JP2007316013A - Autoanalyzer and specimen-dispensing method therefor - Google Patents

Autoanalyzer and specimen-dispensing method therefor Download PDF

Info

Publication number
JP2007316013A
JP2007316013A JP2006148362A JP2006148362A JP2007316013A JP 2007316013 A JP2007316013 A JP 2007316013A JP 2006148362 A JP2006148362 A JP 2006148362A JP 2006148362 A JP2006148362 A JP 2006148362A JP 2007316013 A JP2007316013 A JP 2007316013A
Authority
JP
Japan
Prior art keywords
sample
time
dispensing
automatic analyzer
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006148362A
Other languages
Japanese (ja)
Other versions
JP4871026B2 (en
Inventor
Akihisa Kuroda
顕久 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006148362A priority Critical patent/JP4871026B2/en
Publication of JP2007316013A publication Critical patent/JP2007316013A/en
Application granted granted Critical
Publication of JP4871026B2 publication Critical patent/JP4871026B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an autoanalyzer capable of accurately measuring the concentration of a blood corpuscle component, even if the times taken up to dispensing are different, and to provide a specimen-dispensing method therefor. <P>SOLUTION: The autoanalyzer is constituted so as to dispense a predetermined amount of a specimen, containing the blood corpuscle component housed in a specimen container by a dispenser 20 for making the same react with a reagent to perform analysis. The specimen-dispensing method for the autoanalyzer is also disclosed. The autoanalyzer 1 includes a memory part 15b for storing changes in the concentrations of the blood corpuscle components with the elapse of time, a clocking part 15a for clocking the elapse time, after the specimen has been mounted in the autoanalyzer and a position control part 15c for controlling the suction position in the vertical direction of the specimen, during dispensing by the dispenser 20. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動分析装置およびその検体分注方法に関するものである。   The present invention relates to an automatic analyzer and a sample dispensing method thereof.

従来、ヘモグロビンA1c(HbA1c)は、糖尿病の診断マーカとして使用されており、自動分析装置においては、被験者から採取した血球成分を含む検体(血液)の一定量を分注し、試薬、例えば、前処理液を加えて血球成分を溶血させた溶血試料の吸光度から求めた総ヘモグロビン(T−Hb)の濃度及びヘモグロビンA1cの濃度から総ヘモグロビン(T−Hb)に対する割合(%)として測定している(例えば、特許文献1参照)。ここで、血球成分を含む検体は、採取後、放置しておくと血球成分が沈降し、血漿成分と血球成分とに分離する。このため、通常、血球成分を含む検体は、採取後反応容器へ分注するまでの間、転倒混和する等の処理を施すことによって血球成分の沈降を回避している。   Conventionally, hemoglobin A1c (HbA1c) has been used as a diagnostic marker for diabetes. In an automatic analyzer, a certain amount of a sample (blood) containing blood cell components collected from a subject is dispensed, and a reagent, for example, It is measured as a ratio (%) to the total hemoglobin (T-Hb) from the concentration of total hemoglobin (T-Hb) and the concentration of hemoglobin A1c obtained from the absorbance of the hemolyzed sample in which the blood cell component was hemolyzed by adding the treatment solution. (For example, refer to Patent Document 1). Here, if a specimen containing a blood cell component is left after collection, the blood cell component settles and separates into a plasma component and a blood cell component. For this reason, usually, a specimen containing blood cell components avoids sedimentation of the blood cell components by performing a process such as inversion mixing until the sample is dispensed into the reaction container after collection.

特開2000−46843号公報JP 2000-46843 A

ところで、血球成分を含む検体(血液)を分析する自動分析装置は、検体を採取した採血管や、該採血管から血液を小分けした管からなる、いわゆる検体容器をラックに保持させ、これらのラックを搬送しながら検体を順次分析してゆく。このため、血球成分を含む検体は、ラックに保持してから分注位置へ搬送されて反応容器に分注されるまでに血球成分が沈降し、鉛直方向に濃度勾配が発生する。この結果、自動分析装置は、検体容器を保持したラックをセットした後、分注ノズルが検体を分注するまでの時間が異なると、検体を分注する位置が固定されているため、同一の検体であっても、血球成分の沈降に起因した前記濃度勾配のために血球成分の濃度を正確に測定することができなくなるという問題点があった。この場合、検体容器を振動させて血球成分の沈降を抑制することも考えられるが、自動分析装置は、振動装置を設けると装置の複雑化と大型化を招来して好ましくない。   By the way, an automatic analyzer for analyzing a sample (blood) containing blood cell components holds a so-called sample container made up of a blood collection tube from which a sample is collected and a tube into which blood is divided from the blood collection tube. Analyze the sample sequentially while transporting the sample. For this reason, the specimen containing the blood cell component is retained in the rack, transported to the dispensing position, and dispensed into the reaction container, so that the blood cell component settles and a concentration gradient is generated in the vertical direction. As a result, the automatic analyzer has the same position because the position at which the sample is dispensed is fixed if the time until the dispensing nozzle dispenses the sample differs after the rack holding the sample container is set. Even for a specimen, there is a problem that the concentration of blood cell components cannot be measured accurately due to the concentration gradient caused by sedimentation of blood cell components. In this case, it is conceivable to vibrate the specimen container to suppress sedimentation of blood cell components. However, if the automatic analyzer is provided with a vibration device, it is not preferable because the device becomes complicated and large.

本発明は、上記に鑑みてなされたものであって、分注までの時間が異なっても血球成分の濃度を正確に測定することが可能な自動分析装置およびその検体分注方法を提供することを目的とする。   The present invention has been made in view of the above, and provides an automatic analyzer capable of accurately measuring the concentration of blood cell components even when the time until dispensing differs, and a sample dispensing method thereof With the goal.

上記目的を達成するために、請求項1にかかる自動分析装置は、検体容器内に収容された血球成分を含む検体を分注装置によって所定量分注し、試薬と反応させて分析する自動分析装置において、前記血球成分の経時的な濃度変化を記憶する記憶手段と、前記検体を当該自動分析装置に装着した後の経過時間を計時する計時手段と、前記計時手段が計時した経過時間をもとに、前記分注装置による分注の際の前記検体の鉛直方向における吸引位置を制御する位置制御手段と、を備えたことを特徴とする。   In order to achieve the above object, an automatic analyzer according to claim 1 is an automatic analyzer that dispenses a predetermined amount of a sample containing a blood cell component contained in a sample container by a dispensing device and reacts with a reagent for analysis. In the apparatus, storage means for storing the concentration change of the blood cell component with time, time measuring means for measuring the elapsed time after mounting the sample on the automatic analyzer, and the elapsed time measured by the time measuring means are also included. And a position control means for controlling the suction position of the specimen in the vertical direction when dispensing by the dispensing device.

また、請求項2にかかる自動分析装置は、上記の発明において、さらに、前記血球成分の経時的な濃度変化を予め記憶する記憶手段を備え、前記位置制御手段は、前記計時手段が計時した経過時間と、前記記憶手段が記憶した経時的な濃度変化とをもとに、前記吸引位置を制御することを特徴とする。   The automatic analyzer according to claim 2 further comprises storage means for previously storing a change in concentration of the blood cell component over time in the invention described above, and the position control means is a time measured by the time measuring means. The suction position is controlled based on time and a change in density over time stored in the storage means.

また、請求項3にかかる自動分析装置は、上記の発明において、前記検体の当該自動分析装置への装着を検出し、前記計時手段へ出力する第一の検出手段と、前記検体の前記分注装置による分注位置への移動を検出し、前記計時手段へ出力する第二の検出手段と、を備え、前記計時手段は、前記第一及び第二の検出手段から入力される情報をもとに前記経過時間を計時することを特徴とする。   According to a third aspect of the present invention, there is provided the automatic analyzer according to the above invention, wherein the first detection means for detecting the mounting of the sample on the automatic analyzer and outputting to the time measuring means, and the dispensing of the sample. Second detection means for detecting movement to the dispensing position by the device and outputting to the time measurement means, the time measurement means based on information input from the first and second detection means And measuring the elapsed time.

また、上記目的を達成するために、請求項4にかかる自動分析装置の検体分注方法は、検体容器内に収容された血球成分を含む検体を分注装置によって所定量分注し、試薬と反応させて分析する自動分析装置の検体分注方法であって、前記血球成分の経時的な濃度変化を記憶する記憶工程と、前記検体を当該自動分析装置に装着した後の経過時間を計時する計時工程と、前記経過時間をもとに、前記分注装置による分注の際の前記検体の鉛直方向における吸引位置を制御する位置制御工程と、を含むことを特徴とする。   In order to achieve the above object, the sample dispensing method of the automatic analyzer according to claim 4 dispenses a predetermined amount of a sample containing a blood cell component contained in a sample container with a dispensing device, A sample dispensing method for an automatic analyzer that performs reaction and analysis, the storage step storing a change in concentration of blood cell components over time, and the elapsed time after mounting the sample on the automatic analyzer And a position control step of controlling a suction position in the vertical direction of the specimen during dispensing by the dispensing device based on the elapsed time.

また、請求項5にかかる自動分析装置の検体分注方法は、上記の発明において、さらに、前記血球成分の経時的な濃度変化を予め記憶する記憶工程を含み、前記位置制御工程は、前記経過時間と前記経時的な濃度変化とをもとに、前記吸引位置を制御することを特徴とする。   According to a fifth aspect of the present invention, the sample dispensing method of the automatic analyzer further includes a storage step of previously storing a change in concentration of the blood cell component over time, in the above invention, The suction position is controlled based on time and the concentration change over time.

本発明の自動分析装置は、計時手段が計時した経過時間をもとに、位置制御手段が、分注装置による分注の際の検体の鉛直方向における吸引位置を制御し、本発明の自動分析装置の分注方法は、位置制御工程において、経過時間をもとに、分注装置による分注の際の検体の鉛直方向における吸引位置を制御するので、分注までの時間が異なっても、血球成分の経時的な濃度変化に対応した所定の濃度の試料を分注し、血球成分の濃度を正確に測定することが可能な自動分析装置およびその検体分注方法を提供することできるという効果を奏する。   In the automatic analyzer of the present invention, based on the elapsed time measured by the time measuring means, the position control means controls the suction position of the specimen in the vertical direction during dispensing by the dispensing apparatus, and the automatic analysis of the present invention. Since the dispensing method of the device controls the suction position in the vertical direction of the specimen during dispensing by the dispensing device based on the elapsed time in the position control step, even if the time to dispensing is different, The effect of providing an automatic analyzer capable of accurately measuring the concentration of a blood cell component by dispensing a sample having a predetermined concentration corresponding to the change in concentration of the blood cell component over time, and a sample dispensing method thereof. Play.

以下に添付図面を参照して、本発明の自動分析装置およびその分注方法の好適な実施の形態を詳細に説明する。図1は、本発明の自動分析装置の概略構成図である。図2は、図1の自動分析装置で使用する検体分注装置の概略構成を示すブロック図である。   Exemplary embodiments of an automatic analyzer and a dispensing method thereof according to the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of an automatic analyzer according to the present invention. FIG. 2 is a block diagram showing a schematic configuration of a sample dispensing apparatus used in the automatic analyzer of FIG.

自動分析装置1は、血球成分を含む血液や尿等の検体を自動分析する装置であり、図1に示すように、試薬テーブル2,3、キュベットホイール4、検体容器移送機構8、分析光学系11、洗浄機構12、第一攪拌装置13と第二攪拌装置14、制御部15及び検体分注装置20を備えている。   The automatic analyzer 1 is a device that automatically analyzes a sample such as blood or urine containing blood cell components. As shown in FIG. 1, the reagent tables 2 and 3, the cuvette wheel 4, the sample container transfer mechanism 8, the analysis optical system. 11, a cleaning mechanism 12, a first stirring device 13 and a second stirring device 14, a control unit 15, and a sample dispensing device 20.

試薬テーブル2,3は、図1に示すように、それぞれ第一試薬の試薬容器2aと第二試薬の試薬容器3aが周方向に複数配置され、駆動手段に回転されて試薬容器2a,3aを周方向に搬送する。複数の試薬容器2a,3aは、それぞれ検査項目に応じて血球成分を溶血させる前処理液を含む試薬が満たされ、外面には収容した試薬の種類,ロット及び有効期限等の情報を記録した情報記録媒体(図示せず)が付加されている。ここで、試薬テーブル2,3の外周には、試薬容器2a,3aに付加した情報記録媒体に記録された試薬情報を読み取り、制御部15へ出力する読取装置が設置されている。   As shown in FIG. 1, each of the reagent tables 2 and 3 includes a plurality of reagent containers 2a for the first reagent and a plurality of reagent containers 3a for the second reagent arranged in the circumferential direction. The reagent containers 2a and 3a are rotated by driving means. Transport in the circumferential direction. Each of the plurality of reagent containers 2a and 3a is filled with a reagent containing a pretreatment liquid that hemolyzes blood cell components in accordance with the test item, and information on the type, lot, and expiration date of the stored reagent is recorded on the outer surface. A recording medium (not shown) is added. Here, on the outer periphery of the reagent tables 2 and 3, a reading device that reads the reagent information recorded on the information recording medium added to the reagent containers 2 a and 3 a and outputs it to the control unit 15 is installed.

キュベットホイール4は、図1に示すように、複数の反応容器5が周方向に沿って配列されており、試薬テーブル2,3を駆動する駆動手段とは異なる駆動手段によって矢印で示す方向に回転されて反応容器5を周方向に移動させる。キュベットホイール4は、光源11aと分光部11bとの間に配置され、反応容器5を保持する保持部4aと光源11aが出射した光束を分光部11bへ導く円形の開口からなる光路4bとを有している。保持部4aは、キュベットホイール4の外周に周方向に沿って所定間隔で配置され、保持部4aの内周側に半径方向に延びる光路4bが形成されている。   As shown in FIG. 1, the cuvette wheel 4 has a plurality of reaction vessels 5 arranged in the circumferential direction, and is rotated in a direction indicated by an arrow by a driving means different from the driving means for driving the reagent tables 2 and 3. Then, the reaction vessel 5 is moved in the circumferential direction. The cuvette wheel 4 is disposed between the light source 11a and the spectroscopic unit 11b, and has a holding unit 4a that holds the reaction vessel 5 and an optical path 4b that includes a circular opening that guides the light beam emitted from the light source 11a to the spectroscopic unit 11b. is doing. The holding portions 4a are arranged on the outer periphery of the cuvette wheel 4 at predetermined intervals along the circumferential direction, and an optical path 4b extending in the radial direction is formed on the inner peripheral side of the holding portion 4a.

反応容器5は、分析光学系11から出射された分析光(340〜800nm)に含まれる光の80%以上を透過する光学的に透明な素材、例えば、耐熱ガラスを含むガラス,環状オレフィンやポリスチレン等によって四角筒状に成形されたキュベットと呼ばれる容器である。反応容器5は、近傍に設けた試薬分注装置6,7によって試薬テーブル2,3の試薬容器2a,3aから試薬が分注される。ここで、試薬分注装置6,7は、それぞれ水平面内を回動すると共に、上下方向に昇降されるアーム6a,7aに試薬を分注するノズル6b,7bが設けられ、洗浄水によってノズル6b,7bを洗浄する洗浄手段を有している。   The reaction vessel 5 is an optically transparent material that transmits 80% or more of the light contained in the analysis light (340 to 800 nm) emitted from the analysis optical system 11, such as glass containing heat-resistant glass, cyclic olefin, and polystyrene. It is a container called a cuvette formed into a square cylinder shape by the like. In the reaction container 5, the reagent is dispensed from the reagent containers 2a and 3a of the reagent tables 2 and 3 by the reagent dispensing devices 6 and 7 provided in the vicinity. Here, each of the reagent dispensing devices 6 and 7 is rotated in a horizontal plane, and nozzles 6b and 7b for dispensing the reagent are provided on arms 6a and 7a that are moved up and down in the vertical direction. , 7b.

検体容器移送機構8は、図1に示すように、配列された複数のラック9を矢印方向に沿って1つずつ歩進させながら移送する。ラック9は、検体を収容した複数の検体容器9aを保持している。ここで、検体容器9aは、収容した検体の情報を記録したバーコード等が貼付され、検体容器移送機構8によって移送されるラック9の歩進が停止するごとに、検体分注装置20によって検体が各反応容器5へ分注される。   As shown in FIG. 1, the specimen container transfer mechanism 8 transfers the plurality of arranged racks 9 while stepping one by one along the arrow direction. The rack 9 holds a plurality of sample containers 9a that store samples. Here, the sample container 9a is affixed with a bar code or the like on which information on the stored sample is affixed, and every time the advance of the rack 9 transported by the sample container transport mechanism 8 stops, Is dispensed into each reaction vessel 5.

ここで、検体容器移送機構8には、図1に示すように、ラック9に保持して装着される検体容器9aの自動分析装置1への装着と、検体分注装置20への搬送をそれぞれ前記バーコード等から読み取り、制御部15の計時部15aへ出力する第一および第二の検出手段としての読取装置10A,10Bが設けられている。   Here, as shown in FIG. 1, the sample container transfer mechanism 8 is configured to mount the sample container 9 a held and mounted on the rack 9 on the automatic analyzer 1 and transport the sample container 9 a to the sample dispensing apparatus 20. Reading devices 10 </ b> A and 10 </ b> B are provided as first and second detection means that read from the bar code or the like and output to the timer unit 15 a of the control unit 15.

分析光学系11は、試薬と検体とが反応した反応容器5内の液体試料に分析光(340〜800nm)を透過させて分析するための光学系であり、図1に示すように、光源11a、分光部11b及び受光部11cを有している。光源11aから出射された分析光は、反応容器5内の液体試料を透過し、分光部11bと対向する位置に設けた受光部11cによって受光される。受光部11cは、制御部15と接続されている。   The analysis optical system 11 is an optical system for performing analysis by transmitting analysis light (340 to 800 nm) through the liquid sample in the reaction vessel 5 in which the reagent and the sample have reacted. As shown in FIG. , A spectroscopic unit 11b and a light receiving unit 11c. The analysis light emitted from the light source 11a passes through the liquid sample in the reaction vessel 5 and is received by the light receiving unit 11c provided at a position facing the spectroscopic unit 11b. The light receiving unit 11 c is connected to the control unit 15.

洗浄機構12は、ノズル12aによって反応容器5内の液体試料を吸引して排出した後、ノズル12aによって洗剤や洗浄水等の洗浄液等を繰り返し注入し、吸引することにより、分析光学系11による分析が終了した反応容器5を洗浄する。   The cleaning mechanism 12 sucks and discharges the liquid sample in the reaction vessel 5 by the nozzle 12a, and then repeatedly injects and sucks a cleaning liquid such as detergent and cleaning water by the nozzle 12a, thereby performing analysis by the analysis optical system 11. The reaction vessel 5 that has been completed is washed.

第一攪拌装置13及び第二攪拌装置14は、分注された検体と試薬とを攪拌棒13a,14aによって攪拌し、反応させる。   The first stirrer 13 and the second stirrer 14 stir the dispensed specimen and reagent with the stirrers 13a and 14a and cause them to react.

制御部15は、試薬テーブル2,3、試薬分注装置6,7、検体容器移送機構8、分析光学系11、洗浄機構12、攪拌装置13,14、入力部16、表示部17及び検体分注装置20等と接続されてこれら各部の作動を制御し、マイクロコンピュータ等が使用される。制御部15は、受光部11cから入力される波長ごとの光量信号をもとに各反応容器5内の液体試料の波長ごとの吸光度を求め、検体の成分濃度等を分析する。また、制御部15は、試薬容器2a,3aに付加した情報記録媒体から読み取った情報に基づき、試薬のロットが異なる場合や有効期限外等の場合に分析作業を停止するように自動分析装置1を制御し、或いはオペレータに警報を発する。そして、制御部15は、図2に示すように、計時部15a、記憶部15b及び駆動機構制御部15cを備えている。   The control unit 15 includes the reagent tables 2 and 3, the reagent dispensing devices 6 and 7, the sample container transfer mechanism 8, the analysis optical system 11, the cleaning mechanism 12, the stirring devices 13 and 14, the input unit 16, the display unit 17, and the sample distribution. It is connected to the injection device 20 and the like to control the operation of these parts, and a microcomputer or the like is used. The control unit 15 obtains the absorbance for each wavelength of the liquid sample in each reaction vessel 5 based on the light amount signal for each wavelength input from the light receiving unit 11c, and analyzes the component concentration and the like of the specimen. In addition, the control unit 15, based on information read from the information recording medium added to the reagent containers 2 a and 3 a, the automatic analyzer 1 so as to stop the analysis work when the reagent lot is different or when the expiration date is out of date. Or alert the operator. And the control part 15 is provided with the time measuring part 15a, the memory | storage part 15b, and the drive mechanism control part 15c, as shown in FIG.

計時部15aは、読取装置10A,10Bから入力された情報から検体容器9aが検体容器移送機構8に装着された後、検体分注装置20へ搬送される迄の経過時間を計時し、検体容器9a毎の時間情報を記憶部15bへ出力する。記憶部15bは、血球成分の基準濃度R1の経時的な濃度変化(図4参照)を予め記憶すると共に、計時部15aから入力される時間情報と前記経時的な濃度変化とをもとに、検体容器9a毎に分注ノズル20bによる検体の吸引位置を設定する。記憶部15bは、このようにして設定した検体容器9a毎の検体の吸引位置に関する情報を駆動機構制御部15cに出力する。この場合、図4に示す血球成分の基準濃度R1の経時的な濃度変化は、血球成分の測定対象毎に予め測定し、平均的なグラフとして記憶部15bに入力しておく。駆動機構制御部15cは、駆動機構22によってアーム20aの昇降動作と回動動作を制御するが、記憶部15bから入力される検体容器9a毎の検体の吸引位置に関する情報をもとにアーム20aの昇降動作を制御し、検体分注装置20による検体を分注する際の分注ノズル20bによる検体容器9aに保持された検体の鉛直方向における吸引位置を制御する。   The time measuring unit 15a measures the elapsed time from the information input from the reading devices 10A and 10B until the sample container 9a is mounted on the sample container transfer mechanism 8 and then conveyed to the sample dispensing device 20, and the sample container The time information for each 9a is output to the storage unit 15b. The storage unit 15b stores in advance the temporal concentration change (see FIG. 4) of the reference concentration R1 of the blood cell component, and based on the time information input from the time measuring unit 15a and the temporal concentration change, A sample suction position by the dispensing nozzle 20b is set for each sample container 9a. The storage unit 15b outputs information related to the sample aspiration position for each sample container 9a set in this way to the drive mechanism control unit 15c. In this case, the change over time of the reference concentration R1 of the blood cell component shown in FIG. 4 is measured in advance for each measurement target of the blood cell component, and is input to the storage unit 15b as an average graph. The drive mechanism control unit 15c controls the raising / lowering operation and the rotation operation of the arm 20a by the drive mechanism 22, but based on the information on the sample aspiration position for each sample container 9a input from the storage unit 15b, The vertical movement of the sample held in the sample container 9a by the dispensing nozzle 20b when the sample is dispensed by the sample dispensing device 20 is controlled by controlling the lifting operation.

入力部16は、制御部15へ検査項目等を入力する操作を行う部分であり、例えば、キーボードやマウス等が使用される。表示部17は、分析内容,分析結果或いは警報等を表示するもので、ディスプレイパネル等が使用される。   The input unit 16 is a part that performs an operation of inputting an inspection item or the like to the control unit 15, and for example, a keyboard, a mouse, or the like is used. The display unit 17 displays analysis contents, analysis results, alarms, or the like, and a display panel or the like is used.

検体分注装置20は、図2に示すように、駆動機構22によって駆動されるアーム20aに検体を分注する分注ノズル20bが設けられている。アーム20aは、駆動機構22によって昇降駆動と回動駆動される支柱21に支持されている。分注ノズル20bは、液面検知部24と接続された液面検知電極23が取り付けられている。液面検知部24は、液面検知電極23が液面に触れて変化する電流により検体容器9aに保持された検体Sの液面を電気的に検知する。   As shown in FIG. 2, the sample dispensing device 20 is provided with a dispensing nozzle 20 b that dispenses a sample to an arm 20 a that is driven by a drive mechanism 22. The arm 20 a is supported by a support column 21 that is driven to rotate up and down by a drive mechanism 22. A liquid level detection electrode 23 connected to the liquid level detection unit 24 is attached to the dispensing nozzle 20b. The liquid level detection unit 24 electrically detects the liquid level of the sample S held in the sample container 9a by a current that changes when the liquid level detection electrode 23 touches the liquid level.

以上のように構成される自動分析装置1は、回転するキュベットホイール4によって周方向に沿って搬送されてくる複数の反応容器5に試薬分注装置6が試薬容器2aから第一試薬を順次分注する。第一試薬が分注された反応容器5は、検体分注装置20によってラック9に保持された複数の検体容器9aから検体が順次分注される。検体が分注された反応容器5は、キュベットホイール4が停止する都度、第一攪拌装置13によって攪拌されて第一試薬と検体が反応する。第一試薬と検体が攪拌された反応容器5は、試薬分注装置7によって試薬容器3aから第二試薬が順次分注された後、キュベットホイール4の停止時に第二攪拌装置14によって攪拌され、更なる反応が促進される。ここで、分析対象の検体によっては、必ずしも第一試薬と第二試薬の両方を分注せず、いずれか一方の場合もある。   In the automatic analyzer 1 configured as described above, the reagent dispensing device 6 sequentially dispenses the first reagent from the reagent container 2a to the plurality of reaction containers 5 conveyed along the circumferential direction by the rotating cuvette wheel 4. Note. In the reaction container 5 into which the first reagent has been dispensed, the specimen is sequentially dispensed from the plurality of specimen containers 9 a held in the rack 9 by the specimen dispensing apparatus 20. The reaction container 5 into which the sample has been dispensed is stirred by the first stirring device 13 each time the cuvette wheel 4 is stopped, and the first reagent reacts with the sample. The reaction container 5 in which the first reagent and the sample are stirred is sequentially stirred by the second stirring device 14 when the cuvette wheel 4 is stopped after the second reagent is sequentially dispensed from the reagent container 3a by the reagent dispensing device 7. Further reaction is promoted. Here, depending on the sample to be analyzed, both the first reagent and the second reagent are not necessarily dispensed, and either one of them may be present.

次いで、キュベットホイール4が再び回転すると、キュベットホイール4は、反応容器5が光源11aに対して順次相対移動し、反応容器5が分析光学系11を通過する。これにより、受光部11cが制御部15に光信号を出力する。制御部15は、受光部11cから入力される波長ごとの光量信号をもとに各反応容器5内の液体試料の波長ごとの吸光度を求め、検体の成分濃度等を分析する。このとき、制御部15は、分析した検体の成分濃度等の分析結果を記憶し、分析結果を表示部17に表示する。このようにして、分析が終了した反応容器5は、洗浄機構12によって洗浄された後、再度検体の分析に使用される。   Next, when the cuvette wheel 4 is rotated again, the reaction vessel 5 sequentially moves relative to the light source 11 a and the reaction vessel 5 passes through the analysis optical system 11. Thereby, the light receiving unit 11 c outputs an optical signal to the control unit 15. The control unit 15 obtains the absorbance for each wavelength of the liquid sample in each reaction vessel 5 based on the light amount signal for each wavelength input from the light receiving unit 11c, and analyzes the component concentration and the like of the specimen. At this time, the control unit 15 stores the analysis result such as the component concentration of the analyzed sample, and displays the analysis result on the display unit 17. Thus, after the analysis is completed, the reaction vessel 5 is washed by the washing mechanism 12 and then used again for analyzing the specimen.

ここで、検体容器9aに採取した検体(血液)は、時間経過に伴って血球成分が沈降してゆく。検体容器9aに採取した検体Sの血球成分が沈降してゆく様子を図3に示す。検体Sは、血漿成分に対して血球成分の比重が大きいため、図3に示すように、採取時、血球成分が血漿中に均一に分布していても、時間経過に伴って血球成分が沈降し、検体Sの上層部は血球成分が薄く、検体Sの下層部は血球成分が濃くなってゆく。   Here, in the specimen (blood) collected in the specimen container 9a, blood cell components are precipitated with time. FIG. 3 shows a state in which blood cell components of the sample S collected in the sample container 9a are sedimented. Since the specific gravity of the blood cell component is larger than that of the plasma component in the sample S, as shown in FIG. 3, even when the blood cell component is uniformly distributed in the plasma at the time of collection, the blood cell component settles with time. However, the upper layer part of the sample S has a thin blood cell component, and the lower layer part of the sample S becomes thicker.

図4は、反応容器におけるこのような血球成分の沈降に起因した血球成分の基準濃度R1(上限値Lu,下限値Ll)の時間変化を示す模式図である。検体(血液)は、図4に示すように、時間の経過に伴い血球成分が沈降する。このため、血球成分は、基準濃度R1より薄い濃度R0の領域が経時的に上層から下層に向かって拡大し、基準濃度R1より濃い濃度R2の領域は、下層から上層に拡大する。但し、検体Sは、経時的な沈降によって鉛直方向に血球成分の濃度勾配が生じても、上限値Luと下限値Llとの範囲内に基準濃度R1があれば、沈降の影響なく分注することができる。従って、自動分析装置1は、図4に示す血球成分の基準濃度R1の経時的な濃度変化を記憶部15bに記憶させておけば、計時部15aで計時した経過時間と、予め記憶部15bに記憶した血球成分の図4に示す経時的な濃度変化とをもとに、適切な深さに分注ノズル20bを配置させて、常に基準濃度R1の検体Sを分注することができる。   FIG. 4 is a schematic diagram showing the change over time of the reference concentration R1 (upper limit Lu, lower limit Ll) of the blood cell component resulting from such sedimentation of the blood cell component in the reaction vessel. In the sample (blood), as shown in FIG. 4, blood cell components settle with time. For this reason, in the blood cell component, a region having a concentration R0 lower than the reference concentration R1 expands from the upper layer to the lower layer with time, and a region having a concentration R2 higher than the reference concentration R1 expands from the lower layer to the upper layer. However, even if the concentration gradient of the blood cell component is generated in the vertical direction due to sedimentation over time, the sample S is dispensed without being affected by sedimentation if the reference concentration R1 is within the range between the upper limit Lu and the lower limit Ll. be able to. Therefore, the automatic analyzer 1 stores the elapsed time of the reference concentration R1 of the blood cell component shown in FIG. 4 in the storage unit 15b, and the elapsed time measured by the time measuring unit 15a and the storage unit 15b in advance. The sample S having the reference concentration R1 can be always dispensed by arranging the dispensing nozzle 20b at an appropriate depth based on the stored concentration change over time shown in FIG.

このような血球成分の沈降と基準濃度との関係を前提として、自動分析装置1を使用し、被験者から採取した血液に含まれる血球成分のヘモグロビンA1c(HbA1c)を分析する際、制御部15が駆動機構22によってアーム20aの昇降動作を制御することにより、分注ノズル20bによる検体の鉛直方向における吸引位置を制御する本発明の分注方法を以下に説明する。図5は、制御部15の制御動作を示すフローチャートである。   On the premise of the relationship between the sedimentation of the blood cell component and the reference concentration, the control unit 15 uses the automatic analyzer 1 to analyze the hemoglobin A1c (HbA1c) of the blood cell component contained in the blood collected from the subject. A dispensing method according to the present invention, in which the suction position of the specimen in the vertical direction by the dispensing nozzle 20b is controlled by controlling the raising / lowering operation of the arm 20a by the drive mechanism 22, will be described below. FIG. 5 is a flowchart showing the control operation of the control unit 15.

先ず、制御部15は、自動分析装置1のスイッチがオンされ、検体(血液)の分析モードに設定されると、分注ノズル20bの先端を検体(血液)の液面から侵入させて分注する検体の吸引位置を初期設定する(ステップS101)。この場合、初期設定する検体の吸引位置は、検体容器移送機構8へラック9が装着された後、検体分注装置20によって検体が分注されるまで平均的な時間をもとに、記憶部15bが図4に示す経時的な濃度変化から設定する。   First, when the switch of the automatic analyzer 1 is turned on and the specimen (blood) analysis mode is set, the control unit 15 causes the tip of the dispensing nozzle 20b to enter from the liquid surface of the specimen (blood) to perform dispensing. The aspiration position of the sample to be performed is initially set (step S101). In this case, the initial setting of the sample aspiration position is based on the average time until the sample is dispensed by the sample dispensing device 20 after the rack 9 is mounted on the sample container transfer mechanism 8. 15b is set from the change in density over time shown in FIG.

次に、検体容器移送機構8へラック9が装着されると、制御部15は、検体容器9aのバーコードを読み取った読取装置10Aから入力される情報によって計時部15aが検体容器9a毎の計時を開始する(ステップS102)。このとき、検体容器移送機構8へ装着されたラック9は、検体容器9aのバーコードが読み取られた後、検体容器9aを保持して検体分注装置20側へ順次搬送される。   Next, when the rack 9 is mounted on the sample container transfer mechanism 8, the control unit 15 causes the time measuring unit 15a to measure time for each sample container 9a according to information input from the reading device 10A that reads the barcode of the sample container 9a. Is started (step S102). At this time, the rack 9 mounted on the sample container transfer mechanism 8 reads the barcode of the sample container 9a, holds the sample container 9a, and is sequentially transported to the sample dispensing apparatus 20 side.

次いで、搬送されてくるラック9に保持された各検体容器9aのバーコードを読み取った読取装置10Bから入力される情報によって、制御部15は、ラック9を介して各検体容器9aが自動分析装置1に装着された後、読取装置10Bによって読み取られるまでの経過時間を計時部15aによって計時する(ステップS103)。このとき、制御部15は、検体分注装置20が検体容器9aの検体を反応容器5に分注する際の時刻を計時部15aによって計時することにより経過時間を計時してもよく、このように計時すると経過時間を一層精度よく計時することができる。   Next, according to information input from the reading device 10B that reads the barcode of each sample container 9a held in the transported rack 9, the control unit 15 causes each sample container 9a to be automatically analyzed via the rack 9. The time elapsed after being attached to 1 and being read by the reading device 10B is measured by the timer unit 15a (step S103). At this time, the control unit 15 may count the elapsed time by measuring the time when the sample dispensing apparatus 20 dispenses the sample in the sample container 9a into the reaction container 5 by the time measuring unit 15a. If the time is counted, the elapsed time can be timed more accurately.

その後、制御部15は、各検体容器9aについて計時した経過時間から、記憶部15bが図4に示す経時的な濃度変化をもとに分注ノズル20bの先端を検体(血液)の液面から検体の吸引位置を読み出す(ステップS104)。このとき、読み出した検体の吸引位置が初期設定の位置と一致している場合、制御部15は、この位置でに分注を実行させる。一方、記憶部15bが読み出した検体の吸引位置が初期設定の位置と一致しない場合、制御部15は、分注ノズル20bの位置を修正する(ステップS105)。分注ノズル20bの位置を修正する場合、初期設定した検体の吸引位置よりも上方に変更する場合と、初期設定した検体の吸引位置よりも下方に変更する場合とがある。   Thereafter, the control unit 15 starts the tip of the dispensing nozzle 20b from the liquid level of the sample (blood) from the elapsed time measured for each sample container 9a based on the change in concentration over time shown in FIG. The aspiration position of the specimen is read (step S104). At this time, if the read-out position of the sample coincides with the initially set position, the control unit 15 causes dispensing to be performed at this position. On the other hand, when the sample suction position read by the storage unit 15b does not coincide with the initially set position, the control unit 15 corrects the position of the dispensing nozzle 20b (step S105). When correcting the position of the dispensing nozzle 20b, there are a case where the position is changed above the initially set specimen suction position and a case where the position is changed below the initially set specimen suction position.

即ち、ラック9を介して検体容器9aを検体容器移送機構8へ装着した後の経過時間が長い場合は、血球成分の沈降量が多いので、初期設定の位置では血球成分が基準濃度R1以下になっている。このため、制御部15は、駆動機構部15cによって分注ノズル20bを記憶部15bが読み出した検体の吸引位置まで下降させる。一方、経過時間が短い場合は、血球成分の沈降量が少ないので、初期設定の位置では血球成分が基準濃度R1以上になっている。このため、制御部15は、駆動機構部15cによって分注ノズル20bを記憶部15bが読み出した検体の吸引位置まで上昇させる。   That is, when the elapsed time after mounting the sample container 9a to the sample container transfer mechanism 8 via the rack 9 is long, the sedimentation amount of the blood cell component is large, so that the blood cell component is below the reference concentration R1 at the initial setting position. It has become. Therefore, the control unit 15 lowers the dispensing nozzle 20b to the sample aspiration position read by the storage unit 15b by the drive mechanism unit 15c. On the other hand, when the elapsed time is short, the sedimentation amount of the blood cell component is small, so that the blood cell component is equal to or higher than the reference concentration R1 at the initial position. For this reason, the control part 15 raises the dispensing nozzle 20b to the suction position of the sample which the memory | storage part 15b read by the drive mechanism part 15c.

そして、検体の吸引位置を修正した後、制御部15は、修正した吸引位置で検体を分注し(ステップS106)、本発明の検体分注方法が終了する。   Then, after correcting the sample aspiration position, the control unit 15 dispenses the sample at the corrected aspiration position (step S106), and the sample dispensing method of the present invention ends.

自動分析装置1の検体分注方法は、このように検体を検体容器移送機構8へ装着した後の経過時間をもとに、検体の鉛直方向における吸引位置を制御部15によって制御する。このため、自動分析装置1は、検体を検体容器移送機構8へ装着した後の経過時間が異なっていても、血球成分の濃度勾配を考慮した基準濃度の検体を分注することができるので、血球成分の濃度を正確に測定することが可能になる。このため、自動分析装置1は、血球成分の測定精度が安定し、測定結果に対する信頼性を高めることができる。また、自動分析装置1は、血球成分の沈降が始まっていても、検体(血液)をオペレータが手作業で混和する必要がないので、多数の検体(血液)を連続的に分析することができる。   In the sample dispensing method of the automatic analyzer 1, the control unit 15 controls the suction position of the sample in the vertical direction based on the elapsed time after the sample is mounted on the sample container transfer mechanism 8 in this way. For this reason, the automatic analyzer 1 can dispense the reference concentration sample in consideration of the concentration gradient of the blood cell component even if the elapsed time after the sample is mounted on the sample container transfer mechanism 8 is different. It becomes possible to accurately measure the concentration of blood cell components. For this reason, the automatic analyzer 1 can stabilize the measurement accuracy of the blood cell component and increase the reliability of the measurement result. Further, the automatic analyzer 1 can continuously analyze a large number of samples (blood) because the operator does not need to mix the samples (blood) manually even when the sedimentation of blood cell components has started. .

なお、分注ノズル20bの位置を修正した新たな検体の吸引位置で検体の分注を行った場合、溶血試料の濃度Rが基準濃度R1を逸脱していたときには、制御部15は、再度、上述の検体分注方法によって分注ノズル20bの位置を修正して検体を分注し、溶血試料の濃度Rを改めて測定するようにしてもよい。   When the sample is dispensed at the new sample suction position with the position of the dispensing nozzle 20b corrected, when the concentration R of the hemolyzed sample deviates from the reference concentration R1, the control unit 15 again The sample may be dispensed by correcting the position of the dispensing nozzle 20b by the sample dispensing method described above, and the concentration R of the hemolyzed sample may be measured again.

また、上述の実施の形態は、血球成分としてヘモグロビンA1cを測定する場合について説明したが、分注までの時間の相違に起因した沈降の影響を受ける血球成分の測定であれば、ヘモグロビンA1c以外の測定にも適用可能であり、例えば、赤血球(ヘモグロビンA1a,A1bを含む)、白血球或いは血小板の測定にも適用できる。   Moreover, although the above-mentioned embodiment demonstrated the case where hemoglobin A1c was measured as a blood cell component, if it is a measurement of the blood cell component which receives the influence of the sedimentation resulting from the difference in time to dispensing, it will be other than hemoglobin A1c. For example, it can be applied to the measurement of red blood cells (including hemoglobins A1a and A1b), white blood cells or platelets.

一方、本発明の自動分析装置は、試薬分注装置を2つ備えた場合について説明したが、試薬分注装置は1つであってもよい。また、本発明の自動分析装置は、自動分析装置1を1ユニットとして複数のユニットが組み合わされて構成されていてもよい。   On the other hand, although the automatic analyzer of the present invention has been described with respect to the case where two reagent dispensing devices are provided, the number of reagent dispensing devices may be one. Moreover, the automatic analyzer of the present invention may be configured by combining a plurality of units with the automatic analyzer 1 as one unit.

本発明の自動分析装置の概略構成図である。It is a schematic block diagram of the automatic analyzer of this invention. 図1の自動分析装置で使用する検体分注装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the sample dispensing apparatus used with the automatic analyzer of FIG. 検体容器に採取された検体(血液)に含まれる血球成分の沈降する様子を示す模式図である。It is a schematic diagram which shows a mode that the blood cell component contained in the sample (blood) extract | collected in the sample container precipitates. 検体(血液)に含まれる血球成分の沈降に起因した基準濃度の時間変化を示す模式図である。It is a schematic diagram which shows the time change of the reference | standard density | concentration resulting from sedimentation of the blood cell component contained in a test substance (blood). この発明の実施の形態にかかる分注動作の手順を示すフローチャートである。It is a flowchart which shows the procedure of the dispensing operation | movement concerning embodiment of this invention.

符号の説明Explanation of symbols

1 自動分析装置
2,3 試薬テーブル
4 キュベットホイール
5 反応容器
6,7 試薬分注装置
8 検体容器移送機構
9 ラック
9a 検体容器
10A 読取装置
10B 読取装置
11 分析光学系
12 洗浄機構
13,14 攪拌装置
15 制御部
15a 計時部
15b 記憶部
15c 駆動機構制御部
16 入力部
17 表示部
20 検体分注装置
21 支柱
22 駆動機構
23 液面検知電極
24 液面検知部
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2,3 Reagent table 4 Cuvette wheel 5 Reaction container 6,7 Reagent dispensing apparatus 8 Specimen container transfer mechanism 9 Rack 9a Specimen container 10A Reading apparatus 10B Reading apparatus 11 Analytical optical system 12 Washing mechanism 13,14 Stirring apparatus DESCRIPTION OF SYMBOLS 15 Control part 15a Time measuring part 15b Memory | storage part 15c Drive mechanism control part 16 Input part 17 Display part 20 Sample dispensing apparatus 21 Support | pillar 22 Drive mechanism 23 Liquid level detection electrode 24 Liquid level detection part

Claims (5)

検体容器内に収容された血球成分を含む検体を分注装置によって所定量分注し、試薬と反応させて分析する自動分析装置において、
前記血球成分の経時的な濃度変化を記憶する記憶手段と、
前記検体を当該自動分析装置に装着した後の経過時間を計時する計時手段と、
前記計時手段が計時した経過時間をもとに、前記分注装置による分注の際の前記検体の鉛直方向における吸引位置を制御する位置制御手段と、
を備えたことを特徴とする自動分析装置。
In an automatic analyzer that dispenses a predetermined amount of a specimen containing blood cell components contained in a specimen container with a dispensing apparatus and reacts with a reagent for analysis,
Storage means for storing concentration change of the blood cell component over time;
A time measuring means for measuring the elapsed time after mounting the sample on the automatic analyzer;
Position control means for controlling the suction position in the vertical direction of the specimen during dispensing by the dispensing device, based on the elapsed time counted by the timing means;
An automatic analyzer characterized by comprising:
さらに、前記血球成分の経時的な濃度変化を予め記憶する記憶手段を備え、
前記位置制御手段は、前記計時手段が計時した経過時間と、前記記憶手段が記憶した経時的な濃度変化とをもとに、前記吸引位置を制御することを特徴とする請求項1に記載の自動分析装置。
Furthermore, the storage means for storing in advance the concentration change over time of the blood cell component,
The said position control means controls the said suction position based on the elapsed time which the said time measuring means time-measured, and the time-dependent density | concentration change which the said memory | storage means memorize | stored. Automatic analyzer.
前記検体の当該自動分析装置への装着を検出し、前記計時手段へ出力する第一の検出手段と、
前記検体の前記分注装置による分注位置への移動を検出し、前記計時手段へ出力する第二の検出手段と、
を備え、
前記計時手段は、前記第一及び第二の検出手段から入力される情報をもとに前記経過時間を計時することを特徴とする請求項1に記載の自動分析装置。
First detecting means for detecting the mounting of the sample on the automatic analyzer and outputting to the time measuring means;
Second detection means for detecting movement of the specimen to the dispensing position by the dispensing device and outputting to the timing means;
With
2. The automatic analyzer according to claim 1, wherein the time measuring unit measures the elapsed time based on information input from the first and second detection units.
検体容器内に収容された血球成分を含む検体を分注装置によって所定量分注し、試薬と反応させて分析する自動分析装置の検体分注方法であって、
前記血球成分の経時的な濃度変化を記憶する記憶工程と、
前記検体を当該自動分析装置に装着した後の経過時間を計時する計時工程と、
前記経過時間をもとに、前記分注装置による分注の際の前記検体の鉛直方向における吸引位置を制御する位置制御工程と、
を含むことを特徴とする自動分析装置の検体分注方法。
A sample dispensing method for an automatic analyzer that dispenses a predetermined amount of a sample containing blood cell components contained in a sample container with a dispensing device and reacts with a reagent for analysis.
A storage step of storing a change in concentration of the blood cell component over time;
A time measuring step for measuring an elapsed time after mounting the sample on the automatic analyzer;
Based on the elapsed time, a position control step for controlling the suction position in the vertical direction of the specimen at the time of dispensing by the dispensing device;
A sample dispensing method for an automatic analyzer characterized by comprising:
さらに、前記血球成分の経時的な濃度変化を予め記憶する記憶工程を含み、
前記位置制御工程は、前記経過時間と前記経時的な濃度変化とをもとに、前記吸引位置を制御することを特徴とする請求項4に記載の自動分析装置の検体分注方法。
Furthermore, a storage step of storing in advance the concentration change over time of the blood cell component,
5. The sample dispensing method for an automatic analyzer according to claim 4, wherein the position control step controls the suction position based on the elapsed time and the concentration change with time.
JP2006148362A 2006-05-29 2006-05-29 Automatic analyzer and its sample dispensing method Expired - Fee Related JP4871026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006148362A JP4871026B2 (en) 2006-05-29 2006-05-29 Automatic analyzer and its sample dispensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006148362A JP4871026B2 (en) 2006-05-29 2006-05-29 Automatic analyzer and its sample dispensing method

Publications (2)

Publication Number Publication Date
JP2007316013A true JP2007316013A (en) 2007-12-06
JP4871026B2 JP4871026B2 (en) 2012-02-08

Family

ID=38849989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006148362A Expired - Fee Related JP4871026B2 (en) 2006-05-29 2006-05-29 Automatic analyzer and its sample dispensing method

Country Status (1)

Country Link
JP (1) JP4871026B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175132A (en) * 2007-12-28 2009-08-06 Olympus Corp Automatic analysis apparatus and its dispensing method
JP2010060522A (en) * 2008-09-05 2010-03-18 Toshiba Corp Automatic analysis apparatus
US20100210007A1 (en) * 2009-02-16 2010-08-19 Kabushiki Kaisha Toshiba Automatic analyzer
JP2011007697A (en) * 2009-06-26 2011-01-13 Beckman Coulter Inc Autoanalyzer
JP2011232248A (en) * 2010-04-28 2011-11-17 Toshiba Corp Autoanalyzer and dispensing probe thereof
JP2012063179A (en) * 2010-09-14 2012-03-29 Toshiba Corp Automatic analyzer
JP2013205405A (en) * 2012-03-29 2013-10-07 Toshiba Corp Automatic analyzer and inspection system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246727A (en) * 1997-02-28 1998-09-14 Shimadzu Corp Sample dispenser for blood analyzer
JPH11316239A (en) * 1998-05-01 1999-11-16 Shimadzu Corp Chemical autoanalyzer
JP2002040035A (en) * 2000-07-26 2002-02-06 Jeol Ltd Biochemical automatic analyzer
JP2003240777A (en) * 2002-02-21 2003-08-27 Sefa Technology Kk Blood inspection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246727A (en) * 1997-02-28 1998-09-14 Shimadzu Corp Sample dispenser for blood analyzer
JPH11316239A (en) * 1998-05-01 1999-11-16 Shimadzu Corp Chemical autoanalyzer
JP2002040035A (en) * 2000-07-26 2002-02-06 Jeol Ltd Biochemical automatic analyzer
JP2003240777A (en) * 2002-02-21 2003-08-27 Sefa Technology Kk Blood inspection system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175132A (en) * 2007-12-28 2009-08-06 Olympus Corp Automatic analysis apparatus and its dispensing method
US8778686B2 (en) 2007-12-28 2014-07-15 Beckman Coulter, Inc. Automatic analyzer and dispensing method thereof
JP2010060522A (en) * 2008-09-05 2010-03-18 Toshiba Corp Automatic analysis apparatus
US20100210007A1 (en) * 2009-02-16 2010-08-19 Kabushiki Kaisha Toshiba Automatic analyzer
JP2010190588A (en) * 2009-02-16 2010-09-02 Toshiba Corp Automatic analysis apparatus
US9897623B2 (en) * 2009-02-16 2018-02-20 Toshiba Medical Systems Corporation Automatic analyzer
JP2011007697A (en) * 2009-06-26 2011-01-13 Beckman Coulter Inc Autoanalyzer
JP2011232248A (en) * 2010-04-28 2011-11-17 Toshiba Corp Autoanalyzer and dispensing probe thereof
JP2012063179A (en) * 2010-09-14 2012-03-29 Toshiba Corp Automatic analyzer
JP2013205405A (en) * 2012-03-29 2013-10-07 Toshiba Corp Automatic analyzer and inspection system

Also Published As

Publication number Publication date
JP4871026B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP7035130B2 (en) Automatic analyzer
JP4871026B2 (en) Automatic analyzer and its sample dispensing method
JP4812352B2 (en) Automatic analyzer and its dispensing method
JP2007303937A (en) Autoanalyzer
JP2010145284A (en) Automatic analyzer
JP5583337B2 (en) Automatic analyzer and its dispensing method
JP4871025B2 (en) Automatic analyzer and its sample dispensing method
JP5086286B2 (en) Automatic analyzer
JP2008175731A (en) Automatic analysis apparatus and its maintenance method
JP3127156U (en) Automatic analyzer
JP2007322246A (en) Autoanalyzer
JP2011227092A (en) Automatic analyzing apparatus
US20090113998A1 (en) Stirring determination method and analyzer
JP2012173067A (en) Automatic analyzer
JP5808473B2 (en) Automatic analyzer
JP2013210388A (en) Autoanalyzer
JP2011257248A (en) Automatic analyzer
JP2011014078A (en) Image display device, analysis device, and image display method
US20230168265A1 (en) Automatic analyzing apparatus
JP5261285B2 (en) Automatic analyzer and transfer device
JP6294085B2 (en) Clinical laboratory equipment
JP2009229140A (en) Autoanalyzer
JP2019184311A (en) Autoanalyzer
JPH06289030A (en) Automatic chemical analyzer
JP2009222451A (en) Automatic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

R150 Certificate of patent or registration of utility model

Ref document number: 4871026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees