JP2007314816A - Thick-sized high strength stainless steel wire and wire rod having excellent ductility and method for producing the steel wire - Google Patents

Thick-sized high strength stainless steel wire and wire rod having excellent ductility and method for producing the steel wire Download PDF

Info

Publication number
JP2007314816A
JP2007314816A JP2006142660A JP2006142660A JP2007314816A JP 2007314816 A JP2007314816 A JP 2007314816A JP 2006142660 A JP2006142660 A JP 2006142660A JP 2006142660 A JP2006142660 A JP 2006142660A JP 2007314816 A JP2007314816 A JP 2007314816A
Authority
JP
Japan
Prior art keywords
steel wire
strength
stainless steel
wire
strength stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006142660A
Other languages
Japanese (ja)
Other versions
JP4772588B2 (en
Inventor
Koji Takano
光司 高野
Shinji Tsuge
信二 柘植
Yuji Mori
祐司 森
Masayuki Tento
雅之 天藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2006142660A priority Critical patent/JP4772588B2/en
Publication of JP2007314816A publication Critical patent/JP2007314816A/en
Application granted granted Critical
Publication of JP4772588B2 publication Critical patent/JP4772588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide thick-sized high strength stainless steel wire and wire rod having excellent ductility for inexpensively producing a product such as a thick-sized spring having excellent lightness and durability. <P>SOLUTION: The high strength stainless steel wire comprises, by mass, 0.01 to 0.13% C, 0.3 to 4.0% Si, 0.3 to 8.0% Mn, 1.0 to 6.0% Ni, 14.0 to 18.0% Cr and 0.05 to 0.20% N, has Md value of 50 to 120, has a tensile strength of >1,600 N/mm<SP>2</SP>, and has a wire diameter of ϕ4.5 to 15 mm: the Md value=551-462(C+N)-9.2Si-8.1Mn-29(Ni+Cu+Co)-13.7Cr-18.5Mo. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、太径ステンレス鋼線の高強度化に関するものであり、例えば、軽伸線加工により製造される安価な太径の高強度鋼線製品に関するものである。   The present invention relates to increasing the strength of a large-diameter stainless steel wire, for example, an inexpensive large-diameter high-strength steel wire product manufactured by light drawing.

これまで高強度ステンレス鋼線は、オーステナイト系,準安定オーステナイト系ステンレス鋼線や2相系ステンレス鋼線を強伸線加工して得られていた(例えば、特許文献1〜4)。しかしながら、経済性から高強度ステンレス鋼線は、連続伸線機が使用できるφ4.5mm以下の細径サイズに限られていた。一方、太径ステンレス鋼線で高強度化するには、強伸線加工が必要であり不経済となるばかりか、伸線縦割れが発生し、また、延性が劣化するため、太径ステンレス鋼線では1600N/mm2以下の低強度材に限定されていた。 Hitherto, high-strength stainless steel wires have been obtained by strongly drawing austenitic, metastable austenitic stainless steel wires or duplex stainless steel wires (for example, Patent Documents 1 to 4). However, high-strength stainless steel wires are limited to small diameters of φ4.5 mm or less that can be used by a continuous wire drawing machine because of economy. On the other hand, in order to increase the strength with a large diameter stainless steel wire, not only is the wire drawing work necessary and uneconomical, but also wire drawing vertical cracks occur, and the ductility deteriorates. The wire was limited to a low strength material of 1600 N / mm 2 or less.

一方、太径の高強度鋼線は、炭素鋼のオイルテンパー線が使用されていた。しかしながら、最近、軽量化・高耐久性の観点から太径ステンレス鋼線にも高強度化が求められるようになってきた。   On the other hand, carbon steel oil tempered wires have been used for large diameter high strength steel wires. However, recently, high-strength stainless steel wires have been required to have high strength from the viewpoint of weight reduction and high durability.

このように、これまで太径(線径≧4.5mm)のステンレス鋼線において、延性に優れて、引張強さを1600N/mm2を超える高強度鋼線は提案されていない。とりわけ、延性については、ばね成形性等を考慮すると引張試験での破断絞り30%以上が必要である。 Thus, a high-strength steel wire having excellent ductility and a tensile strength exceeding 1600 N / mm 2 has not been proposed so far in a stainless steel wire having a large diameter (wire diameter ≧ 4.5 mm). In particular, with regard to ductility, considering the spring formability and the like, it is necessary to have a fracture drawing of 30% or more in a tensile test.

特開平10−121208号公報JP-A-10-121208 特開2005−298932号公報JP 2005-298932 A 特開昭61−266558号公報JP 61-266558 A 特開2003−34848号公報JP 2003-34848 A

本発明の目的は、耐久性に優れる太径の高強度製品を安価に得ることを主目的に、延性に優れた太径の高強度ステンレス鋼線を安価に提供することである。   An object of the present invention is to provide a large-diameter high-strength stainless steel wire excellent in ductility at a low cost, mainly for obtaining a large-diameter high-strength product excellent in durability at a low cost.

本発明者らは、上記課題を解決するために種々検討した結果、JISに規程される2相系ステンレス鋼よりも低Cr,低Ni化して溶体化処理ままで組織バランスをオーステナイト相とフェライト相に調整し、更に、軽伸線加工(伸線減面率;20〜50%)により加工誘起マルテンサイトを生成させ、また、更には時効処理を施すことで、線径がφ4.5mm〜φ20mmの太径鋼線にて、縦割れが発生することなく、1600N/mm2を超える引張強さが安価に得られることを見出した。本発明は、上記知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
(1)質量%で、C:0.01〜0.13%,Si:0.3〜4.0%,Mn:0.3〜8.0%,Ni:1.0〜6.0%,Cr:14.0〜18.0%,N:0.05〜0.20%を含有し、残部がFeおよび実質的に不可避的不純物で構成され、(A)式で示されるMd値が50〜120,引張強さが1600N/mm2を超え、線径がφ4.5mm〜φ15mmであることを特徴とする太径の高強度ステンレス鋼線である。
Md値=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu+Co)−13.7Cr−18.5Mo −−(A)
式中の元素名はその元素の含有量(質量%)を表す。
(2)さらに、質量%で、Co:0.2〜3.0%を含有することを特徴とする前記(1)記載の太径の高強度ステンレス鋼線である。
(3)さらに、質量%で、Mo:0.2〜3.0%,Cu:0.2〜3.0%の1種以上を含有することを特徴とする前記(1),(2)記載の太径の高強度ステンレス鋼線である。
(4)さらに、質量%で、Al:0.01〜1.0%,Nb:0.05〜1.0%,V:0.05〜1.0%,Ti:0.05〜1.0%,W:0.05〜1.0%,Ta:0.05〜1.0%,Zr:0.05〜1.0%の1種類以上を含有することを特徴とする前記(1)〜(3)記載の太径の高強度ステンレス鋼線である。
(5)さらに、B:0.0005〜0.015%を含有することを特徴とする前記(1)〜(4)記載の太径の高強度ステンレス鋼線である。
(6)さらに、Ca:0.0005〜0.01%,Mg:0.0005〜0.01%,REM:0.0005〜0.05%の1種以上を含有することを特徴とする前記(1)〜(5)記載の太径の高強度ステンレス鋼線である。
(7)金属組織が、フェライト相,オーステナイト相,加工誘起マルテンサイト相からなり、フェライト相の体積率が20〜70%であることを特徴とする前記(1)〜(6)記載の太径の高強度ステンレス鋼線である。
(8)引張強さが800N/mm2以上,破断絞りが50%以上であることを特徴とする前記(1)〜(7)記載の高強度鋼線用のステンレス鋼線材である。
(9)減面率が20〜50%で伸線加工されて製造されることを特徴とする前記(1)〜(7)記載の太径の高強度ステンレス鋼線の製造方法である。
As a result of various studies to solve the above-mentioned problems, the present inventors have found that the structural balance of the austenite phase and the ferrite phase is reduced as a solution treatment with a lower Cr and lower Ni than the two-phase stainless steel regulated by JIS. The wire diameter is φ4.5 mm to φ20 mm by further forming a processing-induced martensite by light drawing (drawing area reduction ratio: 20 to 50%) and further applying an aging treatment. It was found that a tensile strength exceeding 1600 N / mm 2 can be obtained at a low cost without causing vertical cracks in the large-diameter steel wire. This invention is made | formed based on the said knowledge, The place made into the summary is as follows.
(1) By mass%, C: 0.01 to 0.13%, Si: 0.3 to 4.0%, Mn: 0.3 to 8.0%, Ni: 1.0 to 6.0% , Cr: 14.0 to 18.0%, N: 0.05 to 0.20%, the balance being composed of Fe and substantially inevitable impurities, and the Md value represented by the formula (A) is A high-strength stainless steel wire having a large diameter of 50 to 120, a tensile strength exceeding 1600 N / mm 2 and a wire diameter of φ4.5 mm to φ15 mm.
Md value = 551-462 (C + N) -9.2Si-8.1Mn-29 (Ni + Cu + Co) -13.7Cr-18.5Mo-(A)
The element name in the formula represents the content (mass%) of the element.
(2) The high-strength high-strength stainless steel wire according to (1), further containing Co: 0.2 to 3.0% by mass.
(3) The above (1), (2), further comprising at least one of Mo: 0.2-3.0% and Cu: 0.2-3.0% by mass% The large-diameter high-strength stainless steel wire described.
(4) Further, in terms of mass%, Al: 0.01 to 1.0%, Nb: 0.05 to 1.0%, V: 0.05 to 1.0%, Ti: 0.05 to 1. 1% or more of 0%, W: 0.05-1.0%, Ta: 0.05-1.0%, Zr: 0.05-1.0% ) To (3) are large diameter high strength stainless steel wires.
(5) The thick high-strength stainless steel wire according to (1) to (4) above, further containing B: 0.0005 to 0.015%.
(6) The above-mentioned, further comprising at least one of Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.01%, REM: 0.0005 to 0.05% It is a large-diameter high-strength stainless steel wire described in (1) to (5).
(7) The large diameter according to (1) to (6), wherein the metal structure is composed of a ferrite phase, an austenite phase, and a work-induced martensite phase, and the volume fraction of the ferrite phase is 20 to 70%. High strength stainless steel wire.
(8) The stainless steel wire for high-strength steel wires according to the above (1) to (7), wherein the tensile strength is 800 N / mm 2 or more and the fracture drawing is 50% or more.
(9) The method for producing a large-diameter high-strength stainless steel wire according to (1) to (7), wherein the reduction in area is 20 to 50% and the wire is drawn.

本発明による延性に優れる高強度ステンレス鋼線は、冷間でのばね成形性等を劣化させることなく高強度の太径製品(例えば、ばね製品等)を製造することができ、太径ステンレス鋼線加工品の軽量化に効果を発揮する。   The high-strength stainless steel wire excellent in ductility according to the present invention can produce a high-strength large-diameter product (for example, a spring product) without deteriorating cold spring formability and the like. Effective in reducing the weight of wire products.

以下に、先ず、本発明の請求項1記載の限定理由について説明する。   Below, the reason for limitation of Claim 1 of this invention is demonstrated first.

Cは、軽伸線加工後の鋼線の高引張強さを確保するために、0.01%以上を添加する。しかしながら、0.13%を超えて添加すると、粒界に炭化物が析出して、線材および鋼線での延性が低下するばかりか低応力破壊が発生する。そのため、上限を0.13%に限定する。好ましい範囲は、0.03〜0.10%である。   C is added in an amount of 0.01% or more in order to ensure high tensile strength of the steel wire after light wire drawing. However, if added over 0.13%, carbide precipitates at the grain boundaries, resulting in low ductility as well as low ductility in the wire and steel wire. Therefore, the upper limit is limited to 0.13%. A preferable range is 0.03 to 0.10%.

Nは、軽伸線加工後、更にはその後の時効硬化後の高引張強さを確保するために0.05%以上を添加する。しかしながら、0.20%を超えて添加すると鋳造時に気泡が発生し、製造性が著しく劣化する。そのため、上限を0.20%に限定する。好ましい範囲は、0.06〜0.15%である。
Siは、脱酸のため、また、時効硬化のために、0.3%以上を添加する。しかしながら、4.0%を超えて添加すると材質が脆化するため、上限を4.0%に限定する。好ましい範囲は、0.8〜3.5%である。
N is added in an amount of 0.05% or more in order to ensure high tensile strength after light wire drawing and further after age hardening. However, if added over 0.20%, bubbles are generated during casting, and the productivity is significantly deteriorated. Therefore, the upper limit is limited to 0.20%. A preferable range is 0.06 to 0.15%.
Si is added in an amount of 0.3% or more for deoxidation and for age hardening. However, if added over 4.0%, the material becomes brittle, so the upper limit is limited to 4.0%. A preferable range is 0.8 to 3.5%.

Mnは、脱酸のため、または、組織調整のために0.3%以上を添加する。しかしながら、8.0%を超えて添加するとオーステナイト相の安定度が増し、軽伸線加工では高強度化しなくなる。そのため、上限を8.0%に限定する。好ましい範囲は、0.5〜3.0%である。   Mn is added in an amount of 0.3% or more for deoxidation or for structure adjustment. However, if added over 8.0%, the stability of the austenite phase increases, and the strength is not increased by light wire drawing. Therefore, the upper limit is limited to 8.0%. A preferable range is 0.5 to 3.0%.

Niは、組織調整と延性を改善する重要な元素であるため、1.0%以上を添加する。しかしながら、6.0%を超えて添加するとオーステナイト相の安定度が増し、軽伸線加工では高強度化しなくなる。そのため、上限を6.0%に限定する。好ましい範囲は、2.0〜5.0%である。   Since Ni is an important element for improving the structure adjustment and ductility, 1.0% or more is added. However, if added over 6.0%, the stability of the austenite phase increases, and the strength is not increased by light wire drawing. Therefore, the upper limit is limited to 6.0%. A preferable range is 2.0 to 5.0%.

Crは、組織調整し、耐食性を確保するために14.0%以上添加する。しかしながら、18.0%を超えて添加するとオーステナイト相の安定度が増し、軽伸線加工では高強度化しなくなる。そのため、上限を18.0%に限定する。好ましい範囲は、15.0〜17.5%である。   Cr is added in an amount of 14.0% or more in order to adjust the structure and ensure corrosion resistance. However, if added over 18.0%, the stability of the austenite phase is increased, and the strength is not increased by light wire drawing. Therefore, the upper limit is limited to 18.0%. A preferable range is 15.0 to 17.5%.

前記(A)式で表されるMd値は、オーステナイト安定度の指標として知られている式に、さらにCoの項目を付加した式である。Coの影響度はNi、Cuと同等であるとした。本発明においてMd値は、軽伸線後の加工誘起マルテンサイト量と強い相関がある指標であり、高強度と延性を確保するためにMd値を制御する必要がある。Md値が50未満の場合、オーステナイト相の安定度が増し、軽伸線加工では高強度化しなくなる。一方、Md値が120を超えると、軽伸線加工前の溶体化処理ままでマルテンサイト相が生成するため、軽伸線加工後の延性が低下する。そのため、Md値を50〜120に限定する。好ましい範囲は、70〜100である。   The Md value represented by the formula (A) is a formula obtained by adding an item of Co to a formula known as an austenite stability index. The influence of Co is assumed to be equivalent to Ni and Cu. In the present invention, the Md value is an index having a strong correlation with the amount of work-induced martensite after light drawing, and it is necessary to control the Md value in order to ensure high strength and ductility. When the Md value is less than 50, the stability of the austenite phase is increased, and the strength is not increased by light wire drawing. On the other hand, when the Md value exceeds 120, the martensite phase is generated as it is in the solution treatment before the light wire drawing, so that the ductility after the light wire drawing is lowered. Therefore, the Md value is limited to 50 to 120. A preferred range is 70-100.

引張強さは、1600N/mm2以下では既存の太径ステンレス鋼線との優位性がなくなる。そのため、本発明では鋼線の引張強さを1600N/mm2超に限定する。 If the tensile strength is 1600 N / mm 2 or less, the superiority with the existing large diameter stainless steel wire is lost. Therefore, in the present invention, the tensile strength of the steel wire is limited to more than 1600 N / mm 2 .

鋼線の線径がφ4.5mm未満の場合、従来の伸線加工による高強度ステンレス鋼線で対応できるため、本発明の効果が不明瞭になる。一方、線径がφ4.5mm以上に太い場合、従来の伸線加工材では強伸線加工が必要であり、不経済になるばかりか伸線縦割れが発生する。そのため、φ4.5mm以上に限定する。しかしながら、φ15mmを超えると伸線加工時の応力が大きくなり伸線縦割れが生成しやすくなる。そのため、φ15mm以下に限定する。好ましい範囲は、φ5〜φ12mmである。   If the wire diameter of the steel wire is less than φ4.5 mm, the effect of the present invention becomes unclear because it can be handled by a conventional high-strength stainless steel wire by wire drawing. On the other hand, when the wire diameter is thicker than φ4.5 mm, the conventional wire drawing material requires strong wire drawing, which is not economical and causes wire drawing vertical cracks. Therefore, it is limited to φ4.5 mm or more. However, if it exceeds φ15 mm, the stress at the time of wire drawing increases and wire drawing vertical cracks are likely to be generated. Therefore, it is limited to φ15 mm or less. A preferable range is φ5 to φ12 mm.

次に、本発明の請求項2記載の限定理由について説明する。   Next, the reason for limitation according to claim 2 of the present invention will be described.

Coは、マトリックスの靱性を向上させ、延性が向上するため、必要に応じて0.2%以上を添加する。しかしながら、3.0%を超えて添加すると、オーステナイト相の安定度が増し、軽伸線加工では高強度化しなくなるばかりか、経済的でない。そのため、上限を3.0%に限定する。好ましい範囲は、0.5〜2.0%である。   Co improves the toughness of the matrix and improves the ductility, so 0.2% or more is added as necessary. However, if added over 3.0%, the stability of the austenite phase increases, and not only does the strength not increase in light drawing, but it is not economical. Therefore, the upper limit is limited to 3.0%. A preferable range is 0.5 to 2.0%.

次に、本発明の請求項3記載の限定理由について説明する。   Next, the reason for limitation according to claim 3 of the present invention will be described.

Moは、素材の耐食性を向上させるため、必要に応じて、0.2%以上を添加する。しかしながら、3.0%を超えて添加すると、オーステナイト相の安定度が増し、軽伸線加工では高強度化しなくなる。そのため、上限を3.0%に限定する。好ましい範囲は、0.5〜2.5%である。   In order to improve the corrosion resistance of the material, Mo is added in an amount of 0.2% or more as necessary. However, if added over 3.0%, the stability of the austenite phase increases, and the strength is not increased by light wire drawing. Therefore, the upper limit is limited to 3.0%. A preferable range is 0.5 to 2.5%.

Cuは、素材の耐食性を向上させるため、必要に応じて、0.2%以上を添加する。しかしながら、3.0%を超えて添加してもその効果は飽和するし、逆にオーステナイト相の加工硬化量が低減し、軽伸線加工では高強度化しなくなる。そのため、上限を3.0%に限定する。   In order to improve the corrosion resistance of the material, Cu is added in an amount of 0.2% or more as necessary. However, even if added over 3.0%, the effect is saturated, and conversely, the work hardening amount of the austenite phase is reduced, and the strength is not increased by light wire drawing. Therefore, the upper limit is limited to 3.0%.

次に、本発明の請求項4記載の限定理由について説明する。   Next, the reason for limitation according to claim 4 of the present invention will be described.

Alは、脱酸のため、また、窒化物を形成して結晶粒径を微細にして強度・延性バランスを改善するため、必要に応じて、0.01%以上を添加する。しかしながら、1.0%を超えて添加すると、粗大介在物が生成し、強度・延性バランスが低下する。そのため、上限を1.0%に限定する。好ましい範囲は、0.015〜0.5%である。   Al is added in an amount of 0.01% or more, if necessary, for deoxidation or to form a nitride to reduce the crystal grain size and improve the strength / ductility balance. However, if added over 1.0%, coarse inclusions are generated, and the strength / ductility balance is lowered. Therefore, the upper limit is limited to 1.0%. A preferred range is 0.015 to 0.5%.

Nb,V,Ti,W,Ta,Zrは、炭窒化物を形成して結晶粒径を微細にして強度・延性バランスを改善するため、必要に応じて、Nb:0.05〜1.0%,V:0.05〜1.0%,Ti:0.05〜1.0%,W:0.05〜1.0%,Ta:0.05〜1.0%,Zr:0.05〜1.0%を添加する。しかしながら、上限を超えて添加すると粗大介在物が生成し、強度・延性バランスが低下する。   Nb, V, Ti, W, Ta, and Zr form carbonitrides to reduce the crystal grain size and improve the strength / ductility balance. Therefore, Nb: 0.05 to 1.0 as necessary. %, V: 0.05 to 1.0%, Ti: 0.05 to 1.0%, W: 0.05 to 1.0%, Ta: 0.05 to 1.0%, Zr: 0. Add 05-1.0%. However, if added over the upper limit, coarse inclusions are formed, and the strength / ductility balance is lowered.

次に、本発明の請求項5記載の限定理由について説明する。   Next, the reason for limitation according to claim 5 of the present invention will be described.

Bは、熱間製造性および靱性を向上させるため、必要に応じて、0.0005%以上を添加する。しかしながら、0.015%を超えて添加するとボライドが生成するため、逆に靱性が低下して、延性が低下する。そのため、上限を0.015%にする。好ましい範囲は、0.001〜0.01%である。   In order to improve hot manufacturability and toughness, B is added in an amount of 0.0005% or more as necessary. However, if added over 0.015%, boride is generated, so that the toughness is lowered and the ductility is lowered. Therefore, the upper limit is made 0.015%. A preferred range is 0.001 to 0.01%.

次に、本発明の請求項6記載の限定理由について説明する。   Next, the reason for limitation according to claim 6 of the present invention will be described.

Ca,Mg,REMは、脱酸のため、必要に応じて、Ca:0.0005〜0.01%,Mg:0.0005〜0.01%,REM:0.0005〜0.05%の1種以上を添加する。しかしながら、各上限を超えて添加すると粗大介在物が生成して延性が低下する。   Ca, Mg, and REM are for deoxidation, and if necessary, Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.01%, REM: 0.0005 to 0.05% Add one or more. However, when it exceeds each upper limit, a coarse inclusion will produce | generate and ductility will fall.

次に、本発明の請求項7記載の限定理由について説明する。   Next, the reason for limitation according to claim 7 of the present invention will be described.

金属組織は、前述したように、本発明鋼では溶体化処理ままでオーステナイト相とフェライト相の組織を有し、軽伸線加工により加工誘起マルテンサイト相が生成して3相混合組織となるが、フェライト相が体積分率で20%未満の場合、延性が劣化する。一方で、フェライト相が体積分率で70%を超えると軽伸線加工では高強度が得られなくなる。そのため、フェライト相の体積分率を20〜70%に限定する。好ましくは、30〜60%である。   As described above, the steel of the present invention has a structure of an austenite phase and a ferrite phase as it is in a solution treatment, and a work-induced martensite phase is generated by light wire drawing to form a three-phase mixed structure. When the ferrite phase is less than 20% in volume fraction, ductility deteriorates. On the other hand, if the ferrite phase exceeds 70% in volume fraction, high strength cannot be obtained by light drawing. Therefore, the volume fraction of the ferrite phase is limited to 20 to 70%. Preferably, it is 30 to 60%.

次に、本発明の請求項8記載の限定理由について説明する。   Next, the reason for limitation according to claim 8 of the present invention will be described.

請求項1〜6の鋼線は、引張強さが1600N/mm2超の強度を有するが、軽伸線加工により鋼線に製造するためには、素材である線材の引張強さが800N/mm2以上にし、破断絞りが50%以上の高延性を有することが好ましい。そのため、必要に応じて、素材である線材の引張強さを800/mm2以上,破断絞りを50%以上に限定する。 The steel wires of claims 1 to 6 have a tensile strength of more than 1600 N / mm 2, but in order to produce a steel wire by light wire drawing, the tensile strength of the wire material is 800 N / mm. It is preferable that the thickness is not less than 2 mm and the fracture drawing has a high ductility of 50% or more. Therefore, if necessary, the tensile strength of the wire material is limited to 800 / mm 2 or more and the fracture drawing is limited to 50% or more.

次に、本発明の請求項9記載の限定理由について説明する。   Next, the reason for limitation according to claim 9 of the present invention will be described.

鋼線の伸線加工時の伸線減面率は、1600N/mm2超の強度を得るために20%以上が必要であるが、50%を超えると低応力破壊が発生する。そのため、上限を50%にする。 In order to obtain a strength of more than 1600 N / mm 2 , the drawing area reduction rate during drawing of the steel wire needs to be 20% or more, but if it exceeds 50%, low stress fracture occurs. Therefore, the upper limit is made 50%.

請求項1に規定した鋼成分を含有する線材について、上記請求項9に規定する項目以外については通常の軽伸線加工を行ってφ4.5mm〜φ15mmのステンレス鋼線とすることにより、鋼線の引張強さ1600N/mm2超、鋼線の引張破断絞り30%以上の材質を実現することができる。また、請求項7に規定する金属組織を得ることができる。 About the wire containing the steel component specified in claim 1, except for the items specified in claim 9, the steel wire is formed by performing a normal light wire drawing to obtain a stainless steel wire of φ4.5 mm to φ15 mm. A material having a tensile strength of more than 1600 N / mm 2 and a tensile breakage of steel wire of 30% or more can be realized. Moreover, the metal structure prescribed | regulated to Claim 7 can be obtained.

以下に本発明の実施例について説明する。   Examples of the present invention will be described below.

表1、2に実施例の鋼の化学組成を示す。   Tables 1 and 2 show the chemical compositions of the steels of the examples.

Figure 2007314816
Figure 2007314816

Figure 2007314816
Figure 2007314816

これらの化学組成の鋼は、100kgの真空溶解炉にて溶解し、φ180mmの鋳片に鋳造し、その鋳片をφ20〜5mmまで熱間の線材圧延を行い、1000℃で熱間圧延を終了した。その後、1050℃で30分,水冷の溶体化処理を施し、酸洗を行い線材製品とした。その後、φ16〜3.5mmまで冷間で軽伸線加工(伸線減面率≦50%)を施し、引き続き450℃で30分の時効処理を行い、高強度のステンレス鋼線とした。   Steel of these chemical compositions is melted in a 100 kg vacuum melting furnace, cast into a slab of φ180 mm, the slab is hot-wire rolled to φ20-5 mm, and hot rolling is finished at 1000 ° C. did. Thereafter, a solution cooling treatment with water cooling was performed at 1050 ° C. for 30 minutes, and pickling was performed to obtain a wire product. Then, light wire drawing (drawing area reduction ratio ≦ 50%) was applied to φ16 to 3.5 mm in a cold state, followed by aging treatment at 450 ° C. for 30 minutes to obtain a high-strength stainless steel wire.

そして、線材および鋼線の機械的性質および金属組織を評価した。その評価結果を表3、4に示す。   And the mechanical property and metal structure of a wire and a steel wire were evaluated. The evaluation results are shown in Tables 3 and 4.

Figure 2007314816
Figure 2007314816

Figure 2007314816
Figure 2007314816

機械的性質は、JIS Z 2241の引張試験での引張強さと破断絞りにて評価した。本発明例の線材では、全て1200N/mm2以下であり、本発明例の鋼線では、全て1600N/mm2超,破断絞りが30%以上であり、強度と延性に優れていた。 The mechanical properties were evaluated by the tensile strength and breaking drawing in the tensile test of JIS Z 2241. All of the wires of the examples of the present invention were 1200 N / mm 2 or less, and all of the steel wires of the examples of the present invention were over 1600 N / mm 2 and the fracture drawing was 30% or more, and the strength and ductility were excellent.

金属組織は、鋼線を縦断面中心面に埋め込み・鏡面研磨し、JIS G 0571 に従い、蓚酸電解エッチを行い、金属組織を判定した。そして、中心部付近のフェライト相について画像解析を行い、フェライト相の分率(Vol.%)を算出した。本発明の金属組織は、フェライト相,オーステナイト相,加工誘起マルテンサイト相の混合組織であり、フェライト分率は20〜65Vol.%の範囲内にあった。   For the metal structure, a steel wire was embedded in the center plane of the longitudinal section and mirror-polished, and oxalic acid electrolytic etching was performed according to JIS G 0571 to determine the metal structure. Then, image analysis was performed on the ferrite phase near the center, and the fraction (Vol.%) Of the ferrite phase was calculated. The metal structure of the present invention is a mixed structure of a ferrite phase, an austenite phase, and a work-induced martensite phase, and the ferrite fraction is 20 to 65 Vol. %.

一方、比較例No.25,27は、それぞれ、C,N量が低く、線材および鋼線の引張強さが低い。   On the other hand, Comparative Example No. 25 and 27 have low C and N contents, respectively, and the tensile strength of the wire and the steel wire is low.

比較例No.26は、C量が高く、線材の延性が低いばかりか、伸線後の延性が低く、低応力破壊が発生している。   Comparative Example No. No. 26 has a high C content and a low ductility of the wire, and also has a low ductility after the drawing, resulting in low stress fracture.

比較例No.28は、N量が高いため、鋳片で気泡が発生し、製品に製造できない。   Comparative Example No. In No. 28, since the N amount is high, bubbles are generated in the slab and cannot be manufactured into a product.

比較例No.29は、Si量が高いため、鋼線の延性が劣化し、低応力破壊が発生している。   Comparative Example No. Since No. 29 has a high Si content, the ductility of the steel wire is deteriorated and low stress fracture occurs.

比較例No.30は、Mn量が高いため、Md値が低く、オーステナイト相の安定度が増し、軽伸線加工で高強度化していない。   Comparative Example No. Since No. 30 has a high Mn content, the Md value is low, the stability of the austenite phase is increased, and the strength is not increased by light wire drawing.

比較例No.31は、Ni量が低いため、延性が劣化している。   Comparative Example No. No. 31 has a low amount of Ni, so the ductility is degraded.

比較例No.32は、Ni量が高いため、Md値が低く、オーステナイト相の安定度が増し、軽伸線加工で高強度化していない。   Comparative Example No. No. 32 has a high Ni content, so the Md value is low, the stability of the austenite phase is increased, and the strength is not increased by light wire drawing.

比較例No.33は、Cr量が低いため、Md値が高く、フェライト分率が低いため、延性に劣るばかりか、耐食性に劣る。   Comparative Example No. Since No. 33 has a low Cr content, the Md value is high and the ferrite fraction is low, so it is not only inferior in ductility but also inferior in corrosion resistance.

比較例No.34,35は、それぞれ、Cr,Mo量が高いため、Md値が低く、オーステナイト相の安定度が増し、また、フェライト分率が高いため、軽伸線加工で高強度化していない。   Comparative Example No. Since 34 and 35 have high Cr and Mo contents, respectively, the Md value is low, the stability of the austenite phase is increased, and since the ferrite fraction is high, the strength is not increased by light wire drawing.

比較例No.36,37は、それぞれCu,Co量が高いため、Md値が低く、オーステナイト相の安定度が増し、軽伸線加工で高強度化していない。   Comparative Example No. Since 36 and 37 have high amounts of Cu and Co, respectively, the Md value is low, the stability of the austenite phase is increased, and the strength is not increased by light wire drawing.

比較例No.38は、Al量が高すぎるため粗大介在物が生成し、強度・延性バランスが劣化している。   Comparative Example No. In No. 38, since the amount of Al is too high, coarse inclusions are generated, and the strength / ductility balance is deteriorated.

比較例No.39〜48は、それぞれ、Al,Nb,V,Ti,W,Ta,Zr,B,Ca,Mg,REMが高過ぎるため、強度延性バランスが劣化している。   Comparative Example No. In Nos. 39 to 48, Al, Nb, V, Ti, W, Ta, Zr, B, Ca, Mg, and REM are too high, and the strength ductility balance is deteriorated.

比較例No.49は、鋼線の線径が太過ぎるため、鋼線で伸線縦割れが発生している。   Comparative Example No. In No. 49, since the wire diameter of the steel wire is too large, a longitudinal crack is drawn in the steel wire.

比較例No.50は、鋼線の線径が細過ぎるため、従来の高強度鋼線と差別化ができず、本発明の効果が発揮できていない。   Comparative Example No. No. 50 cannot differentiate from the conventional high-strength steel wire because the wire diameter of the steel wire is too thin, and the effect of the present invention cannot be exhibited.

比較例No.51は、伸線加工の伸線減面率が小さいため高強度化していない。   Comparative Example No. No. 51 is not increased in strength because the drawing area reduction rate of drawing is small.

比較例No.52は、伸線加工の伸線減面率が大きいため延性が劣化し、低応力破壊が発生している。   Comparative Example No. No. 52 has a large wire-drawing area reduction rate, so that ductility is deteriorated and low-stress fracture occurs.

以上の各実施例から明らかなように、本発明により、延性に優れる太径の高強度ステンレス鋼線を安価に製造でき、冷間でのばね成形性を劣化させることなくばね等の製品加工が可能であり、軽量化・耐久性に優れる太径製品を安価に提供することができ、産業上極めて有用である。   As is clear from the above examples, according to the present invention, a large-diameter high-strength stainless steel wire excellent in ductility can be manufactured at low cost, and product processing such as springs can be performed without deteriorating cold spring formability. It is possible to provide a large-diameter product excellent in weight reduction and durability at low cost, and is extremely useful in industry.

Claims (9)

質量%で、C:0.01〜0.13%,Si:0.3〜4.0%,Mn:0.3〜8.0%,Ni:1.0〜6.0%,Cr:14.0〜18.0%,N:0.05〜0.20%を含有し、残部がFeおよび実質的に不可避的不純物で構成され、(A)式で示されるMd値が50〜120,引張強さが1600N/mm2を超え,線径がφ4.5mm〜φ15mmであることを特徴とする太径の高強度ステンレス鋼線。
Md値=551−462(C+N)−9.2Si−8.1Mn−29(Ni+Cu+Co)−13.7Cr−18.5Mo −−(A)
式中の元素名はその元素の含有量(質量%)を表す。
In mass%, C: 0.01 to 0.13%, Si: 0.3 to 4.0%, Mn: 0.3 to 8.0%, Ni: 1.0 to 6.0%, Cr: 14.0 to 18.0%, N: 0.05 to 0.20%, the balance is substantially composed of Fe and inevitable impurities, and the Md value represented by the formula (A) is 50 to 120 A high-strength stainless steel wire with a large diameter, characterized by a tensile strength exceeding 1600 N / mm 2 and a wire diameter of φ4.5 mm to φ15 mm.
Md value = 551-462 (C + N) -9.2Si-8.1Mn-29 (Ni + Cu + Co) -13.7Cr-18.5Mo-(A)
The element name in the formula represents the content (mass%) of the element.
さらに、質量%で、Co:0.2〜3.0%を含有することを特徴とする請求項1記載の太径の高強度ステンレス鋼線。   The thick high-strength stainless steel wire according to claim 1, further comprising Co: 0.2 to 3.0% by mass. さらに、質量%で、Mo:0.2〜3.0%,Cu:0.2〜3.0%の1種以上を含有することを特徴とする請求項1又は2記載の太径の高強度ステンレス鋼線。   Furthermore, it contains 1 or more types of Mo: 0.2-3.0%, Cu: 0.2-3.0% by the mass%, The large diameter high diameter of Claim 1 or 2 characterized by the above-mentioned. Strength stainless steel wire. さらに、質量%で、Al:0.01〜1.0%,Nb:0.05〜1.0%,V:0.05〜1.0%,Ti:0.05〜1.0%,W:0.05〜1.0%,Ta:0.05〜1.0%,Zr:0.05〜1.0%の1種類以上を含有することを特徴とする請求項1〜3のいずれかに記載の太径の高強度ステンレス鋼線。   Further, in terms of mass%, Al: 0.01 to 1.0%, Nb: 0.05 to 1.0%, V: 0.05 to 1.0%, Ti: 0.05 to 1.0%, One or more of W: 0.05-1.0%, Ta: 0.05-1.0%, Zr: 0.05-1.0% is contained, The 1-3 of Claim 1-3 characterized by the above-mentioned A large-diameter high-strength stainless steel wire according to any one of the above. さらに、B:0.0005〜0.015%を含有することを特徴とする請求項1〜4のいずれかに記載の太径の高強度ステンレス鋼線。   The thick high-strength stainless steel wire according to any one of claims 1 to 4, further comprising B: 0.0005 to 0.015%. さらに、Ca:0.0005〜0.01%,Mg:0.0005〜0.01%,REM:0.0005〜0.05%の1種以上を含有することを特徴とする請求項1〜5のいずれかに記載の太径の高強度ステンレス鋼線。   Furthermore, it contains at least one of Ca: 0.0005 to 0.01%, Mg: 0.0005 to 0.01%, REM: 0.0005 to 0.05%. The high-strength high-strength stainless steel wire according to any one of 5. 金属組織が、フェライト相,オーステナイト相,加工誘起マルテンサイト相からなり、フェライト相の体積率が20〜70%であることを特徴とする請求項1〜6のいずれかに記載の太径の高強度ステンレス鋼線。   The metal structure is composed of a ferrite phase, an austenite phase, and a work-induced martensite phase, and the volume fraction of the ferrite phase is 20 to 70%. Strength stainless steel wire. 引張強さが800N/mm2以上,破断絞りが50%以上であることを特徴とする請求項1〜7のいずれかに記載の高強度鋼線用のステンレス鋼線材。 The stainless steel wire for high-strength steel wire according to any one of claims 1 to 7, wherein the tensile strength is 800 N / mm 2 or more and the fracture drawing is 50% or more. 減面率が20〜50%で伸線加工されて製造されることを特徴とする請求項1〜7のいずれかに記載の太径の高強度ステンレス鋼線の製造方法。   The method for producing a large-diameter high-strength stainless steel wire according to any one of claims 1 to 7, wherein the reduction in area is 20 to 50%.
JP2006142660A 2006-05-23 2006-05-23 Large-diameter high-strength stainless steel wire and wire rod excellent in ductility, and method for producing steel wire Active JP4772588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006142660A JP4772588B2 (en) 2006-05-23 2006-05-23 Large-diameter high-strength stainless steel wire and wire rod excellent in ductility, and method for producing steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006142660A JP4772588B2 (en) 2006-05-23 2006-05-23 Large-diameter high-strength stainless steel wire and wire rod excellent in ductility, and method for producing steel wire

Publications (2)

Publication Number Publication Date
JP2007314816A true JP2007314816A (en) 2007-12-06
JP4772588B2 JP4772588B2 (en) 2011-09-14

Family

ID=38848951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006142660A Active JP4772588B2 (en) 2006-05-23 2006-05-23 Large-diameter high-strength stainless steel wire and wire rod excellent in ductility, and method for producing steel wire

Country Status (1)

Country Link
JP (1) JP4772588B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221554A (en) * 2008-03-17 2009-10-01 Nisshin Steel Co Ltd Stainless steel for low nickel vehicle body member excellent in workability and impulse absorption performance
JP2009221553A (en) * 2008-03-17 2009-10-01 Nisshin Steel Co Ltd Stainless steel for low nickel springs excellent in settling resistance and bendability
JP2014185367A (en) * 2013-03-22 2014-10-02 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel wire excellent in twisting processability and manufacturing method therefor, and stainless steel wire and manufacturing method therefor
JP2015196870A (en) * 2014-03-31 2015-11-09 新日鐵住金ステンレス株式会社 High strength dual-phase stainless steel wire rod excellent in spring fatigue characteristic and production method therefor, and high strength dual-phase stainless steel wire excellent in spring fatigue characteristic
WO2015190422A1 (en) * 2014-06-11 2015-12-17 新日鐵住金ステンレス株式会社 High strength duplex stainless steel wire rod, high strength duplex stainless steel wire and manufacturing method therefor as well as spring component
JP2018021260A (en) * 2016-07-25 2018-02-08 新日鐵住金ステンレス株式会社 Thick-sized high-strength stainless steel wire and method for producing the same, and spring component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246106A (en) * 1995-03-10 1996-09-24 Nippon Steel Corp Austenitic stainless steel wire, excellent in stress corrosion cracking resistance and having high strength and high proof stress, and its production
JP2005298932A (en) * 2004-04-14 2005-10-27 Nippon Steel & Sumikin Stainless Steel Corp Metastable austenitic stainless steel wire used for high strength steel wire for spring excellent in rigidity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246106A (en) * 1995-03-10 1996-09-24 Nippon Steel Corp Austenitic stainless steel wire, excellent in stress corrosion cracking resistance and having high strength and high proof stress, and its production
JP2005298932A (en) * 2004-04-14 2005-10-27 Nippon Steel & Sumikin Stainless Steel Corp Metastable austenitic stainless steel wire used for high strength steel wire for spring excellent in rigidity

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221554A (en) * 2008-03-17 2009-10-01 Nisshin Steel Co Ltd Stainless steel for low nickel vehicle body member excellent in workability and impulse absorption performance
JP2009221553A (en) * 2008-03-17 2009-10-01 Nisshin Steel Co Ltd Stainless steel for low nickel springs excellent in settling resistance and bendability
JP2014185367A (en) * 2013-03-22 2014-10-02 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel wire excellent in twisting processability and manufacturing method therefor, and stainless steel wire and manufacturing method therefor
JP2015196870A (en) * 2014-03-31 2015-11-09 新日鐵住金ステンレス株式会社 High strength dual-phase stainless steel wire rod excellent in spring fatigue characteristic and production method therefor, and high strength dual-phase stainless steel wire excellent in spring fatigue characteristic
WO2015190422A1 (en) * 2014-06-11 2015-12-17 新日鐵住金ステンレス株式会社 High strength duplex stainless steel wire rod, high strength duplex stainless steel wire and manufacturing method therefor as well as spring component
JPWO2015190422A1 (en) * 2014-06-11 2017-04-20 新日鐵住金ステンレス株式会社 High-strength duplex stainless steel wire, high-strength duplex stainless steel wire and its manufacturing method, and spring parts
JP2018021260A (en) * 2016-07-25 2018-02-08 新日鐵住金ステンレス株式会社 Thick-sized high-strength stainless steel wire and method for producing the same, and spring component

Also Published As

Publication number Publication date
JP4772588B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP5211841B2 (en) Manufacturing method of duplex stainless steel pipe
JP5021901B2 (en) Austenitic and ferritic stainless steel with excellent intergranular corrosion resistance
JP6302722B2 (en) High-strength duplex stainless steel wire excellent in spring fatigue characteristics, its manufacturing method, and high-strength duplex stainless steel wire excellent in spring fatigue characteristics
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
JP4852857B2 (en) Ferritic / austenitic stainless steel sheet with excellent stretch formability and crevice corrosion resistance
JP6432683B2 (en) Stainless steel and stainless steel for oil wells
JP5109233B2 (en) Ferritic / austenitic stainless steel with excellent corrosion resistance at welds
JP2010059452A (en) Cold-rolled steel sheet and producing method therefor
CN111971407A (en) Wear-resistant steel and method for producing same
JP6246621B2 (en) Hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet with a tensile strength of 1180 MPa or more and an excellent balance between strength and bendability
JPWO2013089156A1 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP4772588B2 (en) Large-diameter high-strength stainless steel wire and wire rod excellent in ductility, and method for producing steel wire
JPWO2005075694A1 (en) Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel
KR101850231B1 (en) Ferritic stainless steel and method for producing same
JP2018119174A (en) Two-phase stainless steel wire for heat-resistant bolt, and heat-resistant bolt component using said two-phase stainless steel wire
JP2023182698A (en) Hot rolled steel and manufacturing method thereof
JP4850444B2 (en) High-strength, high-corrosion-resistant, inexpensive austenitic stainless steel wire with excellent ductility
JP2007314815A (en) Thick-sized high strength martensitic stainless steel wire and wire rod having excellent spring cold formability and method for producing steel wire
EP3686306B1 (en) Steel plate and method for manufacturing same
JP5404280B2 (en) High-strength, alloy-saving duplex stainless steel with excellent corrosion resistance in the heat affected zone
JP2008156678A (en) High-strength bolt excellent in delayed fracture resistance and corrosion resistance
JP2007138203A (en) High tensile strength thick steel plate having excellent weldability and its production method
JP6134553B2 (en) Duplex stainless steel with good acid resistance
JP7534595B2 (en) Manufacturing method of wear-resistant steel
JP5653269B2 (en) Stainless steel wire and steel wire excellent in corrosion resistance, strength, and ductility, and methods for producing them.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4772588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250