JP2007317770A - Vapor phase growth device - Google Patents

Vapor phase growth device Download PDF

Info

Publication number
JP2007317770A
JP2007317770A JP2006143993A JP2006143993A JP2007317770A JP 2007317770 A JP2007317770 A JP 2007317770A JP 2006143993 A JP2006143993 A JP 2006143993A JP 2006143993 A JP2006143993 A JP 2006143993A JP 2007317770 A JP2007317770 A JP 2007317770A
Authority
JP
Japan
Prior art keywords
substrate
processed
vapor phase
partition plate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006143993A
Other languages
Japanese (ja)
Inventor
Yasuhisa Shiroyama
泰久 白山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006143993A priority Critical patent/JP2007317770A/en
Publication of JP2007317770A publication Critical patent/JP2007317770A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor phase growth device which improves film formation quality by making vapor phase reaction which contributes greatly to the film formation quality so as to be carried out under more uniform conditions in more wide range. <P>SOLUTION: The lateral vapor phase growth device grows up film formation raw material components on a substrate to be treated, in such a way that two or more raw material gas and inert gases which contain film formation raw material components are dissociated respectively by a divider and introduced into a reaction tube, and made to mix in the vicinity of the substrate to be treated which is installed inside the reaction tube. While performing chemical reaction by heating the mixed raw material gas, the gas is made to flow in the direction along the surface where the film formation of the substrate to be treated is carried out. Furthermore, in the end of the above divider by the side of the substrate to be treated, the vapor phase growth device is provided with one or a plurality of penetration aperture for mixing the raw gases in both the regions separated by the divider. One or a plurality of divider with the penetration aperture is arranged in each reaction tube. The end of the divider provided with the penetration aperture is preferably located at the upper stream side rather than the substrate to be treated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、気相成長による成膜品質を向上させることが可能な気相成長装置に関する。   The present invention relates to a vapor phase growth apparatus capable of improving film formation quality by vapor phase growth.

発光ダイオード(LED)、半導体レーザなどの半導体デバイスの製造方法として、トリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMI)等のIII族有機金属ガス、アンモニア(NH3)、ホスフィン、アルシン、シラン等の水素化合物とを原料として化合物半導体薄膜を形成する有機金属化学気相蒸着法(MetalOrganic Chemical Vapor Deposition:略称MOCVD法)が利用されている。MOCVD法は、前述の原料を反応炉内に導入して混合し、被処理基板上で熱化学反応させることによって被処理基板上に薄膜を形成するものである。MOCVD法を用いる薄膜成長装置の1つとして、横型MOCVD装置がある。横型MOCVD装置は、原料ガスを流す反応管内に載置される被処理基板に対し、水平方向に原料を導入して被処理基板上で反応・成膜させるものである。したがって、原料ガスの流れが、被処理基板の成膜される面に沿った層流状になるので、横型MOCVD装置は一般的に広く用いられている(特許文献1参照)。 As a method for manufacturing a semiconductor device such as a light emitting diode (LED) or a semiconductor laser, a group III organometallic gas such as trimethylgallium (TMG), trimethylaluminum (TMA), trimethylindium (TMI), ammonia (NH 3 ), phosphine, A metal organic chemical vapor deposition method (abbreviated as MOCVD method) that forms a compound semiconductor thin film using a hydrogen compound such as arsine and silane as a raw material is used. In the MOCVD method, the aforementioned raw materials are introduced into a reaction furnace, mixed, and subjected to a thermochemical reaction on the substrate to be processed to form a thin film on the substrate to be processed. As one of thin film growth apparatuses using the MOCVD method, there is a horizontal MOCVD apparatus. A horizontal MOCVD apparatus introduces a raw material in a horizontal direction to a substrate to be processed placed in a reaction tube through which a raw material gas flows, and causes reaction and film formation on the substrate to be processed. Accordingly, since the flow of the source gas becomes a laminar flow along the surface on which the substrate to be processed is formed, the horizontal MOCVD apparatus is generally widely used (see Patent Document 1).

図10は、従来の典型的な横型MOCVD装置の反応炉まわりの構成を説明する断面図である。従来の横型MOCVD装置1では、反応炉2内に筒状の反応管3が設けられる。反応管3は、一端部が反応炉2外に臨んで開口し、成膜原料成分を含有する原料ガスを反応管3内に導入するガス導入口4、5を構成し、また他端部が反応炉2外に臨んで開口し、成膜原料成分を含有する原料ガスを反応管3外に排出するガス排出口6を構成する。反応管3の長手方向の略中央部には被処理基板7を載置するサセプタ8が設けられる。   FIG. 10 is a cross-sectional view illustrating a configuration around a reaction furnace of a conventional typical horizontal MOCVD apparatus. In the conventional horizontal MOCVD apparatus 1, a cylindrical reaction tube 3 is provided in a reaction furnace 2. The reaction tube 3 is open at one end facing the outside of the reaction furnace 2 and constitutes gas introduction ports 4 and 5 for introducing a raw material gas containing a film forming raw material component into the reaction tube 3, and the other end is A gas discharge port 6 is formed which opens to the outside of the reaction furnace 2 and discharges a raw material gas containing a film forming raw material component out of the reaction tube 3. A susceptor 8 on which the substrate 7 to be processed is placed is provided at a substantially central portion in the longitudinal direction of the reaction tube 3.

また、サセプタ8の下部には、被処理基板7を加熱するためのヒータ9が設けられる。被処理基板7の表面に成膜するに際しては、原料ガスをガス導入口4、5から矢符10に示す方向に反応管3内へ導入し、サセプタ8の下部に設けられるヒータ9によって被処理基板7を加熱し、成膜化学反応を促進して被処理基板7上に薄膜形成を行なう。薄膜形成に使用され、被処理基板7上を通過した原料ガスはガス排出口6から矢符10方向に排出される。また薄膜の均一性を高めるために、基板回転機構11が設置され、基板を回転させながら薄膜形成が行われる。   A heater 9 for heating the substrate 7 to be processed is provided below the susceptor 8. When the film is formed on the surface of the substrate 7 to be processed, the source gas is introduced into the reaction tube 3 in the direction indicated by the arrow 10 from the gas inlets 4 and 5 and is processed by the heater 9 provided below the susceptor 8. The substrate 7 is heated to promote a film forming chemical reaction and form a thin film on the substrate 7 to be processed. The raw material gas used for forming the thin film and passing over the substrate 7 to be processed is discharged from the gas discharge port 6 in the direction of the arrow 10. In order to improve the uniformity of the thin film, a substrate rotating mechanism 11 is installed, and the thin film is formed while rotating the substrate.

このような従来の横型MOCVD装置1においては、前述のように成膜時に反応管3内に導入された原料ガスが、被処理基板7の周辺において、ヒータ9によって加熱された被処理基板7およびサセプタ8によって間接的に昇温され、気相において熱化学反応が促進することによって被処理基板7上に薄膜が形成される。成膜品質向上にはこの原料ガスの気相中での熱化学反応すなわち気相反応の制御が重要となるが、気相反応は原料ガスの組み合わせによって異なり、成膜品質向上のためには抑制しなければならないものもある。たとえばTMG、NH3の2種の原料ガスからGaN膜を成膜する場合、混合された状態で流れる時間を短くするために、基板近傍まではTMGとNH3は混合しないでガス導入口4、5よりそれぞれ別々に供給して事前に起こる反応を抑制する方式などが提案されている(特許文献2)。 In such a conventional horizontal MOCVD apparatus 1, the source gas introduced into the reaction tube 3 during film formation as described above is heated around the substrate 7 by the heater 9 and the substrate 7 to be processed. The temperature is indirectly increased by the susceptor 8 and a thermochemical reaction is promoted in the gas phase, whereby a thin film is formed on the substrate 7 to be processed. Control of the thermochemical reaction of the source gas in the gas phase, that is, the gas phase reaction, is important for improving the film quality, but the gas phase reaction varies depending on the combination of the source gases, and is suppressed for improving the film quality Some things have to be done. For example TMG, the case of forming a GaN film from two kinds of raw gases NH 3, in order to shorten the time to flow in a mixed state, the substrate to the vicinity of the gas inlet 4 not mix TMG and NH 3 are No. 5 proposes a method of separately supplying them separately to suppress a reaction that occurs in advance (Patent Document 2).

また、これらの横型MOCVD装置の概念を踏襲したまま量産性を向上させるためには例えば基板を複数枚並べる、あるいはより大径の被処理基板を用いる方法が提案されている。   In order to improve the mass productivity while following the concept of these horizontal MOCVD apparatuses, for example, a method of arranging a plurality of substrates or using a substrate having a larger diameter has been proposed.

このように成膜品質向上のためには、気相および被処理基板表面での化学反応をいかに制御するか、つまり化学反応を支配する材料の濃度・温度・反応時間をいかに制御するかが課題となり、こうした場所・時間によって変化する現象が起こる中で所望の被処理基板全域にわたり高品質かつ均一な成膜を実現しなければならない。   Thus, in order to improve film formation quality, the issue is how to control the chemical reaction at the gas phase and the surface of the substrate to be processed, that is, how to control the concentration, temperature, and reaction time of the material that controls the chemical reaction. In such a phenomenon that changes depending on the place and time, it is necessary to realize high-quality and uniform film formation over the entire desired substrate to be processed.

しかしながら、前述の特許文献2のように2つの原料ガスを分離供給すると、混合から被処理基板に運ばれるまでの反応時間を短くすることができるが、一度混合され始めると、下流へ向かうほど、ガスは加熱され反応は進行してしまうため、流れ方向に均一な成膜は得られない。これは例えば2インチの被処理基板一枚の面内でも均一な結果を得ることは難しく、さらに一度に複数枚の基板を処理できる量産型の横型MOCVD装置ではより一層深刻な問題となる。   However, when the two source gases are separated and supplied as in the above-mentioned Patent Document 2, the reaction time from mixing to being transported to the substrate to be processed can be shortened. Since the gas is heated and the reaction proceeds, uniform film formation in the flow direction cannot be obtained. For example, it is difficult to obtain a uniform result even within the surface of a substrate to be processed of 2 inches, and it becomes a more serious problem in a mass production type horizontal MOCVD apparatus capable of processing a plurality of substrates at a time.

ここで、図11を用いて従来の気相成長装置における原料ガスの流れを説明する。仕切り板25で隔てられた上の領域からはTMAなどの有機金属原料、下の領域からはNH3が導入される場合を例にする。まず、NH3と接触していないTMAの未反応状態51は、NH3と混合され反応が始まり反応初期状態52となる。そして加熱されるとともに成長に最適な最適反応状態53となるが、さらに加熱され反応が進行すると、結晶成長に寄与できない過反応状態54へと遷移していく。図11の例では被処理基板の下流側では気相反応が進行しすぎた過反応状態54が被処理基板26に接触することになるため、所望の混晶膜を得ることはできない。 Here, the flow of the source gas in the conventional vapor phase growth apparatus will be described with reference to FIG. An example is a case where an organic metal source such as TMA is introduced from the upper region separated by the partition plate 25 and NH 3 is introduced from the lower region. First, an unreacted state 51 of TMA which is not in contact with NH 3 is mixed with NH 3 become reactive initial state 52 the reaction starts. While being heated, the optimum reaction state 53 optimum for growth is obtained. When the reaction proceeds further by heating, the state transitions to an overreaction state 54 that cannot contribute to crystal growth. In the example of FIG. 11, the overreacted state 54 in which the gas phase reaction has progressed too much contacts the substrate to be processed 26 on the downstream side of the substrate to be processed, so that a desired mixed crystal film cannot be obtained.

この図11のように例えばTMAなどは結晶成長に最適な最適反応状態53は流れ方向に非常に短く、被処理基板26全域で高品質結晶成長を実現するのは困難である。これを回避するために一般的に流速を上げて成長されているが、常圧成長では現実的な流量で十分な流速を得るのは難しく、また、減圧成長において流速を下げると結晶性が悪くなるなど根本的な解決には至っていない。   As shown in FIG. 11, for example, in TMA, the optimum reaction state 53 optimum for crystal growth is very short in the flow direction, and it is difficult to realize high quality crystal growth over the entire substrate 26 to be processed. In order to avoid this, growth is generally performed at a higher flow rate, but it is difficult to obtain a sufficient flow rate at a realistic flow rate at atmospheric pressure growth, and crystallinity deteriorates when the flow rate is reduced at reduced pressure growth. It has not yet reached a fundamental solution.

また例えばAlGaN膜などの3種以上の元素の混晶膜を成長させるため、3種以上の原料ガスを用いる場合に、Al原料として例えばTMAを、Ga原料として例えばTMGを全く同じように供給したとしたら、個々の拡散速度や反応性の差のために被処理基板など被処理領域の上流側と下流側で均一な組成比を得ることは非常に困難である。例えばTMAのように気相反応の激しい原料ガスは、上流側で反応が進行しすぎて、下流側では全く膜として成長しない場合も見られる。   Also, for example, TMA is supplied as the Al source and TMG is supplied as the Ga source in the same manner when using three or more source gases to grow a mixed crystal film of three or more elements such as an AlGaN film. If this is the case, it is very difficult to obtain a uniform composition ratio between the upstream side and the downstream side of the region to be processed, such as the substrate to be processed, due to differences in individual diffusion rates and reactivity. For example, a raw material gas having a strong gas phase reaction such as TMA may be seen as a case where the reaction proceeds too much on the upstream side and does not grow as a film on the downstream side.

こういった問題を回避しつつ量産性を確保するために、横型MOCVD装置ではなく例えば特許文献3のように被処理基板を円形に並べて円の中心から原料ガスを導入し、放射状に供給する手法も多く研究されている。しかし、この手法では、被処理基板付近での流速を確保するためには円の中心で相当な流速を稼ぐ必要が出てくるため、常圧条件では必要流量を安定的に流すことは困難である。また原料ガスは放射状に流れるため、流路断面積が半径に比例して大きくなる、つまり流速が半径に反比例して小さくなっていくため、流れ方向に均一な膜を成長させるのは難しい。
特開2001−185488号公報 特開平8−139034号公報 特開2001−220288号公報
In order to ensure mass productivity while avoiding these problems, instead of a horizontal MOCVD apparatus, for example, Patent Document 3 arranges substrates to be processed in a circle, introduces a source gas from the center of the circle, and supplies it radially. Much research has been done. However, with this method, in order to secure the flow velocity near the substrate to be processed, it is necessary to earn a considerable flow velocity at the center of the circle, so it is difficult to stably flow the required flow rate under normal pressure conditions. is there. Further, since the source gas flows radially, the cross-sectional area of the flow path increases in proportion to the radius, that is, the flow velocity decreases in inverse proportion to the radius, so that it is difficult to grow a uniform film in the flow direction.
JP 2001-185488 A JP-A-8-139034 JP 2001-220288 A

以上の理由から、これまで提案されている手法では、被処理基板全面にわたり、あるいは広範囲で気相反応を効率よく制御することは難しい。本発明の目的は、成膜品質に大きく寄与する気相反応をより広範囲にわたりより均一な条件にすることにより成膜品質が向上する装置を提供することにある。   For the above reasons, it is difficult to efficiently control the gas phase reaction over the entire surface of the substrate to be processed or over a wide range with the methods proposed so far. An object of the present invention is to provide an apparatus in which film forming quality is improved by making the gas phase reaction that greatly contributes to film forming quality a more uniform condition over a wider range.

本発明は、仕切り板によって成膜原料成分を含有する複数の原料ガスおよび不活性ガスを、それぞれ分離して反応管に導入し、反応管内部に設置した被処理基板付近で混合させ、混合させた原料ガスを加熱することによって化学反応させながら、被処理基板の成膜される面に沿う方向に流すことで、成膜原料成分を被処理基板上に成長させる横型の気相成長装置において、被処理基板側の前記仕切り板の終端部には、仕切り板で隔てられた両領域の原料ガスを混合させるための貫通口を一つないしは複数配置したことを特徴とする気相成長装置に関する。本発明の気相成長装置において、貫通口を備える仕切り板は、反応管に1つないしは2つ以上配置されていることが好ましい。   The present invention separates a plurality of source gases and inert gas containing film forming source components by a partition plate, introduces them into a reaction tube, and mixes and mixes them in the vicinity of the substrate to be processed installed inside the reaction tube. In a horizontal type vapor phase growth apparatus for growing a film forming raw material component on a substrate to be processed by flowing in a direction along a film formation surface of the substrate to be processed while chemically reacting by heating the source gas, The present invention relates to a vapor phase growth apparatus characterized in that one or a plurality of through-holes for mixing source gases in both regions separated by a partition plate are arranged at the end portion of the partition plate on the substrate to be processed side. . In the vapor phase growth apparatus of the present invention, it is preferable that one or two or more partition plates provided with through holes are arranged in the reaction tube.

また、本発明の気相成長装置において、貫通口を備える仕切り板の終端は、被処理基板よりも上流側に位置することが好ましく、また、前記貫通口の開始位置から仕切り板の終端までの距離は、被処理基板の上流端から下流端までの距離以下であることが好ましい。   Further, in the vapor phase growth apparatus of the present invention, it is preferable that the end of the partition plate provided with the through hole is located upstream of the substrate to be processed, and from the start position of the through hole to the end of the partition plate. The distance is preferably not more than the distance from the upstream end to the downstream end of the substrate to be processed.

また、本発明の気相成長装置は、仕切り板で隔てられたガス導入口から被処理基板に隣接する側から窒素分子を含む原料ガス、III族元素からなる有機金属化合物を含む原料ガスを導入させることでIII族窒化物半導体を製造することが好ましい。   Further, the vapor phase growth apparatus of the present invention introduces a raw material gas containing nitrogen molecules and a raw material gas containing an organometallic compound consisting of a group III element from the side adjacent to the substrate to be processed from a gas inlet port separated by a partition plate. It is preferable to manufacture a group III nitride semiconductor.

また、本発明の気相成長装置は、仕切り板で隔てられたガス導入口から被処理基板に隣接する側から窒素分子を含む原料ガス、III族元素からなる有機金属化合物を含む原料ガス、さらに気相反応の激しいIII族元素からなる有機金属化合物を含む原料ガスを供給して、3元系のIII族窒化物半導体を製造することが好ましい。   Further, the vapor phase growth apparatus of the present invention comprises a source gas containing nitrogen molecules, a source gas containing an organometallic compound consisting of a group III element from the side adjacent to the substrate to be processed from a gas inlet port separated by a partition plate, It is preferable to manufacture a ternary group III nitride semiconductor by supplying a source gas containing an organometallic compound composed of a group III element having a strong gas phase reaction.

また、本発明の気相成長装置は、不活性ガスは、被処理基板に最も離れたガス導入口から導入することが好ましい。   In the vapor phase growth apparatus of the present invention, it is preferable that the inert gas is introduced from a gas inlet that is farthest from the substrate to be processed.

本発明の気相成長装置は、反応前の原料ガスを複数の仕切り板によりいくつかに分離して反応管に導入し、被処理基板付近で仕切り板に備える貫通口から徐々に拡散させることで段階的に混合させることにより被処理基板への成膜品質を向上することができる。また、成膜可能面積の大型化も達成できる。   In the vapor phase growth apparatus of the present invention, the raw material gas before the reaction is separated into several by a plurality of partition plates, introduced into a reaction tube, and gradually diffused from a through-hole provided in the partition plate in the vicinity of the substrate to be processed. By mixing in stages, the film formation quality on the substrate to be processed can be improved. Moreover, the enlargement of the filmable area can also be achieved.

<気相成長装置の基本形態>
図1は、本発明の気相成長装置の構成を簡略化して示す側面から見た断面図である。以下、図1に基づいて本発明の気相成長装置の基本的な形態について説明する。気相成長装置21は、大略、反応炉22と、例えば石英などからなる反応管23と、被処理基板26を載置するサセプタ33と、サセプタ33を保持、基板回転機構31と、サセプタ33を加熱するためのRFコイル32を備える。気相成長に用いられる原料ガスは、ガス導入口35A、35B、35Cより、不活性ガスは不活性ガス導入口34より、それぞれ反応管23内に供給される。それぞれのガス導入口は仕切り板25によって分離されており、隔てられた原料ガスどうしがガス導入口において混合されることはない。また、図1においては原料ガスのガス導入口は3つ示されているが、該ガス導入口は2つ以上であれば差し支えなく、数は特に限定されない。異種の原料ガスどうしを隔てる仕切り板25には、終端部に貫通口28が1つないし複数配置されている。不活性ガスと原料ガスを隔てる仕切り板25には、該貫通口28が形成される必要はない。
<Basic form of vapor phase growth apparatus>
FIG. 1 is a cross-sectional view seen from the side, showing a simplified configuration of the vapor phase growth apparatus of the present invention. The basic form of the vapor phase growth apparatus of the present invention will be described below with reference to FIG. The vapor phase growth apparatus 21 generally includes a reaction furnace 22, a reaction tube 23 made of, for example, quartz, a susceptor 33 on which a substrate to be processed 26 is placed, a susceptor 33, a substrate rotation mechanism 31, and a susceptor 33. An RF coil 32 for heating is provided. The source gas used for the vapor phase growth is supplied into the reaction tube 23 from the gas inlets 35A, 35B, and 35C, and the inert gas is supplied from the inert gas inlet 34, respectively. Each gas inlet is separated by the partition plate 25, and the separated source gases are not mixed at the gas inlet. Further, in FIG. 1, three gas inlets for the source gas are shown, but the number of gas inlets may be two or more, and the number is not particularly limited. The partition plate 25 that separates different kinds of source gases has one or a plurality of through-holes 28 at the end portion. The through hole 28 does not need to be formed in the partition plate 25 that separates the inert gas and the source gas.

加熱されたサセプタ33およびその周辺の反応管23や被処理基板26などにより原料ガスは温められ、気相反応を経て、被処理基板26に成膜される。成膜に使用されなかった原料ガス、および不活性ガスはガス排出口38より排出される。   The source gas is heated by the heated susceptor 33 and the reaction tube 23 and the substrate 26 to be processed around the susceptor 33, and a film is formed on the substrate 26 through a gas phase reaction. The source gas and the inert gas that have not been used for film formation are discharged from the gas discharge port 38.

この気相成長装置21としては、たとえば半導体基板に薄膜形成処理を施すことに用いられる半導体処理装置などとして利用が可能である。また図1ではRFコイル32によってサセプタは誘導加熱される例を示しているが、抵抗加熱ヒータなどをサセプタ33の下や周辺に配置してサセプタ33および被処理基板26を加熱することも可能であり、加熱手段は特に限定されない。また、基板回転機構31は、備えることが好ましい。   The vapor phase growth apparatus 21 can be used, for example, as a semiconductor processing apparatus used for performing a thin film forming process on a semiconductor substrate. Although FIG. 1 shows an example in which the susceptor is induction-heated by the RF coil 32, it is possible to heat the susceptor 33 and the substrate 26 by placing a resistance heater or the like under or around the susceptor 33. Yes, the heating means is not particularly limited. The substrate rotation mechanism 31 is preferably provided.

反応炉22は、直方体形状を有する筐体であり、たとえば金属製の殻体に耐火物等が内張りされて形成される。反応炉22の図中左右方向の両端において対向する側面部には、互いに対向する位置に反応管23が装着される。反応管23は、円筒あるいは略角筒形状を有し、耐熱性を有する材料、例えば石英、ボロンナイトライドやシリコンカーバイドといったセラミック、モリブデンなどの金属などが使用される。サセプタ33は基板回転機構31を備える場合、略円形状を有するが、基板回転機構31を備えない場合、その限りではない。サセプタ33については、RFコイル32による誘導加熱方式を用いる場合、カーボンなどの誘電体が使用されるが、前記のように抵抗加熱方式を採用した場合、耐熱性を有する材料、例えば石英、ボロンナイトライドやシリコンカーバイドといったセラミック、モリブデンなどの金属なども使用される。反応管23の不活性ガス導入口34、原料ガスのガス導入口35A、35B、35Cへは、高圧ガスボンベ等のガス供給源、ガス供給源に接続される圧力/流量調整弁およびガス供給源と反応管23とに接続されるガス供給管路を含んで構成されるガス供給手段によって、原料ガスおよび不活性ガスが供給されるが、このガス供給手段については図示を省略する。   The reaction furnace 22 is a casing having a rectangular parallelepiped shape, and is formed by lining a refractory or the like on a metal shell, for example. Reaction tubes 23 are attached to opposite side surfaces of the reaction furnace 22 at both ends in the left-right direction in the figure. The reaction tube 23 has a cylindrical or substantially rectangular tube shape, and a heat-resistant material, for example, a ceramic such as quartz, boron nitride or silicon carbide, or a metal such as molybdenum is used. The susceptor 33 has a substantially circular shape when the substrate rotation mechanism 31 is provided, but is not limited thereto when the substrate rotation mechanism 31 is not provided. As for the susceptor 33, when an induction heating method using the RF coil 32 is used, a dielectric material such as carbon is used. However, when the resistance heating method is used as described above, a material having heat resistance, for example, quartz or boronite. Ceramics such as ride and silicon carbide, and metals such as molybdenum are also used. A gas supply source such as a high-pressure gas cylinder, a pressure / flow rate adjusting valve connected to the gas supply source, and a gas supply source are connected to the inert gas inlet 34 of the reaction tube 23 and the gas inlets 35A, 35B, and 35C of the source gas. The source gas and the inert gas are supplied by a gas supply unit configured to include a gas supply line connected to the reaction tube 23. The gas supply unit is not illustrated.

また貫通口28を備える仕切り板25は加熱された被処理基板26、サセプタ33等の熱が伝わることで加熱され原料ガス由来の不純物が付着することを避けるため、仕切り板終端は被処理基板よりも上流側に配置する。また図1の不活性ガス導入口34からは不活性ガスが導入されるが、これは基板に対向する反応管23に不純物が付着しにくくするために導入する。前記不純物が、反応管23、仕切り板25に付着しにくくすることで、原料ガスの流路の乱れ、不純物の原料ガスとの化学反応、付着した不純物の肥大化による落下などが起こり、気相成長に悪影響を与えることを避けることができる。   Further, the partition plate 25 having the through-hole 28 is heated by the heat of the heated substrate to be processed 26, the susceptor 33, etc., and is prevented from adhering impurities derived from the source gas. Is also arranged upstream. Further, an inert gas is introduced from the inert gas introduction port 34 of FIG. 1, but this is introduced in order to make it difficult for impurities to adhere to the reaction tube 23 facing the substrate. By making the impurities difficult to adhere to the reaction tube 23 and the partition plate 25, the flow of the source gas is disturbed, the chemical reaction of the impurities with the source gas, the falling of the attached impurities due to the enlargement of the impurities, and the like occur. It can avoid adversely affecting growth.

また、貫通口28の開始位置から仕切り板終端までの距離は、被処理基板設置長さよりも長くする必要は無い。貫通口28を形成する面積が大きすぎると、原料ガスが必要以上に拡散するため、原料ガスが不必要に消費されることを防ぐ必要があるからである。   Further, the distance from the start position of the through hole 28 to the end of the partition plate does not need to be longer than the length of the substrate to be processed. This is because if the area for forming the through hole 28 is too large, the source gas diffuses more than necessary, and thus it is necessary to prevent the source gas from being consumed unnecessarily.

<原料ガス>
原料ガスは、MOCVD法に一般的に用いられるガスであれば特に制限されないが、III族元素からなる有機金属化合物と窒素分子を含む原料ガスを用いることが好ましい。III族元素からなる有機金属化合物には、例えばトリメチルアルミニウム(TMA)、トリメチルガリウム(TMG)、トリメチルインジウム、トリエチルアルミニウム、トリエチルガリウム、トリエチルインジウムなどが挙げられる。窒素分子を含む原料ガスには、例えばアンモニア(NH3)、トリメチルアミン、モノメチルヒドラジン、ジメチルヒドラジン、ホスフィン、アルシン、シランが挙げられる。本発明の気相成長装置は、III族元素からなる有機金属化合物にはトリメチルアルミニウム(TMA)、トリメチルガリウム(TMG)を、窒素分子を含む原料ガスには、アンモニア(NH3)を用いて、3元系の成膜を製造することに用いることが好ましい。
<Raw gas>
The source gas is not particularly limited as long as it is a gas generally used for MOCVD, but it is preferable to use a source gas containing an organometallic compound composed of a group III element and nitrogen molecules. Examples of organometallic compounds composed of Group III elements include trimethylaluminum (TMA), trimethylgallium (TMG), trimethylindium, triethylaluminum, triethylgallium, and triethylindium. Examples of the source gas containing nitrogen molecules include ammonia (NH 3 ), trimethylamine, monomethylhydrazine, dimethylhydrazine, phosphine, arsine, and silane. In the vapor phase growth apparatus of the present invention, trimethylaluminum (TMA) and trimethylgallium (TMG) are used for an organometallic compound composed of a group III element, and ammonia (NH 3 ) is used for a source gas containing nitrogen molecules. It is preferably used for manufacturing a ternary film formation.

<気相成長装置>
以下、被処理基板26への成膜手順について図1に基づいて説明する。まず原料ガスは、ガス導入口35A、35B、35Cより反応管23内へ導入される。導入された原料ガスは、当初仕切り板25によって分離供給される。まずガス導入口35Bおよびガス導入口35Cより供給された原料ガスが仕切り板25の貫通口28から混合され始め、仕切り板25終端より完全に混合される。同様にガス導入口35Aより供給された原料ガスはさらに被処理基板に近い位置で貫通口28から随時混合が始まり、仕切り板25終端より完全に混合される。不活性ガス導入口34から導入されたガスは貫通口28の無い仕切り板25に分離されているため、仕切り板25の終端から混合されることになる。
<Vapor phase growth equipment>
Hereinafter, a film forming procedure on the substrate 26 to be processed will be described with reference to FIG. First, the source gas is introduced into the reaction tube 23 from the gas inlets 35A, 35B, and 35C. The introduced source gas is initially separated and supplied by the partition plate 25. First, the raw material gas supplied from the gas inlet 35B and the gas inlet 35C starts to be mixed from the through-hole 28 of the partition plate 25 and is completely mixed from the end of the partition plate 25. Similarly, the raw material gas supplied from the gas introduction port 35A further begins to be mixed from the through port 28 at a position near the substrate to be processed, and is completely mixed from the end of the partition plate 25. Since the gas introduced from the inert gas inlet 34 is separated into the partition plate 25 without the through port 28, the gas is mixed from the end of the partition plate 25.

RFコイル32により400〜1400℃に加熱されたサセプタ33、およびサセプタ33によって温められた反応管23を介して放射される輻射熱および、熱伝導により原料ガスは温められ、気相反応が進行しながら被処理基板26付近に到達し、表面反応を経て成膜される。なお、図1の不活性ガス導入口34からは不活性ガスが導入されるが、貫通口を備える仕切り板によって段階的に混合させる必要は無い。   The source gas is heated by the radiant heat and heat conduction radiated through the susceptor 33 heated to 400 to 1400 ° C. by the RF coil 32 and the reaction tube 23 heated by the susceptor 33, and the gas phase reaction proceeds. The film reaches the vicinity of the substrate 26 and undergoes a surface reaction to form a film. In addition, although an inert gas is introduce | transduced from the inert gas inlet 34 of FIG. 1, it is not necessary to mix in steps by the partition plate provided with a through-hole.

ここで、図2に本発明の気相成長装置における原料ガスの流れを説明する詳細図を示す。また、窒素分子を含む原料ガスとしてNH3、有機金属化合物に例えばTMAを用いたこととする。このとき、図2において、貫通口28を備える仕切り板25で隔てた下の領域からはNH3を流速1〜200cm/secで、上の領域からはTMAを流速1〜200cm/secで導入するとする。まず、NH3と接触していないTMAの未反応状態51は、NH3と混合され反応が始まり、反応初期状態52となる。そして加熱されるとともに結晶成長に最適である最適反応状態53となるが、さらに時間を経て加熱されると気相反応が進行し結晶成長に寄与できない過反応状態54へと遷移していく。 Here, FIG. 2 shows a detailed view for explaining the flow of the source gas in the vapor phase growth apparatus of the present invention. Further, it is assumed that NH 3 is used as a source gas containing nitrogen molecules, and TMA is used as an organometallic compound. At this time, when NH 3 is introduced at a flow rate of 1 to 200 cm / sec from the lower region separated by the partition plate 25 having the through-hole 28 in FIG. 2, and TMA is introduced from the upper region at a flow rate of 1 to 200 cm / sec. To do. First, an unreacted state 51 of TMA which is not in contact with NH 3 is mixed with NH 3 begins reaction, the reaction initial state 52. While being heated, the optimum reaction state 53 that is optimum for crystal growth is reached. However, when further heated over time, the vapor phase reaction proceeds and the state transitions to an overreaction state 54 that cannot contribute to crystal growth.

図2では最も上流の貫通口から下方に拡散した原料ガスは、被処理基板の上流側では結晶成長に最適な最適反応状態53であるが、被処理基板26の下流側に到達するころには全て過反応状態54へと反応が進行してしまっている。しかし、これに対して、図3に示す本発明の気相成長装置における原料ガスの流れを説明する詳細図のように下流側、ここでは仕切り板25終端以降で混合されたガス原料は、被処理基板26の下流側でようやく結晶成長に最適な最適反応状態26となり、被処理基板26の下流側で成膜されることとなる。   In FIG. 2, the source gas diffused downward from the most upstream through-hole is in an optimum reaction state 53 optimum for crystal growth on the upstream side of the substrate to be processed, but when it reaches the downstream side of the substrate 26 to be processed, All of the reactions have progressed to the overreaction state 54. However, in contrast to this, as shown in the detailed view for explaining the flow of the source gas in the vapor phase growth apparatus of the present invention shown in FIG. The optimum reaction state 26 that is optimal for crystal growth finally reaches the downstream side of the processing substrate 26, and the film is formed on the downstream side of the processing substrate 26.

つまり、仕切り板25の貫通口28によって混合に時間差を設けられているため、最も上流側の貫通口28から混合され気相反応が進行している原料ガスと仕切り板25の終端から初めて混合されて気相反応を始める原料ガスが存在し、最も上流から混合された原料ガスが下方向の被処理基板26に向かって拡散し被処理基板26の最も上流側で最適な気相反応を経た条件で成膜され、最も下流で混合された原料ガスが被処理基板の最も下流側で最適な条件で成膜される。   That is, since a time difference is provided in the mixing by the through hole 28 of the partition plate 25, the mixing is performed for the first time from the end of the partition plate 25 with the raw material gas mixed from the most upstream through port 28 and progressing in the gas phase reaction. There is a source gas that starts a gas phase reaction, and the source gas mixed from the most upstream diffuses toward the substrate to be processed 26 in the downward direction and undergoes an optimum gas phase reaction on the most upstream side of the substrate to be processed 26. The source gas mixed at the most downstream side is formed under optimum conditions on the most downstream side of the substrate to be processed.

貫通口28を備える仕切り板25によって隔てられた原料ガスが、最適化学反応状態で被処理基板26の表面に到達するための距離、貫通口28の形態は、使用する原料ガスの種類、原料ガスの流速によっても変化するため、条件を変えて成長実験することで条件検討を行なう。   The distance for the source gas separated by the partition plate 25 having the through-hole 28 to reach the surface of the substrate 26 to be processed in the optimum chemical reaction state, the form of the through-hole 28 is the type of the source gas used, the source gas Since it also changes depending on the flow rate of growth, the conditions are examined by changing the conditions and conducting growth experiments.

ここで、前述したように使用する原料ガスによって、例えばTMAとTMGでは最適な気相反応も拡散速度も異なるため、それぞれ分離した状態で仕切り板25の貫通口により時間差供給すると、AlGaNなどの混晶膜についても広範囲にわたり均一な成膜ができる。例えば、図1のガス導入口35Aからは気相反応の激しい物質例えばTMAを含むガスを、ガス導入口35Bからは気相反応の激しくない物質例えばTMGを含むガスを、ガス導入口35Cからは窒素分子を含む例えばNH3ガスを導入する。それぞれ仕切り板25によって分離供給されるが、仕切り板25に設けられた貫通口28に到達するとその貫通口28より拡散により段階的に混合され始める。原料ガスは段階的に混合されるため、最適な反応状態であるAlGaN混合物が、被処理基板26全面と接触することができるため、均一かつ高品質なAlGaNからなる混晶膜を形成することができる。 Here, since the optimum gas phase reaction and the diffusion rate of TMA and TMG, for example, differ depending on the raw material gas used as described above, if a time difference is supplied through the through-hole of the partition plate 25 in a separated state, mixing of AlGaN or the like will occur. The crystal film can be uniformly formed over a wide range. For example, a gas containing a gas phase reaction such as TMA from the gas inlet 35A shown in FIG. 1, a gas containing a gas phase reaction such as TMG from the gas inlet 35B, and a gas containing TMG from the gas inlet 35C. For example, NH 3 gas containing nitrogen molecules is introduced. Each of them is separated and supplied by the partition plate 25, but when reaching the through-hole 28 provided in the partition plate 25, the mixture begins to be gradually mixed from the through-hole 28 by diffusion. Since the source gases are mixed stepwise, the AlGaN mixture in an optimal reaction state can come into contact with the entire surface of the substrate 26 to be processed, so that a uniform and high quality mixed crystal film made of AlGaN can be formed. it can.

なお、前述した原料ガスの流れの説明は被処理基板1枚用のものであるが、複数枚同時成長用に関しても同様の効果が期待できる。   The above description of the flow of the source gas is for one substrate, but the same effect can be expected for the simultaneous growth of a plurality of substrates.

以上より、本発明の気相成長装置を用いることで原料ガスの混合のタイミングをずらすことにより、原料が最適な気相の状態にある領域を長く確保でき、被処理基板26全域にわたり高品質な結晶成長が可能となる。   As described above, by using the vapor phase growth apparatus of the present invention to shift the mixing timing of the raw material gas, it is possible to secure a long region where the raw material is in an optimal vapor state, and to provide a high quality over the entire substrate 26 to be processed. Crystal growth is possible.

<貫通口>
図4〜図9に仕切り板の貫通口の形状について示し、原料ガスの混合を段階的に行なう機構の実施形態の例を挙げる。まず、図4(a)は仕切り板の一形態の平面図を示し、図4(b)はIV−IV方向における仕切り板の断面図を示す。この仕切り板25は、貫通口28として複数の穴を空ける方式で、流れ・拡散を考慮して穴の直径は0.5〜5mmが望ましい。穴の直径が0.5mm未満の場合には、原料ガスの拡散が不十分となり、原料ガスどうしが混合されにくくなり、均一な膜が形成されにくい傾向がある。そして、5mm以上の場合には、原料ガスの拡散が被処理基板の上流で過剰に起こるため、段階的に原料ガスどうしが混合されにくくなり均一な膜が形成されにくい傾向がある。
<Through hole>
FIGS. 4 to 9 show the shape of the through hole of the partition plate, and an example of an embodiment of a mechanism that performs mixing of source gases in stages is given. First, Fig.4 (a) shows the top view of one form of a partition plate, FIG.4 (b) shows sectional drawing of the partition plate in an IV-IV direction. The partition plate 25 is a system in which a plurality of holes are formed as the through holes 28, and the diameter of the holes is preferably 0.5 to 5 mm in consideration of flow and diffusion. When the diameter of the hole is less than 0.5 mm, the diffusion of the raw material gas becomes insufficient, the raw material gases are hardly mixed with each other, and there is a tendency that a uniform film is not easily formed. In the case of 5 mm or more, since the diffusion of the source gas occurs excessively upstream of the substrate to be processed, the source gases are hardly mixed step by step, and there is a tendency that a uniform film is not easily formed.

図5(a)は仕切り板の一形態の平面図を示し、図5(b)はV−V方向における仕切り板の断面図を示す。この仕切り板25は、貫通口28として原料ガスの流れに垂直方向にスリットを空ける方式で、スリット幅は0.5〜5mmが望ましい。スリットの幅が0.5mm未満の場合には、原料ガスの拡散が不十分となり、原料ガスどうしが混合されにくくなり、均一な膜が形成されにくい傾向がある。そして、5mm以上の場合には、原料ガスの拡散が被処理基板の上流で過剰に起こるため、段階的に原料ガスどうしが混合されにくくなり均一な膜が形成されにくい傾向がある。   Fig.5 (a) shows the top view of one form of a partition plate, FIG.5 (b) shows sectional drawing of the partition plate in a VV direction. This partition plate 25 is a system in which a slit is formed as a through-hole 28 in a direction perpendicular to the flow of the raw material gas, and the slit width is preferably 0.5 to 5 mm. When the width of the slit is less than 0.5 mm, the diffusion of the raw material gas becomes insufficient, the raw material gases are hardly mixed with each other, and there is a tendency that a uniform film is not easily formed. In the case of 5 mm or more, since the diffusion of the source gas occurs excessively upstream of the substrate to be processed, the source gases are hardly mixed step by step, and there is a tendency that a uniform film is not easily formed.

図6(a)は仕切り板の一形態の平面図を示し、図6(b)はVI−VI方向における仕切り板の断面図を示す。この仕切り板25は、貫通口28として流れ方向に平行にスリットを空ける方式で、スリット幅は0.5〜5mmが望ましい。スリットの幅が0.5mm未満の場合には、原料ガスの拡散が不十分となり、原料ガスどうしが混合されにくくなり、均一な膜が形成されにくい傾向がある。そして、5mm以上の場合には、原料ガスの拡散が被処理基板の上流で過剰に起こるため、段階的に原料ガスどうしが混合されにくくなり均一な膜が形成されにくい傾向がある。   6A shows a plan view of one embodiment of the partition plate, and FIG. 6B shows a cross-sectional view of the partition plate in the VI-VI direction. The partition plate 25 is a system in which a slit is formed parallel to the flow direction as the through-hole 28, and the slit width is preferably 0.5 to 5 mm. When the width of the slit is less than 0.5 mm, the diffusion of the raw material gas becomes insufficient, the raw material gases are hardly mixed with each other, and there is a tendency that a uniform film is not easily formed. In the case of 5 mm or more, since the diffusion of the source gas occurs excessively upstream of the substrate to be processed, the source gases are hardly mixed step by step, and there is a tendency that a uniform film is not easily formed.

図7は仕切り板の一形態の断面図を示し、仕切り板25における貫通口28を、仕切り板25平面に垂直ではなく、ガス流れ方向に傾斜させることにより、原料ガスの流れの乱れを抑えて混合させる方式である。傾斜は、仕切り板に対して30〜90度であることが好ましい。加工精度上の理由からである。図8は仕切り板の一形態の断面図を示し、仕切り板25の貫通口28は、原料ガスの誘導板29を高さ方向に複数枚重ねてその終端位置を連続的に変化させることで形成した方式である。このとき、貫通口28の幅は0.5〜3mmが好ましい。   FIG. 7 shows a cross-sectional view of one embodiment of the partition plate, and the turbulence of the flow of the source gas is suppressed by inclining the through hole 28 in the partition plate 25 in the gas flow direction, not perpendicular to the plane of the partition plate 25. This is a method of mixing. The inclination is preferably 30 to 90 degrees with respect to the partition plate. This is because of processing accuracy. FIG. 8 shows a cross-sectional view of one embodiment of the partition plate, and the through hole 28 of the partition plate 25 is formed by stacking a plurality of source gas guide plates 29 in the height direction and continuously changing the terminal position thereof. This is the method. At this time, the width of the through hole 28 is preferably 0.5 to 3 mm.

図9は仕切り板の一形態の断面図を示す。この仕切り板25をその上に位置する仕切り板25あるいは反応管壁面と密着させることにより、貫通口28を無視して仕切り板終端まで直進して混合される原料ガス分がなくなり、貫通口28からの原料ガスの混合量が増やすことができる。   FIG. 9 shows a cross-sectional view of one embodiment of the partition plate. By bringing the partition plate 25 into intimate contact with the partition plate 25 or the reaction tube wall located on the partition plate 25, the raw material gas to be mixed by moving straight to the partition plate ignoring the through port 28 is eliminated. The amount of the raw material gas mixed can be increased.

このように一度に全ての原料ガスを混合するのではなく、障害物を段階的に挟むことにより原料ガスの混合を抑制し、時間差を設けることにより、高品質成長可能領域を大きくすることができる。なお、図4〜図9に示したのはほんの一例であり、穴が円形ではなく楕円形でも長方形でも網目状でももちろん問題は無く、ガスを一度に混合するのではなく時間差をつけることができれば、本発明の効果を得ることができる。   In this way, not all the raw material gases are mixed at once, but the mixing of the raw material gases is suppressed by sandwiching obstacles in stages, and by providing a time difference, it is possible to enlarge the high quality growth possible region. . 4 to 9 are only examples, and there is no problem if the holes are not circular, oval, rectangular, or mesh-like, and if the gas can be mixed at a time and a time difference can be given. The effects of the present invention can be obtained.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

被処理基板への成膜品質を向上することができ、かつ成膜可能面積の大型化も達成できる。   The film formation quality on the substrate to be processed can be improved, and an increase in the filmable area can be achieved.

本発明の実施の形態である気相成長装置の反応炉まわりの構成を簡略化して示す側面から見た断面図である。It is sectional drawing seen from the side which simplifies and shows the structure around the reaction furnace of the vapor phase growth apparatus which is embodiment of this invention. 本発明の効果を説明する気相成長装置の仕切り板から基板への原料ガスの流れを示す概念図である。It is a conceptual diagram which shows the flow of the source gas to the board | substrate from the partition plate of the vapor phase growth apparatus explaining the effect of this invention. 本発明の効果を説明する気相成長装置の仕切り板から基板への原料ガスの流れを示す概念図である。It is a conceptual diagram which shows the flow of the source gas to the board | substrate from the partition plate of the vapor phase growth apparatus explaining the effect of this invention. (a)は、本発明の気相成長措置の仕切り板および貫通口の一形態の簡略した平面図であり、(b)は(a)のIV−IV方向の断面図である。(A) is the simplified top view of one form of the partition plate and through-hole of the vapor phase growth measure of this invention, (b) is sectional drawing of the IV-IV direction of (a). (a)は、本発明の気相成長措置の仕切り板および貫通口の一形態の簡略した平面図であり、(b)は(a)のV−V方向の断面図である。(A) is the simplified top view of one form of the partition plate and through-hole of the vapor phase growth measure of this invention, (b) is sectional drawing of the VV direction of (a). (a)は、本発明の気相成長措置の仕切り板および貫通口の一形態の簡略した平面図であり、(b)は(a)のVI−VI方向の断面図である。(A) is the simplified top view of one form of the partition plate and through-hole of the vapor phase growth measure of this invention, (b) is sectional drawing of the VI-VI direction of (a). 本発明の気相成長措置の仕切り板および貫通口の一形態の簡略した断面図である。It is simplified sectional drawing of one form of the partition plate and through-hole of the vapor phase growth means of this invention. 本発明の気相成長措置の仕切り板および貫通口の一形態の簡略した断面図である。It is simplified sectional drawing of one form of the partition plate and through-hole of the vapor phase growth means of this invention. 本発明の気相成長措置の仕切り板および貫通口の一形態の簡略した断面図である。It is simplified sectional drawing of one form of the partition plate and through-hole of the vapor phase growth means of this invention. 従来の気相成長装置を示す簡略化された断面図である。It is the simplified sectional view showing the conventional vapor phase growth apparatus. 従来の気相成長装置における原料ガスの流れを示す概念図である。It is a conceptual diagram which shows the flow of the source gas in the conventional vapor phase growth apparatus.

符号の説明Explanation of symbols

1 横型MOCVD装置、2,22 反応炉、3,23 反応管、4,5 ガス導入口、6,38 ガス排出口、7,26 被処理基板、8,33 サセプタ、9 ヒータ、10 矢符、11,31 基板回転機構、21 気相成長装置、25 仕切り板、28 貫通口、29 誘導板、32 RFコイル、34 不活性ガス導入口、35A,35B,35C ガス導入口、51 未反応状態、52 反応初期状態、53 最適反応状態、54 過反応状態。   1 horizontal MOCVD apparatus, 2,22 reactor, 3,23 reaction tube, 4,5 gas inlet, 6,38 gas outlet, 7,26 substrate to be processed, 8,33 susceptor, 9 heater, 10 arrow, 11, 31 Substrate rotating mechanism, 21 Vapor growth apparatus, 25 Partition plate, 28 Through port, 29 Induction plate, 32 RF coil, 34 Inert gas inlet, 35A, 35B, 35C Gas inlet, 51 Unreacted state, 52 Initial reaction state, 53 optimum reaction state, 54 overreaction state.

Claims (7)

仕切り板によって成膜原料成分を含有する複数の原料ガスおよび不活性ガスを、それぞれ分離して反応管に導入し、反応管内部に設置した被処理基板付近で混合させ、混合させた原料ガスを加熱することによって化学反応させながら、被処理基板の成膜される面に沿う方向に流すことで、成膜原料成分を被処理基板上に成長させる横型の気相成長装置において、
被処理基板側の前記仕切り板の終端部には、仕切り板で隔てられた両領域の原料ガスを混合させるための貫通口を一つないしは複数配置したことを特徴とする気相成長装置。
A plurality of source gases and inert gases containing film forming source components are separated by a partition plate, introduced into a reaction tube, mixed in the vicinity of a substrate to be processed installed inside the reaction tube, and the mixed source gas is mixed. In a horizontal type vapor phase growth apparatus in which a film forming raw material component is grown on a substrate to be processed by flowing in a direction along a film formation surface of the substrate to be processed while being chemically reacted by heating,
A vapor phase growth apparatus characterized in that one or a plurality of through-holes for mixing source gases in both regions separated by a partition plate are arranged at the end portion of the partition plate on the substrate to be processed side.
前記貫通口を備える仕切り板は、反応管に1つないしは2つ以上配置されていることを特徴とする請求項1に記載の気相成長装置。   2. The vapor phase growth apparatus according to claim 1, wherein one or two or more partition plates each having the through-hole are disposed in a reaction tube. 前記貫通口を備える仕切り板の終端は、被処理基板よりも上流側に位置することを特徴とする請求項1に記載の気相成長装置。   2. The vapor phase growth apparatus according to claim 1, wherein an end of the partition plate provided with the through hole is located upstream of the substrate to be processed. 前記貫通口の開始位置から仕切り板の終端までの距離は、被処理基板の上流端から下流端までの距離以下であることを特徴とする請求項1に記載の気相成長装置。   2. The vapor phase growth apparatus according to claim 1, wherein the distance from the start position of the through hole to the end of the partition plate is equal to or less than the distance from the upstream end to the downstream end of the substrate to be processed. 仕切り板で隔てられたガス導入口から被処理基板に隣接する側から窒素分子を含む原料ガス、III族元素からなる有機金属化合物を含む原料ガスを導入させることでIII族窒化物半導体を製造することを特徴とする請求項1に記載の気相成長装置。   A group III nitride semiconductor is manufactured by introducing a source gas containing nitrogen molecules and a source gas containing an organometallic compound consisting of a group III element from a gas inlet port separated by a partition plate from the side adjacent to the substrate to be processed. The vapor phase growth apparatus according to claim 1. 仕切り板で隔てられたガス導入口から被処理基板に隣接する側から窒素分子を含む原料ガス、III族元素からなる有機金属化合物を含む原料ガス、さらに気相反応の激しいIII族元素からなる有機金属化合物を含む原料ガスを供給して、3元系のIII族窒化物半導体を製造することを特徴とする請求項5に記載の気相成長装置。   Source gas containing nitrogen molecules, source gas containing organometallic compounds consisting of group III elements, and organic consisting of group III elements with intense gas phase reaction from the gas inlet port separated by the partition plate from the side adjacent to the substrate to be processed 6. The vapor phase growth apparatus according to claim 5, wherein a source gas containing a metal compound is supplied to manufacture a ternary group III nitride semiconductor. 不活性ガスは、被処理基板に最も離れたガス導入口から導入することを特徴とする請求項1に記載の気相成長装置。   2. The vapor phase growth apparatus according to claim 1, wherein the inert gas is introduced from a gas introduction port that is farthest from the substrate to be processed.
JP2006143993A 2006-05-24 2006-05-24 Vapor phase growth device Withdrawn JP2007317770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006143993A JP2007317770A (en) 2006-05-24 2006-05-24 Vapor phase growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006143993A JP2007317770A (en) 2006-05-24 2006-05-24 Vapor phase growth device

Publications (1)

Publication Number Publication Date
JP2007317770A true JP2007317770A (en) 2007-12-06

Family

ID=38851393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006143993A Withdrawn JP2007317770A (en) 2006-05-24 2006-05-24 Vapor phase growth device

Country Status (1)

Country Link
JP (1) JP2007317770A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011138895A (en) * 2009-12-28 2011-07-14 Sumitomo Electric Ind Ltd Method of manufacturing crystal, and method of manufacturing light-emitting element
JP2011199154A (en) * 2010-03-23 2011-10-06 Stanley Electric Co Ltd Mocvd apparatus
KR101167556B1 (en) 2011-07-22 2012-07-30 미우라고교 가부시키카이샤 Number-of-compressors controlling system
CN102732859A (en) * 2011-04-08 2012-10-17 北京北方微电子基地设备工艺研究中心有限责任公司 Gas transmission apparatus and substrate processing device therewith
US8815717B2 (en) 2009-12-14 2014-08-26 Kabushiki Kaisha Toshiba Vapor deposition method and vapor deposition apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815717B2 (en) 2009-12-14 2014-08-26 Kabushiki Kaisha Toshiba Vapor deposition method and vapor deposition apparatus
JP2011138895A (en) * 2009-12-28 2011-07-14 Sumitomo Electric Ind Ltd Method of manufacturing crystal, and method of manufacturing light-emitting element
JP2011199154A (en) * 2010-03-23 2011-10-06 Stanley Electric Co Ltd Mocvd apparatus
CN102732859A (en) * 2011-04-08 2012-10-17 北京北方微电子基地设备工艺研究中心有限责任公司 Gas transmission apparatus and substrate processing device therewith
KR101167556B1 (en) 2011-07-22 2012-07-30 미우라고교 가부시키카이샤 Number-of-compressors controlling system

Similar Documents

Publication Publication Date Title
JP4193883B2 (en) Metalorganic vapor phase epitaxy system
TW200927295A (en) Multi-gas concentric injection showerhead
US20100263588A1 (en) Methods and apparatus for epitaxial growth of semiconductor materials
JP6199619B2 (en) Vapor growth equipment
WO2011011532A2 (en) Hollow cathode showerhead
US20100199914A1 (en) Chemical vapor deposition reactor chamber
EP1271607A2 (en) Chemical vapor deposition apparatus and method
KR20020070161A (en) Chemical vapor deposition apparatus and chemical vapor deposition method
JP2005528777A (en) Equipment for reverse CVD
JP2008532284A (en) Chemical vapor deposition reactor with multiple inlets
JP2010084190A (en) Vapor deposition system and vapor deposition method
JP2007317770A (en) Vapor phase growth device
JP2007039272A (en) Hydride vapor growth system, method for producing group iii nitride semiconductor substrate and group iii nitride semiconductor substrate
JP5015085B2 (en) Vapor growth equipment
JP5490584B2 (en) Vapor growth equipment
US8992684B1 (en) Epitaxy reactor internal component geometries for the growth of superior quality group III-nitride materials
JP2010238831A (en) Vapor phase deposition device, and vapor phase deposition method
KR100578089B1 (en) Hydride vapor phase epitaxy unit
KR100712241B1 (en) Method and apparatus for epitaxially growing a material on a substrate
JP4879693B2 (en) MOCVD apparatus and MOCVD method
JP5443223B2 (en) Vapor growth apparatus and method for manufacturing nitride semiconductor light emitting device
JP5064132B2 (en) Vapor growth apparatus and method for manufacturing semiconductor device
JP2007335800A (en) Method and device of manufacturing semiconductor thin film
CN104120408B (en) A kind of hvpe reactor device improving substrate airflow direction
JP2011192946A (en) Deposition method and device for zinc oxide thin film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804