KR100578089B1 - Hydride vapor phase epitaxy unit - Google Patents

Hydride vapor phase epitaxy unit Download PDF

Info

Publication number
KR100578089B1
KR100578089B1 KR1020040110323A KR20040110323A KR100578089B1 KR 100578089 B1 KR100578089 B1 KR 100578089B1 KR 1020040110323 A KR1020040110323 A KR 1020040110323A KR 20040110323 A KR20040110323 A KR 20040110323A KR 100578089 B1 KR100578089 B1 KR 100578089B1
Authority
KR
South Korea
Prior art keywords
gas
susceptor
injection
source holder
hydride vapor
Prior art date
Application number
KR1020040110323A
Other languages
Korean (ko)
Inventor
이경하
김상철
박기호
Original Assignee
주식회사 시스넥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 시스넥스 filed Critical 주식회사 시스넥스
Priority to KR1020040110323A priority Critical patent/KR100578089B1/en
Application granted granted Critical
Publication of KR100578089B1 publication Critical patent/KR100578089B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 수소화물기상증착 반응기에 관한 것으로, 기판 표면의 전영역에 걸쳐 균일한 후막을 증착할 수 있도록 함을 목적으로 한다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydride vapor deposition reactor, which aims to deposit a uniform thick film over the entire area of the substrate surface.

개시된 본 발명에 따른 수소화물기상증착 반응기는, 헤드부(11)가 구비되며 진공을 유지하는 반응실(10)과; 상기 반응실에 회전 가능하게 설치되며 그 상면에 다수의 기판(P)이 안착되는 서셉터(20)와; 상기 서셉터에 가스를 분사하여 상기 기판 표면에 막을 형성하는 가스분사수단(30)과; 그리고, 상기 서셉터를 가열하는 가열수단을 포함하고, 상기 가스분사수단은, 상기 반응실 내부를 상하 공간(13,14)으로 구획하며 다수의 분사공(33a)을 갖는 분사판(33), 분사부가 상기 분사판 상측의 제1공간에 연통되어 제1가스가 상기 제1공간(13)을 경유하여 상기 분사판(33)의 분사공을 통해 분사되도록 하는 제1가스관(31), 상기 서셉터의 회전축 내부에 결합되며 내부에 고체 소스(35)가 수용되는 소스 홀더(36), 상기 분사판의 중앙을 관통하면서 하단의 분사부(32c)가 상기 소스 홀더 내부에 배치되어 제2가스가 상기 소스 홀더 내부를 경유한 후 상기 서셉터의 표면으로 분사되어 상기 제1가스와 반응토록 하는 제2가스관(32)을 포함하여 구성된다.The hydride vapor deposition reactor according to the present invention includes a reaction chamber (10) having a head (11) and maintaining a vacuum; A susceptor 20 rotatably installed in the reaction chamber and having a plurality of substrates P mounted thereon; Gas injection means (30) for injecting gas into the susceptor to form a film on the surface of the substrate; And a heating means for heating the susceptor, wherein the gas injection means divides the inside of the reaction chamber into upper and lower spaces 13 and 14 and has a plurality of injection holes 33a, The first gas pipe 31 and the standing portion in which the injection unit communicates with the first space above the injection plate such that the first gas is injected through the injection hole of the injection plate 33 via the first space 13. A source holder 36 coupled to the inside of the rotating shaft of the acceptor and receiving a solid source 35 therein, and a lower injection part 32c is disposed inside the source holder while penetrating through the center of the injection plate so that a second gas is formed. The second gas pipe 32 is injected to the surface of the susceptor after passing through the source holder and reacts with the first gas.

수소화물기상증착 반응기, HVPE, 서셉터, 고체 소스, 분사판Hydride Vapor Deposition Reactor, HVPE, Susceptor, Solid Source, Jet Plate

Description

수소화물기상증착 반응기{HYDRIDE VAPOR PHASE EPITAXY UNIT}Hydride Vapor Deposition Reactor {HYDRIDE VAPOR PHASE EPITAXY UNIT}

도 1은 종래 기술에 따른 수평형 수소화물기상증착 반응기의 개략도.1 is a schematic diagram of a horizontal hydride vapor deposition reactor according to the prior art.

도 2는 본 발명에 따른 수소화물기상증착 반응기의 구성도.2 is a block diagram of a hydride vapor deposition reactor according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of Symbols for Main Parts of Drawings>

10 : 반응실, 13,14 : 공간10: reaction chamber, 13,14: space

20 : 서셉터, 30 : 가스분사수단20: susceptor, 30: gas injection means

31, 32 : 가스관, 33 : 분사판31, 32: gas pipe, 33: jet plate

34 : 냉각수 유로, 40 : 유도 코일34: coolant flow path, 40: induction coil

본 발명은 수소화물기상증착 반응기에 관한 것으로, 더욱 상세하게는 기판에 후막을 증착하기 위한 이종 가스의 흐름을 원활하게 하여 고품질의 후막을 전영역에 걸쳐 균일하게 성장할 수 있도록 한 수소화물기상증착 반응기에 관한 것이다.The present invention relates to a hydride vapor deposition reactor, and more particularly, a hydride vapor deposition reactor which allows a high-quality thick film to be uniformly grown throughout the entire area by smoothly flowing a heterogeneous gas for depositing a thick film on a substrate. It is about.

일반적으로 반도체는 원자재인 웨이퍼(wafer)에 확산, 사진, 식각, 박막공정을 여러 차례 반복하여 진행하면서 전기회로를 구성하는 과정을 거쳐 제조된다.In general, a semiconductor is manufactured through a process of constructing an electric circuit by repeatedly performing diffusion, photography, etching, and thin film processes on a raw material wafer.

반도체 생산에 가장 기초적이면서 중요한 기판(Substrate)은 전자 소자의 품질에 결정적인 영향을 주므로 기판의 재질과 품질은 매우 중요하다. 기존의 질화갈륨(GaN) 화합물 박막성장은 질화갈륨 박막 성장에서 동종접합(Homoepitaxy)에 필요한 기판의 부재로 대부분 사파이어(Al2O3), 갈륨비소(GaAs), 탄화규소(SiC), 인화갈륨(GaP), 규소(Si) 등의 기판에 성장을 시키는 공정을 사용하였다. 그러나 기판과 성장 시킬 박막의 격자상수(Lattice constant)와 열팽창계수(Thermal coefficient)의 차이로 인한 많은 결함들이 발생하고 있으며, 이러한 문제를 해결하기 위하여 많은 노력을 해왔다. 또한 기존의 초기 방법으로 GaN 후막를 생산하기 위해서는 기존의 압력과 온도 대비 수천배 이상의 조건이 필요하나 현재까지는 제작상 많은 어려움을 겪고 있다.Substrate, which is the most basic and important for semiconductor production, has a decisive influence on the quality of electronic devices, so the material and quality of the substrate are very important. Conventional gallium nitride (GaN) thin film growth is the absence of substrates required for homogeneous bonding in gallium nitride thin film growth. Mostly sapphire (Al2O3), gallium arsenide (GaAs), silicon carbide (SiC), gallium phosphide (GaP) And growing a substrate such as silicon (Si) were used. However, many defects are caused by the difference between the lattice constant and thermal coefficient of the substrate and the thin film to be grown, and many efforts have been made to solve this problem. In addition, the production of GaN thick film by the existing initial method requires more than a thousand times the conditions of the existing pressure and temperature, but until now have been experiencing a lot of difficulties in manufacturing.

따라서, 고품질의 반도체 소자용 박막을 성장하기 위해 성장률이 높은 수소화물기상증착(HYDRIDE VAPOR PHASE EPITAXY, HVPE) 장비를 이용하여 고품질의 후막을 단시간에 성장시킨 후 초기 기판을 제거하면 후막과 같은 물질로 고품질의 박막을 경제적이면서 효율적으로 생산할 수 있다.Therefore, in order to grow a high quality thin film for semiconductor devices, a high-quality thick film is grown in a short time using a high growth rate hydride vapor phase vapor deposition (HYDRIDE VAPOR PHASE EPITAXY, HVPE) equipment to remove the initial substrate into a material such as a thick film. High quality thin films can be produced economically and efficiently.

화학기상증착의 하나인 수소화물기상증착은 반응기에 주입된 가스의 열분해와 재반응성을 이용하여 가열된 기판 상에 후막을 형성하는 방법으로서, 반응기 내에 제1/제2가스관으로 각각 암모니아와 염산 가스를 주입하여 고체 소스(Ga, In, Al, Zn, Mg)와 염산 가스의 화학 반응으로 생성된 반응 가스와 암모니아 가스가 열분해 및 화학반응을 하여 기판 위에 질화물 후막이 성장되도록 하는 것이다. 이는 질화물 성장효율이 매우 높아서 성장속도가 매우 빨라 다른 성장 방법에 비해 유지비 및 생산원가가 매우 저렴하고, 비교적 간단한 동작원리로 유지관리가 쉽다.Hydrogen vapor deposition, one of chemical vapor deposition, is a method of forming a thick film on a heated substrate by using pyrolysis and reactivity of a gas injected into a reactor. By injecting the pyrolysis and chemical reaction of the reaction gas and ammonia gas generated by the chemical reaction between the solid source (Ga, In, Al, Zn, Mg) and hydrochloric acid gas, the nitride thick film is grown on the substrate. It has a very high nitride growth efficiency, so the growth rate is very fast, maintenance costs and production costs are very low compared to other growth methods, it is easy to maintain with a relatively simple operation principle.

도 1에서 보이는 바와 같이, 종래 기술에 따른 수소화물기상증착 반응기는, 외부와 격리된 반응관(1)과, 반응관(1)의 내부에 설치되며 기판(P)이 안착되는 서셉터(2)(susceptor)와, 서셉터(2) 상에 안착된 기판(P) 상에 박막을 형성하기 위하여 가스를 분사하는 가스 가스관으로 이루어진다. 반응관(1)은 양측이 개구되며, 그 내부를 진공 밀폐하기 위하여 상기 개구부에 각각 캡(1a)이 결합된다.As shown in FIG. 1, the hydride vapor deposition reactor according to the prior art includes a reaction tube 1 isolated from the outside, and a susceptor 2 installed inside the reaction tube 1 and on which the substrate P is seated. and a gas gas pipe for injecting gas to form a thin film on the substrate P seated on the susceptor 2. The reaction tube 1 is open at both sides, and a cap 1a is coupled to each of the openings in order to vacuum seal the inside thereof.

상기 가스 가스관은 서로 다른 가스를 분사하는 제1,2,3가스관(3,4,5)으로 구분된다.The gas gas pipe is divided into first, second and third gas pipes 3, 4 and 5 for injecting different gases.

특히, 전체적인 가스의 흐름은 제2가스관(4)을 통하여 질소가 흘러 반응관(1) 내부의 일정한 기체의 흐름을 만들며, 이 가스의 흐름 속에 제3가스관(5)의 내부로 염산가스와 화학 반응을 일으키는 고체 소스(6)가 삽입되고, 제1가스관(3)의 내부로는 암모니아 가스를 흘려 성장이 이루어진다. 고체 소스(6)의 삽입을 위하여 제3가스관(5)의 단부는 타구간에 비해 확장 형성된다.In particular, the overall gas flow causes nitrogen to flow through the second gas pipe 4 to produce a constant gas flow inside the reaction tube 1, and the hydrochloric acid gas and chemicals are introduced into the third gas pipe 5 within the gas flow. The solid source 6 causing the reaction is inserted, and ammonia gas flows into the first gas pipe 3 to grow. For insertion of the solid source 6, the end of the third gas pipe 5 is extended relative to the other section.

도면 중 미설명 부호 7은 관형의 전기로이다.In the figure, reference numeral 7 denotes a tubular electric furnace.

종래 기술에 따른 반응기에 따르면 다음과 같은 문제점이 있다.According to the reactor according to the prior art there are the following problems.

반응관(1)이 관의 형태이기 때문에 서셉터(5)를 회전 가능하게 장착하는 것이 부적합하고, 제3가스관(6)의 내부에 삽입된 고체 소스(6)를 교체하기 위해서는 반응관(1)의 캡(1a)을 분리한 후 제3가스관(6)의 내부에 삽입된 고체 소스(6)를 빼내야 하는데, 이때, 반응관(1)의 중심부까지 깊이가 있기 때문에 유입되는 가스가 고체 소스(6)와 독립적으로 반응할 수 있도록 가스 가스관(3,4,5)을 길게 설치해야 하므로 접근성이 나쁘고, 제1가스(암모니아) 가스관(3)이 복잡하게 구성되어야 하므로 장착이 불편하다. Since the reaction tube 1 is in the form of a tube, it is inappropriate to mount the susceptor 5 in a rotatable manner, and in order to replace the solid source 6 inserted into the third gas tube 6, the reaction tube 1 After removing the cap (1a) of the), it is necessary to remove the solid source (6) inserted into the third gas pipe (6), in which case the incoming gas is a solid source because there is a depth to the center of the reaction tube (1) Since gas gas pipes 3, 4, and 5 must be installed long so that they can react independently with (6), accessibility is bad, and the first gas (ammonia) gas pipe 3 has to be complicated, so it is inconvenient to install.

그리고, 많은 가스를 사용하여 유지보수에도 많은 비용이 수반되며, 구조상 수평형 구조는 흐름방향으로 기체의 온도가 상승하여 대류(convection)와 확산(diffusion)현상으로 제1가스관(3)과 제3가스관(5)을 통해 나온 가스들이 대류와 확산현상으로 기판상에서 앞쪽과 뒤쪽의 고체 소스(6)와 암모니아에서 분해된 질소의 가스 구성비가 차이가 있다.In addition, the maintenance of a large amount of gas involves a lot of costs, and in the horizontal structure, the temperature of the gas rises in the flow direction and convection and diffusion cause the first gas pipe 3 and the third gas. The gas composition ratio of nitrogen decomposed in the ammonia is different from the solid source 6 on the substrate and the back on the substrate due to the convection and diffusion of the gases from the gas pipe 5.

즉, 성장층의 고체 소스(6)와 질소의 조성비의 불균일이 생기고, 기판(P) 내부에서의 가스 흐름방향으로 앞쪽과 뒤쪽의 성장률이 바뀌게 되어 다수개의 기판(P) 모두가 균일한 특성을 얻기 힘들다. 또한 다수개의 기판(P)을 성장하기 위해서 가스흐름방향으로 일정한 온도가 넓은 면적으로 형성되어야 하며 이를 위해서는 아주 긴 전기로가 필요하다. 결과적으로 한 장 이상의 기판(P)을 사용하기 어렵고 두께 균일성이나 품질 면에서 좋지 않은 경향을 볼 수 있다. That is, nonuniformity of the composition ratio of the solid source 6 and the nitrogen of the growth layer occurs, and the growth rate of the front and rear sides is changed in the gas flow direction inside the substrate P, so that all of the substrates P have uniform characteristics. Hard to get In addition, in order to grow a plurality of substrates (P) a constant temperature must be formed in a large area in the gas flow direction, which requires a very long electric furnace. As a result, it is difficult to use one or more substrates P, and a tendency inferior in terms of thickness uniformity and quality can be seen.

또한 반응가스 효율성도 수직형에 비해 낮아 후막 성장 경제성이 떨어질 뿐만 아니라 가스 가스관(3,4,5)으로부터 서셉터(2)가 멀리 떨어져 있기 때문에 성장에 기여하지 않는 가스의 반응으로 인하여 공정부산물(By-product)이 많이 발생하여 유지관리가 힘들다.In addition, the efficiency of the reaction gas is lower than that of the vertical type, and the economic efficiency of the thick film is not only lowered. In addition, the process by-products ( Maintenance is difficult due to many by-products).

그리고, 반응가스가 대류 현상과 확산 현상이 있어 층류흐름(Laminar flow)이 되는 것을 방해하여 반응된 가스들이 기판(P) 위에 증착되지 않는 영역이 생긴 다.In addition, the reaction gas has a convection phenomenon and a diffusion phenomenon, which prevents the laminar flow, resulting in a region in which the reacted gases are not deposited on the substrate P.

종래의 수평형 수소화물기상증착 반응기는 서셉터(2)의 불균일한 온도로 인해 기판(P) 위에 성장층의 불균일성이 있으며, 고정된 기판(P) 표면 상의 가스속도를 바꿀 수 없어 최적 성장조건을 얻는데 제약이 따른다.Conventional horizontal hydride vapor deposition reactor has a non-uniformity of the growth layer on the substrate (P) due to the non-uniform temperature of the susceptor (2), and can not change the gas velocity on the fixed substrate (P) surface optimum growth conditions There is a constraint on obtaining.

본 발명은 상기한 종래 문제점을 해결하기 위한 것으로서, 다수의 기판에 똑같은 성장조건을 조성하여 균일한 막을 형성할 수 있도록 한 수소화물기상증착 반응기를 제공하려는데 그 목적이 있다.An object of the present invention is to provide a hydride vapor deposition reactor capable of forming a uniform film by forming the same growth conditions on a plurality of substrates.

그리고, 본 발명의 다른 목적은 서셉터의 중심부에는 하나의 가스만 분사되도록 하여 서셉터 중심부에서 생기는 공정부산물을 제거함으로써 균일한 두께의 막을 형성하려는데 있다.Another object of the present invention is to form a film having a uniform thickness by removing only the process by-product generated in the center of the susceptor by spraying only one gas into the center of the susceptor.

본 발명의 또 다른 목적은 반응에 불필요한 영역에서 생기는 가스의 흐름을 개선하여 서셉터 전영역에 걸쳐 가스의 층류흐름(Laminar flow)를 얻을 수 있도록 하려는데 있다.Another object of the present invention is to improve the flow of gas generated in a region unnecessary for the reaction to obtain a laminar flow of gas over the entire susceptor.

또한, 본 발명은 가스와 화학반응하는 고체 소스의 교체작업이 용이하도록 하려는데 있다.
In addition, the present invention is to facilitate the replacement of the solid source that is chemically reacted with the gas.

상기 목적을 달성하기 위하여 제공되는 본 발명에 따른 수소화물기상증착 반 응기는, 외부와 밀폐되는 반응실을 상하로 구획하는 분사판, 상기 분사판에 의한 공간에 각각 분사부가 연통되어 각각 가스를 분사하는 가스관을 포함하며, 상기 서셉터의 중앙부에는 반응가스를 생성하기 위한 고체 소스가 소스 홀더를 통해 수납되고, 상기 제2가스관은 상기 소스 홀더의 내부에 배치되어, 제1,2가스가 분사판 하측의 공간에서 합류되어 반응하도록 구성된 것을 특징으로 한다.In order to achieve the above object, the hydride vapor deposition reactor according to the present invention includes a spraying plate for partitioning a reaction chamber sealed up and down with the outside, and an injecting portion communicates with a space by the spraying plate, respectively to inject a gas. And a gas pipe, wherein a solid source for generating a reaction gas is received through a source holder in the center portion of the susceptor, and the second gas pipe is disposed inside the source holder, so that the first and second gases are injected into the injection plate. It is characterized in that it is configured to react by joining in the lower space.

본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. Prior to this, the terms or words used in the present specification and claims are defined in the technical spirit of the present invention on the basis of the principle that the inventor can appropriately define the concept of the term in order to explain his invention in the best way. It must be interpreted to mean meanings and concepts.

도 2에서 보이는 바와 같이, 본 발명에 따른 수소화물기상증착 반응기는, 헤드부(11)가 구비되며 외부와 격리되어 진공상태를 유지하는 반응실(10)과, 반응실(10) 내부에 회전 가능하게 장착되며 다수의 기판(P)이 안착되는 서셉터(20)와, 서셉터(20) 상에 안착된 기판(P) 상에 후막(두꺼운 성장층)을 형성하기 위하여 제1가스와 제2가스로 각각 암모니아와 염산가스를 분사하는 가스분사수단(30)을 포함하여 구성된다.As shown in FIG. 2, the hydride vapor deposition reactor according to the present invention includes a head 11 and a reaction chamber 10 which is isolated from the outside and maintains a vacuum state, and rotates inside the reaction chamber 10. The first gas and the first gas are formed to form a thick film (thick growth layer) on the susceptor 20, which is mounted on the susceptor 20, and the susceptor 20, which is mounted on the susceptor 20. And gas injection means 30 for injecting ammonia and hydrochloric acid gas into two gases, respectively.

서셉터(20)는 기판(P)이 안착되는 수평의 안착부(21) 및 안착부(21)의 중앙 하부에 일체로 형성되며 내부가 중공인 회전축(22)으로 구성된다. 회전축(22)의 내부에는 제2가스와 화학반응하는 고체 소스(35)가 교체 가능하도록 수용된다. 고체 소스(35)의 안착을 위하여 회전축(22)의 내부에 소스 홀더(36)가 설치된다. 소스 홀더(36)는 상측이 개구된 통구조이며 상단 둘레부에는 서셉터(20)의 안착부(21)에 안착되는 플랜지(36a)가 형성된다.The susceptor 20 is formed of a horizontal seating portion 21 on which the substrate P is seated and a rotating shaft 22 which is integrally formed at the center lower portion of the seating portion 21 and has a hollow inside. Inside the rotating shaft 22, a solid source 35 chemically reacting with the second gas is accommodated so as to be replaceable. The source holder 36 is installed inside the rotating shaft 22 to mount the solid source 35. The source holder 36 has a tubular structure with an open upper side, and a flange 36a that is seated on the seating portion 21 of the susceptor 20 is formed at the upper periphery.

가스분사수단(30)은 제1가스(암모니아 가스)를 분사하는 제1가스관(31), 제2가스(염산 가스)를 분사하는 제2가스관(32), 다수의 분사공(33a)을 갖는 분사판(33) 및 냉각수가 순환되는 냉각수 유로(34)로 이루어진다.The gas injection means 30 has a first gas pipe 31 for injecting a first gas (ammonia gas), a second gas pipe 32 for injecting a second gas (hydrochloric acid gas), and a plurality of injection holes 33a. It consists of the injection plate 33 and the cooling water flow path 34 through which cooling water is circulated.

가스분사수단(30)은 헤드부(11)에 일체화되어 제공됨으로써 고체 소스(35)의 교체시 헤드부(11)만 상측으로 올려 소스 홀더(36)를 개방함으로써 고체 소스(35)를 교체할 수 있다.The gas injection means 30 is provided integrally with the head portion 11 to replace the solid source 35 by opening only the head portion 11 upward and opening the source holder 36 when the solid source 35 is replaced. Can be.

제2가스관(32)은 제2가스가 서셉터(20)의 중앙부(고체 소스(35)와 대응되는 부분)로 분사되도록 헤드부(11)에 관통 설치되며, 가스가 유입되는 유입부(32a), 유입부(32a)의 하단부에 형성되는 가스유도부(32b) 및 가스유도부(32b)의 하부에 형성되는 분사부(32c)로 이루어진다. 가스유도부(32b)는 유입부(32a)보다 직경이 크게 형성되면서 소스 홀더(36)의 상측 개구부로부터 상측으로 일정 거리(가스가 주위로 분사될 수 있는 거리)이격되어 제1가스가 고체 소스(35)측으로 유입되지 못하도록 차단함과 아울러 분사부(32c)를 통해 분사된 제2가스가 서셉터(20)의 둘레부쪽(기판(P)쪽)으로 흐르도록 안내한다. 분사부(32c)는 가스유도부(32b)의 하부에 가스유도부(32b)보다 직경이 작으면서 소스 홀더(36)의 내벽과 일정 거리 이격될 수 있는 외경으로 이루어지며 그 내부는 하측으로 갈수록 직경이 점진적으로 커지는 테이퍼형상이다.The second gas pipe 32 is installed through the head portion 11 so that the second gas is injected into the center portion (part corresponding to the solid source 35) of the susceptor 20, and the inflow portion 32a into which the gas flows is introduced. ), A gas induction part 32b formed at the lower end of the inlet part 32a, and an injection part 32c formed in the lower part of the gas induction part 32b. The gas induction part 32b has a diameter larger than that of the inlet part 32a and is spaced apart from the upper opening of the source holder 36 by a predetermined distance (the distance at which gas can be injected around) so that the first gas is a solid source ( It prevents the inflow to the 35) side and guides the second gas injected through the injection part 32c to flow to the circumferential side (substrate P side) of the susceptor 20. The injection part 32c has an outer diameter that is smaller than the gas induction part 32b at a lower portion of the gas induction part 32b and can be spaced apart from the inner wall of the source holder 36 by a predetermined distance. It is tapered in shape.

분사판(33)은 서셉터(20)의 상부에 배치되어 반응실(10)을 상하 두 개의 공 간(13,14)으로 구획한다. The injection plate 33 is disposed above the susceptor 20 to partition the reaction chamber 10 into two spaces 13 and 14.

제1가스관(31)은 헤드부(11)에 관통되면서 분사부(31a)가 분사판(33) 상측의 제1공간(13)에 연통되도록 설치되고, 제2가스관(32)은 헤드부(11)와 분사판(33)을 관통하여 분사부(32c)가 제2공간(14)에 배치되도록 설치된다. 즉, 제1가스관(31)에서 분사된 가스는 분사판(33)의 분사공(33a)을 통해 분사되고, 제2가스관(32)에서 분사된 가스는 분사판(33)에 의해 역류되지 못하고 제1가스와 반응하여 기판(P)에 막을 형성한다.The first gas pipe 31 is installed so that the injection part 31a communicates with the first space 13 above the injection plate 33 while passing through the head part 11, and the second gas pipe 32 has a head part ( It is provided so that the injection part 32c may be arrange | positioned in the 2nd space 14 through 11) and the injection plate 33. As shown in FIG. That is, the gas injected from the first gas pipe 31 is injected through the injection hole 33a of the injection plate 33, and the gas injected from the second gas pipe 32 is not flowed back by the injection plate 33. Reaction with the first gas forms a film on the substrate P.

냉각수 유로(34)는 제1,2가스의 온도를 조절하기 위한 것으로 반응실(10)의 상부에 격벽(13)에 의해 구획되고, 그 내부를 따라 냉각수가 순환된다.The cooling water flow path 34 is for controlling the temperature of the first and second gases and is partitioned by the partition 13 on the upper portion of the reaction chamber 10, and the cooling water is circulated along the inside thereof.

서셉터(20)를 가열하기 위하여 유도 코일(40)이 설치된다. 유도 코일(40)은 서셉터(20)의 저면과 소스 홀더(36)의 둘레부에 설치되어 서셉터(200와 함께 회전하면서 서셉터(20)를 유도가열한다. 서셉터(20)를 유도가열방식으로 가열함으로써 승온과 냉각의 시간이 줄어들고 온도 편차가 매우 적게 일정한 온도를 유지하기가 용이하다.Induction coil 40 is installed to heat susceptor 20. The induction coil 40 is installed on the bottom of the susceptor 20 and the periphery of the source holder 36 to induce heating of the susceptor 20 while rotating together with the susceptor 200. Inducing the susceptor 20 By heating by heating method, it is easy to maintain constant temperature because the time of temperature rise and cooling is reduced and the temperature variation is very small.

본 발명에 의한 수소화물기상증착 반응기의 작용은 다음과 같다.The action of the hydride vapor deposition reactor according to the present invention is as follows.

반응기의 작동이 개시되면 유도코일(40)에 전류가 인가되어 서셉터(20)를 가열함으로써 반응조건을 조성한다.When the operation of the reactor is started, a current is applied to the induction coil 40 to heat the susceptor 20 to form reaction conditions.

제1가스는 제1가스관(31)을 통하여 반응실(10)의 제1공간(13)에 분사된 후 분사판(33)의 분사공(33a)을 통해 균일하게 제2공간(14)으로 분사되고, 제2가스는 제2가스관(32)을 통하여 제2공간(14)으로 분사된다. 이때, 제2공간(14)으로 분사된 제1가스는 제2가스관(32)의 가스유도부(32b)에 의해 소스 홀더(36)의 내부에 침투하지 못한다. 소스 홀더(36) 내부에 분사된 제2가스는 고체 소스(35)와 반응하여 반응가스가 생성되고, 상기 반응가스는 가스유도부(32)의 안내를 받아 서셉터(20)의 둘레부쪽(기판(P)쪽)으로 분사된다. 즉, 제1,2가스는 서셉터(20)가 배치된 제2공간(14)에 도달하기 이전까지는 서로 반응할 확률이 적다. The first gas is injected into the first space 13 of the reaction chamber 10 through the first gas pipe 31 and then uniformly through the injection hole 33a of the injection plate 33 to the second space 14. The second gas is injected into the second space 14 through the second gas pipe 32. In this case, the first gas injected into the second space 14 may not penetrate into the source holder 36 by the gas induction part 32b of the second gas pipe 32. The second gas injected into the source holder 36 reacts with the solid source 35 to generate a reaction gas, and the reaction gas is guided by the gas induction part 32 to the circumferential side of the susceptor 20 (substrate). (P) side). That is, the first and second gases are less likely to react with each other until they reach the second space 14 in which the susceptor 20 is disposed.

이처럼, 각각의 가스관(31,32)을 통해 분사된 암모니아 가스와 반응가스는 제2공간(14)에서 합류되어 회전하는 서셉터(200) 위를 지나면서 각자 열분해를 하여 분해된 원자와 다시 재결합을 하면서 기판(P) 위에 증착된다. As such, the ammonia gas and the reactant gas injected through the respective gas pipes 31 and 32 join in the second space 14 and recombine with the decomposed atoms again by pyrolysis, respectively, passing over the rotating susceptor 200. While deposited on the substrate (P).

제1,2가스에 의한 박막증착 과정 중에 서셉터(20)의 중앙부와 대응되는 부분에는 제2가스관(32)만 설치되어 제2가스뿐이므로 서셉터(20) 중앙에서는 반응이 없고 서셉터(20) 바깥쪽으로 빠져나가면서 부족한 제2가스의 자리를 채우며 제1가스를 만나 반응하여 기판(P)위에 증착하게 된다. 이로써, 서셉터(20)에 안착된 다수의 기판(P) 위의 가스 농도(제1 및 제2가스의 혼합비)가 어느 한쪽으로 치우치지 않고 모든 면에서 고른 분포를 가지며, 서셉터(20) 중앙부에서는 반응이 일어나지 않는다. During the thin film deposition process by the first and second gases, only the second gas pipe 32 is installed at a portion corresponding to the center portion of the susceptor 20, and thus only the second gas has no reaction at the center of the susceptor 20. 20) As it exits to the outside, it fills in the position of the insufficient second gas, reacts with the first gas, and deposits it on the substrate P. As a result, the gas concentration (mixing ratio of the first and second gases) on the plurality of substrates P seated on the susceptor 20 has an even distribution on all sides without biasing to one side, and the susceptor 20 In the center, no reaction takes place.

고체 소스(35)의 교체시 헤드부(11)를 들어 올리면 헤드부(11)와 가스분사수단(30)이 함께 제거되어 소스 홀더(36)가 개방되며, 소스 홀더(36)는 서셉터(20)의 표면으로부터 가깝기 때문에 고체 소스(35)를 용이하게 교체할 수 있다.When the head 11 is lifted up when the solid source 35 is replaced, the head 11 and the gas injection means 30 are removed together to open the source holder 36, and the source holder 36 is a susceptor ( Close to the surface of 20), the solid source 35 can be easily replaced.

이상에서 설명한 바와 같이, 본 발명에 따른 수소화물기상증착 반응기에 의하면, 회전하는 서셉터의 중앙부에서 반응이 억제되어 서셉터의 전영역에 등간격으로 배치된 다수개의 기판 위에 동일한 성장조건을 유지할 수 있어, 박막을 균일하게 증착할 수 있으며, 반응 가스가 접촉하여 최적의 반응조건이 이루어지는 구간에 기판을 위치시킬 수 있어서 공정부산물(By-product)를 감소시킴으로써 고품질의 박막을 제조할 수 있다. 공정부산물이 적게 발생함으로써 다음 공정을 위한 부산물제거 작업에 필요한 시간을 줄여 생산성 향상을 가져 온다. As described above, according to the hydride vapor deposition reactor according to the present invention, the reaction is suppressed at the central portion of the rotating susceptor to maintain the same growth conditions on a plurality of substrates arranged at equal intervals over the entire region of the susceptor. Therefore, the thin film can be uniformly deposited, and the substrate can be positioned in a section where the reaction gas is in contact with the optimum reaction condition, thereby reducing the quality of the by-product, thereby producing a high quality thin film. Less process by-products result in increased productivity by reducing the time required to remove by-products for the next process.

또한, 가스관이 기판과 근접되어 불필요하게 길이가 길어지지 않으므로 필요이상의 반응으로 인하여 반응기 내부 벽면에 공정부산물의 응축에 의한 막힘현상이 최소화된다.In addition, since the gas pipe is close to the substrate and does not need to be unnecessarily long, clogging due to condensation of the process by-products on the inner wall of the reactor is minimized due to the excessive reaction.

이상, 본 발명을 본 발명의 원리를 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 그와 같이 도시되고 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다. 오히려, 첨부된 청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.While the invention has been described and illustrated in connection with a preferred embodiment for illustrating the principles of the invention, the invention is not limited to the configuration and operation as such is shown and described. Rather, it will be apparent to those skilled in the art that many changes and modifications to the present invention are possible without departing from the spirit and scope of the appended claims. Accordingly, all such suitable changes and modifications and equivalents should be considered to be within the scope of the present invention.

Claims (3)

헤드부(11)가 구비되며 진공을 유지하는 반응실(10)과; 상기 반응실에 회전 가능하게 설치되며 그 상면에 다수의 기판(P)이 안착되는 서셉터(20)와; 상기 서셉터에 가스를 분사하여 상기 기판 표면에 막을 형성하는 가스분사수단(30)과; 그리고, 상기 서셉터를 가열하는 가열수단을 포함하는 수소화물기상증착 반응기에 있어서,A reaction chamber 10 provided with a head portion 11 and maintaining a vacuum; A susceptor 20 rotatably installed in the reaction chamber and having a plurality of substrates P mounted thereon; Gas injection means (30) for injecting gas into the susceptor to form a film on the surface of the substrate; In the hydride vapor deposition reactor comprising a heating means for heating the susceptor, 상기 서셉터는 상기 기판이 안착되는 수평의 안착부(21) 및 상기 안착부의 하부 중앙에 형성되며 그 내부가 중공인 회전축(22)으로 이루어지며,The susceptor is formed of a horizontal seating portion 21 on which the substrate is seated and a rotating shaft 22 formed in the lower center of the seating portion and having a hollow inside thereof. 상기 가스분사수단은, 상기 헤드부의 하부에 형성되는 것으로, 상기 반응실 내부를 상하 공간(13,14)으로 구획하며 다수의 분사공(33a)을 갖는 분사판(33), 상기 헤드부에 관통되면서 분사부가 상기 분사판 상측의 제1공간에 연통되어 제1가스가 상기 제1공간(13)을 경유하여 상기 분사판(33)의 분사공을 통해 분사되도록 하는 제1가스관(31), 상기 서셉터의 회전축 내부에 결합되며 내부에 고체 소스(35)가 수용되는 소스 홀더(36), 상기 헤드부와 분사판의 중앙을 관통하면서 하단의 분사부(32c)가 상기 소스 홀더 내부에 배치되어 제2가스가 상기 소스 홀더 내부를 경유한 후 상기 서셉터의 표면으로 분사되어 상기 제1가스와 반응토록 하는 제2가스관(32)을 포함하여 구성된 것을 특징으로 하는 수소화물기상증착 반응기.The gas injection means is formed under the head, and partitions the inside of the reaction chamber into upper and lower spaces 13 and 14 and has a plurality of injection holes 33a, and penetrates the head. The first gas pipe 31, the injection unit is in communication with the first space above the injection plate so that the first gas is injected through the injection hole of the injection plate 33 via the first space 13, A source holder 36 coupled to the inside of the rotating shaft of the susceptor and receiving a solid source 35 therein, and a lower injection part 32c is disposed inside the source holder while penetrating the center of the head part and the injection plate. And a second gas pipe (32) which is injected into the surface of the susceptor after the second gas passes through the inside of the source holder and reacts with the first gas. 제 1 항에 있어서, 상기 제2가스관은 상기 분사판을 관통하며 가스가 유입되는 유입부(32a), 상기 유입부의 하부에 상기 소스 홀더의 개구부로부터 일정간격을 두고 상측으로 이격되는 가스유도부(32b) 및 상기 가스유도부의 하부에 상기 소스 홀더의 내주면과 간극을 두고 삽입되어 가스를 상기 소스 홀더에 분사하는 분사부(32c)로 이루어진 것을 특징으로 하는 수소화물기상증착 반응기.The gas induction part 32b of claim 1, wherein the second gas pipe penetrates through the injection plate and is spaced upward from the opening of the source holder in a lower portion of the inlet. And an injection part (32c) inserted into the lower portion of the gas induction part with a gap between the inner circumferential surface of the source holder and injecting gas into the source holder. 제 1 항 또는 제 2 항에 있어서, 상기 가열수단은 상기 서셉터의 저부와 상기 회전축을 감싸는 유도코일(40)인 것을 특징으로 하는 수소화물기상증착 반응기.The hydride vapor deposition reactor according to claim 1 or 2, wherein the heating means is an induction coil (40) surrounding the bottom of the susceptor and the rotating shaft.
KR1020040110323A 2004-12-22 2004-12-22 Hydride vapor phase epitaxy unit KR100578089B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040110323A KR100578089B1 (en) 2004-12-22 2004-12-22 Hydride vapor phase epitaxy unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040110323A KR100578089B1 (en) 2004-12-22 2004-12-22 Hydride vapor phase epitaxy unit

Publications (1)

Publication Number Publication Date
KR100578089B1 true KR100578089B1 (en) 2006-05-10

Family

ID=37181268

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040110323A KR100578089B1 (en) 2004-12-22 2004-12-22 Hydride vapor phase epitaxy unit

Country Status (1)

Country Link
KR (1) KR100578089B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940770B1 (en) 2008-11-06 2010-02-10 주식회사 시스넥스 Gas injection units of chemical vapor deposition chamber
WO2010118293A2 (en) * 2009-04-10 2010-10-14 Applied Materials, Inc. Hvpe chamber hardware
WO2011119195A2 (en) * 2009-12-30 2011-09-29 Cbl Technologies, Inc. Modern hydride vapor-phase epitaxy system & methods
US8110889B2 (en) 2009-04-28 2012-02-07 Applied Materials, Inc. MOCVD single chamber split process for LED manufacturing
US8138069B2 (en) 2009-04-24 2012-03-20 Applied Materials, Inc. Substrate pretreatment for subsequent high temperature group III depositions
US8183132B2 (en) 2009-04-10 2012-05-22 Applied Materials, Inc. Methods for fabricating group III nitride structures with a cluster tool
US8361892B2 (en) 2010-04-14 2013-01-29 Applied Materials, Inc. Multiple precursor showerhead with by-pass ports
US9057128B2 (en) 2011-03-18 2015-06-16 Applied Materials, Inc. Multiple level showerhead design
KR20160010342A (en) * 2014-07-18 2016-01-27 에이에스엠 아이피 홀딩 비.브이. Local temperature control of susceptor heater for increase of temperature uniformity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080642A (en) 1997-04-10 2000-06-27 Jds Uniphase Corporation Method of manufacturing a semiconductor device and a device for applying such a method
KR20030004231A (en) * 2002-12-04 2003-01-14 정세영 GaN single crystal and their manufacturing method and their manufacturing apparatus
US20040129215A1 (en) 2001-04-11 2004-07-08 Johannes Kaeppeler Method for depositing especially crystalline layers from the gas phase onto especially crystalline substrates
KR20050009340A (en) * 2003-07-16 2005-01-25 라이프앤드엘이디 주식회사 Apparatus and Method of Hydride Vapor Phase Epitaxy for AlGaN Growth

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080642A (en) 1997-04-10 2000-06-27 Jds Uniphase Corporation Method of manufacturing a semiconductor device and a device for applying such a method
US20040129215A1 (en) 2001-04-11 2004-07-08 Johannes Kaeppeler Method for depositing especially crystalline layers from the gas phase onto especially crystalline substrates
KR20030004231A (en) * 2002-12-04 2003-01-14 정세영 GaN single crystal and their manufacturing method and their manufacturing apparatus
KR20050009340A (en) * 2003-07-16 2005-01-25 라이프앤드엘이디 주식회사 Apparatus and Method of Hydride Vapor Phase Epitaxy for AlGaN Growth

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940770B1 (en) 2008-11-06 2010-02-10 주식회사 시스넥스 Gas injection units of chemical vapor deposition chamber
WO2010118293A2 (en) * 2009-04-10 2010-10-14 Applied Materials, Inc. Hvpe chamber hardware
WO2010118293A3 (en) * 2009-04-10 2011-01-20 Applied Materials, Inc. Hvpe chamber hardware
US8568529B2 (en) 2009-04-10 2013-10-29 Applied Materials, Inc. HVPE chamber hardware
US8491720B2 (en) 2009-04-10 2013-07-23 Applied Materials, Inc. HVPE precursor source hardware
US8183132B2 (en) 2009-04-10 2012-05-22 Applied Materials, Inc. Methods for fabricating group III nitride structures with a cluster tool
US8138069B2 (en) 2009-04-24 2012-03-20 Applied Materials, Inc. Substrate pretreatment for subsequent high temperature group III depositions
US8110889B2 (en) 2009-04-28 2012-02-07 Applied Materials, Inc. MOCVD single chamber split process for LED manufacturing
WO2011119195A3 (en) * 2009-12-30 2012-01-12 Cbl Technologies, Inc. Modern hydride vapor-phase epitaxy system & methods
WO2011119195A2 (en) * 2009-12-30 2011-09-29 Cbl Technologies, Inc. Modern hydride vapor-phase epitaxy system & methods
US8361892B2 (en) 2010-04-14 2013-01-29 Applied Materials, Inc. Multiple precursor showerhead with by-pass ports
US10130958B2 (en) 2010-04-14 2018-11-20 Applied Materials, Inc. Showerhead assembly with gas injection distribution devices
US9057128B2 (en) 2011-03-18 2015-06-16 Applied Materials, Inc. Multiple level showerhead design
KR20160010342A (en) * 2014-07-18 2016-01-27 에이에스엠 아이피 홀딩 비.브이. Local temperature control of susceptor heater for increase of temperature uniformity
KR102422305B1 (en) * 2014-07-18 2022-07-18 에이에스엠 아이피 홀딩 비.브이. Local temperature control of susceptor heater for increase of temperature uniformity

Similar Documents

Publication Publication Date Title
JP4958798B2 (en) Chemical vapor deposition reactor and chemical vapor deposition method
US9873941B2 (en) Film-forming manufacturing apparatus and method
US7906411B2 (en) Deposition technique for producing high quality compound semiconductor materials
WO2011011532A2 (en) Hollow cathode showerhead
US20040060518A1 (en) Apparatus for inverted multi-wafer MOCVD fabrication
US20100263588A1 (en) Methods and apparatus for epitaxial growth of semiconductor materials
US8491720B2 (en) HVPE precursor source hardware
KR100449787B1 (en) A method for fabricating a iii-v nitride film and an apparatus for fabricating the same
JP2010232402A (en) Vapor deposition apparatus and method
KR20090082509A (en) Abatement of reaction gases from gallium nitride deposition
JPH11312650A (en) Horizontal reaction furnace for manufacturing compound semiconductor
KR20120083495A (en) Vapor deposition device, vapor deposition method, and semiconductor element manufacturing method
KR100578089B1 (en) Hydride vapor phase epitaxy unit
JP2011012331A (en) Vapor deposition apparatus and vapor deposition method
JP2009105165A (en) Vapor phase growth device, and method of manufacturing semiconductor device
KR100943091B1 (en) Hydride vapor phase epitaxy equipment for gan single crystal growth
JP2010238831A (en) Vapor phase deposition device, and vapor phase deposition method
JP2009032784A (en) Vapor growth apparatus, and manufacturing method of semiconductor element
JP5443223B2 (en) Vapor growth apparatus and method for manufacturing nitride semiconductor light emitting device
JP5064132B2 (en) Vapor growth apparatus and method for manufacturing semiconductor device
JP2012084581A (en) Vapor phase epitaxial growth device
KR100839990B1 (en) Reactor for Hydride Vapor Phase Epitaxy with Double Heating System
KR101350779B1 (en) Gas Supplying Unit and Batch Type Apparatus for Forming Epitaxial Layer Having the Same
JP2010267702A (en) Device and method for forming chemical vapor deposition semiconductor film
KR20030071098A (en) Apparatus for manufacturing GaN substrate

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120427

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee