JP2007315463A - Hollow power transmission shaft - Google Patents

Hollow power transmission shaft Download PDF

Info

Publication number
JP2007315463A
JP2007315463A JP2006144297A JP2006144297A JP2007315463A JP 2007315463 A JP2007315463 A JP 2007315463A JP 2006144297 A JP2006144297 A JP 2006144297A JP 2006144297 A JP2006144297 A JP 2006144297A JP 2007315463 A JP2007315463 A JP 2007315463A
Authority
JP
Japan
Prior art keywords
shaft
hollow
power transmission
hollow shaft
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006144297A
Other languages
Japanese (ja)
Inventor
Yuichi Asano
祐一 淺野
Kazuhiro Azuma
和弘 東
Hiroo Morimoto
洋生 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006144297A priority Critical patent/JP2007315463A/en
Publication of JP2007315463A publication Critical patent/JP2007315463A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow power transmission shaft for a drive shaft and a propeller shaft, having a long and lightweight structure. <P>SOLUTION: The hollow power transmission shaft is equipped with a first hollow shaft 1A and a second hollow shaft 1B including small diameter parts 11a, 11b, and large diameter parts 10a, 10b. Each of the first hollow shaft 1A and the second hollow shaft 1B are hollow over the entire length. An end face 16a of the large diameter part 10a of the first hollow shaft 1A and an end face 16b of the large diameter part 10b of the second hollow shaft 1B are integrally bonded. The large diameter parts 10a, 10b are disposed at an intermediate part in the axial direction and the small diameter parts 11a, 11b are disposed at an end in the axial direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車の動力伝達系を構成するドライブシャフト(駆動軸)やプロペラシャフト(推進軸)などに使用される動力伝達シャフトであって、中空状動力伝達シャフトに関するものである。   The present invention relates to a power transmission shaft used for a drive shaft (drive shaft), a propeller shaft (propulsion shaft) and the like constituting a power transmission system of an automobile, and relates to a hollow power transmission shaft.

自動車の動力伝達機構は、図6に示すように、動力伝達シャフト101と、動力伝達シャフト101の一端部に連結された摺動型等速自在継手102と、動力伝達シャフト101の他端部に連結された固定式等速自在継手103とを備えている。この動力伝達機構において、摺動型等速自在継手102は減速装置(ディファレンシャル)に連結され、固定式等速自在継手103は、駆動輪側に連結される。動力伝達シャフト101の一端部は摺動型等速自在継手102のトリポード部材104にスプライン結合され、摺動型等速自在継手102の外輪105の端部外周と動力伝達シャフト101の外周にブーツ106がそれぞれ固定されている。動力伝達シャフト101の他端部は、固定式等速自在継手103の内輪107にスプライン連結され、固定式等速自在継手103の外輪108の端部外周と動力伝達シャフト101の外周にブーツ109が固定されている。   As shown in FIG. 6, the power transmission mechanism of the automobile includes a power transmission shaft 101, a sliding type constant velocity universal joint 102 connected to one end of the power transmission shaft 101, and the other end of the power transmission shaft 101. And a fixed constant velocity universal joint 103 connected thereto. In this power transmission mechanism, the sliding type constant velocity universal joint 102 is connected to a reduction gear (differential), and the fixed type constant velocity universal joint 103 is connected to the drive wheel side. One end of the power transmission shaft 101 is splined to the tripod member 104 of the sliding type constant velocity universal joint 102, and a boot 106 is provided on the outer periphery of the end of the outer ring 105 of the sliding type constant velocity universal joint 102 and the outer periphery of the power transmission shaft 101. Are fixed respectively. The other end of the power transmission shaft 101 is splined to the inner ring 107 of the fixed type constant velocity universal joint 103, and a boot 109 is provided on the outer periphery of the outer ring 108 of the fixed type constant velocity universal joint 103 and the outer periphery of the power transmission shaft 101. It is fixed.

ところで、ドライブシャフトやプロペラシャフトに使用される動力伝達シャフトは、中実の棒材から加工された中実シャフトと、鋼管等から加工された中空シャフトとに大別される。   By the way, power transmission shafts used for drive shafts and propeller shafts are roughly classified into solid shafts processed from solid bar materials and hollow shafts processed from steel pipes.

近年、自動車の足回りの軽量化、捩り剛性やNVH特性の向上といった機能面での必要性から中空シャフトが用いられることがしばしばある。この種の中空シャフトは、一体型中空シャフトと、接合型中空シャフトとに大別される。また、接合型中空シャフトには、パイプ部と軸部とを別々に成形して摩擦圧延や溶接により接合した構造(特許文献1)や、鍛造や旋削加工等により成形された一対のスタブシャフトの端面同士を摩擦圧接等で接合した構造(特許文献2)等がある。   In recent years, hollow shafts are often used due to the necessity of reducing the weight of the vehicle's undercarriage and improving its torsional rigidity and NVH characteristics. This type of hollow shaft is roughly classified into an integral hollow shaft and a joined hollow shaft. In addition, the joint-type hollow shaft includes a structure in which a pipe portion and a shaft portion are separately formed and joined by friction rolling or welding (Patent Document 1), or a pair of stub shafts formed by forging, turning, or the like. There is a structure in which end faces are joined by friction welding (Patent Document 2).

一体型中空シャフト101は、図7に示すように、最大外径部を持つ中央の大径部101aと端部にスプラインを設けた小径部101bとを同一素管から一体成形した構造であり、例えば、スウェージング加工やプレス加工などの塑性加工により成形される。   As shown in FIG. 7, the integrated hollow shaft 101 has a structure in which a central large-diameter portion 101a having a maximum outer diameter portion and a small-diameter portion 101b provided with a spline at the end are integrally formed from the same raw tube, For example, it is formed by plastic working such as swaging or pressing.

接合型中空シャフトは、図8に示すように、第1軸110と第2軸111からなる。第1軸110と第2軸111は、それぞれ、中実の小径部112、114と、この小径部112、114に連設される中空大径部113、115とを有する。この場合、この第1軸110の中空大径部113の端面と第2軸111の中空大径部115の端面とが接合される。また、図9のように、接合型中空シャフトには、第1軸110と第2軸111と中間大径軸116とを有したものもある。この場合、第1軸110の大径部113と第2軸111の大径部115との間に、中間大径軸116を配設して、各大径部113、115の端面とこれに対面する中間大径軸116の各端面とを接合一体化したものである。
特開平5−10319号公報 特開2001−315539号公報
As shown in FIG. 8, the bonded hollow shaft includes a first shaft 110 and a second shaft 111. The first shaft 110 and the second shaft 111 have solid small-diameter portions 112 and 114 and hollow large-diameter portions 113 and 115 connected to the small-diameter portions 112 and 114, respectively. In this case, the end surface of the hollow large diameter portion 113 of the first shaft 110 and the end surface of the hollow large diameter portion 115 of the second shaft 111 are joined. Further, as shown in FIG. 9, some joined hollow shafts have a first shaft 110, a second shaft 111, and an intermediate large-diameter shaft 116. In this case, an intermediate large-diameter shaft 116 is disposed between the large-diameter portion 113 of the first shaft 110 and the large-diameter portion 115 of the second shaft 111, and the end surfaces of the large-diameter portions 113 and 115 and The end surfaces of the intermediate large-diameter shaft 116 facing each other are joined and integrated.
JP-A-5-10319 JP 2001-315539 A

一体型中空シャフトの内部は、シャフト全長にわたって中空であるため、シャフト全体として軽量である。しかしながら、このような一体型中空シャフトでは加工負荷や加工長さ等の設備上の制約により、ドライブシャフトやプロペラシャフト等に使用される中空シャフトで、長物を一体で成形することが困難であった。また、接合型中空シャフトでは、2、3点に分割された部品を接合しているので、長物の中空シャフトを製作することは可能である。ところが、この場合、端部側の小径部においては中実である。すなわち、中空シャフトを削り出しにより成形する場合、ドリル加工で小径部を中空とすれば、コスト高となる。また、鍛造により成形する場合、低コストで成形できるが、加工能力的に小径部まで中空にすることはできず、大径部でもある深さまでしか成形できない。これにより、従来においては、端部側の小径部においては中実である。このため、全長にわたって中空である中空シャフトと比較して重量が重いという問題があった。   Since the inside of the integral hollow shaft is hollow over the entire length of the shaft, the entire shaft is lightweight. However, with such an integrated hollow shaft, it is difficult to integrally form a long object with a hollow shaft used for a drive shaft, a propeller shaft, etc. due to equipment limitations such as processing load and processing length. . Moreover, in the joining type hollow shaft, since the parts divided into a few points are joined, it is possible to manufacture a long hollow shaft. However, in this case, the small diameter portion on the end side is solid. That is, when the hollow shaft is formed by cutting, the cost increases if the small diameter portion is made hollow by drilling. In addition, when forming by forging, it can be formed at a low cost, but it cannot be made hollow to a small diameter portion in terms of processing capability, and can only be formed to a depth that is also a large diameter portion. Thereby, conventionally, the small-diameter portion on the end side is solid. For this reason, there existed a problem that weight was heavy compared with the hollow shaft which is hollow over the full length.

本発明は、上記課題に鑑みて、ドライブシャフトやプロペラシャフト用で長物、かつ重量の軽い構造の中空状動力伝達シャフトを提供する。   In view of the above problems, the present invention provides a hollow power transmission shaft for a drive shaft or propeller shaft that is long and lightweight.

本発明の中空状動力伝達シャフトは、小径部と大径部とを有する第1中空軸及び第2中空軸を備え、前記第1中空軸と前記第2中空軸とをそれぞれ全長にわたって中空として、第1中空軸の大径部の端面と第2中空軸の大径部の端面とを接合一体化し、軸方向中間部に前記大径部を配設するとともに軸方向端部に前記小径部を配設したものである。   The hollow power transmission shaft of the present invention includes a first hollow shaft and a second hollow shaft having a small diameter portion and a large diameter portion, and the first hollow shaft and the second hollow shaft are hollow over the entire length, The end surface of the large-diameter portion of the first hollow shaft and the end surface of the large-diameter portion of the second hollow shaft are joined and integrated, and the large-diameter portion is disposed at the axial intermediate portion and the small-diameter portion is disposed at the axial end portion. It is arranged.

本発明の中空状動力伝達シャフトでは、全長にわたって中空の第1中空軸と第2中空軸とを大径部の端面で接合一体化しているので、シャフト全長にわたって内部を中空とすることができる。また、2つの中空軸を接合するものであるので、全体の長さ(軸方向長さ)が大となるシャフトを製作することができる。   In the hollow power transmission shaft of the present invention, since the hollow first hollow shaft and the second hollow shaft are joined and integrated at the end face of the large diameter portion over the entire length, the inside can be made hollow over the entire length of the shaft. Moreover, since two hollow shafts are joined, a shaft having a large overall length (axial length) can be manufactured.

本発明の他の中空状動力伝達シャフトは、小径部と大径部とを有する第1中空軸及び第2中空軸を備え、前記第1中空軸と前記第2中空軸とをそれぞれ全長にわたって中空として、第1中空軸の大径部と第2中空部の大径部との間に全長にわたって中空の中間大径軸を配設して、各大径部の端面とこれに対面する中間大径軸の各端面とを接合一体化し、軸方向中間部に前記中間大径軸を配設するとともに軸方向端部に前記小径部を配設したものである。   Another hollow power transmission shaft of the present invention includes a first hollow shaft and a second hollow shaft each having a small diameter portion and a large diameter portion, and the first hollow shaft and the second hollow shaft are respectively hollow over the entire length. As described above, a hollow intermediate large-diameter shaft is disposed over the entire length between the large-diameter portion of the first hollow shaft and the large-diameter portion of the second hollow portion, and the end surfaces of the large-diameter portions and the intermediate large surface facing the large-diameter portion Each end surface of the radial shaft is joined and integrated, the intermediate large-diameter shaft is disposed at the axially intermediate portion, and the small-diameter portion is disposed at the axial end portion.

本発明の他の中空状動力伝達シャフトは、全長にわたって中空の第1中空軸の大径部と第2中空軸の大径部との間に、全長にわたって中空の中間大径軸を配設しているので、シャフト全長にわたって内部を中空とすることができる。しかも、3つの中空軸を接合しているので、さらに長物の中空シャフトを製作することができる。   In another hollow power transmission shaft of the present invention, an intermediate large-diameter shaft that is hollow over the entire length is disposed between the large-diameter portion of the first hollow shaft that is hollow over the entire length and the large-diameter portion of the second hollow shaft. Therefore, the inside can be made hollow over the entire length of the shaft. In addition, since three hollow shafts are joined, a longer hollow shaft can be manufactured.

前記各端面間の接合を摩擦圧接とすることができる。これにより、各軸を高強度に接合することができる。摩擦圧接法とは、固体同士を溶融させずに接合する直接固相接合法の一種であり、接合する部材(たとえば金属や樹脂など)を高速で擦り合わせ、そのときに生じる摩擦熱によって部材を軟化させると同時に圧力を加えて接合する方法である。この摩擦圧接法の利点としては、比較的簡単な作業で寸法精度の高い製品が得られ、仕上げ加工を施した部材の組み立て接合が行える。   The joining between the end faces can be friction welding. Thereby, each axis | shaft can be joined with high intensity | strength. The friction welding method is a kind of direct solid-phase bonding method in which solids are joined without melting them, and the members to be joined (for example, metal or resin) are rubbed together at high speed, and the members are joined by frictional heat generated at that time. It is a method of joining by applying pressure simultaneously with softening. As an advantage of this friction welding method, a product with high dimensional accuracy can be obtained by a relatively simple operation, and assembly and joining of finished members can be performed.

前記各軸を、スウェージング加工やプレス加工等の塑性加工にて成形することができる。   Each of the shafts can be formed by plastic processing such as swaging or pressing.

前記第1中空軸と第2中空軸とを同一寸法形状とすることができる。これにより、第1中空軸と第2中空軸とを同一のものをもって構成することができ、第1中空軸と第2中空軸とで2種類のものを製造する必要がない。このため、各軸をスウェージング加工やプレス加工等の塑性加工にて成形する際には、同一の塑性加工用工具にて加工することができる。   The first hollow shaft and the second hollow shaft can have the same size and shape. Thereby, the first hollow shaft and the second hollow shaft can be configured with the same one, and there is no need to manufacture two types of the first hollow shaft and the second hollow shaft. For this reason, when forming each axis | shaft by plastic processing, such as a swaging process and press work, it can process with the same tool for plastic working.

前記第1中空軸及び前記第2中空軸の小径部に高周波焼入れを施して表面硬化層を形成することができる。これにより、シャフト全体からみて強度的に最弱部となる小径部の強度を高めることができる。   A hardened surface layer can be formed by subjecting small diameter portions of the first hollow shaft and the second hollow shaft to induction hardening. Thereby, the intensity | strength of the small diameter part used as the weakest part can be heightened from the whole shaft.

本発明の中空状動力伝達シャフトでは、2つの中空軸で中空状動力伝達シャフトを形成することができるので、従来では製造が困難であった全長が中空の長物シャフトの製作が、新たな設備投資費をかけることなく可能となる。しかも、シャフト全長にわたって内部を中空とすることができるので、このシャフトを、自動車の動力伝達系を構成するドライブシャフト(駆動軸)やプロペラシャフト(推進軸)等に用いれば、自動車の足回りの軽量化、捩り剛性やNVH特性の向上に寄与することができる。   In the hollow power transmission shaft of the present invention, since a hollow power transmission shaft can be formed by two hollow shafts, the production of a long shaft having a hollow overall length, which has been difficult to manufacture in the past, is a new capital investment. This is possible without spending money. In addition, since the interior can be made hollow over the entire length of the shaft, if this shaft is used for a drive shaft (drive shaft), a propeller shaft (propulsion shaft) or the like that constitutes a power transmission system of an automobile, This can contribute to weight reduction, torsional rigidity and NVH characteristics.

他の中空状動力伝達シャフトでは、2つの中空軸の間に中間大径軸を配設して3つ以上の中空軸で中空状動力伝達シャフトを構成することができるので、さらに長物の中空シャフトを製作することができる。しかも、接合される第1中空軸と中間大径軸と第2中空軸とはそれぞれ全長にわたって中空であるので、このシャフトは、全長にわたって中空であり、軽量化を図ることができる。   In other hollow power transmission shafts, an intermediate large-diameter shaft can be arranged between two hollow shafts, and a hollow power transmission shaft can be constituted by three or more hollow shafts. Can be produced. In addition, since the first hollow shaft, the intermediate large-diameter shaft, and the second hollow shaft to be joined are hollow over the entire length, the shaft is hollow over the entire length, and the weight can be reduced.

前記各端面間の接合を摩擦圧接とすることにより、良好な接合を得ることができるとともに、接合時間を短くできる。このため、各軸を高強度に一体接合することができ、しかも、自動化や大量生産に有利である。   By making the joining between the respective end faces a friction welding, a good joining can be obtained and the joining time can be shortened. For this reason, each shaft can be integrally joined with high strength, and it is advantageous for automation and mass production.

前記各軸を、スウェージング加工やプレス加工等の塑性加工にて成形することにより、切削加工に比べて材料費を低減することができ、シャフトを軽量にすることができる。   By forming each of the shafts by plastic processing such as swaging or pressing, the material cost can be reduced compared to cutting, and the shaft can be lightened.

第1中空軸と第2中空軸とで2種類のものを製造する必要がなく、第1中空軸と第2中空軸を製造する際に使用する塑性加工用工具等を共用することができる。このため、塑性加工用工具の省略、および生産性の向上を図ることができ、加工費を低減することができる。   There is no need to manufacture two types of the first hollow shaft and the second hollow shaft, and a plastic working tool or the like used in manufacturing the first hollow shaft and the second hollow shaft can be shared. For this reason, omission of the tool for plastic working and improvement of productivity can be aimed at, and processing cost can be reduced.

シャフト全体からみて強度的に最弱部となる小径部の強度を高めることができるので、シャフト全体が高強度となって、耐久性に優れる。   Since the strength of the small diameter portion, which is the weakest portion in terms of strength when viewed from the entire shaft, can be increased, the entire shaft has high strength and excellent durability.

本発明に係る中空状動力伝達シャフトの実施形態を図1〜図5に基づいて説明する。   An embodiment of a hollow power transmission shaft according to the present invention will be described with reference to FIGS.

自動車の動力伝達機構は、図1に示すように、動力伝達シャフト1と、動力伝達シャフト1の一端部に連結された摺動型等速自在継手2と、動力伝達シャフト1の他端部に連結された固定式等速自在継手3とを備えている。   As shown in FIG. 1, the power transmission mechanism of an automobile includes a power transmission shaft 1, a sliding type constant velocity universal joint 2 connected to one end of the power transmission shaft 1, and the other end of the power transmission shaft 1. The fixed type constant velocity universal joint 3 connected is provided.

この動力伝達機構において、摺動型等速自在継手2は減速装置(ディファレンシャル)に連結され、固定式等速自在継手3は、駆動輪側に連結される。動力伝達シャフト1の一端部は摺動型等速自在継手2のトリポード部材4にスプライン結合され、摺動型等速自在継手2の外輪5の端部外周と動力伝達シャフト1の外周にブーツ6がそれぞれ固定されている。動力伝達シャフト1の他端部は、固定式等速自在継手3の内輪7にスプライン連結され、固定式等速自在継手3の外輪8の端部外周と動力伝達シャフト1の外周にブーツ9が固定されている。   In this power transmission mechanism, the sliding type constant velocity universal joint 2 is connected to a reduction gear (differential), and the fixed type constant velocity universal joint 3 is connected to the drive wheel side. One end of the power transmission shaft 1 is splined to the tripod member 4 of the sliding type constant velocity universal joint 2, and a boot 6 is provided on the outer periphery of the outer ring 5 of the sliding type constant velocity universal joint 2 and the outer periphery of the power transmission shaft 1. Are fixed respectively. The other end of the power transmission shaft 1 is splined to the inner ring 7 of the fixed type constant velocity universal joint 3, and a boot 9 is provided on the outer periphery of the end of the outer ring 8 of the fixed type constant velocity universal joint 3 and the outer periphery of the power transmission shaft 1. It is fixed.

図2は、動力伝達シャフト1の第1実施形態の一部断面図である。このシャフト1は、軸方向の全長にわたって中空の筒状部材であり、第1中空軸1Aと第2中空軸1Bとを同軸に接続することにより形成される。前記シャフト1は、軸方向中間部に大径部10a、10bと、前記大径部10a、10bよりも軸方向両端部側にそれぞれ小径部11a、11bを有しており、大径部10a、10bと小径部11a、11bとは、大径部10a、10bから小径部11a、11bに向かって縮径するテーパ面17a、17bを介して連続している。軸方向中間部には、第1中空軸1Aと第2中空軸1Bとを接続する接続部15を有しており、小径部11a、11bの両端部には、等速自在継手2、3を連結する連結部12a、12bが形成される。   FIG. 2 is a partial cross-sectional view of the first embodiment of the power transmission shaft 1. The shaft 1 is a hollow cylindrical member over the entire length in the axial direction, and is formed by coaxially connecting the first hollow shaft 1A and the second hollow shaft 1B. The shaft 1 has large-diameter portions 10a and 10b at an axially intermediate portion, and small-diameter portions 11a and 11b on both axial ends from the large-diameter portions 10a and 10b, respectively. 10b and the small diameter portions 11a and 11b are continuous via tapered surfaces 17a and 17b that reduce the diameter from the large diameter portions 10a and 10b toward the small diameter portions 11a and 11b. The intermediate portion in the axial direction has a connecting portion 15 for connecting the first hollow shaft 1A and the second hollow shaft 1B, and constant velocity universal joints 2 and 3 are provided at both ends of the small diameter portions 11a and 11b. Connecting portions 12a and 12b to be connected are formed.

前記連結部12a、12bには、等速自在継手2、3にスプライン連結されるスプライン13a、13bと、等速自在継手に対する軸方向抜け止め用の止め輪を装着するための止め輪溝14a、14bが形成されている。   Splines 13a and 13b splined to the constant velocity universal joints 2 and 3 and retaining ring grooves 14a for attaching axial retaining rings for the constant velocity universal joints to the connecting portions 12a and 12b, 14b is formed.

前記のような構成を有する中空状動力伝達シャフト1の製造方法を説明する。まず、大径部10aと小径部11aとを有する第1中空軸1Aと、大径部10bと小径部11bとを有する第2中空軸1Bとを形成する。この場合、スウェージング加工やプレス加工等の塑性加工にて成形することができる。   A method for manufacturing the hollow power transmission shaft 1 having the above-described configuration will be described. First, a first hollow shaft 1A having a large diameter portion 10a and a small diameter portion 11a and a second hollow shaft 1B having a large diameter portion 10b and a small diameter portion 11b are formed. In this case, it can be formed by plastic working such as swaging or pressing.

また、第1中空軸1Aと第2中空軸1Bとを同一寸法形状とすることができる。このため、これらは同一の塑性加工用具にて成形することができる。   Moreover, the 1st hollow shaft 1A and the 2nd hollow shaft 1B can be made into the same size shape. For this reason, these can be shape | molded with the same plastic working tool.

そして、図3のように、第1中空軸1Aの大径部10aの端面16aと、第2中空軸1Bの大径部10bの端面16bとを接合一体化する。すなわち、図3の矢印で示すように、第1中空軸1Aの大径部10aの端面16aを第2中空軸1Bの大径部10bの端面16bに当接させて、当接面(接合部15)を摩擦圧接する。摩擦圧接法とは、固体同士を溶融させずに接合する直接固相接合法の一種であり、接合する部材(たとえば金属や樹脂など)を高速で擦り合わせ、そのときに生じる摩擦熱によって部材を軟化させると同時に圧力を加えて接合する方法である。この摩擦圧接法の利点としては、アーク溶接やガス溶接等と比較すると、摩擦熱以外の熱源を必要としないこと、溶接棒やフラックスが不要であること、接合時にガスやスパッタが出ないこと、比較的簡単な作業で寸法精度の高い製品が得られ、仕上げ加工を施した部材の組み立て接合が行える等が挙げられる。   Then, as shown in FIG. 3, the end surface 16a of the large diameter portion 10a of the first hollow shaft 1A and the end surface 16b of the large diameter portion 10b of the second hollow shaft 1B are joined and integrated. That is, as shown by the arrows in FIG. 3, the end surface 16a of the large-diameter portion 10a of the first hollow shaft 1A is brought into contact with the end surface 16b of the large-diameter portion 10b of the second hollow shaft 1B. 15) Friction welding. The friction welding method is a kind of direct solid-phase joining method in which solids are joined without melting each other, and members to be joined (for example, metal or resin) are rubbed together at high speed, and the members are joined by frictional heat generated at that time. It is a method of joining by applying pressure simultaneously with softening. The advantages of this friction welding method are that no heat source other than frictional heat is required compared to arc welding or gas welding, that no welding rod or flux is required, no gas or spatter is generated during joining, For example, it is possible to obtain a product with high dimensional accuracy by a relatively simple operation and to assemble and join the finished members.

また、前記第1中空軸1A及び第2中空軸1Bの小径部11a、11bに高周波焼入れを施して表面硬化層を形成している。この場合、定置焼き(焼入れ用コイルを移動させない高周波焼入れ)であっても、移動焼き(焼入れ用コイルを移動させる高周波焼入れ)であってもよい。ここで、高周波焼入れとは、高周波を流すことによって、誘導体(被加工体)の表面部分に誘導電流を生じさせて発熱させ、この熱により被加工体の表面を急速に加熱して焼入れを行う方法である。   Moreover, induction hardening is performed to the small diameter parts 11a and 11b of the first hollow shaft 1A and the second hollow shaft 1B to form a hardened surface layer. In this case, it may be stationary baking (induction hardening without moving the hardening coil) or moving baking (induction hardening with moving the hardening coil). Here, induction hardening is performed by causing induction current to be generated in the surface portion of the derivative (workpiece) by flowing a high frequency to generate heat, and the surface of the work piece is rapidly heated by this heat for quenching. Is the method.

表面硬化層を形成する場合、浸炭焼入れであってもよい。ここで、浸炭焼入れとは、活性化した炭素を多く含むガス、液体、固体などの浸炭剤中で鋼を長時間加熱することにより、表面層から炭素を含浸させる処理である。なお、浸炭焼入れの際には、接合部15近傍を防炭する必要がある。   When forming a hardened surface layer, carburizing and quenching may be used. Here, the carburizing and quenching is a process of impregnating carbon from the surface layer by heating the steel for a long time in a carburizing agent such as a gas, liquid or solid containing a lot of activated carbon. In the case of carburizing and quenching, it is necessary to protect the vicinity of the joint 15.

このように、第1実施形態の中空状動力伝達シャフト1では、2つの中空軸で中空状動力伝達シャフトを形成することができるので、従来では製造が困難であった全長が中空の長物シャフトの製作が、新たな設備投資費をかけることなく可能となる。しかも、シャフト全長にわたって内部を中空とすることができるので、このシャフトを、自動車の動力伝達系を構成するドライブシャフト(駆動軸)やプロペラシャフト(推進軸)等に用いれば、自動車の足回りの軽量化、捩り剛性やNVH特性の向上に寄与することができる。   Thus, in the hollow power transmission shaft 1 of the first embodiment, a hollow power transmission shaft can be formed by two hollow shafts. Production is possible without incurring new capital investment. In addition, since the interior can be made hollow over the entire length of the shaft, if this shaft is used for a drive shaft (drive shaft), a propeller shaft (propulsion shaft) or the like that constitutes a power transmission system of an automobile, This can contribute to weight reduction, torsional rigidity and NVH characteristics.

前記各端面間の接合を摩擦圧接とすることにより、良好な接合を得ることができるとともに、接合時間を短くできる。このため、各軸を高強度に一体接合することができ、しかも、自動化や大量生産に有利である。   By making the joining between the respective end faces a friction welding, a good joining can be obtained and the joining time can be shortened. For this reason, each shaft can be integrally joined with high strength, and it is advantageous for automation and mass production.

前記各軸1A、1Bを、スウェージング加工やプレス加工等の塑性加工にて成形することにより、切削加工に比べて材料費を低減することができ、シャフト1の軽量化に寄与する。   By forming each of the shafts 1A and 1B by plastic working such as swaging or press working, the material cost can be reduced compared to the cutting work, which contributes to the weight reduction of the shaft 1.

第1中空軸と第2中空軸とで2種類のものを製造する必要がなく、第1中空軸と第2中空軸を製造する際に使用する塑性加工用工具等を共用することができる。このため、塑性加工用工具の省略、および生産性の向上を図ることができ、加工費を低減することができる。   There is no need to manufacture two types of the first hollow shaft and the second hollow shaft, and a plastic working tool or the like used in manufacturing the first hollow shaft and the second hollow shaft can be shared. For this reason, omission of the tool for plastic working and improvement of productivity can be aimed at, and processing cost can be reduced.

シャフト全体からみて強度的に最弱部となる小径部の強度を高めることができるので、シャフト全体が高強度となって、耐久性に優れる。   Since the strength of the small diameter portion, which is the weakest portion in terms of strength when viewed from the entire shaft, can be increased, the entire shaft has high strength and excellent durability.

図4は、第1実施形態の変形例を示す中空状動力伝達シャフト1の一部断面図である。この第1中空軸1Aと第2中空軸1Bとは、それぞれ、小径部11a、11bと大径部10a、10bとの間に中径部20a、20bが形成されている。   FIG. 4 is a partial cross-sectional view of the hollow power transmission shaft 1 showing a modification of the first embodiment. In the first hollow shaft 1A and the second hollow shaft 1B, intermediate diameter portions 20a and 20b are formed between the small diameter portions 11a and 11b and the large diameter portions 10a and 10b, respectively.

大径部10a、10bと中径部20a、20bとは、軸方向両端部に向かって縮径するテーパ面23a、23bを介して連続しており、中径部20a、20bと小径部11a、11bとは、大径部10a、10bから中径部20a、20bに向かって縮径するテーパ面21a、21bを介して連続している。   The large-diameter portions 10a and 10b and the medium-diameter portions 20a and 20b are continuous via tapered surfaces 23a and 23b that are reduced in diameter toward both ends in the axial direction, and the medium-diameter portions 20a and 20b and the small-diameter portion 11a 11b is continuous via taper surfaces 21a and 21b that reduce in diameter from the large diameter portions 10a and 10b toward the medium diameter portions 20a and 20b.

前記のような構成を有する中空状動力伝達シャフト1でも第1中空軸1Aの大径部10aの端面16aと、第2中空軸1Bの大径部10bの端面16bとの当接面(接合部15)を摩擦圧接により接合一体化する。   Even in the hollow power transmission shaft 1 having the above-described configuration, a contact surface (joint portion) between the end surface 16a of the large-diameter portion 10a of the first hollow shaft 1A and the end surface 16b of the large-diameter portion 10b of the second hollow shaft 1B. 15) are joined and integrated by friction welding.

この場合、大径部10a、10bの径は、第一実施形態の大径部10a、10bの径より大きい。このため、より強度を必要とするアプリケーションにおいて、焼入れできない接合部15の径を大きくしたり、最弱部(小径部11a、11b)の肉厚を増やす場合に適用することができる。なお、図4に示す中空状動力伝達シャフト1において、図2に示す中空状動力伝達シャフトと同様の構成については、図2と同一符号を付してその説明を省略する。   In this case, the diameters of the large diameter portions 10a and 10b are larger than the diameters of the large diameter portions 10a and 10b of the first embodiment. For this reason, in applications that require higher strength, the present invention can be applied to increasing the diameter of the joint portion 15 that cannot be quenched or increasing the thickness of the weakest portions (small diameter portions 11a and 11b). In the hollow power transmission shaft 1 shown in FIG. 4, the same components as those of the hollow power transmission shaft shown in FIG.

次に、図5は第2実施形態を示し、小径部11a、11bと、大径部10a、10bとを有する第1中空軸1A及び第2中空軸1Bを備え、第1中空軸1Aの大径部10aと第2中空軸1Bの大径部10bとの間に、全長にわたって中空の中間大径軸24を配設して、各大径部10a、10bの端面とこれに対面する中間大径軸24の各端面とを接合一体化したものである。   Next, FIG. 5 shows a second embodiment, which includes a first hollow shaft 1A and a second hollow shaft 1B having small diameter portions 11a and 11b and large diameter portions 10a and 10b. A hollow intermediate large-diameter shaft 24 is disposed over the entire length between the diameter portion 10a and the large-diameter portion 10b of the second hollow shaft 1B, so that the end surfaces of the large-diameter portions 10a and 10b and the intermediate large surface facing this end face. Each end face of the diameter shaft 24 is joined and integrated.

すなわち、第1中空軸1Aの大径部10aの端面16aを、中間大径軸24の一端面に当接させるとともに、第2中空軸1Bの大径部10bの端面16bを、中間大径軸24の他端面に当接させて、当接面(接合部25a、25b)をそれぞれ摩擦圧接する。   That is, the end surface 16a of the large-diameter portion 10a of the first hollow shaft 1A is brought into contact with one end surface of the intermediate large-diameter shaft 24, and the end surface 16b of the large-diameter portion 10b of the second hollow shaft 1B is brought into contact with the intermediate large-diameter shaft. The abutting surfaces (joining portions 25a and 25b) are friction-welded to the other end surface of 24, respectively.

このため、第2実施形態の中空状動力伝達シャフトでは、前記第1実施形態と同様の作用効果を奏する。特に、第1中空軸1Aの大径部10aと第2中空軸1Bの大径部10bとの間に中間大径軸24を配設しているので、中空状の動力伝達シャフト1を3つの中空軸で構成することになる。これにより、さらに長物の中空シャフトを構成することができ、シャフト全長にわたって内部を中空とすることができる。なお、図5に示す中空状動力伝達シャフトにおいて、図2に示す中空状動力伝達シャフトと同様の構成については、図2と同一符号を付してその説明を省略する。   For this reason, the hollow power transmission shaft of the second embodiment has the same operational effects as the first embodiment. In particular, since the intermediate large-diameter shaft 24 is disposed between the large-diameter portion 10a of the first hollow shaft 1A and the large-diameter portion 10b of the second hollow shaft 1B, three hollow power transmission shafts 1 are provided. It will consist of a hollow shaft. As a result, a longer hollow shaft can be formed, and the interior can be hollow over the entire length of the shaft. In the hollow power transmission shaft shown in FIG. 5, the same components as those of the hollow power transmission shaft shown in FIG.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、各軸の接合方法としては、摩擦接合以外の接合方法、例えばアーク溶接、ティグ溶接、ミグ溶接、マグ溶接、レーザ溶接、電子ビーム溶接、ガス溶接等であってもよい。また実施形態では、第1中空軸1Aと第2中空軸1Bの小径部11a、11bにのみ硬化層を形成したが、全体的に高周波焼入れを施してもよい。また、第1中空軸1Aと第2中空軸1Bとが同一同形状でなくてもよい。   As described above, the embodiments of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, as a joining method of each shaft, a joining method other than friction joining, For example, arc welding, TIG welding, MIG welding, MAG welding, laser welding, electron beam welding, gas welding, and the like may be used. In the embodiment, the hardened layer is formed only on the small diameter portions 11a and 11b of the first hollow shaft 1A and the second hollow shaft 1B. However, induction hardening may be performed as a whole. Further, the first hollow shaft 1A and the second hollow shaft 1B may not have the same shape.

自動車の動力伝達機構を示す側面図である。It is a side view which shows the power transmission mechanism of a motor vehicle. 本発明の第1の実施の形態を示す中空状動力伝達シャフトの一部断面図である。It is a partial cross section figure of the hollow-shaped power transmission shaft which shows the 1st Embodiment of this invention. 前記中空状動力伝達シャフトの第1中空軸と第2中空軸との接合前の状態を示す一部断面図である。It is a partial cross section figure which shows the state before joining of the 1st hollow shaft and 2nd hollow shaft of the said hollow-shaped power transmission shaft. 前記中空状動力伝達シャフトの変形例を示す一部断面図である。It is a partial sectional view showing a modification of the hollow power transmission shaft. 本発明の第2の実施の形態を示す中空状動力伝達シャフトの一部断面図である。It is a partial cross section figure of the hollow-shaped power transmission shaft which shows the 2nd Embodiment of this invention. 従来の自動車の動力伝達機構を示す側面図である。It is a side view which shows the power transmission mechanism of the conventional motor vehicle. 従来のシャフトの一部断面図である。It is a partial cross section figure of the conventional shaft. 従来の他のシャフトの一部断面図である。It is a fragmentary sectional view of the other conventional shaft. 従来のさらに他のシャフトの一部断面図である。It is a partial cross section figure of other conventional shafts.

符号の説明Explanation of symbols

1 シャフト
1A 第1中空軸
2A 第2中空軸
10a、10b 大径部
11a、11b 小径部
16 大径部端面
24 中間大径軸
DESCRIPTION OF SYMBOLS 1 Shaft 1A 1st hollow shaft 2A 2nd hollow shaft 10a, 10b Large diameter part 11a, 11b Small diameter part 16 Large diameter part end surface 24 Middle large diameter axis

Claims (6)

小径部と大径部とを有する第1中空軸及び第2中空軸を備え、
前記第1中空軸と前記第2中空軸とをそれぞれ全長にわたって中空として、第1中空軸の大径部の端面と第2中空軸の大径部の端面とを接合一体化し、軸方向中間部に前記大径部を配設するとともに軸方向端部に前記小径部を配設したことを特徴とする中空状動力伝達シャフト。
Comprising a first hollow shaft and a second hollow shaft having a small diameter portion and a large diameter portion;
The first hollow shaft and the second hollow shaft are each made hollow over their entire length, and the end surface of the large diameter portion of the first hollow shaft and the end surface of the large diameter portion of the second hollow shaft are joined and integrated, and an axially intermediate portion The hollow power transmission shaft is characterized in that the large-diameter portion is disposed at the end and the small-diameter portion is disposed at the end in the axial direction.
小径部と大径部とを有する第1中空軸及び第2中空軸を備え、
前記第1中空軸と前記第2中空軸とをそれぞれ全長にわたって中空として、第1中空軸の大径部と第2中空部の大径部との間に全長にわたって中空の中間大径軸を配設して、各大径部の端面とこれに対面する中間大径軸の各端面とを接合一体化し、軸方向中間部に前記中間大径軸を配設するとともに軸方向端部に前記小径部を配設したことを特徴とする中空状動力伝達シャフト。
Comprising a first hollow shaft and a second hollow shaft having a small diameter portion and a large diameter portion;
The first hollow shaft and the second hollow shaft are hollow over the entire length, and a hollow intermediate large-diameter shaft is disposed over the entire length between the large diameter portion of the first hollow shaft and the large diameter portion of the second hollow portion. The end face of each large diameter portion and each end face of the intermediate large diameter shaft facing this are joined and integrated, and the intermediate large diameter shaft is disposed at the axial intermediate portion and the small diameter is disposed at the axial end portion. A hollow power transmission shaft characterized in that a portion is disposed.
前記各端面間の接合を摩擦圧接としたことを特徴とする請求項1又は請求項2の中空状動力伝達シャフト。   The hollow power transmission shaft according to claim 1 or 2, wherein the joining between the end faces is friction welding. 前記各軸を塑性加工にて成形したことを特徴とする請求項1〜請求項3のいずれかの中空状動力伝達シャフト。   The hollow power transmission shaft according to any one of claims 1 to 3, wherein each of the shafts is formed by plastic working. 前記第1中空軸と第2中空軸とを同一寸法形状としたことを特徴とする請求項1〜請求項4のいずれかの中空状動力伝達シャフト。   The hollow power transmission shaft according to any one of claims 1 to 4, wherein the first hollow shaft and the second hollow shaft have the same size and shape. 前記第1中空軸及び前記第2中空軸の小径部に高周波焼入れを施して表面硬化層を形成したことを特徴とする請求項1〜請求項5のいずれかの中空状動力伝達シャフト。   The hollow power transmission shaft according to any one of claims 1 to 5, wherein a hardened surface layer is formed by subjecting the small diameter portions of the first hollow shaft and the second hollow shaft to induction hardening.
JP2006144297A 2006-05-24 2006-05-24 Hollow power transmission shaft Withdrawn JP2007315463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006144297A JP2007315463A (en) 2006-05-24 2006-05-24 Hollow power transmission shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006144297A JP2007315463A (en) 2006-05-24 2006-05-24 Hollow power transmission shaft

Publications (1)

Publication Number Publication Date
JP2007315463A true JP2007315463A (en) 2007-12-06

Family

ID=38849514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144297A Withdrawn JP2007315463A (en) 2006-05-24 2006-05-24 Hollow power transmission shaft

Country Status (1)

Country Link
JP (1) JP2007315463A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106640932A (en) * 2016-12-21 2017-05-10 中国燃气涡轮研究院 Welded hollow variable-diameter central transmission rod
WO2018135205A1 (en) * 2017-01-18 2018-07-26 Ntn株式会社 Hollow power transmission shaft
WO2022059385A1 (en) * 2020-09-17 2022-03-24 日立Astemo株式会社 Stub shaft, power transmission shaft, and method for manufacturing stub shaft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106640932A (en) * 2016-12-21 2017-05-10 中国燃气涡轮研究院 Welded hollow variable-diameter central transmission rod
WO2018135205A1 (en) * 2017-01-18 2018-07-26 Ntn株式会社 Hollow power transmission shaft
WO2022059385A1 (en) * 2020-09-17 2022-03-24 日立Astemo株式会社 Stub shaft, power transmission shaft, and method for manufacturing stub shaft

Similar Documents

Publication Publication Date Title
US20080023527A1 (en) Method of permanently joining components formed from metallic materials
US6855061B2 (en) Vehicular driveshaft assembly
US6367680B1 (en) Component for vehicular driveshaft assembly and method of manufacturing same
US8202628B2 (en) Fusion-bonded product having high-strength part and manufacturing method thereof
US4621760A (en) Method of producing a friction welded article
CN107690367B (en) The method for being used to form driving-shaft assembly
CN108603580B (en) Differential assembly with two-piece carrier and welded ring gear
JP2007315463A (en) Hollow power transmission shaft
US20050028341A1 (en) Method of manufacturing a combined driveshaft tube and yoke assembly
JP5410163B2 (en) Drive shaft and drive shaft assembly method
CN107614910B (en) Outer joint member of constant velocity universal joint
JP5335647B2 (en) Power transmission member
JP2007292171A (en) Manufacturing method for outside joint member of constant velocity universal joint
JP2008272818A (en) Friction welding structure and axle-housing
JP5501655B2 (en) Constant velocity universal joint
JP6111296B2 (en) Transmission with dissimilar metal joint shaft
KR101668192B1 (en) One-way keulleochiyong, inner race manufacture method of the assei
EP2326456B1 (en) Method of manufacturing by laser welding a vehicle axle
JP2010188924A (en) Axle case
JP2007138192A (en) Method for joining parts
CN106460945A (en) Manufacturing method for constant velocity universal joint outer joint member and outer joint member
JP7254566B2 (en) Joint member manufacturing method and joint member used for constant velocity joint
JP2014161881A (en) Joining structure of two members, joining method of two members and inter-yoke joining structure foe constituting shaft part and joint part of steering shaft of automobile using the same
JP2006064060A (en) Constant velocity universal joint
JP2006250332A (en) Hollow power transmission shaft

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804