の用途として用いる場合、特に有効である。   Therefore, the wiring board 1 according to the present embodiment can reduce the linear expansion coefficient of the wiring board 1 in the x direction with the woven cloth 2A, and can reduce the linear expansion coefficient of the wiring board 1 in the y direction with the woven cloth 2B. it can. As a result, while reducing the linear expansion coefficient of the entire wiring board, the distortion of the wiring board 1 due to the difference between the linear expansion coefficients in the x direction and the y direction is satisfactorily suppressed. Therefore, it is particularly effective when the wiring board is used as a multilayer wiring board or a wiring board for flip chip mounting of semiconductor elements.

(第5の実施形態)
図8は、第5の実施形態に係る配線基板の織布を示す平面図である。以下では、本実施形態が第4の実施形態と異なる構成について主に説明し、共通する構成に関する説明は原則的に省略する。
(Fifth embodiment)
FIG. 8 is a plan view showing a woven fabric of a wiring board according to the fifth embodiment. In the following, the configuration of the present embodiment that is different from that of the fourth embodiment will be mainly described, and the description of the common configuration will be omitted in principle.

本実施形態における配線基板は、織布2Bが織布2Aを45度右方向(時計回り)に回転させた形で織布2A上に配置されている点で第4の実施形態に係る配線基板と構成を異にしている。このような構成であっても、第4の実施形態と同様にx方向及びy方向の線膨張係数の差を小さくできるが、第4の実施形態の方がその効果は大きい。   The wiring board according to the fourth embodiment is the wiring board according to the fourth embodiment in that the woven cloth 2B is arranged on the woven cloth 2A in a form in which the woven cloth 2A is rotated 45 degrees rightward (clockwise). The configuration is different. Even with such a configuration, the difference between the linear expansion coefficients in the x direction and the y direction can be reduced as in the fourth embodiment, but the effect of the fourth embodiment is greater.

なお、織布2Bの織布2Aに対する回転の角度は45度でなくとも良いのは勿論であるが、10度以上回転させることが好ましい。また第4の実施形態から明らかなように80度〜100度回転させることが更に好ましい。100度よりも大きく回転させると、織布2A,2Bが軸対称の構成を有している関係で80度未満の角度で回転させているのと同様の構成となってしまうので、80度〜100度が最も好ましい。   The rotation angle of the woven fabric 2B with respect to the woven fabric 2A is not necessarily 45 degrees, but it is preferable to rotate it by 10 degrees or more. Further, as is clear from the fourth embodiment, it is more preferable to rotate it by 80 degrees to 100 degrees. When rotated more than 100 degrees, the woven fabrics 2A and 2B have the same configuration as that rotated at an angle of less than 80 degrees because they have an axisymmetric structure. 100 degrees is most preferred.

(第6の実施形態)
図9は、第6の実施形態に係る配線基板の織布を示す平面図である。以下では、本実施形態が第4の実施形態と異なる構成について主に説明し、共通する構成に関する説明は原則的に省略する。
(Sixth embodiment)
FIG. 9 is a plan view showing a woven fabric of a wiring board according to the sixth embodiment. In the following, the configuration of the present embodiment that is different from that of the fourth embodiment will be mainly described, and the description of the common configuration will be omitted in principle.

本実施形態における配線基板は、織布2A、2Bとして第2の実施形態における織布に相当するものを用いている点で第4の実施形態と異なる。織布2Aと織布2Bとを約90度回転させた関係に配置させる点は共通している。   The wiring board in the present embodiment is different from the fourth embodiment in that the woven fabrics 2A and 2B are equivalent to the woven fabric in the second embodiment. The point that the woven fabric 2A and the woven fabric 2B are arranged in a relationship rotated by about 90 degrees is common.

かかる構成においても第4の実施形態と同様の効果を奏する。なお、織布2A,2Bの回転角度が90度に限定されないことは言うまでもない。   Even in such a configuration, the same effects as in the fourth embodiment are obtained. Needless to say, the rotation angle of the woven fabrics 2A and 2B is not limited to 90 degrees.

(第7の実施形態)
図10は、第7の実施形態に係る配線基板の織布を示す平面図である。以下では、本実施形態が第4の実施形態と異なる構成について主に説明し、共通する構成に関する説明は省略する。
(Seventh embodiment)
FIG. 10 is a plan view showing a woven fabric of a wiring board according to the seventh embodiment. In the following, the configuration of the present embodiment that is different from that of the fourth embodiment will be mainly described, and the description of the common configuration will be omitted.

本実施形態における配線基板は、織布2A、2Bとして第3の実施形態における織布に相当するものを用いている点で第4の実施形態と異なる。織布2Aと織布2Bとを約90度回転させた関係に配置させる点は共通している。   The wiring board in this embodiment is different from that in the fourth embodiment in that the woven fabrics 2A and 2B are equivalent to the woven fabric in the third embodiment. The point that the woven fabric 2A and the woven fabric 2B are arranged in a relationship rotated by about 90 degrees is common.

かかる構成においても第4の実施形態と同質の効果を奏するが、個々の織布2A,2Bに関する線膨張係数の低減効果が第4の実施形態と比べて大きいため、第4の実施形態に比べてより効果が大きい。なお、織布2A,2Bの回転角度が90度に限定されないことは言うまでもない。   Even in such a configuration, the same effect as that of the fourth embodiment is obtained, but the effect of reducing the linear expansion coefficient for each of the woven fabrics 2A and 2B is larger than that of the fourth embodiment, and therefore, compared with the fourth embodiment. Is more effective. Needless to say, the rotation angle of the woven fabrics 2A and 2B is not limited to 90 degrees.

(その他の実施形態)
本発明は、上述の第1乃至第7の実施形態に特に限定されるものではなく、種々の変更・改良が可能である。
(Other embodiments)
The present invention is not particularly limited to the first to seventh embodiments described above, and various modifications and improvements can be made.

例えば、第1乃至第3の実施形態のように、線膨張係数がy方向よりもx方向で小さい織布2をz方向に積層する場合は、配線基板1の線膨張係数はy方向よりもx方向で小さくなるが、x方向とy方向との配線基板1の線膨張係数の差を緩和するため、樹脂板3に形成される配線導体4の長手方向をx方向に略平行とすることが好ましい。配線導体4は線膨張係数が大きいため、かかる構成を採用すれば、配線基板全体として見れば、配線導体4による配線基板1のy方向の線膨張係数の増加を抑え、配線基板1の歪みの増加を良好に防止することができる。   For example, as in the first to third embodiments, when the woven fabric 2 having a linear expansion coefficient smaller in the x direction than in the y direction is stacked in the z direction, the linear expansion coefficient of the wiring board 1 is larger than that in the y direction. Although it decreases in the x direction, the longitudinal direction of the wiring conductor 4 formed on the resin plate 3 is made substantially parallel to the x direction in order to alleviate the difference in the linear expansion coefficient of the wiring board 1 between the x direction and the y direction. Is preferred. Since the wiring conductor 4 has a large linear expansion coefficient, if such a configuration is adopted, an increase in the linear expansion coefficient in the y direction of the wiring board 1 due to the wiring conductor 4 can be suppressed and the distortion of the wiring board 1 can be reduced. An increase can be prevented satisfactorily.

また、第4乃至第7の実施形態においては、織布2Aと織布2Bの数は等しいことが好ましい。織布2A,2Bの数が異なると、その数の差に応じてx方向とy方向の線膨張係数の差が大きくなるからである。また織布2A、織布2Bの配置は、z方向に関して対称的な配置となることが好ましく、この場合、x方向とy方向の線膨張係数の差をより小さくできる。   In the fourth to seventh embodiments, it is preferable that the numbers of the woven fabric 2A and the woven fabric 2B are equal. This is because if the number of the woven fabrics 2A and 2B is different, the difference between the linear expansion coefficients in the x direction and the y direction is increased according to the difference in the number. Further, the arrangement of the woven cloth 2A and the woven cloth 2B is preferably symmetrical with respect to the z direction. In this case, the difference between the linear expansion coefficients in the x direction and the y direction can be further reduced.

さらに、第1乃至第7の実施形態においては、繊維束をxおよびy方向の二方向に配列しているが、この配列方向は二方向だけに限定されるものではない。たとえば繊維束を三方向以上に配列して相互に編み込んで形成する場合もあり得る。この場合には、配線基板の剛性強度を、二方向に配列しているものに比べて高めることができる。また二方向に配列される繊維束は、z方向に対しては垂直に規定されるものの、垂直に交差しない場合もある。   Furthermore, in the first to seventh embodiments, the fiber bundles are arranged in two directions in the x and y directions, but this arrangement direction is not limited to only two directions. For example, there may be a case where fiber bundles are arranged in three or more directions and knitted together. In this case, the rigidity strength of the wiring board can be increased as compared with those arranged in two directions. In addition, fiber bundles arranged in two directions may be perpendicular to the z direction but may not intersect perpendicularly.

本発明の第1の実施形態に係る半導体素子の実装構造体を示す断面図である。It is sectional drawing which shows the mounting structure of the semiconductor element which concerns on the 1st Embodiment of this invention. (a)は、図1に示す配線基板に用いられる織布を示す平面図、(b)は、(a)に示す織布のA−A線断面図である。(A) is a top view which shows the woven fabric used for the wiring board shown in FIG. 1, (b) is the sectional view on the AA line of the woven fabric shown in (a). 繊維束の断面図である。It is sectional drawing of a fiber bundle. 繊維束2x、2yの交差領域Cの拡大平面図である。It is an enlarged plan view of the intersection area C of the fiber bundles 2x and 2y. 本発明の第2の実施形態に係る配線基板の織布を示す平面図である。It is a top view which shows the woven fabric of the wiring board which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る配線基板の織布を示す平面図である。It is a top view which shows the woven fabric of the wiring board which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る配線基板の織布を示す平面図である。It is a top view which shows the woven fabric of the wiring board which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る配線基板の織布を示す平面図である。It is a top view which shows the woven fabric of the wiring board which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る配線基板の織布を示す平面図である。It is a top view which shows the woven fabric of the wiring board which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係る配線基板の織布を示す平面図である。It is a top view which shows the woven fabric of the wiring board which concerns on the 7th Embodiment of this invention. 本発明の他の実施形態に係る配線基板の織布を示す平面図である。It is a top view which shows the woven fabric of the wiring board which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1・・・配線基板
2、2A、2B・・・織布
2x、2Ax、2Bx・・・繊維束
2y、2Ay、2By・・・繊維束
3・・・樹脂板
4・・・配線導体
5・・・単繊維
6・・・半導体素子
C・・・交差領域
DESCRIPTION OF SYMBOLS 1 ... Wiring board 2, 2A, 2B ... Woven cloth 2x, 2Ax, 2Bx ... Fiber bundle 2y, 2Ay, 2By ... Fiber bundle 3 ... Resin board 4 ... Wiring conductor 5. ..Single fiber 6 ... Semiconductor element C ... Intersection region

Claims (16)

第1方向に沿って配置される複数の第1繊維束と、前記第1方向と異なる第2方向に沿って配置され、前記第1繊維束よりも小さな断面積を有する複数の第2繊維束と、を編み込んで構成される第1織布と、
前記第1織布を内部に収容する樹脂板と、
前記樹脂板上に配置される複数の配線導体と、
を備えた配線基板。
A plurality of first fiber bundles arranged along the first direction and a plurality of second fiber bundles arranged along a second direction different from the first direction and having a smaller cross-sectional area than the first fiber bundle. And a first woven fabric configured by weaving,
A resin plate for accommodating the first woven fabric therein;
A plurality of wiring conductors disposed on the resin plate;
Wiring board equipped with.
請求項1に記載の配線基板において、
前記第1方向と異なる第3方向に沿って配置される複数の第3繊維束と、前記第2方向及び前記第3方向とは異なる第4方向に沿って配置され、前記第3繊維束よりも小さな断面積を有する複数の第4繊維束と、を編み込んで構成され、前記樹脂板内に収容されるように配置される第2織布を、更に備えた配線基板。
The wiring board according to claim 1,
A plurality of third fiber bundles arranged along a third direction different from the first direction, and arranged along a fourth direction different from the second direction and the third direction, from the third fiber bundle A wiring board further comprising a second woven fabric, which is formed by weaving a plurality of fourth fiber bundles having a small cross-sectional area, and is arranged so as to be accommodated in the resin plate.
請求項2に記載の配線基板において、
前記第3繊維束は、前記第4繊維束よりも線膨張係数が小さい配線基板。
The wiring board according to claim 2,
The third fiber bundle is a wiring board having a smaller linear expansion coefficient than the fourth fiber bundle.
請求項1乃至請求項3のいずれか1項に記載の配線基板において、
前記第1繊維束は、前記第2繊維束よりも線膨張係数が小さい配線基板。
In the wiring board according to any one of claims 1 to 3,
The first fiber bundle is a wiring board having a smaller linear expansion coefficient than the second fiber bundle.
請求項2乃至請求項4のいずれか1項に記載の配線基板において、
前記第1方向と前記第4方向とが互いに略平行に配置され、
前記第2方向と前記第3方向とが互いに略平行に配置される配線基板。
In the wiring board according to any one of claims 2 to 4,
The first direction and the fourth direction are arranged substantially parallel to each other;
A wiring board in which the second direction and the third direction are arranged substantially parallel to each other.
請求項2乃至請求項5のいずれか1項に記載の配線基板において、
前記第1織布の数と前記第2織布の数が等しい配線基板。
In the wiring board according to any one of claims 2 to 5,
A wiring board in which the number of the first woven fabric and the number of the second woven fabric are equal.
請求項2乃至請求項6のいずれか1項に記載の配線基板において、
前記第1繊維束と前記第2繊維束との交差領域の幅は、前記第1繊維束と前記第2繊維束との非交差領域の幅よりも大きく、
前記第3繊維束と前記第4繊維束との交差領域の幅は、前記第3繊維束と前記第4繊維束との非交差領域の幅よりも大きい配線基板。
The wiring board according to any one of claims 2 to 6,
The width of the intersecting region between the first fiber bundle and the second fiber bundle is larger than the width of the non-intersecting region between the first fiber bundle and the second fiber bundle,
The width of the intersection region between the third fiber bundle and the fourth fiber bundle is larger than the width of the non-intersection region between the third fiber bundle and the fourth fiber bundle.
請求項2乃至請求項7のいずれか1項に記載の配線基板において、
前記第1繊維束乃至前記第4繊維束は、各々がその長手方向と略直交する方向に沿って間隔を空けて配列されており、
前記第2繊維束の配列ピッチは前記第1繊維束の配列ピッチよりも大きく設定され、前記第4繊維束の配列ピッチは前記第3繊維束の配列ピッチよりも大きく設定されている配線基板。
The wiring board according to any one of claims 2 to 7,
The first fiber bundle to the fourth fiber bundle are each arranged at intervals along a direction substantially orthogonal to the longitudinal direction thereof,
The wiring board in which the arrangement pitch of the second fiber bundle is set larger than the arrangement pitch of the first fiber bundle, and the arrangement pitch of the fourth fiber bundle is set larger than the arrangement pitch of the third fiber bundle.
第1方向に沿って配置され、該第1方向と略直交する方向に間隔を空けて配列される複数の第1繊維束と、前記第1方向とは異なる第2方向に沿って配置され、該第2方向と略直交する方向に間隔を空けて配列される複数の第2繊維束と、を編み込んで構成され、前記第2繊維束の配列ピッチが前記第1繊維束の配列ピッチよりも大きく設定された第1織布と、
前記第1織布を内部に収容する樹脂板と、
前記樹脂板上に配置される複数の配線導体と、
を備えたことを特徴とする配線基板。
A plurality of first fiber bundles arranged along the first direction and arranged at intervals in a direction substantially perpendicular to the first direction, and arranged along a second direction different from the first direction; A plurality of second fiber bundles arranged at intervals in a direction substantially perpendicular to the second direction, and the arrangement pitch of the second fiber bundles is greater than the arrangement pitch of the first fiber bundles. A first woven fabric set large,
A resin plate for accommodating the first woven fabric therein;
A plurality of wiring conductors disposed on the resin plate;
A wiring board comprising:
請求項9に記載の配線基板において、
前記第1方向と異なる第3方向に沿って配置され、該第3方向と略直交する方向に間隔を空けて配列される複数の第3繊維束と、前記第2方向及び前記第3方向とは異なる第4方向に沿って配置され、該第4方向と略直交する方向に間隔を空けて配列される複数の第4繊維束と、を編み込んで構成されるとともに、前記第4繊維束の配列ピッチが前記第3繊維束の配列ピッチよりも大きく設定され、前記樹脂板の内部に収容される第2織布と、を備えた配線基板。
The wiring board according to claim 9,
A plurality of third fiber bundles arranged along a third direction different from the first direction and arranged at intervals in a direction substantially orthogonal to the third direction; the second direction and the third direction; Are arranged along different fourth directions, and are knitted with a plurality of fourth fiber bundles arranged at intervals in a direction substantially orthogonal to the fourth direction. And a second woven fabric having an arrangement pitch set larger than the arrangement pitch of the third fiber bundle and housed inside the resin plate.
請求項10に記載の配線基板において、
前記第3繊維束は、前記第4繊維束よりも線膨張係数が小さいことを特徴とする配線基板。
The wiring board according to claim 10,
The wiring board according to claim 3, wherein the third fiber bundle has a smaller linear expansion coefficient than the fourth fiber bundle.
請求項9乃至請求項11のいずれか1項に記載の配線基板において、
前記第1繊維束は、前記第2繊維束よりも線膨張係数が小さいことを特徴とする配線基板。
The wiring board according to any one of claims 9 to 11,
The wiring board, wherein the first fiber bundle has a smaller linear expansion coefficient than the second fiber bundle.
請求項9乃至請求項12のいずれか1項に記載の配線基板において、
前記第1方向と前記第4方向とが互いに略平行に配置され、
前記第2方向と前記第3方向とが互いに略平行に配置されることを特徴とする配線基板。
The wiring board according to any one of claims 9 to 12,
The first direction and the fourth direction are arranged substantially parallel to each other;
The wiring board, wherein the second direction and the third direction are arranged substantially parallel to each other.
請求項9乃至請求項13のいずれか1項に記載の配線基板において、
前記第1織布の数と前記第2織布の数が等しい配線基板。
The wiring board according to any one of claims 9 to 13,
A wiring board in which the number of the first woven fabric and the number of the second woven fabric are equal.
請求項9乃至請求項14のいずれか1項に記載の配線基板において、
前記第1繊維束と前記第2繊維束との交差領域の幅は、前記第1繊維束と前記第2繊維束との非交差領域の幅よりも大きく、
前記第3繊維束と前記第4繊維束との交差領域の幅は、前記第3繊維束と前記第4繊維束との非交差領域の幅よりも大きい配線基板。
The wiring board according to any one of claims 9 to 14,
The width of the intersecting region between the first fiber bundle and the second fiber bundle is larger than the width of the non-intersecting region between the first fiber bundle and the second fiber bundle,
The width of the intersection region between the third fiber bundle and the fourth fiber bundle is larger than the width of the non-intersection region between the third fiber bundle and the fourth fiber bundle.
請求項1乃至請求項15のいずれか1項に記載の配線基板と、該配線基板に設けられる配線導体に対して接続される半導体素子と、を備えた半導体素子の実装構造体。 A mounting structure for a semiconductor element, comprising: the wiring board according to claim 1; and a semiconductor element connected to a wiring conductor provided on the wiring board.
JP2006148577A 2006-05-29 2006-05-29 Wiring board and semiconductor device mounting structure using the same Expired - Fee Related JP5132085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148577A JP5132085B2 (en) 2006-05-29 2006-05-29 Wiring board and semiconductor device mounting structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148577A JP5132085B2 (en) 2006-05-29 2006-05-29 Wiring board and semiconductor device mounting structure using the same

Publications (2)

Publication Number Publication Date
JP2007318032A true JP2007318032A (en) 2007-12-06
JP5132085B2 JP5132085B2 (en) 2013-01-30

Family

ID=38851603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148577A Expired - Fee Related JP5132085B2 (en) 2006-05-29 2006-05-29 Wiring board and semiconductor device mounting structure using the same

Country Status (1)

Country Link
JP (1) JP5132085B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009730A (en) * 2010-06-28 2012-01-12 Kyocera Corp Wiring board and mounting structure thereof
JP2015032790A (en) * 2013-08-06 2015-02-16 株式会社デンソー Multilayer substrate and electronic device using the same
JP2015118992A (en) * 2013-12-17 2015-06-25 株式会社デンソー Electronic device
JP2016051827A (en) * 2014-08-30 2016-04-11 京セラサーキットソリューションズ株式会社 Wiring board
JP2019036710A (en) * 2017-08-14 2019-03-07 三星電子株式会社Samsung Electronics Co.,Ltd. Circuit board and semiconductor package using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262634A (en) * 1984-06-09 1985-12-26 株式会社有沢製作所 Manufacture of low resin-quantity laminated board and base material cloth for manufacturing low resin-quantity laminated board
JPH05283828A (en) * 1992-03-31 1993-10-29 Asahi Shiyueebell Kk Laminate for printed-circuit board
JPH07259455A (en) * 1987-03-24 1995-10-09 Sugie Yorishige Manufacture of light shading net for automobile
JPH0987941A (en) * 1995-09-26 1997-03-31 Nitto Boseki Co Ltd Woven glass fabric substrate and printed circuit board produced by using the substrate
JPH10310967A (en) * 1997-04-28 1998-11-24 Nitto Boseki Co Ltd Glass cloth and laminated plate
JPH1197610A (en) * 1997-09-25 1999-04-09 Hitachi Ltd Mounting of electronic and the electronic component
JPH11186039A (en) * 1997-12-17 1999-07-09 Nissha Printing Co Ltd Printed wiring board having printed coil, printed coil sheet, and manufacture of printed coil chip
JP2001207375A (en) * 1999-11-19 2001-08-03 Arisawa Mfg Co Ltd Method for producing textile fabric for printed wiring board, the resultant textile fabric for printed wiring board and prepreg for printed wiring board
JP2003201641A (en) * 2002-01-08 2003-07-18 Nitto Boseki Co Ltd Glass fiber woven fabric, prepreg and printed wiring board

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262634A (en) * 1984-06-09 1985-12-26 株式会社有沢製作所 Manufacture of low resin-quantity laminated board and base material cloth for manufacturing low resin-quantity laminated board
JPH07259455A (en) * 1987-03-24 1995-10-09 Sugie Yorishige Manufacture of light shading net for automobile
JPH05283828A (en) * 1992-03-31 1993-10-29 Asahi Shiyueebell Kk Laminate for printed-circuit board
JPH0987941A (en) * 1995-09-26 1997-03-31 Nitto Boseki Co Ltd Woven glass fabric substrate and printed circuit board produced by using the substrate
JPH10310967A (en) * 1997-04-28 1998-11-24 Nitto Boseki Co Ltd Glass cloth and laminated plate
JPH1197610A (en) * 1997-09-25 1999-04-09 Hitachi Ltd Mounting of electronic and the electronic component
JPH11186039A (en) * 1997-12-17 1999-07-09 Nissha Printing Co Ltd Printed wiring board having printed coil, printed coil sheet, and manufacture of printed coil chip
JP2001207375A (en) * 1999-11-19 2001-08-03 Arisawa Mfg Co Ltd Method for producing textile fabric for printed wiring board, the resultant textile fabric for printed wiring board and prepreg for printed wiring board
JP2003201641A (en) * 2002-01-08 2003-07-18 Nitto Boseki Co Ltd Glass fiber woven fabric, prepreg and printed wiring board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009730A (en) * 2010-06-28 2012-01-12 Kyocera Corp Wiring board and mounting structure thereof
JP2015032790A (en) * 2013-08-06 2015-02-16 株式会社デンソー Multilayer substrate and electronic device using the same
JP2015118992A (en) * 2013-12-17 2015-06-25 株式会社デンソー Electronic device
JP2016051827A (en) * 2014-08-30 2016-04-11 京セラサーキットソリューションズ株式会社 Wiring board
JP2019036710A (en) * 2017-08-14 2019-03-07 三星電子株式会社Samsung Electronics Co.,Ltd. Circuit board and semiconductor package using the same
JP7193930B2 (en) 2017-08-14 2022-12-21 三星電子株式会社 Circuit board and semiconductor package using the same

Also Published As

Publication number Publication date
JP5132085B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
US7038142B2 (en) Circuit board and method for fabricating the same, and electronic device
TW556466B (en) Multilayer printed wiring board, method of making the same and method of making fiber reinforced resin substrate
JP4855753B2 (en) Multilayer wiring board and manufacturing method thereof
JP5132085B2 (en) Wiring board and semiconductor device mounting structure using the same
WO2007114392A1 (en) Wiring board and mounting structure
US20130192882A1 (en) Wiring board and mounting structure using the same
US20100163281A1 (en) Base for circuit board, circuit board, and method of fabricating thereof
JP2001015929A (en) Multilayer board
JP2011249711A (en) Wiring board and mounting structure thereof
TWI384911B (en) Printed wiring board and conductive wiring layer
JP4869007B2 (en) Printed wiring board
US9232638B2 (en) Printed wiring board and method for manufacturing the same
US20090169842A1 (en) Printed wiring board and printed circuit board unit
JP5251395B2 (en) Multilayer wiring board, probe card, and method for manufacturing multilayer wiring board
JP2002124319A (en) Anisotropic conductive film and inspection method of semiconductor element or electronic component using same
WO2010030059A1 (en) Multi layer circuit board and manufacturing method of the same
JP4953875B2 (en) Wiring board and mounting structure
KR101838875B1 (en) Semiconductor test equipment interface and it&#39;s manufacturing method
JP2005116183A (en) Forming method of anisotropic conductive film
JP5132174B2 (en) Wiring board and mounting structure
JP2006108039A (en) Anisotropic conductive connector
US8063486B2 (en) Circuit board, method for manufacturing the same, and semiconductor device
JP4908240B2 (en) Organic fiber woven fabric for laminate reinforcement
JP5110840B2 (en) Coreless substrate and semiconductor device mounting structure using the same
JP4885591B2 (en) Woven fabric and prepreg for wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees