JP2007301548A - Metal powder for decomposing organic halogen compound and method for cleaning soil using the same - Google Patents

Metal powder for decomposing organic halogen compound and method for cleaning soil using the same Download PDF

Info

Publication number
JP2007301548A
JP2007301548A JP2007036892A JP2007036892A JP2007301548A JP 2007301548 A JP2007301548 A JP 2007301548A JP 2007036892 A JP2007036892 A JP 2007036892A JP 2007036892 A JP2007036892 A JP 2007036892A JP 2007301548 A JP2007301548 A JP 2007301548A
Authority
JP
Japan
Prior art keywords
metal
metal powder
organic halogen
powder
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007036892A
Other languages
Japanese (ja)
Other versions
JP4848540B2 (en
Inventor
Masaru Tomoguchi
勝 友口
Hiroshi Uehara
大志 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2007036892A priority Critical patent/JP4848540B2/en
Publication of JP2007301548A publication Critical patent/JP2007301548A/en
Application granted granted Critical
Publication of JP4848540B2 publication Critical patent/JP4848540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal powder for decomposing organic halogen compounds, which is capable of decomposing persistent organic halogen compounds contained as pollutants in soil, underground water and the like at a high speed. <P>SOLUTION: As the metal powder for decomposing the organic halogen compounds capable of decomposing and cleaning at a high speed the persistent organic halogen compounds, such metal powder is prepared as a metal powder having an adhesion metal phase 2 in which metal particles 3 composing a metal powder 4 contain nickel as a main component and a base metal phase 1 in which iron is a main component, the metal powder 4 having an adhesion metal phase 2 containing manganese as a main component and a base metal phase 1 containing aluminum as a main component, or a metal powder composed of aluminum dross generated in an aluminum smelting process. The organic halogen compounds in an environment are decomposed and cleaned at a high speed using the methods of mixing any of the above metal powders with the soil polluted with the organic halogen compounds. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

発明の属する技術分野TECHNICAL FIELD OF THE INVENTION

本発明は、土壌、河川水、地下水、大気等の環境を汚染している汚染物質の一つである有機ハロゲン化合物を、高速度で分解することのできる有機ハロゲン化合物分解用金属粉に関する。   The present invention relates to a metal powder for decomposing an organic halogen compound, which can decompose an organic halogen compound, which is one of pollutants contaminating the environment such as soil, river water, ground water, and air, at high speed.

従来の技術Conventional technology

近年、テトラクロロエチレン(以下、PCEと記載する。)、トリクロロエチレン(以下、TCEと記載する。)、ジクロロエチレン(以下、DCEと記載する。)等の有機塩素化合物に代表される有機ハロゲン化合物による土壌および地下水等の汚染が顕在化し、一つの社会問題としても取り上げられている。そして、これらの有機ハロゲン化合物浄化方法については種々のものが考案されている。例えば、特許文献1には、微生物による好気または嫌気分解処理の方法が記載されている。また例えば、特許文献2には、光触媒による酸化分解処理の方法が記載されている。さらに例えば、特許文献3には、海綿状を有する特殊鉄粉(以下、特殊鉄粉と記載する。)による還元的分解処理の方法が記載されている。   In recent years, soil and groundwater by organic halogen compounds typified by organic chlorine compounds such as tetrachlorethylene (hereinafter referred to as PCE), trichlorethylene (hereinafter referred to as TCE), dichloroethylene (hereinafter referred to as DCE) and the like. Such pollution has become obvious and has been taken up as a social problem. Various methods for purifying these organic halogen compounds have been devised. For example, Patent Document 1 describes a method of aerobic or anaerobic decomposition treatment by microorganisms. Further, for example, Patent Document 2 describes a method of oxidative decomposition treatment using a photocatalyst. Further, for example, Patent Document 3 describes a reductive decomposition method using special iron powder having a spongy shape (hereinafter referred to as special iron powder).

さらに加えて、例えば、特許文献4には、金属鉄粉表面に金属銅を0.2〜20wt%付着させた銅含有鉄粉(以下、銅含有鉄粉と記載する。)を調製し、金属鉄粉の有機ハロゲン化合物への分解活性を高めることが可能になったことが開示されている。
特開平7−178395号公報 特開平7−144137号公報 特開平11−235577号公報 特開2000−5740号公報
In addition, for example, in Patent Document 4, copper-containing iron powder (hereinafter referred to as copper-containing iron powder) in which 0.2 to 20 wt% of metal copper is attached to the surface of the metal iron powder is prepared, and metal is prepared. It is disclosed that the decomposition activity of iron powder into organic halogen compounds can be enhanced.
JP 7-178395 A Japanese Patent Laid-Open No. 7-144137 Japanese Patent Application Laid-Open No. 11-235577 JP 2000-5740 A

有機ハロゲン化合物による土壌および地下水等の汚染を浄化するため、上述のような技術が開示、提案されているが、有機ハロゲン化合物は広範囲な化合物群を含み、例えば、前記DCEのように、従来の技術では分解が困難で浄化に長時間を要するものもある。このため、例えば土壌浄化の分野では、難分解性の有機ハロゲン化合物をより速く浄化できる方法が強く望まれている。本発明は、以上のような状況を背景としてなされたものであり、土壌等の環境を汚染している難分解性の有機ハロゲン化合物を、高速度で分解、浄化可能な金属粉を提供することにある。   In order to purify the contamination of soil and groundwater by organic halogen compounds, the above-described techniques have been disclosed and proposed. However, organic halogen compounds include a wide range of compound groups. Some technologies are difficult to disassemble and require a long time for purification. For this reason, for example, in the field of soil purification, a method that can quickly purify the hardly decomposable organic halogen compound is strongly desired. The present invention has been made in the background as described above, and provides a metal powder capable of decomposing and purifying a hardly decomposable organic halogen compound contaminating the environment such as soil at a high speed. It is in.

本発明者らは、まず、種々の金属粉試料を準備し、難分解性の有機ハロゲン化合物としてDCEを選択して、これら金属粉試料によるDCEの分解速度試験をおこなった。試行錯誤の結果、本発明者らは、2種以上の金属種、特に、ニッケルと鉄とを各々主成分とする相を有する金属粉、およびアルミニウムとマンガンとを各々主成分する相を有する金属粉は、DCEの分解速度が速いことを見出し、さらに研究の結果、これらの金属粉が、DCEを始めとする難分解性有機ハロゲン化合物を高速度で分解、浄化可能な金属粉であることに想到した。さらに、アルミニウム製錬工程やアルミニウム加工製品製造工程におけるアルミニウムの熔練工程で副生するアルミドロスより製造した金属粉も、難分解性有機ハロゲン化合物を高速度で分解、浄化可能な金属粉であることにも想到して本発明を完成したものである。   First, the present inventors prepared various metal powder samples, selected DCE as a hardly decomposable organic halogen compound, and conducted a DCE decomposition rate test using these metal powder samples. As a result of trial and error, the present inventors have found that two or more metal species, in particular, metal powder having a phase mainly composed of nickel and iron, and a metal having a phase mainly composed of aluminum and manganese, respectively. As a result of further research, it was found that these metal powders are metal powders that can decompose and purify DCE and other difficult-to-decompose organic halogen compounds at high speed. I came up with it. Furthermore, metal powder produced from aluminum dross produced as a by-product in the aluminum melting process in the aluminum smelting process and aluminum processed product manufacturing process is also a metal powder that can decompose and purify persistent organic halogen compounds at high speed. The present invention has been completed with this in mind.

すなわち上述の課題を解決する第1の発明は、金属粉を構成する金属粒子であって、前
記各々の金属粒子は、ニッケルを主成分とする相と、鉄を主成分とする相とを有することを特徴とする有機ハロゲン化合物分解用金属粉である。
That is, the first invention that solves the above-described problem is a metal particle that constitutes a metal powder, and each metal particle has a phase mainly composed of nickel and a phase mainly composed of iron. This is a metal powder for decomposing organic halogen compounds.

この構成を有する金属粉は、PCE、TCE、cis−1,2−DCE、trans−1,2−DCEを始めとする各種の難分解性有機ハロゲン化合物、例えば、モノクロロベンゼン(以下、MCBと記載する。)、1,2−ジクロロベンゼン(以下、1,2−DCBと記載する。)、1,3−ジクロロベンゼン(以下、1,3−DCBと記載する。)、ジクロロメタン、四塩化炭素、1,2−ジクロロエタン(以下、1,2−DCAと記載する。)、1,1−ジクロロエタン(以下、1,1−DCAと記載する。)、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、1,3−ジクロロプロペン、トリハロメタン、1,1−ジクロロエチレン、PCB等に適用可能であり、なかでも、特に塩素系有機化合物を高速度で分解浄化することができる。この結果、本発明に係る金属粉を用いることにより、有機ハロゲン化合物に汚染された土壌、地下水、および地表水の浄化が可能である。   Metal powders having this configuration are various hard-to-decompose organic halogen compounds such as PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, such as monochlorobenzene (hereinafter referred to as MCB). 1,2-dichlorobenzene (hereinafter referred to as 1,2-DCB), 1,3-dichlorobenzene (hereinafter referred to as 1,3-DCB), dichloromethane, carbon tetrachloride, 1,2-dichloroethane (hereinafter referred to as 1,2-DCA), 1,1-dichloroethane (hereinafter referred to as 1,1-DCA), 1,1,1-trichloroethane, 1,1, Applicable to 2-trichloroethane, 1,3-dichloropropene, trihalomethane, 1,1-dichloroethylene, PCB, etc. Especially, chlorinated organic compounds are decomposed and purified at high speed. It can be. As a result, by using the metal powder according to the present invention, it is possible to purify soil, groundwater, and surface water contaminated with organic halogen compounds.

第2の発明は、前記鉄を主成分とする相の表面に、前記ニッケルを主成分とする相が点在して付着していることを特徴とする第1の発明に記載の有機ハロゲン化合物分解用金属粉である。   According to a second aspect of the invention, the organic halogen compound according to the first aspect is characterized in that the phase mainly composed of nickel is scattered and adhered to the surface of the phase mainly composed of iron. It is a metal powder for decomposition.

第3の発明は、前記金属粉におけるニッケルの含有率が、0wt%を含まない20wt%以下であることを特徴とする第1または第2の発明に記載の有機ハロゲン化合物分解用金属粉である。   A third invention is the metal powder for decomposing an organohalogen compound according to the first or second invention, wherein the content of nickel in the metal powder is 20 wt% or less not including 0 wt%. .

第4の発明は、金属粉を構成する金属粒子であって、前記各々の金属粒子は、マンガンを主成分とする相と、アルミニウムを主成分とする相とを有することを特徴とする有機ハロゲン化合物分解用金属粉である。   4th invention is the metal particle which comprises metal powder, Comprising: Each said metal particle has the phase which has manganese as a main component, and the phase which has aluminum as a main component, The organic halogen characterized by the above-mentioned It is a metal powder for compound decomposition.

第5の発明は、前記アルミニウムを主成分とする相の表面に、前記マンガンを主成分とする相が点在して付着していることを特徴とする第4の発明に記載の有機ハロゲン化合物分解用金属粉である。   According to a fifth invention, the organic halogen compound according to the fourth invention is characterized in that the phases mainly composed of manganese are scattered and adhered to the surface of the phase mainly composed of aluminum. It is a metal powder for decomposition.

第6の発明は、前記金属粉におけるマンガンの含有率が、0wt%を含まない30wt%以下であることを特徴とする第4または第5の発明に記載の有機ハロゲン化合物分解用金属粉である。   A sixth invention is the metal powder for decomposing an organohalogen compound according to the fourth or fifth invention, wherein the content of manganese in the metal powder is 30 wt% or less not including 0 wt%. .

第7の発明は、アルミニウムの熔練工程で産するアルミドロスより製造される金属粉であって、酸化アルミニウムを主成分とし、C、Na、Mg、Al、Si、Ca、Mn、Fe、Co、Ni、Cu、Znのいずれかの少なくとも1種以上の元素を主成分とする相を含有することを特徴とする有機ハロゲン化合物分解用金属粉である。   The seventh invention is a metal powder produced from aluminum dross produced in the melting process of aluminum, mainly composed of aluminum oxide, C, Na, Mg, Al, Si, Ca, Mn, Fe, Co It is a metal powder for decomposing | disassembling an organic halogen compound characterized by including the phase which has at least 1 or more types of elements in any one of Ni, Cu, and Zn as a main component.

この構成を採ることで、アルミドロスというアルミニウムの熔練工程での副産物の有効活用法を見出し、併せて極めて低コストな有機ハロゲン化合物分解用金属粉を得ることができた。この結果、本発明に係る金属粉を用いることにより、有機ハロゲン化合物に汚染された土壌、地下水、および地表水の浄化が低コストで可能となる。   By adopting this configuration, an effective utilization method of a by-product in the aluminum melting process called aluminum dross was found, and at the same time, an extremely low-cost metal powder for decomposing an organic halogen compound could be obtained. As a result, by using the metal powder according to the present invention, it is possible to purify soil, groundwater, and surface water contaminated with an organic halogen compound at a low cost.

第8の発明は、第1から第7の発明のいずれかに記載の有機ハロゲン化合物分解用金属粉を用いることを特徴とする、土壌および/または地下水および/または地表水の浄化方法である。   An eighth invention is a method for purifying soil and / or ground water and / or surface water, characterized in that the metal powder for decomposing an organohalogen compound according to any one of the first to seventh inventions is used.

以上詳述したように、本発明は、難分解性の有機ハロゲン化合物を高速度で分解、浄化可能な金属粉を、金属粉を構成する金属粒子がニッケルを主成分とする相と鉄を主成分とする相とを有する金属粉、または、金属粉を構成する金属粒子がマンガンを主成分とする相とアルミニウムを主成分とする相とを有する金属粉、または、アルミニウムの熔練工程で産するアルミドロスより構成された金属粉として提供するものである。   As described above in detail, the present invention is mainly composed of a metal powder capable of decomposing and purifying a hardly decomposable organic halogen compound at a high speed, a phase mainly composed of nickel and metal, which constitute the metal powder. A metal powder having a phase as a component, or a metal powder constituting a metal powder having a phase mainly composed of manganese and a phase mainly composed of aluminum, or produced in an aluminum melting process. It is provided as a metal powder composed of aluminum dross.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

(有機ハロゲン化合物分解用金属粉の成分および構造)
本発明の実施の形態に係る有機ハロゲン化合物分解用金属粉(以下、金属粉と記載する。)は、少なくとも、鉄(以下、Feと記載する。)−ニッケル(以下、Niと記載する。)の2種の金属元素を主成分とする相を有し、Feを主成分とする相を母材金属相とし、Niを主成分とする相を付着金属相とし、付着金属相は母材金属相に付着してNi付着Fe粒子の形態となり、この粒子が集合したものである。
(Components and structure of metal powder for organic halogen compound decomposition)
The metal powder for organic halogen compound decomposition (hereinafter referred to as metal powder) according to the embodiment of the present invention is at least iron (hereinafter referred to as Fe) -nickel (hereinafter referred to as Ni). A phase mainly composed of Fe, a phase mainly composed of Fe as a base metal phase, a phase mainly composed of Ni as an adhering metal phase, and the adhering metal phase as a base metal It adheres to the phase to form Ni-adhered Fe particles, and these particles are aggregated.

次に、本発明の異なる実施の形態に係る金属粉は、少なくともアルミニウム(以下、Alと記載する。)−マンガン(以下、Mnと記載する。)の2種の金属元素を主成分とする相を有し、Alを主成分とする相を母材金属相とし、Mnを主成分とする相を付着金属相とし、付着金属相は母材金属相に付着してMn付着Al粒子の形態となり、この粒子が集合体したものである。   Next, the metal powder according to the different embodiments of the present invention is a phase mainly composed of at least two metal elements of aluminum (hereinafter referred to as Al) -manganese (hereinafter referred to as Mn). The phase containing Al as the main component is the base metal phase, the phase containing Mn as the main component is the adhering metal phase, and the adhering metal phase adheres to the base metal phase and becomes the form of Mn adhering Al particles. These particles are aggregates.

さらに、本発明の異なる実施の形態に係る金属粉は、Al熔錬工程等の副産物であるアルミドロスより製造した金属粉である。   Furthermore, the metal powder which concerns on different embodiment of this invention is the metal powder manufactured from the aluminum dross which is by-products, such as Al smelting process.

まず、Ni付着Fe粉およびMn付着Al粉について、図1を参照しながら説明する。図1は、本発明に係る金属粉中の金属粒子を模式的に表現した拡大図である。図1において、符号1は母材金属相、符号2は付着金属相であり、この母材金属相1へ付着金属相2が付着して符号3に示す金属粉粒子の形態となる。この金属粉粒子3の多数集合したものが金属粉4である。さらに符号5は母材金属相1と付着金属相2との界面であり、符号dは付着金属相2の付着膜厚を示す。Ni付着Fe粉およびMn付着Al粉とも、母材金属相1であるFe相、Al相の形状は、球状、針状、海綿状等どの様なものでも良いが、単位重量当たりの比表面積が大きいことが好ましい。付着金属相2であるNi相、Mn相は、前記母材金属相1の表面において付着金属相2同士が連続することなく、独立して分散し、点在する形で付着している形態が好ましい。すなわち、金属粉粒子3を構成する少なくとも2つの相が金属粉粒子3の表面に露出していることが好ましい。この構成を有することで金属粉4は、周囲にある有機ハロゲン化合物を効率的に分解できると考えられる。しかし、この母材金属相1と付着金属相2との界面5内に、例えば、母材金属の酸化物等の化合物形態を有する部分が一部存在したとしても、有機ハロゲン化合物の分解特性に大きな悪影響を与えることはない。   First, the Ni-attached Fe powder and the Mn-attached Al powder will be described with reference to FIG. FIG. 1 is an enlarged view schematically showing metal particles in the metal powder according to the present invention. In FIG. 1, reference numeral 1 denotes a base metal phase, and reference numeral 2 denotes an attached metal phase. The attached metal phase 2 adheres to the base metal phase 1 to be in the form of metal powder particles indicated by reference numeral 3. The metal powder 4 is a collection of a large number of the metal powder particles 3. Further, reference numeral 5 denotes an interface between the base metal phase 1 and the attached metal phase 2, and reference numeral d denotes an attached film thickness of the attached metal phase 2. For both the Ni-attached Fe powder and the Mn-attached Al powder, the shape of the Fe metal phase, which is the base metal phase 1, and the Al phase may be any shape such as spherical, needle-like, or sponge-like, but the specific surface area per unit weight is Larger is preferred. The Ni phase and Mn phase, which are the adhered metal phase 2, are dispersed in the surface of the base metal phase 1 without being continuous with each other and adhered in a scattered manner. preferable. That is, it is preferable that at least two phases constituting the metal powder particle 3 are exposed on the surface of the metal powder particle 3. By having this configuration, the metal powder 4 is considered to be able to efficiently decompose the surrounding organic halogen compound. However, even if a portion having a compound form such as an oxide of the base metal exists in the interface 5 between the base metal phase 1 and the adhered metal phase 2, the decomposition characteristics of the organic halogen compound are reduced. There is no major adverse effect.

付着金属相2の付着膜厚dには、特に制限はないが、付着金属としてNi、Mnのような金属を用いる場合はコストの観点より、できる限り薄くすることが好ましい。   Although there is no restriction | limiting in particular in the adhesion film thickness d of the adhesion metal phase 2, When using metals, such as Ni and Mn, as an adhesion metal, it is preferable to make it as thin as possible from a viewpoint of cost.

Ni付着Fe粉およびMn付着Al粉とも、金属粉粒子3の粒径は、1〜500μmが好ましい。何となれば、粒径が1μm以下の場合、土壌への分散性は優れるが、例えば地下水流などとともに、土壌粒子間隙を通過してより下層の方へ流失してしまう可能性があるからであり、一方、500μmを超える場合は、土壌中での位置は安定するものの、単位土壌面積当たりの金属粉4の使用量が増えるので、コストの点を考えると500μm以下の粒径が好ましいからである。但し、例えば母材金属相1として海綿状粒子のような比表面積の大きな金属相を用いる場合はこの限りではではない。比表面積の大きな金属相の場合、金属相の単位重量あたりの有効反応サイトが増えるので、単位土壌面積当たりの使
用量を低減することができ、金属粒子3の粒径が500μmを超える金属粉4であっても好ましく使用できる。
In both the Ni-adhered Fe powder and the Mn-adhered Al powder, the particle diameter of the metal powder particles 3 is preferably 1 to 500 μm. This is because when the particle size is 1 μm or less, dispersibility in soil is excellent, but for example, groundwater flow and the like may pass through the soil particle gap and be washed away to the lower layer. On the other hand, if it exceeds 500 μm, the position in the soil is stable, but the amount of metal powder 4 used per unit soil area increases, so a particle size of 500 μm or less is preferable in terms of cost. . However, this is not the case, for example, when a metal phase having a large specific surface area such as spongy particles is used as the base metal phase 1. In the case of a metal phase having a large specific surface area, the number of effective reaction sites per unit weight of the metal phase increases, so that the amount used per unit soil area can be reduced, and the metal powder 4 having a particle size of the metal particles 3 exceeding 500 μm. However, it can be preferably used.

Ni付着Fe粉において、Ni相中のNi元素とFe相中のFe元素との重量の和を100wt%としたとき、Fe相へのNi相付着量が0wt%では有機ハロゲン化合物の分解速度が遅く、10wt%以上になると有機ハロゲン化合物の分解速度が飽和してしまう。ここでNiは原料コストの高い金属であることより、有機ハロゲン化合物の分解速度と原料コストとを考慮すると、Ni付着Fe粉におけるNi付着量は、0wt%を含まない20wt%以下が好ましく、さらに好ましくは0wt%を含まない5wt%以下である。   In the Ni-adhered Fe powder, when the sum of the weights of the Ni element in the Ni phase and the Fe element in the Fe phase is 100 wt%, the decomposition rate of the organic halogen compound is reduced when the Ni phase adhesion amount to the Fe phase is 0 wt%. Slowly, when it becomes 10 wt% or more, the decomposition rate of the organic halogen compound is saturated. Here, since Ni is a metal with a high raw material cost, considering the decomposition rate of the organic halogen compound and the raw material cost, the Ni attached amount in the Ni attached Fe powder is preferably 20 wt% or less not including 0 wt%. Preferably, it is 5 wt% or less not including 0 wt%.

次に、Mn付着Al粉において、Mn相中のMn元素とAl相中のAl元素との重量の和を100wt%としたとき、AlへのMn付着量が、0wt%では有機ハロゲン化合物の分解速度が遅く、30wt%以上になると有機ハロゲン化合物の分解速度が飽和してしまう。ここでMnは原料コストの高い金属であることより、有機ハロゲン化合物の分解速度と原料コストとを考慮すると、Mn付着Al粉におけるMn付着量は、0wt%を含まない30wt%以下が好ましい。   Next, in the Mn-attached Al powder, when the sum of the weights of the Mn element in the Mn phase and the Al element in the Al phase is 100 wt%, the decomposition of the organic halogen compound occurs when the Mn adherence amount to Al is 0 wt%. When the rate is slow and becomes 30 wt% or more, the decomposition rate of the organic halogen compound is saturated. Here, since Mn is a metal having a high raw material cost, considering the decomposition rate of the organic halogen compound and the raw material cost, the Mn adhesion amount in the Mn-attached Al powder is preferably 30 wt% or less not including 0 wt%.

ここで上述した金属粉4を、汚染土壌等へ施工するコストの観点より、Ni付着Fe粉およびMn付着Al粉とも、金属粒子3の粒径は、1〜500μmが好ましく、さらには10〜100μm程度が好ましい。何となれば、粒径が1μm以下の場合、土壌への分散性は優れるが、例えば地下水流などとともに、土壌粒子間隙を通過してより下層の方へ流失してしまう可能性があるあるからであり、一方、500μmを超える場合は、土壌中での位置は安定するものの、単位土壌面積当たりの金属粉4の使用量が増えるので、施工のコストを考えると金属粒子3の粒径が500μm以下の粒径が好ましいからであり、金属粒子3の粒径が10〜100μm程度の金属粉4はさらに好ましいからである。但し、例えば海綿状粒子のような比表面積の大きな母材金属相1を用いる場合はこの限りではではない。比表面積の大きな母材金属相1の場合、母材金属相1の単位重量あたりの有効反応サイトが増えるので、単位土壌面積当たりの使用量を低減することができ、金属粒子3の粒径が500μmを超える金属粉4であっても好ましく使用できる。   From the viewpoint of the cost of constructing the above-described metal powder 4 on contaminated soil or the like, the particle diameter of the metal particles 3 is preferably 1 to 500 μm, more preferably 10 to 100 μm for both the Ni-attached Fe powder and the Mn-attached Al powder. The degree is preferred. If the particle size is 1 μm or less, the dispersibility in the soil is excellent. However, for example, it may flow through the soil particle gap to the lower layer along with the groundwater flow. On the other hand, if it exceeds 500 μm, the position in the soil will be stable, but the amount of metal powder 4 used per unit soil area will increase, so considering the construction cost, the particle size of the metal particles 3 will be 500 μm or less This is because the metal powder 4 in which the particle size of the metal particles 3 is about 10 to 100 μm is more preferable. However, this is not the case when the base metal phase 1 having a large specific surface area such as spongy particles is used. In the case of the base metal phase 1 having a large specific surface area, the number of effective reaction sites per unit weight of the base metal phase 1 is increased, so that the amount used per unit soil area can be reduced, and the particle size of the metal particles 3 can be reduced. Even metal powder 4 exceeding 500 μm can be preferably used.

次に、アルミドロスより製造した金属粉について説明する。まず、アルミドロスとは、Alの製錬工程やアルミ加工製品製造工程におけるAl鉱石やAl化合物を含有する廃棄物の熔練工程の際、Al溶湯面上に生成する不純物を含む副産物である。アルミドロスは、Alを数十wt%含むため、従来は、不純物含有量の低い下層部を分離して採取した後、再度のAl製錬工程を行ってAl分を回収した後、残余の部分は廃棄物として処分される状況であった。この再度のAl製錬工程には高温熱処理工程が含まれるため、大きなエネルギーを必要とするうえに、残余部分の廃棄物中には、まだ約5〜10wt%のAlと約10〜50wt%のアルミナ成分が含有されており、Al分の回収、再利用という意味でも効率の悪いものであった。   Next, the metal powder manufactured from aluminum dross will be described. First, aluminum dross is a by-product containing impurities generated on the surface of the Al melt during the melting process of waste containing Al ore or Al compound in the Al refining process or the processed aluminum product manufacturing process. Almidros contains several tens wt% of Al, and conventionally, after separating and collecting the lower layer portion having a low impurity content, performing the Al smelting process again to recover the Al content, the remaining portion Was disposed of as waste. Since this high temperature heat treatment process is included in this second Al smelting process, a large amount of energy is required, and in the remaining waste, there are still about 5 to 10 wt% Al and about 10 to 50 wt%. An alumina component was contained, which was inefficient in terms of recovery and reuse of Al content.

このアルミドロスは、母材金属相を形成する酸化Al相中にC、Na、Mg、Al、Si、Ca、Mn、Fe、Co、Ni、Cu、Zn等のいずれかの少なくとも1種以上の元素が、合金および/または付着金属相の形で、混入および/または付着している。前記付着金属相は、概ね、前記酸化Al相上において付着金属相同士が連続することなく、独立して分散し、点在する形態となっている。   This aluminum dross has at least one or more of any of C, Na, Mg, Al, Si, Ca, Mn, Fe, Co, Ni, Cu, Zn, etc. in the Al oxide phase forming the base metal phase. Elements are incorporated and / or deposited in the form of alloys and / or deposited metal phases. The adhering metal phase is generally dispersed and scattered in the adhering metal phase without being continuous on the Al oxide phase.

そして、上記Alの熔錬工程において回収されるアルミドロスであって、Al含有量が概ね0.01〜70wt%であり、 粒子径は0.1〜300mmの範囲であり、比表面
積が0.2〜120m/gの範囲にあるものは、有機ハロゲン化合物の分解速度が速く、有機ハロゲン化合物分解用金属粉として好個に用いることができる。このアルミドロス
より製造した金属粉も、上述したMn付着Al粉と類似の機構により難分解性の有機ハロゲン化合物を高速度で分解、浄化しているものと考えられる。
And it is aluminum dross collect | recovered in the said smelting process, Comprising: Al content is about 0.01-70 wt%, The particle diameter is the range of 0.1-300 mm, The specific surface area is 0.1. Those in the range of 2 to 120 m 2 / g have a high decomposition rate of the organic halogen compound, and can be suitably used as a metal powder for organic halogen compound decomposition. The metal powder produced from the aluminum dross is also considered to decompose and purify the hardly decomposable organic halogen compound at a high speed by a mechanism similar to that of the Mn-attached Al powder.

もちろん、前記アルミドロスを粉砕して、粒子径を0.1〜80μmの範囲に調製したものを金属粉とするのも好ましい構成である。上記の構成を採ることで、金属粉の土壌等への添加作業が容易になり、さらに土壌に添加後は、難分解性の有機ハロゲン化合物を高速度で分解、浄化することが可能となる。   Of course, it is also preferable to pulverize the aluminum dross to prepare a metal powder having a particle diameter in the range of 0.1 to 80 μm. By adopting the above-described configuration, it becomes easy to add metal powder to the soil and the like, and after addition to the soil, it becomes possible to decompose and purify the hardly decomposable organic halogen compound at a high speed.

この結果、アルミドロスの再処理工程という大きなエネルギーを必要とし、かつ効率の悪いAl分の回収、再利用工程に替えて、安価な製造コストで金属粉を製造するという工業的メリットの大きな金属粉製造工程、およびアルミドロスの有益な使用用途を実現できる。   As a result, it requires a large amount of energy for the aluminum dross reprocessing process, and it replaces the inefficient recovery and recycling process of Al, which has a large industrial merit for producing metal powder at a low manufacturing cost. The production process and beneficial use of aluminum dross can be realized.

(有機ハロゲン化合物分解用金属粉による有機ハロゲン化合物分解特性)
Ni付着Fe粉、Mn付着Al粉、アルミドロスより製造した金属粉とも、PCE、TCE、cis−1,2−DCE、trans−1,2−DCEはもとより、MCBを始めとする各種の難分解性有機ハロゲン化合物、例えば、1,2−DCB、1,3−DCB、ジクロロメタン、四塩化炭素、1,2−DCA、1,1−DCA、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、1,3−ジクロロプロペン、トリハロメタン、1,1−DCE、PCB等の分解に適用可能であり、なかでも、特に塩素系有機化合物の分解に適している。さらに、上述した金属粉により、重金属と有機ハロゲン化合物とに混合汚染された土壌、地下水、および地表水の浄化も可能である。特にAlを含有する金属粉を用いた場合、施工環境が、弱酸性、中性および弱アルカリ性のいずれ場合でも有機ハロゲン化合物の分解作用を発揮する点で優れている。
(Decomposition characteristics of organohalogen compounds with metal powder for decomposing organohalogen compounds)
Various powders such as MCB as well as PCE, TCE, cis-1,2-DCE, trans-1,2-DCE are also available for metal powders manufactured from Ni-attached Fe powder, Mn-attached Al powder, and aluminum dross. Organic halogen compounds such as 1,2-DCB, 1,3-DCB, dichloromethane, carbon tetrachloride, 1,2-DCA, 1,1-DCA, 1,1,1-trichloroethane, 1,1,2 -Applicable to the decomposition of trichloroethane, 1,3-dichloropropene, trihalomethane, 1,1-DCE, PCB and the like, and particularly suitable for the decomposition of chlorinated organic compounds. Further, soil, groundwater, and surface water contaminated with heavy metals and organic halogen compounds can be purified by the metal powder described above. In particular, when metal powder containing Al is used, the construction environment is excellent in that it exhibits the decomposition action of the organic halogen compound regardless of whether the construction environment is weakly acidic, neutral or weakly alkaline.

上述のような方法で調製した金属粉の粒子表面に、難分解性有機ハロゲン化合物が接触する際、その難分解性有機ハロゲン化合物が揮発性であればガス吸着という形態で、不揮発性であれば流動または混合に伴う接触という形態で接触すると考えられる。この金属粉の粒子表面に、ガス吸着または接触した難分解性有機ハロゲン化合物は、金属粉の組成・表面状態等と、有機ハロゲン化合物の構成元素・立体構造との相互作用により分解される。この相互作用とは、金属粉が有機ハロゲン化合物中のハロゲン元素に与える直接作用や、二重結合部への作用や、各種の錯体的な構造を形成する作用等であるものと考えられる。   When the hardly decomposable organic halogen compound comes into contact with the surface of the metal powder particles prepared by the method as described above, if the hardly decomposable organic halogen compound is volatile, in the form of gas adsorption, if non-volatile It is thought that it contacts in the form of contact accompanying flow or mixing. The hardly decomposable organohalogen compound adsorbed or brought into contact with the surface of the metal powder particles is decomposed by the interaction between the composition / surface state of the metal powder and the constituent elements / stereostructure of the organohalogen compound. This interaction is considered to be a direct action of the metal powder on the halogen element in the organic halogen compound, an action on the double bond portion, an action of forming various complex structures, and the like.

(有機ハロゲン化合物分解用金属粉の施行方法)
上述した金属粉を用いて、各種の有機ハロゲン化合物で汚染された土壌、地下水、ガス等の浄化処理を行う場合、例えば次のような方法が好ましい。まず、土壌の浄化処理をおこなう場合には、掘削された土壌へ土壌改良機やバックホー等の重機を用いて金属粉を混合する方法がある。次には振動ミル、回転ミル等の設備に掘削された土壌と、金属粉と、粉砕メディアとを投入し攪拌混合処理を行う方法がある。さらには、汚染された土壌へ、有機ハロゲン化合物分解用金属粉を局所的に混合した箇所を適宜、配置し、揮発性の有機ハロゲン化合物を拡散移動させながら分解処理していく方法等が適用できる。
(Enforcement method of metal powder for organic halogen compound decomposition)
When the above-described metal powder is used to purify soil, groundwater, gas, etc. contaminated with various organic halogen compounds, for example, the following method is preferable. First, when soil purification treatment is performed, there is a method of mixing metal powder into excavated soil using a heavy machine such as a soil conditioner or a backhoe. Next, there is a method in which the soil excavated in equipment such as a vibration mill and a rotary mill, metal powder, and pulverized media are added and a stirring and mixing process is performed. Furthermore, a method in which a place where the metal powder for decomposing the organic halogen compound is locally mixed is appropriately disposed in the contaminated soil, and a method of decomposing while diffusing and moving the volatile organic halogen compound can be applied. .

また、地下水の浄化処理をおこなう場合には、地中において、地下水が透過するような金属粉を含む反応壁を造成するのが好ましい。このとき地中に造成される反応壁は、地下水が金属粉へ接するように配置するが、そのためには汚染土壌深部の地下水の易透過層をカバーするように、そして易透過層下方に位置する難透過層にまで反応壁下端部を配置させるか、または埋設されるように反応壁を設けることが好ましい。さらに反応壁の透水係数が回りの土質と比較して、同レベルであるか、またはそれより高くなるように反応壁の透水性を良好な状態に調節することが好ましい。そこで例えば、高砂質土壌等に金属粉を
0.1〜50wt%程度の範囲で均一または不均一に分散させた材料で反応壁を造成するのが好ましい。
Moreover, when purifying groundwater, it is preferable to create a reaction wall containing metal powder that allows groundwater to penetrate in the ground. At this time, the reaction wall built in the ground is arranged so that the groundwater is in contact with the metal powder. For this purpose, the reaction wall is located so as to cover the easily permeable layer of the groundwater deep in the contaminated soil and below the easily permeable layer. It is preferable to arrange the reaction wall so that the lower end portion of the reaction wall is disposed up to the hardly permeable layer or to be embedded. Furthermore, it is preferable to adjust the water permeability of the reaction wall in a good state so that the water permeability coefficient of the reaction wall is equal to or higher than that of the surrounding soil. Therefore, for example, it is preferable to form the reaction wall with a material in which metal powder is uniformly or non-uniformly dispersed in a high sandy soil or the like in a range of about 0.1 to 50 wt%.

(有機ハロゲン化合物分解用金属粉の製造方法)
Ni付着Fe粉およびMn付着Al粉とも、化学的製造方法と物理的製造方法とにより製造することができる。化学的製造方法とは、付着金属を酸等で溶解した溶液中へ母材金属粉を浸せきし、両金属のイオン化傾向の差を利用して母材金属相へ付着金属相を付着させる方法である。このとき、付着金属の溶解液濃度および浸せき時間等を制御することで、付着金属相の母材金属相への付着状態、付着膜厚等を制御することができる。この方法は、均一な特性を有する金属粉を容易に調製できる点で好ましい方法である。
(Method for producing metal powder for organic halogen compound decomposition)
Both the Ni-attached Fe powder and the Mn-attached Al powder can be produced by a chemical production method and a physical production method. The chemical manufacturing method is a method in which the base metal powder is immersed in a solution in which the attached metal is dissolved with an acid, etc., and the attached metal phase is attached to the base metal phase using the difference in ionization tendency of both metals. is there. At this time, it is possible to control the adhesion state of the adhesion metal phase to the base metal phase, the adhesion film thickness, and the like by controlling the concentration of the solution of the adhesion metal and the immersion time. This method is a preferable method in that a metal powder having uniform characteristics can be easily prepared.

物理的製造方法とは、予め粒状化した母材金属相を含む粒子と、付着金属相を含む粒子とをミキサー等で混合し、その混合時に生じる粒子同士の接触に伴う衝突圧力を利用して付着金属相を母材金属相へ付着させる方法である。この方法で調製した金属粉を電子顕微鏡で観察した結果、母材金属相と付着金属相との界面に両者の合金層が存在せず、界面を境に互いの金属相が直接接合されていることが判明した。さらに付着金属相は、圧力を受けたように変形していることが観察されたことより、母材金属相に圧着しているものと考えられる。この方法によれば、酸による溶解の容易性やイオン化傾向の差違を考慮する必要がない。そこで、母材金属相と付着金属相として、広い範囲での金属の組み合わせを考慮する際に好ましい方法である。ここで、付着金属相が、NiまたはMnという高コストな金属等を含む場合は、母材金属相を含む粒子と付着金属相を含む粒子との混合割合において、母材金属相を含む粒子の比率を高くする構成としてもよい。この構成を採ると、金属粉の殆どを母材金属相を含む粒子が占め、高コストの付着金属相を含む粒子は、母材金属相を含む粒子の表面に点在して付着している構造をとることになり、金属粉の製造コストを低減する観点より好ましい。   A physical production method is a method in which particles containing a base metal phase granulated in advance and particles containing an adhering metal phase are mixed with a mixer or the like, and the collision pressure accompanying the contact between the particles generated during the mixing is used. This is a method of adhering an adhering metal phase to a base metal phase. As a result of observing the metal powder prepared by this method with an electron microscope, there is no alloy layer at the interface between the base metal phase and the adhered metal phase, and the metal phases are directly joined to each other at the interface. It has been found. Furthermore, since it was observed that the adhered metal phase was deformed as it was subjected to pressure, it is considered that the adhered metal phase was pressure-bonded to the base metal phase. According to this method, it is not necessary to consider the ease of dissolution by acid and the difference in ionization tendency. Therefore, it is a preferable method when considering a wide range of metal combinations as the base metal phase and the adhered metal phase. Here, when the adhesion metal phase includes a high-cost metal such as Ni or Mn, the mixing ratio of the particles including the matrix metal phase and the particles including the adhesion metal phase is the ratio of the particles including the matrix metal phase. It is good also as a structure which makes a ratio high. When this configuration is adopted, particles containing the base metal phase occupy most of the metal powder, and the particles containing the high-cost attached metal phase are scattered and attached to the surface of the particles containing the base metal phase. This is preferable from the viewpoint of taking a structure and reducing the manufacturing cost of the metal powder.

アルミドロスより製造した金属粉は、上述したように、Alの熔錬工程よりアルミドロスを回収し、必要に応じてこれを適宜に粉砕することで得ることができる。さらに、このアルミドロスの粉砕粉へ、C、Na、Mg、Al、Si、Ca、Mn、Fe、Co、Ni、Cu、Zn等のいずれかの少なくとも1種以上の元素を、付着金属相の形で添加する構成としてもよい。この構成を採ると、アルミドロスより製造した金属粉が、有機ハロゲン化合物を分解する速度をさらに速めることが可能となり好ましい。ここで、アルミドロスの粉砕粉へ付着金属相を添加する方法として、上述したNi付着Fe粉等を製造する際に用いた物理的製造方法等が好個に適用できる。   As described above, the metal powder produced from Almidros can be obtained by recovering aluminum dross from the Al smelting step and appropriately pulverizing it as necessary. Furthermore, at least one element of any one of C, Na, Mg, Al, Si, Ca, Mn, Fe, Co, Ni, Cu, Zn, etc. is added to the crushed powder of aluminum dross in the attached metal phase. It is good also as a structure added in the form. If this structure is taken, the metal powder manufactured from aluminum dross is preferable because the rate of decomposing the organic halogen compound can be further increased. Here, as a method for adding the adhered metal phase to the pulverized powder of aluminum dross, the above-described physical production method used when producing the Ni-adhered Fe powder or the like can be suitably applied.

以下、実施例に基づいて本発明をさらに詳細に説明する。
(実施例1)
(金属粉試料の調製)
母材金属相の主成分をFe、付着金属相の主成分をNiとして、Ni被着Fe粉試料を、物理的方法の乾式共粉砕(メカノケミカル)法を用いて次のように調製した。
Hereinafter, the present invention will be described in more detail based on examples.
Example 1
(Preparation of metal powder sample)
Using Ni as the main component of the base metal phase and Ni as the main component of the adhered metal phase, a Ni-coated Fe powder sample was prepared as follows using a dry co-grinding (mechanochemical) method of the physical method.

まず、平均粒径50μmのFe粉、もう1つの金属として平均粒径0.3μmのNi粉を準備した。この、Fe粉を95wt%、Ni粉を5wt%となるように配合し混合の後、500gを秤量し容量2Lの粉砕ポットに投入する。粉砕ポットにはさらに粉砕メディアとして20mm径のZrOボールを5kg投入し、回転ミルに設置した。そしてミルの回転数を100rpmとし5分間粉砕処理をおこなって、Ni付着Fe粉試料を調製した。 First, Fe powder having an average particle diameter of 50 μm and Ni powder having an average particle diameter of 0.3 μm were prepared as another metal. After mixing and mixing the Fe powder at 95 wt% and Ni powder at 5 wt%, 500 g is weighed and put into a 2 L capacity grinding pot. Further, 5 kg of 20 mm-diameter ZrO 2 balls were added to the pulverization pot as a pulverization medium and placed in a rotary mill. And the rotation speed of the mill was set to 100 rpm, and the grinding process was performed for 5 minutes, and the Ni adhesion Fe powder sample was prepared.

(調製試料の観察)
前記調製された試料を電子顕微鏡で観察したところ、Fe金属相の表面にNi金属が直接接合された形態にて点在しており、境となる界面に合金相が存在していないことが判明した。
(Observation of the prepared sample)
When the prepared sample was observed with an electron microscope, it was found that Ni metal was directly bonded to the surface of the Fe metal phase, and no alloy phase was present at the boundary interface. did.

(調製試料による有機ハロゲン化合物の分解試験)
次に、前記調製されたNi付着Fe粉を用いて、有機ハロゲン化合物の分解試験を実施した。まずイオン交換水に、有機ハロゲン化合物として、cis−1,2−DCEを25.6mg/Lの濃度で含有させた試験用汚染物質溶液を調製した。100mlのバイアル瓶へNi付着Fe粉試料を0.5g投入し、そこへ前記試験用汚染物質溶液を50ml注ぎ、密封後、攪拌震盪し、一定時間毎にバイアル瓶のヘッドスペース部のガスをサンプリングして、このガスをGC−MS(ガスクロマト−質量分析装置)装置にて定性・定量分析し、ヘッドスペース部ガス中の有機塩素化合物濃度と前記攪拌震盪処理時間とより、試験用汚染物質の分解の半減期を測定した。
(Decomposition test of organohalogen compounds using prepared samples)
Next, a decomposition test of the organic halogen compound was performed using the prepared Ni-adhered Fe powder. First, a test contaminant solution containing cis-1,2-DCE at a concentration of 25.6 mg / L as an organic halogen compound in ion-exchanged water was prepared. Add 0.5g of Ni powder Fe powder sample to a 100ml vial, pour 50ml of the test contaminant solution into it, seal, shake, and sample the gas in the headspace of the vial at regular intervals. Then, this gas is qualitatively and quantitatively analyzed with a GC-MS (gas chromatograph-mass spectrometer), and from the organic chlorine compound concentration in the headspace gas and the stirring and shaking treatment time, The half-life of degradation was measured.

この測定結果より、Ni付着Fe粉試料によるcis−1,2−DCEの分解の半減期は1.1日であることが判明した。   From this measurement result, it was found that the half life of cis-1,2-DCE degradation by the Ni-adhered Fe powder sample was 1.1 days.

(実施例2)
実施例1において、有機ハロゲン化合物を1,2−DCAとし、含有量を25mgとした以外は同様に行ったこの測定結果より、Ni付着Fe粉試料による1,2−DCAの分解の半減期は3.1日であることが判明した。
(Example 2)
In Example 1, the result of this measurement was performed in the same manner except that the organic halogen compound was 1,2-DCA and the content was 25 mg. From this measurement result, the half-life of 1,2-DCA decomposition by the Ni-attached Fe powder sample was 3. It turned out to be 1 day.

(実施例3)
実施例1において、1つの金属粒子として平均粒径50μmのAl粉、もう1つの金属として平均粒径30μmのMn粉とし、配合比は、Al粉を80wt%、Mn粉を20wt%となるようにした以外は実施例1と同様にcis−1,2−DCEの分解試験を行った。その結果、Mn付着Al粉試料によるcis−1,2−DCEの分解の半減期は1.9日であることが判明した。
(Example 3)
In Example 1, Al powder with an average particle size of 50 μm is used as one metal particle, and Mn powder with an average particle size of 30 μm is used as another metal, and the mixing ratio is 80 wt% for Al powder and 20 wt% for Mn powder. A cis-1,2-DCE decomposition test was conducted in the same manner as in Example 1 except that the above was changed. As a result, it was found that the half life of cis-1,2-DCE degradation by the Mn-attached Al powder sample was 1.9 days.

(比較例1)
硫酸銅の1M水溶液を300mL調製し、平均粒径50μmのFe粉を20wt%投入しスラリーとし5分間攪拌し、この銅含有鉄粉試料を用いて、実施例1と同様にcis−1,2−DCEの分解試験を行った。この試験結果より、銅含有Fe粉試料によるcis−1,2−DCEの分解の半減期は3.2日であることが判明した。
(Comparative Example 1)
300 mL of 1 M aqueous solution of copper sulfate was prepared, 20 wt% of Fe powder having an average particle size of 50 μm was added and stirred as a slurry for 5 minutes, and this copper-containing iron powder sample was used as in Example 1 to obtain cis-1,2 -A DCE degradation test was performed. From this test result, it was found that the half-life of cis-1,2-DCE degradation by the copper-containing Fe powder sample was 3.2 days.

(実施例4)
Al系廃材の製錬工程において、その溶湯液面上に分離されたアルミドロスを回収、冷却後、粉砕処理を行い平均粒径1〜50μmの金属粉を得た。このアルミドロスより製造された金属粉に、X線回折による定性分析を行った結果、この金属粉には、酸化アルミニウムを主成分とする母材金属相に、Alを始めとして、C、Na、Mg、Al、Si、Ca、Mn、Fe、Co、Ni、Cu、Znが含まれていた。
Example 4
In the smelting process of the Al-based waste material, the aluminum dross separated on the surface of the molten metal was recovered, cooled, and then pulverized to obtain metal powder having an average particle diameter of 1 to 50 μm. As a result of qualitative analysis by X-ray diffraction on the metal powder produced from this aluminum dross, the metal powder includes a base metal phase mainly composed of aluminum oxide, Al, C, Na, Mg, Al, Si, Ca, Mn, Fe, Co, Ni, Cu, and Zn were contained.

このアルミドロスより製造された金属粉を用いて、TCEに対する分解試験を以下のように行った。容量124mlのバイアル瓶中に、イオン交換水50ml、TCE1μl、およびアルミドロスの粉砕粉0.5gを投入し、シリコンライナー付きブチルゴムセプタムとアルミシールにより密封した。この密封時点からバイアル瓶内のTCE濃度を経時的に分析評価し、TCE濃度の半減期を求めたところ、4.2日であることが判明した。   Using the metal powder produced from this aluminum dross, a decomposition test for TCE was performed as follows. In a vial with a capacity of 124 ml, 50 ml of ion-exchanged water, 1 μl of TCE, and 0.5 g of crushed powder of aluminum dross were charged and sealed with a butyl rubber septum with a silicon liner and an aluminum seal. From the time of sealing, the TCE concentration in the vial was analyzed and evaluated over time, and the half-life of the TCE concentration was determined to be 4.2 days.

(分解反応速度定数の算出)
本発明のアルミドロスより製造した金属粉によるTCE分解の反応速度は、バイアル瓶
内のTCEの初期濃度をC0(例:mg/kg)、経過時間をt(day)、t(day-1)後におけるバイアル瓶内のTCEの濃度をC(例:mg/kg)とすると、以下の式1に示す擬一次反応式に従うことが明らかとなった。
ln(C/C0)=−k・t ……(式1)
ここで、k(day-1)を分解反応速度定数と呼び、本発明のアルミドロスより製造
した金属粉による、TCE分解の分解性能を表す指標として用いることができる。
(Calculation of decomposition reaction rate constant)
The reaction rate of TCE decomposition by the metal powder produced from the aluminum dross of the present invention is as follows. The initial concentration of TCE in the vial is C 0 (eg, mg / kg), the elapsed time is t (day), and t (day -1 ). ) Assuming that the concentration of TCE in the vial afterwards is C (example: mg / kg), it was found that the pseudo-first order reaction equation shown in the following equation 1 is followed.
ln (C / C 0 ) = − k · t (Formula 1)
Here, k (day −1 ) is referred to as a decomposition reaction rate constant, and can be used as an index representing the TCE decomposition performance of the metal powder produced from the aluminum dross of the present invention.

(実施例5)
シルト質土壌50gへTCEを1μlの割合で混合し、TCE濃度29.4mg/kgの模擬汚染土壌を調製した。この模擬汚染土壌に対して、実施例4に記載のアルミドロスより製造した金属粉を1.0wt%添加し、攪拌羽根付き粉体混合装置にて1分間混合処理を行い、20日間密閉容器内で静置した後に土壌中のTCE含有量を測定した。この結果、処理後のTCE濃度7.2mg/kgとなり、初期濃度29.4mg/kgから大きく減少した。分解反応速度定数は0.07day-1であった。
(Example 5)
TCE was mixed with 50 g of silty soil at a ratio of 1 μl to prepare a simulated contaminated soil having a TCE concentration of 29.4 mg / kg. To this simulated contaminated soil, 1.0 wt% of metal powder produced from aluminum dross described in Example 4 is added, mixed for 1 minute with a powder mixing device with stirring blades, and kept in a sealed container for 20 days. Then, the TCE content in the soil was measured. As a result, the TCE concentration after treatment was 7.2 mg / kg, which was greatly reduced from the initial concentration of 29.4 mg / kg. The decomposition reaction rate constant was 0.07 day −1 .

(実施例6)
実施例4に記載のアルミドロスより製造した金属粉に、Fe粉を1wt%混合した後、容量2Lの粉砕ポットに投入する。粉砕ポットにはさらに粉砕メディアとして20mm径のZrOボールを5kg投入し、回転ミルに設置した。そしてミルの回転数を100rpmとし20分間粉砕処理をおこなって、金属粉にFe相を付着させた。ここで得られたFe相が付着した金属粉を用いて、実施例5に記載したのと同様の模擬汚染土壌中のTCE分解試験を実施した。この結果、処理後のTCE濃度5.4mg/kgとなり、初期濃度29.4mg/kgから大きく減少した。分解反応速度定数は0.08day-1であ
った。
(Example 6)
1 wt% of Fe powder is mixed with the metal powder produced from aluminum dross described in Example 4, and then charged into a pulverization pot having a capacity of 2 L. Further, 5 kg of 20 mm-diameter ZrO 2 balls were added to the pulverization pot as a pulverization medium and placed in a rotary mill. The mill was rotated at 100 rpm for 20 minutes to adhere the Fe phase to the metal powder. A TCE decomposition test in simulated contaminated soil similar to that described in Example 5 was performed using the metal powder to which the Fe phase was adhered. As a result, the TCE concentration after treatment was 5.4 mg / kg, which was greatly reduced from the initial concentration of 29.4 mg / kg. The decomposition reaction rate constant was 0.08 day- 1 .

(比較例2)
Cを0.1wt%含有する平均粒径50μmの鉄粉を用い、実施例3と同様のTCEに対する分解試験を行なって、TCE濃度の半減期と分解反応速度定数とを求めた。この結果、半減期は11.6日、分解反応速度定数は0.06day-1であった。
(Comparative Example 2)
Using an iron powder containing 0.1 wt% of C and having an average particle diameter of 50 μm, the same decomposition test for TCE as in Example 3 was performed to determine the half-life of the TCE concentration and the decomposition reaction rate constant. As a result, the half-life was 11.6 days, and the decomposition reaction rate constant was 0.06 day −1 .

本発明に係る金属粉中の金属粒子を模式的に表現した拡大図である。It is the enlarged view which represented typically the metal particle in the metal powder which concerns on this invention.

符号の説明Explanation of symbols

1.母材金属相
2.付着金属相
3.金属粒子
4.金属粉
5.母材金属相と付着金属相との界面
d.付着金属相の付着膜厚
1. Base metal phase 2. Adhered metal phase Metal particles 4. 4. Metal powder Interface between base metal phase and adhering metal phase d. Adhering film thickness of adhering metal phase

Claims (7)

金属粉を構成する金属粒子であって、前記各々の金属粒子は、ニッケルを主成分とする金属相と、鉄を主成分とする金属相とを有し、
前記鉄を主成分とする金属相の表面に、前記ニッケルを主成分とする金属相が点在して付着していることを特徴とする有機ハロゲン化合物分解用金属粉。
Metal particles constituting metal powder, each metal particle has a metal phase mainly composed of nickel and a metal phase mainly composed of iron,
A metal powder for decomposing an organic halogen compound, characterized in that the metal phase mainly composed of nickel is scattered and adhered to the surface of the metal phase mainly composed of iron.
前記鉄を主成分とする金属相の表面に、前記ニッケルを主成分とする金属相が衝突圧力により接合し、点在して付着していることを特徴とする請求項1に記載の有機ハロゲン化合物分解用金属粉。   2. The organic halogen according to claim 1, wherein the metal phase containing nickel as a main component is bonded to the surface of the metal phase containing iron as a main component by a collision pressure and is scattered and adhered. Metal powder for compound decomposition. 前記鉄を主成分とする金属相の表面に、前記ニッケルを主成分とする金属相が接合し、境となる界面に両者の合金相が存在することなく、点在して付着していることを特徴とする請求項1または2に記載の有機ハロゲン化合物分解用金属粉。   The metal phase mainly composed of nickel is bonded to the surface of the metal phase mainly composed of iron, and the two alloy phases are scattered and adhered to the boundary interface. The metal powder for decomposing an organohalogen compound according to claim 1 or 2. 前記金属粉におけるニッケルの含有率が、0wt%を含まない20wt%以下であることを特徴とする請求項1から3のいずれかに記載の有機ハロゲン化合物分解用金属粉。   4. The metal powder for decomposing an organic halogen compound according to claim 1, wherein the content of nickel in the metal powder is 20 wt% or less not including 0 wt%. 前記金属粉におけるニッケルの含有率が、0wt%を含まない5wt%以下であることを特徴とする請求項1から3のいずれかに記載の有機ハロゲン化合物分解用金属粉。   4. The metal powder for decomposing an organohalogen compound according to claim 1, wherein a nickel content in the metal powder is 5 wt% or less not including 0 wt%. 請求項1から5のいずれかに記載の有機ハロゲン化合物分解用金属粉の製造方法であって、
粒径1〜500μmの鉄粒子と、それよりも小さな粒径を有するニッケル粒子とを、機械的に混合して接触させ、衝突圧力により両粒子を接合することを特徴とする有機ハロゲン化合物分解用金属粉の製造方法。
A method for producing a metal powder for decomposing an organohalogen compound according to any one of claims 1 to 5,
For organic halogen compound decomposition, characterized in that iron particles having a particle diameter of 1 to 500 μm and nickel particles having a smaller particle diameter are mechanically mixed and brought into contact with each other and both particles are joined by a collision pressure. A method for producing metal powder.
請求項1から5のいずれかに記載の有機ハロゲン化合物分解用金属粉を用いることを特徴とする、土壌および/または地下水および/または地表水の浄化方法。   A method for purifying soil and / or ground water and / or surface water, wherein the metal powder for decomposing an organic halogen compound according to any one of claims 1 to 5 is used.
JP2007036892A 2007-02-16 2007-02-16 Metal powder for decomposing organohalogen compounds, method for producing the same, and method for purifying soil and the like using the same Expired - Lifetime JP4848540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036892A JP4848540B2 (en) 2007-02-16 2007-02-16 Metal powder for decomposing organohalogen compounds, method for producing the same, and method for purifying soil and the like using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036892A JP4848540B2 (en) 2007-02-16 2007-02-16 Metal powder for decomposing organohalogen compounds, method for producing the same, and method for purifying soil and the like using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001336808A Division JP2003136051A (en) 2001-11-01 2001-11-01 Metal powder for decomposing organic halogen compound and method for cleaning soil using the same

Publications (2)

Publication Number Publication Date
JP2007301548A true JP2007301548A (en) 2007-11-22
JP4848540B2 JP4848540B2 (en) 2011-12-28

Family

ID=38835947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036892A Expired - Lifetime JP4848540B2 (en) 2007-02-16 2007-02-16 Metal powder for decomposing organohalogen compounds, method for producing the same, and method for purifying soil and the like using the same

Country Status (1)

Country Link
JP (1) JP4848540B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046985A (en) * 2009-08-26 2011-03-10 Jfe Mineral Co Ltd Decomposition material for organic halogen compound and method for producing the same
JP2015098010A (en) * 2013-11-20 2015-05-28 Jfeスチール株式会社 Iron powder for purifying ground water, and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283029A (en) * 1985-10-07 1987-04-16 Nara Kikai Seisakusho:Kk Method and apparatus for surface modification of solid particle
JPS62250942A (en) * 1986-04-23 1987-10-31 Nara Kikai Seisakusho:Kk Method for spreading and fixing metal to surface of solid particle
WO1997004868A1 (en) * 1995-08-02 1997-02-13 Monsanto Company Dehalogenation of halogenated hydrocarbons in aqueous compositions
JP2002161263A (en) * 2000-11-27 2002-06-04 Kawasaki Steel Corp Iron power for decomposing organic halogen compound, method for producing the same and method for making contaminated soil and/or contaminated underground water harmless

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6283029A (en) * 1985-10-07 1987-04-16 Nara Kikai Seisakusho:Kk Method and apparatus for surface modification of solid particle
JPS62250942A (en) * 1986-04-23 1987-10-31 Nara Kikai Seisakusho:Kk Method for spreading and fixing metal to surface of solid particle
WO1997004868A1 (en) * 1995-08-02 1997-02-13 Monsanto Company Dehalogenation of halogenated hydrocarbons in aqueous compositions
JP2002161263A (en) * 2000-11-27 2002-06-04 Kawasaki Steel Corp Iron power for decomposing organic halogen compound, method for producing the same and method for making contaminated soil and/or contaminated underground water harmless

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046985A (en) * 2009-08-26 2011-03-10 Jfe Mineral Co Ltd Decomposition material for organic halogen compound and method for producing the same
JP2015098010A (en) * 2013-11-20 2015-05-28 Jfeスチール株式会社 Iron powder for purifying ground water, and production method thereof

Also Published As

Publication number Publication date
JP4848540B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
KR100921261B1 (en) Iron Particles for Purifying Contaminated Soil or Ground Water, Process for Producing the Iron Particles, Purifying Agent Comprising the Iron Particles, Process for Producing the Purifying Agent and Method of Purifying Contaminated Soil or Ground Water
Lee et al. Steel dust catalysis for Fenton-like oxidation of polychlorinated dibenzo-p-dioxins
Vdović et al. Remobilization of metals from slag and polluted sediments (Case Study: The canal of the Deûle River, northern France)
JP2003136051A (en) Metal powder for decomposing organic halogen compound and method for cleaning soil using the same
JP4848540B2 (en) Metal powder for decomposing organohalogen compounds, method for producing the same, and method for purifying soil and the like using the same
JP2003080074A (en) Iron powder for dehalogenation decomposition of organic halogen compound and method for cleaning soil, water and/or gas
CN101146617B (en) Processes for production of organohalogen compound decomposing agents
JP5082043B2 (en) Method for treating water containing organic halogen compounds
JP4258622B2 (en) Purification agent for soil and groundwater contaminated with organic halogen compounds, its production method, and purification method for soil and groundwater contaminated with organic halogen compounds
JP2012126906A (en) Process for producing organohalogenic compound decomposing agent
JP4352215B2 (en) Iron composite particle powder for purification treatment of soil and groundwater containing aromatic halogen compounds, its production method, purification agent containing said iron composite particle powder, its production method, and purification treatment of soil and groundwater containing aromatic halogen compounds Method
JP4843776B2 (en) Metal powder for organic halogen decomposition and method for producing the same
JP4433173B2 (en) Iron composite particle powder for purification treatment of soil and groundwater, production method thereof, purification agent containing the iron composite particle powder, production method thereof, and purification treatment method of soil and groundwater
JP2002167602A (en) Iron powder, its production method and method for cleaning, contaminated soil, water and gas
KR101473314B1 (en) separation method of heavy metals in soil and waste water purification using magnetically separated particles acquired from the same
JP2003340465A (en) Method for cleaning waste water, groundwater or soil leachate
JP6187898B2 (en) Dioxin adsorbent, heavy metal adsorbent and method for producing the adsorbent
JP2004076027A (en) Environmental clean-up material, and manufacturing and operating method therefor
JP6421402B2 (en) Benzene adsorbent, its production method and benzene treatment method
JP4833505B2 (en) Iron powder for purification
JP4351022B2 (en) Organohalogen compound decomposer
JP4479890B2 (en) Purification agent for soil and groundwater purification, its production method, and soil and groundwater purification method
JP4786936B2 (en) Organohalogen compound treatment material
JP2010240636A (en) Decomposer for organohalogen compound, method for producing the same and method for purifying soil or water
JP4557126B2 (en) Iron composite particle powder for purification treatment of soil and groundwater contaminated with organic halogen compounds, its production method, purification agent containing the iron composite particle powder, its production method and purification treatment of soil and groundwater contaminated with organic halogen compounds Method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100902

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101029

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110927

R150 Certificate of patent or registration of utility model

Ref document number: 4848540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term