JP2009229140A - Autoanalyzer - Google Patents

Autoanalyzer Download PDF

Info

Publication number
JP2009229140A
JP2009229140A JP2008072310A JP2008072310A JP2009229140A JP 2009229140 A JP2009229140 A JP 2009229140A JP 2008072310 A JP2008072310 A JP 2008072310A JP 2008072310 A JP2008072310 A JP 2008072310A JP 2009229140 A JP2009229140 A JP 2009229140A
Authority
JP
Japan
Prior art keywords
absorbance
washing
reaction container
difference
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008072310A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hashimoto
佳亮 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008072310A priority Critical patent/JP2009229140A/en
Publication of JP2009229140A publication Critical patent/JP2009229140A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an autoanalyzer capable of obtaining an analyzing result of high reliability even if a reaction container is washed to be repeatedly used. <P>SOLUTION: In the autoanalyzer 1 for reacting a specimen with a reagent in the reaction container after the reaction container 5 is washed and for photometrically measuring the reaction result by an analyzing optical system 11 to analyze the specimen, the analyzing optical system 11 measures the absorbance before the washing of the reaction container 5 and the absorbance after the washing of the reaction container 5, and a water residue determination part 17 determines whether water remains in the reaction container 5 after washing on the basis of the absorbance before the washing of the reaction container 5 and the absorbance after its washing. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、検体と試薬とを反応容器内で反応させ、この反応の結果を光学的に測定することによって検体の成分を分析する自動分析装置に関するものである。   The present invention relates to an automatic analyzer that analyzes a component of a specimen by reacting a specimen and a reagent in a reaction container and optically measuring the result of the reaction.

従来、血液や体液等の検体を自動的に分析する装置として、検体および試薬を反応容器に分注し、検体と試薬とを反応させた後、この検体と試薬との反応液の吸光度を測定して自動的に検体を分析する分析装置が知られている。この分析装置は、反応液の測定を終了した後の反応容器を洗浄する際、洗浄液として洗浄剤やイオン交換水・蒸留水などの純水を用いる(例えば、特許文献1を参照)。   Conventionally, as a device that automatically analyzes specimens such as blood and body fluids, the specimen and reagent are dispensed into a reaction container, the specimen and reagent are reacted, and then the absorbance of the reaction liquid of this specimen and reagent is measured. Thus, an analyzer that automatically analyzes a sample is known. This analyzer uses pure water such as a cleaning agent, ion-exchanged water, or distilled water as a cleaning liquid when cleaning the reaction container after the measurement of the reaction liquid is completed (see, for example, Patent Document 1).

特許第2577350号明細書Japanese Patent No. 2577350

しかしながら、上述した従来技術では、反応容器は、反応液の特性を測定後、自動的に洗浄され繰り返し使用する過程において、洗浄後の反応容器に水残りがあるか否かを確認せずに次の検体の分析を行っていた。このため、反応容器を吸引乾燥する処理において乾燥が不十分である場合にもこの反応容器が次の分析に用いられ、水が残った状態で分析処理が行われることになり、結果的に分析データの精度が低下するという問題点があった。   However, in the above-described conventional technology, the reaction vessel is automatically washed and repeatedly used after measuring the characteristics of the reaction solution without checking whether there is any remaining water in the washed reaction vessel. Analyzes of specimens. For this reason, even if the drying is insufficient in the process of drying the reaction container by suction, this reaction container is used for the next analysis, and the analysis process is performed with water remaining, resulting in the analysis. There was a problem that the accuracy of data was lowered.

本発明は、上記に鑑みてなされたものであって、反応容器を洗浄して繰り返し使用しても信頼性の高い分析結果を得ることができる自動分析装置を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide an automatic analyzer that can obtain a highly reliable analysis result even if the reaction vessel is washed and repeatedly used.

上述した課題を解決し、目的を達成するために、本発明にかかる自動分析装置は、反応容器を洗浄した後、検体と試薬とを反応容器内で反応させ、この反応の結果を測光器で測光することによって前記検体の分析を行う自動分析装置において、前記反応容器の洗浄前の吸光度および洗浄後の吸光度を測定する測光手段と、前記反応容器の洗浄前の吸光度および洗浄後の吸光度をもとに洗浄後の反応容器に水残りがあるか否かを判定する判定手段と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the automatic analyzer according to the present invention, after washing the reaction container, causes the sample and the reagent to react in the reaction container, and the result of this reaction is measured with a photometer. In an automatic analyzer that analyzes the sample by photometry, the photometric means for measuring the absorbance before washing and the absorbance after washing of the reaction vessel, and the absorbance before washing and the absorbance after washing of the reaction vessel And a determination means for determining whether or not there is water remaining in the washed reaction vessel.

また、本発明にかかる自動分析装置は、上記の発明において、前記測光手段は、前記測光器であることを特徴とする。   In the automatic analyzer according to the present invention as set forth in the invention described above, the photometric means is the photometer.

また、本発明にかかる自動分析装置は、上記の発明において、前記判定手段は、短波長側での洗浄前後の反応容器の吸光度差が、長波長側での洗浄前後の反応容器の吸光度差に比して大きい場合に水残りがあると判定することを特徴とする。   In the automatic analyzer according to the present invention, in the above-described invention, the determination unit may be configured such that the difference in absorbance between the reaction containers before and after washing on the short wavelength side is the difference in absorbance between the reaction containers before and after washing on the long wavelength side. When it is larger than that, it is determined that there is water remaining.

また、本発明にかかる自動分析装置は、上記の発明において、前記判定手段は、最短波長での洗浄前後の反応容器の吸光度差が、最長波長での洗浄前後の反応容器の吸光度差に比して大きい場合に水残りがあると判定することを特徴とする。   Further, in the automatic analyzer according to the present invention, in the above invention, the determination means is configured such that the difference in absorbance of the reaction container before and after washing at the shortest wavelength is compared with the difference in absorbance of the reaction container before and after washing at the longest wavelength. It is characterized in that it is determined that there is water remaining when the water is large.

また、本発明にかかる自動分析装置は、上記の発明において、前記判定手段は、最短波長での洗浄前後の反応容器の吸光度差が、最長波長での洗浄前後の反応容器の吸光度差に比して大きい場合、最短波長および最長波長を除く各吸光度における洗浄前後での反応容器の吸光度差を求め、最短波長および最長波長を含む各波長の吸光度差が短波長側に向けて順次大きくなっている場合に、水残りがあると判定することを特徴とする。   Further, in the automatic analyzer according to the present invention, in the above invention, the determination means is configured such that the difference in absorbance of the reaction container before and after washing at the shortest wavelength is compared with the difference in absorbance of the reaction container before and after washing at the longest wavelength. If the absorbance is larger than the shortest wavelength and the longest wavelength, the absorbance difference of the reaction container before and after washing is obtained, and the absorbance difference of each wavelength including the shortest wavelength and the longest wavelength is gradually increased toward the short wavelength side. In this case, it is determined that there is water remaining.

また、本発明にかかる自動分析装置は、上記の発明において、前記判定手段が水残りがあると判定した場合、該判定された反応容器の使用不可に関する情報を報知する報知手段を備えたことを特徴とする。   Further, the automatic analyzer according to the present invention is provided with a notifying means for notifying information regarding the use of the determined reaction container when the determining means determines that there is water remaining in the above invention. Features.

また、本発明にかかる自動分析装置は、上記の発明において、前記判定手段は、分析処理を開始する前の前処理時に行う反応容器の洗浄前後の吸光度をもとに分析開始前の反応容器に水残りがあるか否かを判定することを特徴とする。   In the automatic analyzer according to the present invention, in the above-described invention, the determination unit is arranged in the reaction container before the start of analysis based on the absorbance before and after the cleaning of the reaction container performed at the time of the pretreatment before starting the analysis process. It is characterized by determining whether there is any remaining water.

また、本発明にかかる自動分析装置は、上記の発明において、前記反応容器の洗浄前の吸光度は、分析処理を開始する前の前処理として行う反応容器の洗浄時における洗浄前の吸光度であり、前記判定手段は、該洗浄前の吸光度を、各反応容器の水残り判定に共通して用いることを特徴とする。   Further, in the automatic analyzer according to the present invention, in the above invention, the absorbance before washing of the reaction vessel is the absorbance before washing at the time of washing the reaction vessel performed as pretreatment before starting the analysis treatment, The determination means uses the absorbance before the washing in common for determining the remaining water in each reaction container.

本発明にかかる自動分析装置は、反応容器を洗浄した後、検体と試薬とを反応容器内で反応させ、この反応の結果を測光器で測光することによって前記検体の分析を行う際、測光手段が、前記反応容器の洗浄前の吸光度および洗浄後の吸光度を測定し、判定手段が、前記反応容器の洗浄前の吸光度および洗浄後の吸光度をもとに洗浄後の反応容器に水残りがあるか否かを判定するようにしているので、水残りがあると判定された反応容器を使用しないように設定することによって、水残りのある反応容器が分析に用いられることはなく、分析データの精度低下を抑えることができるという効果を奏する。   The automatic analyzer according to the present invention comprises a photometric means for analyzing the specimen by washing the reaction container, causing the specimen and the reagent to react in the reaction container, and measuring the result of the reaction with a photometer. However, the absorbance before washing of the reaction container and the absorbance after washing of the reaction container are measured, and the determination means has water remaining in the reaction container after washing based on the absorbance before washing of the reaction container and the absorbance after washing. Therefore, by setting so as not to use a reaction vessel that has been determined to have water residue, the reaction vessel having water residue is not used for analysis, and analysis data There is an effect that a decrease in accuracy can be suppressed.

以下、図面を参照して、本発明を実施するための最良の形態である自動分析装置について説明する。なお、各実施の形態によって本発明が限定されるものではない。また、図面の記載において、同一部分には同一符号を付している。   Hereinafter, an automatic analyzer which is the best mode for carrying out the present invention will be described with reference to the drawings. In addition, this invention is not limited by each embodiment. In the description of the drawings, the same parts are denoted by the same reference numerals.

(実施の形態1)
図1は、本発明の実施の形態1である自動分析装置の概要構成を示す模式図である。この自動分析装置1は、血球成分を含む血液や尿等の検体を自動分析する装置であり、図1に示すように、試薬テーブル2,3、キュベットホイール4、検体容器移送機構8、検体分注機構10、分析光学系11、洗浄機構12、第1攪拌装置13、第2攪拌装置14、および制御機構15を備えている。
(Embodiment 1)
FIG. 1 is a schematic diagram showing a schematic configuration of the automatic analyzer according to the first embodiment of the present invention. This automatic analyzer 1 is a device that automatically analyzes a sample such as blood or urine containing blood cell components. As shown in FIG. 1, the reagent tables 2 and 3, the cuvette wheel 4, the sample container transfer mechanism 8, the sample fraction An injection mechanism 10, an analysis optical system 11, a cleaning mechanism 12, a first stirring device 13, a second stirring device 14, and a control mechanism 15 are provided.

試薬テーブル2,3は、図1に示すように、それぞれ周方向に配置される複数の試薬容器2a,3aを保持し、図示しない駆動手段によって回転されて試薬容器2a,3aを周方向に搬送する。このとき、試薬テーブル2には、第1試薬を保持した試薬容器2aが配置され、試薬テーブル3には、第2試薬を保持した試薬容器3aが配置されている。複数の試薬容器2a,3aは、それぞれ検査項目に応じた所定の試薬が満たされ、外面には収容した試薬の種類、ロット及び有効期限等の情報を記録した情報記録媒体(図示せず)が付されている。ここで、試薬テーブル2,3の外周には、情報記録媒体に記録された各試薬容器の試薬情報を読み取り、制御機構15に出力する図示しない読取装置が設置されている。   As shown in FIG. 1, the reagent tables 2 and 3 hold a plurality of reagent containers 2a and 3a arranged in the circumferential direction, and are rotated by driving means (not shown) to convey the reagent containers 2a and 3a in the circumferential direction. To do. At this time, the reagent container 2a holding the first reagent is arranged in the reagent table 2, and the reagent container 3a holding the second reagent is arranged in the reagent table 3. Each of the plurality of reagent containers 2a and 3a is filled with a predetermined reagent corresponding to the inspection item, and an information recording medium (not shown) on which information such as the type, lot, and expiration date of the stored reagent is recorded on the outer surface. It is attached. Here, on the outer periphery of the reagent tables 2 and 3, a reading device (not shown) that reads the reagent information of each reagent container recorded on the information recording medium and outputs it to the control mechanism 15 is installed.

キュベットホイール4は、図1に示すように、複数の反応容器5が周方向に沿って配列されており、試薬テーブル2,3を駆動する図示しない駆動手段とは異なる図示しない駆動手段によって回転されて反応容器5を周方向に移動させる。キュベットホイール4は、光源11aと分光部11bとの間に配置され、反応容器5を保持する保持部4aと光源11aが出射した光束を分光部11bへ導く円形の開口部4bとを有している。保持部4aは、キュベットホイール4の外周に周方向に沿って所定間隔で配置され、保持部4aの内周側に半径方向に延びる開口部4bが形成されている。   As shown in FIG. 1, the cuvette wheel 4 has a plurality of reaction vessels 5 arranged in the circumferential direction, and is rotated by a driving means (not shown) different from a driving means (not shown) that drives the reagent tables 2 and 3. The reaction vessel 5 is moved in the circumferential direction. The cuvette wheel 4 is disposed between the light source 11a and the spectroscopic unit 11b, and has a holding unit 4a that holds the reaction vessel 5 and a circular opening 4b that guides the light beam emitted from the light source 11a to the spectroscopic unit 11b. Yes. The holding portions 4a are arranged on the outer periphery of the cuvette wheel 4 at predetermined intervals along the circumferential direction, and an opening 4b extending in the radial direction is formed on the inner peripheral side of the holding portion 4a.

反応容器5は、光源11aから出射された分析光(340〜800nm)に含まれる光の80%以上を透過する光学的に透明な素材、例えば、耐熱ガラスを含むガラス、環状オレフィンやポリスチレン等の合成樹脂によって四角筒状に成形されたキュベットと呼ばれる容器である。反応容器5は、近傍に設けた作動機構である試薬分注機構6,7によって試薬テーブル2,3の試薬容器2a,3aから試薬が分注される。   The reaction vessel 5 is an optically transparent material that transmits 80% or more of the light contained in the analysis light (340 to 800 nm) emitted from the light source 11a, such as glass containing heat-resistant glass, cyclic olefin, polystyrene, or the like. It is a container called a cuvette that is formed into a square cylinder shape from a synthetic resin. In the reaction container 5, reagents are dispensed from the reagent containers 2 a and 3 a of the reagent tables 2 and 3 by the reagent dispensing mechanisms 6 and 7 which are operating mechanisms provided in the vicinity.

ここで、試薬分注機構6,7は、それぞれ水平面内を矢印で示すように回動すると共に、上下方向に昇降されるアーム6a,7aに試薬を分注するノズル6b,7bが設けられ、洗浄水によってノズル6b,7bを洗浄する図示しない洗浄手段を有している。   Here, the reagent dispensing mechanisms 6 and 7 are respectively provided with nozzles 6b and 7b for dispensing reagents to arms 6a and 7a that are moved up and down in the vertical direction while rotating in the horizontal plane as indicated by arrows. A cleaning means (not shown) for cleaning the nozzles 6b and 7b with cleaning water is provided.

検体容器移送機構8は、図1に示すように、配列された複数のラック9を矢印方向に沿って1つずつ歩進させながら移送する。ラック9は、検体を収容した複数の検体容器9aを保持している。ここで、検体容器9aは、検体容器移送機構8によって移送されるラック9の歩進が停止するごとに、検体分注機構10によって検体が各反応容器5に分注される。   As shown in FIG. 1, the specimen container transfer mechanism 8 transfers the plurality of arranged racks 9 while stepping one by one along the arrow direction. The rack 9 holds a plurality of sample containers 9a that store samples. Here, each time the step of the rack 9 transferred by the sample container transfer mechanism 8 stops, the sample dispensing mechanism 10 dispenses the sample into the reaction containers 5.

検体分注機構10は、図1に示すように、それぞれ水平面内を矢印で示すように回動すると共に、上下方向に昇降されるアーム10aに検体を分注する分注ノズル10bが設けられた作動機構であり、洗浄水によって分注ノズル10bを洗浄する図示しない洗浄手段を有している。   As shown in FIG. 1, the sample dispensing mechanism 10 is provided with a dispensing nozzle 10 b that rotates in a horizontal plane as indicated by arrows and dispenses a sample to an arm 10 a that is vertically moved up and down. It is an operating mechanism and has a cleaning means (not shown) that cleans the dispensing nozzle 10b with cleaning water.

分析光学系11は、試薬と検体とが反応した反応容器5内の液体試料に分析光(340〜800nm)を透過させて分析するための光学系であり、図1に示すように、光源11a、分光部11b及び受光部11cを有している。光源11aから出射された分析光は、反応容器5内の液体試料を透過し、分光部11bと対向する位置に設けた受光部11cによって受光される。   The analysis optical system 11 is an optical system for performing analysis by transmitting analysis light (340 to 800 nm) through the liquid sample in the reaction vessel 5 in which the reagent and the sample have reacted. As shown in FIG. , A spectroscopic unit 11b and a light receiving unit 11c. The analysis light emitted from the light source 11a passes through the liquid sample in the reaction vessel 5 and is received by the light receiving unit 11c provided at a position facing the spectroscopic unit 11b.

洗浄機構12は、ノズル12aによって反応容器5内の液体試料を吸引して排出した後、ノズル12aによって洗剤や洗浄水等の洗浄液等を繰り返し注入し、吸引することにより、分析光学系11による分析が終了した反応容器5を洗浄する。   The cleaning mechanism 12 sucks and discharges the liquid sample in the reaction vessel 5 by the nozzle 12a, and then repeatedly injects and sucks a cleaning liquid such as detergent and cleaning water by the nozzle 12a, thereby performing analysis by the analysis optical system 11. The reaction vessel 5 that has been completed is washed.

第1攪拌装置13及び第2攪拌装置14は、反応容器5に分注された検体と試薬とを攪拌棒13a,14aによって攪拌し、反応を促進させる。   The first stirrer 13 and the second stirrer 14 agitate the specimen and reagent dispensed in the reaction vessel 5 with the agitation bars 13a and 14a to promote the reaction.

つぎに、制御機構15について説明する。制御部16は、CPU等を用いて実現され、自動分析装置1の各部の処理および動作を制御する。制御部16は、演算機能、記憶機能、制御機能及び計時機能等を備え、試薬テーブル2,3、試薬分注機構6,7、検体容器移送機構8、検体分注機構10、分析光学系11、洗浄機構12、攪拌装置13,14、水残り判定部17、入力部18、分析部19、出力部20、記憶部21等に接続されている。制御部16は、上記各部の作動を制御すると共に、入力される波長ごとの吸光度から検体の成分濃度等を分析する。また、制御部16は、試薬容器2a,3aの情報記憶媒体から読み取った情報に基づき、試薬のロットが異なる場合や有効期限外等の場合に分析作業を停止するように自動分析装置1を制御し、或いはオペレータに警報を発する。   Next, the control mechanism 15 will be described. The control unit 16 is realized using a CPU or the like, and controls processing and operation of each unit of the automatic analyzer 1. The control unit 16 includes a calculation function, a storage function, a control function, a time counting function, and the like, and includes reagent tables 2 and 3, reagent dispensing mechanisms 6 and 7, a sample container transfer mechanism 8, a sample dispensing mechanism 10, and an analysis optical system 11. , The cleaning mechanism 12, the stirring devices 13, 14, the remaining water determination unit 17, the input unit 18, the analysis unit 19, the output unit 20, the storage unit 21, and the like. The control unit 16 controls the operation of each of the above units and analyzes the component concentration of the specimen from the absorbance for each input wavelength. In addition, the control unit 16 controls the automatic analyzer 1 to stop the analysis work when the reagent lots are different or the expiration date is exceeded, based on the information read from the information storage medium of the reagent containers 2a and 3a. Or issue an alarm to the operator.

水残り判定部17は、判定手段に対応し、分析部19により取得された洗浄前の反応容器5の吸光度と洗浄後の反応容器5の吸光度若しくは記憶部21に記憶されている吸光度情報22から洗浄後の反応容器5に水残りがあるか否かを判定する。   The remaining water determination unit 17 corresponds to the determination unit, and is obtained from the absorbance of the reaction container 5 before washing and the absorbance of the reaction container 5 after washing acquired by the analysis unit 19 or the absorbance information 22 stored in the storage unit 21. It is determined whether or not there is water remaining in the reaction vessel 5 after washing.

入力部18は、キーボード、マウス等によって実現され、検体の分析に必要な諸情報や分析動作の指示情報等を外部から取得する。入力部18は、図示しない通信ネットワークを介し、外部装置から検体の分析に必要な諸情報や分析動作の指示情報等を取得してもよい。   The input unit 18 is realized by a keyboard, a mouse, and the like, and acquires various information necessary for analyzing the sample, instruction information for the analysis operation, and the like from the outside. The input unit 18 may acquire various information necessary for analyzing the sample, analysis operation instruction information, and the like from an external device via a communication network (not shown).

分析部19は、分析光学系11によって測定された分析対象の反応容器5内の反応液を透過した後の光量から、その吸光度を算出する。そして、算出した吸光度から検体中の分析対象成分の濃度等を分析し、分析結果を制御部16に出力する。また、分析部19は、分析光学系11によって測定された水残り判定対象の反応容器5を透過した後の光量から、その吸光度を算出する。そして、算出結果を制御部16に出力する。   The analysis unit 19 calculates the absorbance from the amount of light after passing through the reaction solution in the reaction container 5 to be analyzed, which is measured by the analysis optical system 11. Then, the concentration of the analysis target component in the sample is analyzed from the calculated absorbance, and the analysis result is output to the control unit 16. Further, the analysis unit 19 calculates the absorbance from the amount of light after passing through the reaction container 5 that is the target of water remaining measurement measured by the analysis optical system 11. Then, the calculation result is output to the control unit 16.

出力部20は、ディスプレイ、プリンタ、スピーカー等によって実現され、検体の分析結果を含む諸情報を出力する。また、出力部20は、図示しない通信ネットワークを介し、外部装置に検体の分析結果を含む諸情報を出力してもよい。また、水残り判定部17にて、洗浄後の反応容器5に水残りがあると判定された場合、この反応容器5の使用不可情報を出力する。   The output unit 20 is realized by a display, a printer, a speaker, and the like, and outputs various information including the analysis result of the specimen. The output unit 20 may output various information including the analysis result of the sample to an external device via a communication network (not shown). In addition, when the remaining water determination unit 17 determines that there is water remaining in the washed reaction container 5, the unusable information on the reaction container 5 is output.

記憶部21は、情報を磁気的に記憶するハードディスクと、自動分析装置1が処理を実行する際にその処理にかかわる各種プログラムをハードディスクからロードして電気的に記憶するメモリとを有し、分析情報を含む諸情報を記憶する。記憶部21は、CD−ROM、DVD−ROM、PCカード等の記憶媒体に記憶された情報を読み取ることができる補助記憶装置を備えてもよい。また、記憶部21は、洗浄前に測光した反応容器5の吸光度および洗浄後に測光した反応容器5の吸光度である吸光度情報22を記憶する。この吸光度情報22は、洗浄後の反応容器5の水残り判定を行う水残り判定部17で用いられる。   The storage unit 21 includes a hard disk for magnetically storing information, and a memory for electrically storing various programs related to the process when the automatic analyzer 1 executes the process and electrically storing the programs. Various information including information is stored. The storage unit 21 may include an auxiliary storage device that can read information stored in a storage medium such as a CD-ROM, a DVD-ROM, or a PC card. The storage unit 21 also stores absorbance information 22 that is the absorbance of the reaction vessel 5 measured before washing and the absorbance of the reaction vessel 5 measured after washing. This absorbance information 22 is used in the remaining water determination unit 17 that determines remaining water in the reaction container 5 after washing.

以上のように構成される自動分析装置1は、制御部16の制御の下に作動し、回転するキュベットホイール4によって周方向に沿って搬送されてくる複数の反応容器5に、検体分注機構10によってラック9に保持された複数の検体容器9aから検体が順次分注される。検体が順次分注された反応容器5には、試薬分注機構6,7が試薬容器2a,3aから順次試薬が分注される。試薬と検体とが分注された反応容器5は、キュベットホイール4が停止する都度、攪拌装置13,14によって順次攪拌されて試薬と検体とが反応し、キュベットホイール4が再び回転したときに分析光学系11を通過する。このとき、反応容器5内の試薬と検体とが反応した反応液は、分析光学系11で測光され、分析部19によって成分濃度等が分析される。そして、反応液の測光が終了した反応容器5は、洗浄機構12に移送されて洗浄された後、再度検体の分析に使用される。   The automatic analyzer 1 configured as described above operates under the control of the control unit 16, and the sample dispensing mechanism is provided to the plurality of reaction containers 5 conveyed along the circumferential direction by the rotating cuvette wheel 4. Samples are sequentially dispensed from a plurality of sample containers 9 a held in the rack 9 by 10. Reagent dispensing mechanisms 6 and 7 sequentially dispense reagents from the reagent containers 2a and 3a into the reaction container 5 into which the specimens are sequentially dispensed. Each time the cuvette wheel 4 stops, the reaction container 5 into which the reagent and the sample are dispensed is sequentially stirred by the stirrers 13 and 14 so that the reagent and the sample react and the cuvette wheel 4 rotates again. Passes through the optical system 11. At this time, the reaction liquid in which the reagent in the reaction container 5 has reacted with the sample is measured by the analysis optical system 11, and the component concentration and the like are analyzed by the analysis unit 19. Then, after the photometry of the reaction liquid is completed, the reaction container 5 is transferred to the cleaning mechanism 12 and cleaned, and then used again for analyzing the specimen.

このとき、分析光学系11と洗浄機構12とは、図2に示すように洗浄と分析とを繰り返し行う。本実施の形態1では、検体の分析を行う前に、前処理工程31を行い、分析前に反応容器5を洗浄し、洗浄後の反応容器5に水残りがあるか否かを判定する。先ず、反応容器5を測光し、洗浄前の吸光度データを取得する(図2(a))。次に、洗浄機構12が空の反応容器5の洗浄を行う。最初に洗浄液を吐出して反応容器5内を洗浄し(図2(b))、その洗浄液を吸引する(図2(c))。続いて、水を吐出して反応容器5内を洗浄し(図2(d))、水を吸引する(図2(e))。最後に吸引乾燥ノズルによって反応容器5内の乾燥を行い(図2(f))、測光して洗浄後の反応容器5の吸光度データを取得する(図2(g))。これらの吸光度データは、吸光度情報22として記憶部21に記憶される。   At this time, the analysis optical system 11 and the cleaning mechanism 12 repeatedly perform cleaning and analysis as shown in FIG. In the first embodiment, before the analysis of the specimen, the pretreatment step 31 is performed, the reaction vessel 5 is washed before the analysis, and it is determined whether or not there is water remaining in the washed reaction vessel 5. First, the reaction vessel 5 is photometrically measured to obtain absorbance data before washing (FIG. 2 (a)). Next, the cleaning mechanism 12 cleans the empty reaction vessel 5. First, the cleaning liquid is discharged to clean the inside of the reaction vessel 5 (FIG. 2B), and the cleaning liquid is sucked (FIG. 2C). Subsequently, water is discharged to clean the inside of the reaction vessel 5 (FIG. 2 (d)), and water is sucked (FIG. 2 (e)). Finally, the inside of the reaction vessel 5 is dried by a suction drying nozzle (FIG. 2 (f)), and photometric measurement is performed to obtain absorbance data of the reaction vessel 5 after washing (FIG. 2 (g)). These absorbance data are stored in the storage unit 21 as absorbance information 22.

次いで、制御部16は、水残り判定部17が前処理洗浄後の反応容器に水残りが無いと判定した場合、分析工程32に移行する。第1試薬分注機構6が試薬容器2a内の第1試薬を分注し(図2(h))、検体分注機構10が検体容器9a中の検体を分注した(図2(i))後、攪拌装置13若しくは14が反応容器5内の液体の攪拌を行う(図2(j))。その後、第2試薬分注機構7が試薬容器3a中の第2試薬を分注し(図2(k))、攪拌装置14若しくは13が反応容器5内の液体を攪拌し(図2(l))、分析光学系11が検体と試薬とを反応させた状態の液体の分光強度測定を行い(図2(m))、この測定結果を分析部19で分析することで、検体の成分分析等が自動的に行われる。   Next, when the water remaining determination unit 17 determines that there is no water remaining in the reaction container after the pretreatment cleaning, the control unit 16 proceeds to the analysis step 32. The first reagent dispensing mechanism 6 dispenses the first reagent in the reagent container 2a (FIG. 2 (h)), and the specimen dispensing mechanism 10 dispenses the specimen in the specimen container 9a (FIG. 2 (i)). After that, the stirring device 13 or 14 stirs the liquid in the reaction vessel 5 (FIG. 2 (j)). Thereafter, the second reagent dispensing mechanism 7 dispenses the second reagent in the reagent container 3a (FIG. 2 (k)), and the stirring device 14 or 13 stirs the liquid in the reaction container 5 (FIG. 2 (l )), The analysis optical system 11 measures the spectral intensity of the liquid in a state where the sample and the reagent are reacted (FIG. 2 (m)), and the analysis result is analyzed by the analysis unit 19, thereby analyzing the component of the sample. Etc. are performed automatically.

その後、洗浄機構12が、分析光学系11による測定が終了した後に搬送される反応容器5に収容されている反応液の吸引を行った(図2(n))後洗浄処理(図2(o)〜図2(s))し、洗浄終了後分析光学系11が、反応容器を測光する(図2(t))。水残り判定部17は、反応容器5の測光後、反応容器5内に水残りがあるか否かの判定を行い、水残りがないと判定した場合、図2(h)に示す第1試薬分注から始まる分析処理に戻り、次の検体の分析が行われ、上述した分析工程32が連続して繰り返し行われる。また、制御部16に分析の終了指示が出ている場合は、乾燥処理(図2(s))が終了した後、動作を停止する。   After that, the cleaning mechanism 12 sucks the reaction liquid contained in the reaction container 5 that is transported after the measurement by the analysis optical system 11 is completed (FIG. 2 (n)). ) To FIG. 2 (s)), and after completion of the cleaning, the analysis optical system 11 measures the reaction container (FIG. 2 (t)). The remaining water determination unit 17 determines whether or not there is water remaining in the reaction container 5 after photometry of the reaction container 5, and if it is determined that there is no water remaining, the first reagent shown in FIG. Returning to the analysis process starting from the dispensing, the next sample is analyzed, and the above-described analysis step 32 is repeated continuously. Further, when an analysis end instruction is issued to the control unit 16, the operation is stopped after the drying process (FIG. 2 (s)) is completed.

水残り判定部17は、図3に示すような水の吸光度曲線の特性をもとに、長波長側の洗浄前の吸光度と洗浄後の吸光度との差と、短波長側の洗浄前の吸光度と洗浄後の吸光度との差とから、反応容器の水残りの判定を行うものである。図3において、吸光度曲線LAは、反応容器が空の状態の吸光度の波長依存性を示し、吸光度曲線LBは、反応容器に水が入っている状態の吸光度の波長依存性を示す。反応容器内が空の状態での吸光度と反応容器内に水が存在する状態での吸光度との吸光度差を各波長で比較すると、短波長側に向けてこの差が増大している。ここで、水残り判定部17は、吸光度曲線LAの最長波長での吸光度ALと吸光度曲線LBの最長波長での吸光度BLとの差(AL−BL)と、吸光度曲線LAの最短波長での吸光度ASと吸光度曲線LBの最短波長での吸光度BSとの差(AS−BS)とを比較し、吸光度差(AS−BS)が吸光度差(AL−BL)より大きい場合、水残りありと判定し、吸光度差(AS−BS)が吸光度差(AL−BL)以下である場合、水残り無しと判定するようにしている。これは、短波長と長波長との水の屈折率および吸収率の差異を利用したものであり、水残りがある場合、短波長側での吸光度変化が長波長の吸光度変化より大きくなるからである。なお、水残り判定部17は、測光した波長の最短波長の吸光度および最長波長の吸光度を用いて判定するようにしているが、これに限らず、長波長側の吸光度と短波長側の吸光度と比較して水残り判定を行っても良い。   Based on the characteristics of the water absorbance curve as shown in FIG. 3, the water remaining determination unit 17 determines the difference between the absorbance before washing on the long wavelength side and the absorbance after washing, and the absorbance before washing on the short wavelength side. And the difference between the absorbance after washing and determination of the remaining water in the reaction vessel. In FIG. 3, an absorbance curve LA indicates the wavelength dependence of absorbance when the reaction container is empty, and an absorbance curve LB indicates the wavelength dependence of absorbance when water is contained in the reaction container. When the absorbance difference between the absorbance when the reaction vessel is empty and the absorbance when water is present in the reaction vessel is compared at each wavelength, the difference increases toward the short wavelength side. Here, the remaining water determination unit 17 determines the difference between the absorbance AL at the longest wavelength of the absorbance curve LA and the absorbance BL at the longest wavelength of the absorbance curve LB (AL-BL), and the absorbance at the shortest wavelength of the absorbance curve LA. The difference between AS and absorbance BS at the shortest wavelength of absorbance curve LB (AS-BS) is compared. If the absorbance difference (AS-BS) is greater than the absorbance difference (AL-BL), it is determined that there is water remaining. When the absorbance difference (AS-BS) is equal to or less than the absorbance difference (AL-BL), it is determined that there is no remaining water. This is because the difference in the refractive index and absorption rate of water between the short wavelength and long wavelength is utilized, and when there is water residue, the change in absorbance on the short wavelength side is greater than the change in absorbance on the long wavelength side. is there. The remaining water determination unit 17 is configured to perform determination using the shortest wavelength absorbance and the longest wavelength absorbance of the photometric wavelength, but not limited to this, the long wavelength absorbance and the short wavelength absorbance. The remaining water may be determined by comparison.

ここで、図4に示すフローチャートを参照して、この自動分析装置1による水残り判定処理手順について説明する。図4において、まず、分析光学系11は未使用若しくは空の反応容器5を測光し、取得された各波長の吸光度A1のうちの最短波長の吸光度A1Sおよび最長波長の吸光度A1Lを洗浄前の吸光度情報22として記憶部21に記憶する(ステップS102)。その後、反応容器5の洗浄処理を行い(ステップS104)、乾燥された反応容器5に対して分析光学系11が測光し、取得された各波長の吸光度B1のうちの最短波長の吸光度B1Sおよび最長波長の吸光度B1Lを洗浄後の吸光度情報22として記憶部21に記憶する(ステップS106)。   Here, with reference to the flowchart shown in FIG. 4, the remaining water determination processing procedure by the automatic analyzer 1 will be described. In FIG. 4, first, the analysis optical system 11 measures the unused or empty reaction vessel 5, and the absorbance A1S of the shortest wavelength and the absorbance A1L of the longest wavelength among the acquired absorbances A1 of each wavelength are the absorbance before washing. It memorize | stores in the memory | storage part 21 as information 22 (step S102). Thereafter, the reaction vessel 5 is washed (step S104), the analysis optical system 11 measures the dried reaction vessel 5, and the absorbance B1S of the shortest wavelength among the obtained absorbances B1 of each wavelength and the longest. The absorbance B1L of the wavelength is stored in the storage unit 21 as the absorbance information 22 after washing (step S106).

その後、水残り判定部17は、最短波長での吸光度差(A1S−B1S)と最長波長での吸光度差(A1L−B1L)とを比較し、吸光度差(A1S−B1S)が吸光度差(A1L−B1L)以下であるか否かを判断する(ステップS108)。最短波長での吸光度差(A1S−B1S)が最長波長での吸光度差(A1L−B1L)以下でない場合(ステップS108:No)、水残り判定部17は水残りありと判定し、制御部16は、出力部20に水残り有りと判定された旨を報知するとともに、この反応容器の使用不可を設定した(ステップS110)後、ステップS112に移行する。   Thereafter, the water residue determination unit 17 compares the difference in absorbance at the shortest wavelength (A1S-B1S) with the difference in absorbance at the longest wavelength (A1L-B1L), and the difference in absorbance (A1S-B1S) indicates the difference in absorbance (A1L- B1L) It is determined whether or not (step S108). When the absorbance difference at the shortest wavelength (A1S-B1S) is not less than or equal to the absorbance difference at the longest wavelength (A1L-B1L) (step S108: No), the water remaining determination unit 17 determines that there is water remaining, and the control unit 16 Then, the output unit 20 is informed that it has been determined that there is remaining water, and after the use of the reaction container is set to be unusable (step S110), the process proceeds to step S112.

一方、最短波長での吸光度差(A1S−B1S)が最長波長での吸光度差(A1L−B1L)以下である場合(ステップS108:Yes)、水残り判定部17は水残り無しと判定し、この反応容器を用いた分析処理を行う(ステップS112)。   On the other hand, when the absorbance difference at the shortest wavelength (A1S-B1S) is equal to or less than the absorbance difference at the longest wavelength (A1L-B1L) (step S108: Yes), the water remaining determination unit 17 determines that there is no water remaining. An analysis process using the reaction vessel is performed (step S112).

さらに、この反応容器の洗浄処理が行われ(ステップS114)、乾燥された反応容器に対して分析光学系11が測光し、各波長の吸光度B2のうちの最短波長での吸光度B2Sおよび最長波長での吸光度B2Lを分析処理時における洗浄後の吸光度情報22として記憶部21に記憶する(ステップS116)。   Further, the reaction container is cleaned (step S114), and the analysis optical system 11 performs photometry on the dried reaction container, and the absorbance B2S at the shortest wavelength and the longest wavelength among the absorbance B2 of each wavelength. Is stored in the storage unit 21 as the absorbance information 22 after washing in the analysis process (step S116).

その後、水残り判定部17は、ステップS108と同様に、最長波長での吸光度差(A1L−B2L)と、最短波長での吸光度差(A1S−B2S)とを比較し、吸光度差(A1S−B2S)が吸光度差(A1L−B2L)以下であるか否かを判断する(ステップS118)。吸光度差(A1S−B2S)が吸光度差(A1L−B2L)以下でない場合(ステップS118:No)、水残り判定部17は水残りありと判定し、制御部16は、出力部20に水残り有りと判定された旨を報知するとともに、この反応容器の使用不可を設定した(ステップS110)後、ステップS112に移行する。   Thereafter, the water remaining determination unit 17 compares the difference in absorbance at the longest wavelength (A1L-B2L) with the difference in absorbance at the shortest wavelength (A1S-B2S), similarly to step S108, and compares the difference in absorbance (A1S-B2S). ) Is less than or equal to the absorbance difference (A1L-B2L) (step S118). When the difference in absorbance (A1S-B2S) is not less than the difference in absorbance (A1L-B2L) (step S118: No), the remaining water determination unit 17 determines that there is remaining water, and the control unit 16 has remaining water in the output unit 20. After notifying that it has been determined that the reaction container is unusable (step S110), the process proceeds to step S112.

一方、最短波長の吸光度差(A1S−B2S)が最長波長での吸光度差(A1L−B2L)以下である場合(ステップS118:Yes)、水残り判定部17は、水残り無しと判定し、さらに、制御部16は、分析処理の終了指示が出ているか否かを判断し(ステップS120)、分析処理の終了指示が出ていない場合(ステップS120:No)には、ステップS112に移行し、上述した処理を繰り返し、分析処理の終了指示が出ている場合(ステップS120:Yes)には、本処理を終了する。   On the other hand, when the absorbance difference at the shortest wavelength (A1S-B2S) is equal to or less than the absorbance difference at the longest wavelength (A1L-B2L) (step S118: Yes), the water remaining determination unit 17 determines that there is no water remaining, and The control unit 16 determines whether or not an instruction to end the analysis process has been issued (step S120). If no instruction to end the analysis process has been issued (step S120: No), the control unit 16 proceeds to step S112. If the above-described processing is repeated and an instruction to end the analysis processing is issued (step S120: Yes), this processing ends.

ここで、従来の自動分析装置においては、洗浄後に水残りがあるか否かを確認する機構は無く、洗浄が完了した反応容器は次の検体処理へと移行される。したがって、水残りが発生した場合でも、反応容器は次の分析処理に用いられるため分析データに不具合の出る可能性がある。また、データに不具合が生じた場合、反応容器と検体および試薬とを調べなければ原因の特定は出来ない。   Here, in the conventional automatic analyzer, there is no mechanism for checking whether or not there is water remaining after washing, and the reaction container after washing is transferred to the next sample processing. Therefore, even when water remains, the reaction vessel may be used for the next analysis process, so that there is a possibility that the analysis data will be defective. Also, when a problem occurs in the data, the cause cannot be specified unless the reaction container, the sample, and the reagent are examined.

これに対して、実施の形態1にかかる自動分析装置1においては、洗浄後に反応容器の水残りの判定を行い、水残りの発生した反応容器は分析に用いられないため、反応溶液が水残りした許容範囲以上の水と反応することは無い。したがって、分析データの分析精度の低下を抑えられると共に、データに不具合が発生した場合も、検体および試薬の調査に絞られるため、原因特定の時間短縮にも寄与する。また、分析処理前に、測光装置および洗浄装置を用いるため、測光データを確認することで、検体の分析処理前に装置の不具合を見いだすこともできる。   On the other hand, in the automatic analyzer 1 according to the first embodiment, the remaining water in the reaction container is determined after washing, and the reaction container in which the remaining water is generated is not used for analysis. It does not react with water exceeding the allowable range. Therefore, it is possible to suppress a decrease in the analysis accuracy of the analysis data, and even when a defect occurs in the data, it is limited to the examination of the specimen and the reagent, which contributes to shortening the time for specifying the cause. In addition, since the photometry device and the cleaning device are used before the analysis process, it is possible to find out a malfunction of the apparatus before the sample analysis process by checking the photometry data.

(実施の形態2)
つぎに、本発明の実施の形態2について説明する。上述した実施の形態1では、水残り判定部17が、最長波長の吸光度差と最短波長の吸光度差とを比較して水残りがあるか否かを判定していたが、本実施の形態2では、水残り判定部17が、最長波長の吸光度差と最短波長の吸光度差との比較に加え、最長波長の吸光度差と、最短波長および最長波長を除く全ての波長における吸光度差とを比較して水残りがあるか否かを信頼性高く判定するようにしている。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. In the first embodiment described above, the remaining water determination unit 17 compares the absorbance difference of the longest wavelength with the absorbance difference of the shortest wavelength to determine whether there is water residue. Then, in addition to the comparison between the absorbance difference at the longest wavelength and the absorbance difference at the shortest wavelength, the remaining water determination unit 17 compares the absorbance difference at the longest wavelength with the absorbance difference at all wavelengths except the shortest wavelength and the longest wavelength. Therefore, it is determined with high reliability whether there is water remaining.

ここで、図5に示すフローチャートを参照して、本実施の形態2による水残り判定処理手順について説明する。図5において、まず分析光学系11は、実施の形態1と同様に、未使用若しくは空の反応容器5を測光し、取得された各波長の吸光度A1を洗浄前の吸光度情報22として記憶部21に記憶する(ステップS202)。その後、反応容器5の洗浄処理を行い(ステップS204)、乾燥された反応容器5に対して分析光学系11が測光し、取得された各波長の吸光度B1を洗浄後の吸光度情報22として記憶部21に記憶する(ステップS206)。   Here, with reference to the flowchart shown in FIG. 5, the remaining water determination processing procedure according to the second embodiment will be described. In FIG. 5, the analysis optical system 11 first measures the unused or empty reaction vessel 5 in the same manner as in the first embodiment, and stores the acquired absorbance A1 of each wavelength as absorbance information 22 before washing. (Step S202). Thereafter, the reaction vessel 5 is washed (step S204), the analytical optical system 11 measures the dried reaction vessel 5, and the obtained absorbance B1 of each wavelength is stored as absorbance information 22 after washing. 21 (step S206).

その後、水残り判定部17は、最短波長での吸光度差(A1S−B1S)と最長波長での吸光度差(A1L−B1L)とを比較し、吸光度差(A1S−B1S)が吸光度差(A1L−B1L)以下であるか否かを判断する(ステップS208)。最短波長での吸光度差(A1S−B1S)が最長波長での吸光度差(A1L−B1L)以下でない場合(ステップS208:No)、最短波長および最長波長を除く各波長での吸光度差を求め、最長波長を除く各吸光度差(A1−B1)が最長波長での吸光度差(A1L−B1L)以下であるか否かを判断する(ステップS210)。この場合、最短波長での吸光度差(A1S−B1S)が最長波長での吸光度差(A1L−B1L)以下であることを判断しているので、ステップS210では、最短波長および最短波長を除く各吸光度差(A1−B1)が最長波長での吸光度差(A1L−B1L)以下であるか否かを判断することになる。   Thereafter, the water residue determination unit 17 compares the difference in absorbance at the shortest wavelength (A1S-B1S) with the difference in absorbance at the longest wavelength (A1L-B1L), and the difference in absorbance (A1S-B1S) indicates the difference in absorbance (A1L- B1L) It is determined whether or not (step S208). If the absorbance difference at the shortest wavelength (A1S-B1S) is not less than or equal to the absorbance difference at the longest wavelength (A1L-B1L) (step S208: No), the absorbance difference at each wavelength except the shortest wavelength and the longest wavelength is obtained. It is determined whether or not each absorbance difference (A1-B1) excluding the wavelength is equal to or less than the absorbance difference (A1L-B1L) at the longest wavelength (step S210). In this case, since it is determined that the absorbance difference at the shortest wavelength (A1S-B1S) is equal to or less than the absorbance difference at the longest wavelength (A1L-B1L), in step S210, the absorbances except for the shortest wavelength and the shortest wavelength are determined. It is determined whether or not the difference (A1-B1) is equal to or smaller than the absorbance difference (A1L-B1L) at the longest wavelength.

最長波長を除く各吸光度差(A1−B1)が最長波長での吸光度差(A1L−B1L)以下でない場合(ステップS210:No)、水残り判定部17は水残りありと判定し、制御部16は、出力部20に水残り有りと判定された旨を報知するとともに、この反応容器5の使用不可を設定した(ステップS212)後、ステップS214に移行する。   When each absorbance difference (A1−B1) excluding the longest wavelength is not less than or equal to the absorbance difference (A1L−B1L) at the longest wavelength (step S210: No), the water remaining determination unit 17 determines that there is water remaining, and the control unit 16 Informs the output unit 20 that it has been determined that there is remaining water and sets the unusable state of the reaction vessel 5 (step S212), and then proceeds to step S214.

一方、最短波長での吸光度差(A1S−B1S)が最長波長での吸光度差(A1L−B1L)以下である場合(ステップS208:Yes)および最長波長を除く各吸光度差(A1−B1)が最長波長での吸光度差(A1L−B1L)以下である場合(ステップS210:Yes)には、水残り判定部17は水残り無しと判定し、この反応容器5を用いた分析処理を行う(ステップS214)。   On the other hand, when the absorbance difference at the shortest wavelength (A1S-B1S) is less than or equal to the absorbance difference at the longest wavelength (A1L-B1L) (step S208: Yes), each absorbance difference excluding the longest wavelength (A1-B1) is the longest. When the difference in absorbance at the wavelength (A1L-B1L) is not more than (Step S210: Yes), the remaining water determination unit 17 determines that there is no remaining water, and performs an analysis process using the reaction vessel 5 (Step S214). ).

さらに、この反応容器5の洗浄処理が行われ(ステップS216)、乾燥された反応容器5に対して分析光学系11が測光し、各波長の吸光度B2を分析処理時における洗浄後の吸光度情報22として記憶部21に記憶する(ステップS218)。   Further, the reaction vessel 5 is washed (step S216), the analysis optical system 11 measures the dried reaction vessel 5, and the absorbance information 22 after washing at the time of the analysis treatment is performed on the absorbance B2 of each wavelength. Is stored in the storage unit 21 (step S218).

その後、水残り判定部17は、ステップS208と同様に、最長波長での吸光度差(A1L−B2L)と、最短波長での吸光度差(A1S−B2S)とを比較し、吸光度差(A1S−B2S)が吸光度差(A1L−B2L)以下であるか否かを判断する(ステップS220)。吸光度差(A1S−B2S)が吸光度差(A1L−B2L)以下でない場合(ステップS220:No)、さらに最長波長を除く各波長の吸光度差(A1−B2)が最長波長での吸光度差(A1L−B2L)以下であるか否かを判断する(ステップS222)。   Thereafter, the water remaining determination unit 17 compares the difference in absorbance at the longest wavelength (A1L-B2L) with the difference in absorbance at the shortest wavelength (A1S-B2S), similarly to step S208, and compares the difference in absorbance (A1S-B2S). ) Is less than or equal to the absorbance difference (A1L-B2L) (step S220). When the absorbance difference (A1S-B2S) is not less than or equal to the absorbance difference (A1L-B2L) (step S220: No), the absorbance difference (A1-B2) of each wavelength excluding the longest wavelength is the absorbance difference at the longest wavelength (A1L- B2L) It is determined whether or not (step S222).

最長波長を除く各波長の吸光度差(A1−B2)が最長波長での吸光度差(A1L−B2L)以下でない場合(ステップS222:No)、水残り判定部17は水残りありと判定し、制御部16は、出力部20に水残り有りと判定された旨を報知するとともに、この反応容器の使用不可を設定した(ステップS212)後、ステップS214に移行する。   When the absorbance difference (A1-B2) of each wavelength excluding the longest wavelength is not less than or equal to the absorbance difference (A1L-B2L) at the longest wavelength (step S222: No), the water remaining determination unit 17 determines that there is water remaining and performs control. The unit 16 informs the output unit 20 that it is determined that there is water remaining, and sets the unusable reaction container (step S212), and then proceeds to step S214.

一方、最短波長の吸光度差(A1S−B2S)が最長波長での吸光度差(A1L−B2L)以下である場合(ステップS220:Yes)および最長波長を除く各吸光度差(A1−B2)が最長波長での吸光度差(A1L−B2L)以下である場合(ステップS222:Yes)には、水残り判定部17は、水残り無しと判定し、さらに、制御部16は、分析処理の終了指示が出ているか否かを判断し(ステップS224)、分析処理の終了指示が出ていない場合(ステップS224:No)には、ステップS214に移行し、上述した処理を繰り返し、分析処理の終了指示が出ている場合(ステップS224:Yes)には、本処理を終了する。   On the other hand, when the absorbance difference at the shortest wavelength (A1S-B2S) is less than or equal to the absorbance difference at the longest wavelength (A1L-B2L) (step S220: Yes), each absorbance difference excluding the longest wavelength (A1-B2) is the longest wavelength. When the difference is not more than the absorbance difference (A1L-B2L) (step S222: Yes), the remaining water determination unit 17 determines that there is no remaining water, and the control unit 16 issues an instruction to end the analysis process. (Step S224), and if the analysis process end instruction is not issued (Step S224: No), the process proceeds to Step S214, the above process is repeated, and the analysis process end instruction is issued. If yes (step S224: Yes), this process ends.

なお、ステップS210,S222では、水残りが無い場合の上限値として、水残りがある場合と無い場合との吸光度差が最も小さくなる最長波長での吸光度差(A1L−B1L),(A1L−B2L)を用い、図3に示すように、水残りがある場合、各波長の洗浄前後の吸光度差は短波長側に向けて順次大きくなるため、すべての波長の吸光度差に関して吸光度差(A1−B1)≧吸光度差(A1L−B1L)、吸光度差(A1−B2)≧吸光度差(A1L−B2L)の関係が成り立つことになる。   In steps S210 and S222, as the upper limit value when there is no water residue, the difference in absorbance at the longest wavelength (A1L-B1L), (A1L-B2L) where the difference in absorbance between when there is water residue and when there is no water residue is the smallest. 3, when water remains, as shown in FIG. 3, the difference in absorbance before and after washing for each wavelength increases gradually toward the short wavelength side. Therefore, the absorbance difference (A1-B1) for the absorbance difference for all wavelengths. ) ≧ absorbance difference (A1L−B1L), absorbance difference (A1−B2) ≧ absorbance difference (A1L−B2L).

本実施の形態2にかかる自動分析装置1においては、実施の形態1と同様に、洗浄後に反応容器の水残りの判定を行い、水残りの発生した反応容器は分析には用いられないため、反応溶液が水残りした許容範囲以上の水と反応することは無い。したがって、分析データの分析精度の低下を抑えられると共に、データに不具合が発生した場合も、検体および試薬の調査に絞られるため、原因特定の時間短縮にも寄与する。また実施の形態2では、各波長の吸光度差を確認しているため、水残り判定の確実性を高めること、水以外での分析データへの影響も確認することが可能となる。   In the automatic analyzer 1 according to the second embodiment, as in the first embodiment, the remaining water in the reaction vessel is determined after washing, and the reaction vessel in which the remaining water is generated is not used for analysis. The reaction solution does not react with water exceeding the allowable range where water remains. Therefore, it is possible to suppress a decrease in the analysis accuracy of the analysis data, and even when a defect occurs in the data, it is limited to the examination of the specimen and the reagent, which contributes to shortening the time for specifying the cause. In Embodiment 2, since the difference in absorbance at each wavelength is confirmed, it is possible to increase the certainty of remaining water determination and to confirm the influence on analysis data other than water.

なお、上述した実施の形態1,2に限らず、たとえば、検体の免疫学的な分析を行う自動分析装置に対して適用することも可能である。すなわち、本発明は、ここでは記載していないさまざまな実施の形態等を含みうるものであり、特許請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。   The present invention is not limited to Embodiments 1 and 2 described above, and can be applied to, for example, an automatic analyzer that performs immunological analysis of a specimen. That is, the present invention can include various embodiments and the like not described herein, and various design changes and the like can be made without departing from the technical idea specified by the claims. Is possible.

本発明の実施の形態1である自動分析装置の概要構成を示す模式図である。It is a schematic diagram which shows schematic structure of the automatic analyzer which is Embodiment 1 of this invention. 図1に示した自動分析装置による一連の処理概要を示す図である。It is a figure which shows a series of process outlines by the automatic analyzer shown in FIG. 水残りがある場合とない場合との吸光度の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the light absorbency with the case where there is a water residue and the case where there is no water. 実施の形態1による水残り判定処理手順を示すフローチャートである。5 is a flowchart illustrating a remaining water determination processing procedure according to the first embodiment. 実施の形態2による水残り判定処理手順を示すフローチャートである。10 is a flowchart illustrating a remaining water determination processing procedure according to the second embodiment.

符号の説明Explanation of symbols

1 自動分析装置
2,3 試薬テーブル
2a,3a 試薬容器
4 キュベットホイール
5 反応容器
6,7 試薬分注機構
6b,7b 試薬分注ノズル
8 検体容器移送機構
9 ラック
9a 検体容器
10 検体分注機構
10b 検体分注ノズル
11 分析光学系
11a 光源
11b 分光部
11c 受光部
12 洗浄機構
13 第1攪拌装置
14 第2攪拌装置
15 制御機構
16 制御部
17 水残り判定部
18 入力部
19 分析部
20 出力部
21 記憶部
22 吸光度情報
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2,3 Reagent table 2a, 3a Reagent container 4 Cuvette wheel 5 Reaction container 6,7 Reagent dispensing mechanism 6b, 7b Reagent dispensing nozzle 8 Specimen container transfer mechanism 9 Rack 9a Specimen container 10 Specimen dispensing mechanism 10b Specimen dispensing nozzle 11 Analytical optical system 11a Light source 11b Spectrometer 11c Light receiving unit 12 Washing mechanism 13 First stirring device 14 Second stirring device 15 Control mechanism 16 Control unit 17 Remaining water determination unit 18 Input unit 19 Analysis unit 20 Output unit 21 Storage unit 22 Absorbance information

Claims (8)

反応容器を洗浄した後、検体と試薬とを反応容器内で反応させ、この反応の結果を測光器で測光することによって前記検体の分析を行う自動分析装置において、
前記反応容器の洗浄前の吸光度および洗浄後の吸光度を測定する測光手段と、
前記反応容器の洗浄前の吸光度および洗浄後の吸光度をもとに洗浄後の反応容器に水残りがあるか否かを判定する判定手段と、
を備えることを特徴とする自動分析装置。
In an automatic analyzer that analyzes the specimen by washing the reaction container, reacting the specimen and reagent in the reaction container, and measuring the result of the reaction with a photometer,
Photometric means for measuring the absorbance before washing of the reaction vessel and the absorbance after washing;
Determination means for determining whether or not there is water remaining in the reaction container after washing based on the absorbance before washing of the reaction container and the absorbance after washing;
An automatic analyzer characterized by comprising.
前記測光手段は、前記測光器であることを特徴とする請求項1に記載の自動分析装置。   The automatic analyzer according to claim 1, wherein the photometric means is the photometer. 前記判定手段は、短波長側での洗浄前後の反応容器の吸光度差が、長波長側での洗浄前後の反応容器の吸光度差に比して大きい場合に水残りがあると判定することを特徴とする請求項1に記載の自動分析装置。   The determination means determines that there is water residue when the difference in absorbance of the reaction container before and after cleaning on the short wavelength side is larger than the difference in absorbance of the reaction container before and after cleaning on the long wavelength side. The automatic analyzer according to claim 1. 前記判定手段は、最短波長での洗浄前後の反応容器の吸光度差が、最長波長での洗浄前後の反応容器の吸光度差に比して大きい場合に水残りがあると判定することを特徴とする請求項1に記載の自動分析装置。   The determination means determines that there is water residue when the difference in absorbance of the reaction container before and after washing at the shortest wavelength is larger than the difference in absorbance of the reaction container before and after washing at the longest wavelength. The automatic analyzer according to claim 1. 前記判定手段は、最短波長での洗浄前後の反応容器の吸光度差が、最長波長での洗浄前後の反応容器の吸光度差に比して大きい場合、最短波長および最長波長を除く各吸光度における洗浄前後での反応容器の吸光度差を求め、最短波長および最長波長を含む各波長の吸光度差が短波長側に向けて大きくなっている場合に、水残りがあると判定することを特徴とする請求項1に記載の自動分析装置。   The determination means, when the difference in absorbance of the reaction container before and after washing at the shortest wavelength is larger than the difference in absorbance of the reaction container before and after washing at the longest wavelength, before and after washing at each absorbance excluding the shortest wavelength and longest wavelength The difference in absorbance of the reaction vessel in the above is obtained, and when the difference in absorbance of each wavelength including the shortest wavelength and the longest wavelength increases toward the short wavelength side, it is determined that there is water residue. The automatic analyzer according to 1. 前記判定手段が水残りがあると判定した場合、該判定された反応容器の使用不可に関する情報を報知する報知手段を備えたことを特徴とする請求項1〜5のいずれか1つに記載の自動分析装置。   6. The apparatus according to claim 1, further comprising an informing unit that informs of information regarding the unusability of the determined reaction container when the determining unit determines that there is water remaining. Automatic analyzer. 前記判定手段は、分析処理を開始する前の前処理時に行う反応容器の洗浄前後の吸光度をもとに分析開始前の反応容器に水残りがあるか否かを判定することを特徴とする請求項1〜6のいずれか1つに記載の自動分析装置。   The determination means determines whether there is water remaining in the reaction container before the start of analysis based on the absorbance before and after the cleaning of the reaction container performed during the pretreatment before starting the analysis process. Item 7. The automatic analyzer according to any one of Items 1 to 6. 前記反応容器の洗浄前の吸光度は、分析処理を開始する前の前処理として行う反応容器の洗浄時における洗浄前の吸光度であり、前記判定手段は、該洗浄前の吸光度を、各反応容器の水残り判定に共通して用いることを特徴とする請求項1〜7のいずれか1つに記載の自動分析装置。   The absorbance before washing of the reaction vessel is the absorbance before washing of the reaction vessel performed as a pretreatment before starting the analysis treatment, and the determination means calculates the absorbance before washing of each reaction vessel. The automatic analyzer according to any one of claims 1 to 7, wherein the automatic analyzer is commonly used for water remaining determination.
JP2008072310A 2008-03-19 2008-03-19 Autoanalyzer Withdrawn JP2009229140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072310A JP2009229140A (en) 2008-03-19 2008-03-19 Autoanalyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072310A JP2009229140A (en) 2008-03-19 2008-03-19 Autoanalyzer

Publications (1)

Publication Number Publication Date
JP2009229140A true JP2009229140A (en) 2009-10-08

Family

ID=41244725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072310A Withdrawn JP2009229140A (en) 2008-03-19 2008-03-19 Autoanalyzer

Country Status (1)

Country Link
JP (1) JP2009229140A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173002A (en) * 2011-02-17 2012-09-10 Beckman Coulter Inc Automatic analyzer
JP2020085467A (en) * 2018-11-15 2020-06-04 アンリツ株式会社 Physical property inspection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173002A (en) * 2011-02-17 2012-09-10 Beckman Coulter Inc Automatic analyzer
JP2020085467A (en) * 2018-11-15 2020-06-04 アンリツ株式会社 Physical property inspection device
US11255719B2 (en) 2018-11-15 2022-02-22 Anritsu Corporation Material property inspection apparatus
JP7078520B2 (en) 2018-11-15 2022-05-31 アンリツ株式会社 Material property inspection equipment

Similar Documents

Publication Publication Date Title
JP7450656B2 (en) automatic analyzer
WO2009122993A1 (en) Blood coagulation analyzer, method of analyzing blood coagulation and computer program
JP5350811B2 (en) Automatic analyzer
JP2007303937A (en) Autoanalyzer
JP6800953B2 (en) Automatic analyzer
JP2012149903A (en) Automatic analyzer
CN108700602B (en) Automatic analyzer
CN109690320B (en) Automatic analyzer and analysis method thereof
JP5086286B2 (en) Automatic analyzer
JP6503261B2 (en) Automatic analyzer
JP2007303884A (en) Autoanalyzer
JPH10232234A (en) Automatic analyzer
JP2009229140A (en) Autoanalyzer
JP6887880B2 (en) Automatic analyzers and programs
JP2011149831A (en) Autoanalyzer
JP2007322246A (en) Autoanalyzer
JP5134452B2 (en) Automatic analyzer
JP7300826B2 (en) Analysis device and analysis method
JP6896936B2 (en) Automatic analyzer
US20200278366A1 (en) Automatic Analysis Device
JP2007263752A (en) Specimen dispensing method of autoanalyzer, autoanalyzer and program
JP2007309742A (en) Autoanalyzer
JP2007322245A (en) Autoanalyzer
JP2008203008A (en) Autoanalyzer
JP2007285920A (en) Analyzer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100205

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607