JP2007300937A - Packaged coffee drink and method for producing the same - Google Patents

Packaged coffee drink and method for producing the same Download PDF

Info

Publication number
JP2007300937A
JP2007300937A JP2007187800A JP2007187800A JP2007300937A JP 2007300937 A JP2007300937 A JP 2007300937A JP 2007187800 A JP2007187800 A JP 2007187800A JP 2007187800 A JP2007187800 A JP 2007187800A JP 2007300937 A JP2007300937 A JP 2007300937A
Authority
JP
Japan
Prior art keywords
component
coffee
beans
chlorogenic acids
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007187800A
Other languages
Japanese (ja)
Inventor
Akio Sugimoto
明夫 杉本
Hitoshi Kinugasa
仁 衣笠
Do Tsukamoto
働 塚本
Takayuki Ochi
貴之 越智
Nobuo Matsumoto
延夫 松本
Mitsuo Yashiro
三雄 社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ito En Ltd
Original Assignee
Ito En Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ito En Ltd filed Critical Ito En Ltd
Priority to JP2007187800A priority Critical patent/JP2007300937A/en
Publication of JP2007300937A publication Critical patent/JP2007300937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tea And Coffee (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a packaged coffee drink moderately containing chlorogenic acid, excellent in taste, and suppressed in deterioration in heating. <P>SOLUTION: The packaged coffee drink contains (A), (B) and (C) components as follows: (A) component α, (B) component β, and (C) chlorogenic acid. The packaged coffee drink is such that a peak area ratio of the component (A) appearing in a hold time of 2.0-2.3 min to the component (B) appearing in a hold time of 2.7-3.2 min is ä(A)/(B)}×100=30-100 on a chromatograph obtained by component analysis of a coffee extracted solution in the case of 260 nm of detected wavelength using a high speed liquid chromatograph, and a rate of content of 5-caffeoylquinic acid in the component (C) is 28.0-35.0 wt.%. A method for producing the packaged coffee drink is provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、クロロゲン酸類を適度に含有し、かつ呈味性に優れ、加温時の劣化が抑制された容器詰コーヒー飲料に関する。 The present invention relates to a packaged coffee beverage that contains chlorogenic acids in a moderate amount, is excellent in taste, and suppresses deterioration during heating.

コーヒーは世界中で愛飲されている嗜好性飲料である。通常の焙煎豆からの抽出やインスタントコーヒーの他、手軽に摂取可能な容器詰コーヒー飲料が広く普及している。また、近年、コーヒーに含まれる有用成分が注目されている。コーヒー飲料中に含まれる有用成分の1つにクロロゲン酸類がある。クロロゲン酸類の効果としては、SOD様作用が知られ、老化や種々の病気に関与している活性酸素や過酸化脂質の生成を抑制する働きがあり、抗酸化能を持つことが報告されている(例えば特許文献1、2参照)。クロロゲン酸類を含む天然ポリフェノールの1日の摂取目安量は成人1人あたり1gとされており(例えば特許文献3参照)、より簡便に摂取する方法が望まれていた。この方法の一つとして、クロロゲン酸類を含有する食品原料を通電処理することにより抗酸化能を向上させる方法がある(例えば特許文献4参照)。 Coffee is a palatability drink loved around the world. In addition to extraction from ordinary roasted beans and instant coffee, container-packed coffee drinks that can be ingested easily are widely used. In recent years, useful components contained in coffee have attracted attention. One useful component contained in coffee beverages is chlorogenic acids. As the effect of chlorogenic acids, SOD-like action is known, and it has been reported to have the ability to suppress the generation of active oxygen and lipid peroxides involved in aging and various diseases, and has an antioxidant ability. (For example, refer to Patent Documents 1 and 2). The daily intake standard amount of natural polyphenols containing chlorogenic acids is set to 1 g per adult (see, for example, Patent Document 3), and a method of taking more easily has been desired. As one of the methods, there is a method of improving the antioxidant ability by conducting a current treatment of a food material containing chlorogenic acids (see, for example, Patent Document 4).

また、クロロゲン酸類の中でも特に一般にネオクロロゲン酸と呼ばれる3−カフェオイルキナ酸(例えば特許文献5参照)が抗酸化能に優れていることが報告されており、これを簡便に摂取する方法として、デキストランゲルによりクロロゲン酸類を分離し配合率を変える方法(例えば特許文献6参照)、クロロゲン酸類を含む水溶液をアルカリ処理する方法がある(例えば特許文献7参照)。 In addition, among chlorogenic acids, 3-caffeoylquinic acid generally called neochlorogenic acid (see, for example, Patent Document 5) has been reported to be excellent in antioxidant ability, and as a method for easily ingesting this, There are a method in which chlorogenic acids are separated by dextran gel and the mixing ratio is changed (see, for example, Patent Document 6), and an aqueous solution containing chlorogenic acids is subjected to an alkali treatment (see, for example, Patent Document 7).

その他、3−カフェオイルキナ酸は5−カフェオイルキナ酸をアルカリ中で加熱することにより生成することが知られている(例えば非特許文献1)。 In addition, it is known that 3-caffeoylquinic acid is produced by heating 5-caffeoylquinic acid in an alkali (for example, Non-Patent Document 1).

また、クロロゲン酸類はコーヒー豆を焙煎した場合不安定な状態となり、コーヒー抽出液に殺菌処理を行うなどの熱履歴が重なると、酢酸、ギ酸、リンゴ酸、クエン酸等の低分子有機酸に分解し、その結果経時的に酸味が増し劣化を引き起こすことが知られている(例えば特許文献8)。 Chlorogenic acids become unstable when roasted coffee beans, and heat history such as sterilization of the coffee extract overlaps with low molecular organic acids such as acetic acid, formic acid, malic acid, citric acid, etc. It is known that it decomposes and, as a result, acidity increases over time and causes deterioration (for example, Patent Document 8).

一方、容器詰飲料を店頭や自動販売機で加温した場合、加温によりその品質が著しく劣化するという問題があり、これを解決するために、例えば香料を添加してマスキングする方法や、サイクロデキストリン及びアスコルビン酸又はアスコルビン酸塩を添加する方法が提案されている(例えば特許文献9参照)。 On the other hand, when a packaged beverage is heated at a store or a vending machine, there is a problem that the quality is remarkably deteriorated due to the heating. To solve this problem, for example, a method of masking by adding a fragrance, A method of adding dextrin and ascorbic acid or ascorbate has been proposed (see, for example, Patent Document 9).

しかしながら、上記いずれの方法を選択したとしても、コーヒー飲料抽出後に別の成分を添加、又は特殊な処理を行うことに起因して、コーヒー本来の風味が失われる、製造処理工程が増加することによりコストが増大するという欠点があった。また、クロロゲン酸類は多量に含有させると雑味の原因となるため(例えば特許文献10、11、12参照)、クロロゲン酸類を高濃度に含有させたまま呈味性を確保することは困難であった。 However, even if any of the above methods is selected, the original flavor of coffee is lost due to the addition of another component after coffee beverage extraction or a special treatment, resulting in an increase in manufacturing process steps. There was a disadvantage that the cost increased. In addition, since a large amount of chlorogenic acids can cause miscellaneous taste (see, for example, Patent Documents 10, 11, and 12), it is difficult to ensure tasteability while containing chlorogenic acids in a high concentration. It was.

特開2001−136910号公報JP 2001-136910 A 特開2002−080351号公報JP 2002-080351 A 特開2005−312301号公報JP 2005-312301 A 特開2003−102403号公報JP 2003-102403 A 特開2004−033023号広報JP 2004-033023 PR 特開平09−143465号公報JP 09-143465 A 特開2000−063827号公報JP 2000-063827 A 特開平07−050993号公報Japanese Patent Laid-Open No. 07-050993 特開2004−073057号公報Japanese Patent Laid-Open No. 2004-073057 特開2005−333927号公報JP 2005-333927 A 特開2003−204755号公報JP 2003-204755 A 特開2003−204756号公報JP 2003-204756 A 「高速液体クロマトグラフィーによるコーヒー入り飲料中のクロロゲン酸類およびカフェインの定量」植木隆、本田浩、桜井史郎 農林規格検査所発行 第10号 昭和61年3月(http://www.cfqlcs.go.jp/technical_information/investigation_research_report/rs10.htm)“Quantitative determination of chlorogenic acids and caffeine in beverages containing coffee by high-performance liquid chromatography” Takashi Ueki, Hiroshi Honda, Shiro Sakurai No.10, March 1986 (http: //www.cfqlcs.go) .jp / technical_information / investigation_research_report / rs10.htm)

本発明の目的は、クロロゲン酸類を適度に含有し、かつ呈味性に優れ、加温時の劣化が抑制された容器詰コーヒー飲料を提供することにある。 An object of the present invention is to provide a packaged coffee beverage that contains chlorogenic acids in an appropriate manner, has excellent taste, and suppresses deterioration during heating.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、本発明を想到するに至った。具体的には、本発明者らは、クロロゲン酸類中の5−カフェオイルキナ酸の含有率を特定の範囲内とすることにより容器詰コーヒー飲料の加温時における劣化を抑制でき、かつ成分α及びβのピーク面積比率を特定の範囲内とすることにより呈味性を改善できることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have come up with the present invention. Specifically, the present inventors can suppress deterioration during heating of a packaged coffee beverage by setting the content of 5-caffeoylquinic acid in chlorogenic acids within a specific range, and the component α And the peak area ratio of β is found to be within a specific range, whereby the taste can be improved.

より具体的には本発明は、以下の通りである。 More specifically, the present invention is as follows.

1.次の成分(A)、(B)及び(C):(A)ピークα成分(B)ピークβ成分(C)クロロゲン酸類を含有し、高速液体クロマトグラフィー装置を用いた検出波長260nmのコーヒー抽出液の成分分析により得られるクロマトグラム上で、保持時間が2.0〜2.3分に出現する成分(A)と保持時間が2.7〜3.2分に出現する成分(B)とのピーク面積比が{(A)/(B)}×100=30〜100であり、成分(C)中の成分5−カフェオイルキナ酸の含有率が28.0〜35.0重量%であることを特徴とする容器詰コーヒー飲料。2.1において、成分(C)の含有量がコーヒー固形量1.0重量%あたりの換算値で360ppm以上〜840ppm以下である容器詰コーヒー飲料。3.コーヒー豆を抽出して得られるコーヒー抽出液において、次の成分(A)、(B)及び(C):(A)ピークα成分(B)ピークβ成分(C)クロロゲン酸類を含有し、高速液体クロマトグラフィー装置を用いた検出波長260nmのコーヒー抽出液の成分分析により得られるクロマトグラム上で、保持時間が2.0〜2.3分に出現する成分(A)と保持時間が2.7〜3.2分に出現する成分(B)とのピーク面積比が{(A)/(B)}×100=30〜100であり、成分(C)中の成分5−カフェオイルキナ酸の含有率が28.0〜35.0重量%となるように調整することを特徴とする容器詰コーヒー飲料の製造方法。4.3における調整のために、L値16〜21.5の焙煎コーヒー豆と、L値22〜33の焙煎コーヒー豆とを100:0〜60:40の比率でブレンドすることを特徴とする容器詰コーヒー飲料の製造方法。5.3又は4において、得られたコーヒー抽出液にクロロゲン酸類を添加することを特徴とする容器詰コーヒー飲料の製造方法。 1. The following components (A), (B) and (C): (A) peak α component (B) peak β component (C) coffee extraction with a detection wavelength of 260 nm using a high performance liquid chromatography apparatus containing chlorogenic acids On the chromatogram obtained by component analysis of the liquid, the component (A) that appears at a retention time of 2.0 to 2.3 minutes and the component (B) that appears at a retention time of 2.7 to 3.2 minutes The peak area ratio is {(A) / (B)} × 100 = 30-100, and the content of component 5-caffeoylquinic acid in component (C) is 28.0-35.0% by weight. A containerized coffee drink characterized by being. 2.1, the container-packed coffee drink whose content of a component (C) is 360 ppm or more-840 ppm or less in the conversion value per 1.0 weight% of coffee solid content. 3. The coffee extract obtained by extracting coffee beans contains the following components (A), (B) and (C): (A) peak α component (B) peak β component (C) chlorogenic acids, high speed On a chromatogram obtained by component analysis of a coffee extract having a detection wavelength of 260 nm using a liquid chromatography apparatus, the component (A) having a retention time of 2.0 to 2.3 minutes and a retention time of 2.7 The peak area ratio with the component (B) appearing at ~ 3.2 minutes is {(A) / (B)} × 100 = 30-100, and the component 5-caffeoylquinic acid in the component (C) The manufacturing method of the container-packed coffee drink characterized by adjusting so that a content rate may be 28.0-35.0 weight%. For the adjustment in 4.3, roasted coffee beans having an L value of 16 to 21.5 and roasted coffee beans having an L value of 22 to 33 are blended in a ratio of 100: 0 to 60:40. A method for producing a containerized coffee beverage. In 5.3 or 4, the manufacturing method of the container-packed coffee drink characterized by adding chlorogenic acids to the obtained coffee extract.

本発明によれば、上記組成とすることにより、コーヒー中の有用成分であるクロロゲン酸類を適度に含有しつつも、呈味性に優れ、かつ加温時の劣化が抑制された容器詰コーヒー飲料を提供することが可能となる。 According to the present invention, a container-packed coffee beverage having excellent taste and suppressing deterioration during warming while appropriately containing chlorogenic acids, which are useful components in coffee, according to the present invention. Can be provided.

以下に、本発明の実施の態様について説明する。本明細書において使用する用語の意味は以下の通りである。 Hereinafter, embodiments of the present invention will be described. The meanings of terms used in this specification are as follows.

「(A)ピークα成分」とは、コーヒー豆を焙煎するほど増加する未同定の成分であり、具体的には、高速液体クロマトグラフィー(HPLC)を用いたコーヒー抽出液の成分分析の際に得られる、検出波長260nm、保持時間2.0〜2.3分に出現するピークに対応する成分である。該成分は、HPLC装置により測定が可能である。HPLC装置としては、市販の装置、例えば日立製作所社製の「LaChrom」、島津製作所社製の「LC−10A」が使用できるが、特に限定されない。測定条件は、該成分が検出可能なように適宜設定する。カラムは、該成分を検出可能なものであれば特に限定されないが、「inertsil ODS−2 Ф3.0×250mm」(GLサイエンス社製)を用いるのが好ましい。 “(A) Peak α component” is an unidentified component that increases as coffee beans are roasted. Specifically, in the component analysis of a coffee extract using high performance liquid chromatography (HPLC). The component corresponding to the peak appearing at a detection wavelength of 260 nm and a retention time of 2.0 to 2.3 minutes. The component can be measured with an HPLC apparatus. As the HPLC apparatus, a commercially available apparatus such as “LaChrom” manufactured by Hitachi, Ltd. or “LC-10A” manufactured by Shimadzu Corporation can be used, but is not particularly limited. The measurement conditions are appropriately set so that the components can be detected. The column is not particularly limited as long as the component can be detected, but “inertsil ODS-2 Ф 3.0 × 250 mm” (manufactured by GL Sciences) is preferably used.

「(B)ピークβ成分」とは、α成分とは逆に、コーヒー豆を焙煎するほど減少する未同定の成分であり、α成分と同様の条件で、HPLC装置により測定が可能である。具体的には、HPLC装置を用いたコーヒー抽出液の成分分析の際に得られる、検出波長260nm、保持時間2.7〜3.2分に出現するピークに対応する成分である。 The “(B) peak β component” is an unidentified component that decreases as the coffee beans are roasted, contrary to the α component, and can be measured by an HPLC apparatus under the same conditions as the α component. . Specifically, it is a component corresponding to a peak appearing at a detection wavelength of 260 nm and a retention time of 2.7 to 3.2 minutes, which is obtained in the component analysis of a coffee extract using an HPLC apparatus.

本明細書において、「(C)クロロゲン酸類」とは、3−カフェオイルキナ酸、5−カフェオイルキナ酸、4−カフェオイルキナ酸、3−フェラルキナ酸、5−フェラルキナ酸、4−フェラルキナ酸を合わせての総称である。また、それらの由来については特に限定されず、人工的に添加もしくは脱処理してもよい。 In the present specification, “(C) chlorogenic acids” means 3-caffeoylquinic acid, 5-caffeoylquinic acid, 4-caffeoylquinic acid, 3-feralquinic acid, 5-feralquinic acid, 4-ferralquinic acid. Is a collective term. Moreover, about the origin, it is not specifically limited, You may add or de-process artificially.

「5−カフェオイルキナ酸」は、成分(C)クロロゲン酸類に含まれる成分の1つである。クロロゲン酸類中で最も熱に弱く、コーヒー豆を焙煎するに従い低分子有機酸に分解するか、または3−カフェオイルキナ酸へ異性化する性質を有する。したがって、5−カフェオイルキナ酸はコーヒー豆の焙煎時間により含有量が変動し、結果としてクロロゲン酸類の総量が減少することとなる。また、異性化により3−カフェオイルキナ酸の含有率が高まるとクロロゲン酸類の抗酸化能は高くなるが、3−カフェオイルキナ酸は含有量が多くなり過ぎても抗酸化能への寄与が小さくなる。5−カフェオイルキナ酸が分解されて生じる低分子有機酸は酸味が強く、経時的な呈味性劣化の原因となり得る。なお、劣化は活性酸素(ラジカル)生成に起因することが知られている。ラジカル生成量が高まる程劣化が進行しており、逆にラジカル生成量を抑えることができれば劣化を抑制することができる。 “5-Caffeoylquinic acid” is one of the components contained in component (C) chlorogenic acids. It is most susceptible to heat among chlorogenic acids and has the property of degrading into low molecular organic acids as coffee beans are roasted or isomerizing into 3-caffeoylquinic acid. Therefore, the content of 5-caffeoylquinic acid varies depending on the roasting time of the coffee beans, and as a result, the total amount of chlorogenic acids decreases. In addition, when the content of 3-caffeoylquinic acid increases due to isomerization, the antioxidant capacity of chlorogenic acids increases. However, even if the content of 3-caffeoylquinic acid is excessive, it contributes to the antioxidant capacity. Get smaller. The low-molecular organic acid produced by the decomposition of 5-caffeoylquinic acid has a strong acidity and can cause a deterioration in taste over time. It is known that the deterioration is caused by the generation of active oxygen (radical). As the amount of radical generation increases, the deterioration progresses. Conversely, if the amount of radical generation can be suppressed, the deterioration can be suppressed.

本発明によれば、上記4成分を適切な範囲に調整することによって、クロロゲン酸類を適度に含有しつつも、呈味性に優れ、かつ加温時の劣化が抑制された容器詰コーヒー飲料を得ることができる。クロロゲン酸類量と呈味性の観点から、(A)成分αと(B)成分βのピーク面積比率{(A)/(B)}×100は30〜100に調整する。さらに優れた呈味性を維持するためには、40〜75、好ましくは50〜65となるように調整する。30未満ではクロロゲン酸類由来の雑味が顕著となるなどの呈味性低下が見られ、100以上ではクロロゲン酸類量が過小となるためである。 According to the present invention, by adjusting the above four components to an appropriate range, a container-packed coffee beverage that contains chlorogenic acids moderately, has excellent taste, and suppresses deterioration during heating. Obtainable. From the viewpoint of the amount of chlorogenic acids and taste, the peak area ratio {(A) / (B)} × 100 of (A) component α and (B) component β is adjusted to 30-100. Furthermore, in order to maintain the outstanding taste property, it adjusts so that it may become 40-75, Preferably it is 50-65. If it is less than 30, a taste deterioration such as a prominent taste derived from chlorogenic acids is observed, and if it is 100 or more, the amount of chlorogenic acids is too small.

(C)クロロゲン酸類は、品質面及び抗酸化能を得る観点から、コーヒー固形量1.0重量%あたりの換算値で360ppm〜840ppm、好ましくは440ppm〜710ppm、より好ましくは490ppm〜600ppm含有させるとよい。840ppmを越えると、大量のクロロゲン酸類が熱により低分子有機酸に分解するため経時的に酸味等を生じ易いので、注意すべきである。5−カフェオイルキナ酸の含有率は、クロロゲン酸類量と品質面及び抗酸化能の観点から、28.0%〜35.0%、より好ましくは28.8%〜31.5%、更に好ましくは29.5%〜31.0%に調整する。28.0%未満では、クロロゲン酸類量が過小となる上に3−カフェオイルキナ酸の含有率が高くなり過ぎて、抗酸化能への寄与が低下する。35.0%を越えると、3−カフェオイルキナ酸の含有率が少なくなり抗酸化能が低くなる上に、5−カフェオイルキナ酸の含有量が高いため、経時的に酸味が増加する。 (C) From the viewpoint of obtaining quality and antioxidant capacity, the chlorogenic acids are 360 ppm to 840 ppm, preferably 440 ppm to 710 ppm, more preferably 490 ppm to 600 ppm in terms of a conversion value per 1.0% by weight of coffee solids. Good. If it exceeds 840 ppm, it should be noted that a large amount of chlorogenic acids are decomposed by heat into low-molecular organic acids, so that acidity or the like tends to occur over time. The content of 5-caffeoylquinic acid is 28.0% to 35.0%, more preferably 28.8% to 31.5%, and still more preferably, from the viewpoint of the amount of chlorogenic acids, quality, and antioxidant capacity. Is adjusted to 29.5% to 31.0%. If it is less than 28.0%, the amount of chlorogenic acids becomes excessive and the content of 3-caffeoylquinic acid becomes too high, and the contribution to the antioxidant capacity is reduced. If it exceeds 35.0%, the content of 3-caffeoylquinic acid is reduced and the antioxidant capacity is lowered, and the content of 5-caffeoylquinic acid is high, so the acidity increases with time.

本発明の容器詰コーヒー飲料は、通常の方法により焙煎コーヒー豆を水又は熱水にて抽出することによって得ることもできるが、単一の抽出物のみでは本発明の組成を満たすことは困難であるので、複数の抽出物のブレンド及び/または各成分の添加により、成分(A)、(B)及び(C)が前記組成になるように調整して得ることが好ましい。例えば、L値16以上の深煎り焙煎コーヒー豆と、L値33以下の浅煎り焙煎コーヒー豆とを90:10の比率でブレンドして抽出すればよい。より詳細には、深煎り焙煎コーヒー豆のL値は16〜21.5、より好ましくは16.5〜20、更に好ましくは17〜19.5、特に好ましくは17.5〜18.0に調整する。浅煎り焙煎コーヒー豆のL値は22〜33、より好ましくは22.5〜27、更に好ましくは23〜26、特に好ましくは23.5〜25.5に調整する。ブレンド比率を100:0〜60:40、より好ましくは95:5〜70:30、更に好ましくは90:10〜8
0:20とすることにより、本発明の目的が達成される。
The container-packed coffee beverage of the present invention can also be obtained by extracting roasted coffee beans with water or hot water by a usual method, but it is difficult to satisfy the composition of the present invention with only a single extract. Therefore, it is preferable that the components (A), (B), and (C) are adjusted to have the above composition by blending a plurality of extracts and / or adding each component. For example, deep roasted coffee beans having an L value of 16 or more and shallow roasted coffee beans having an L value of 33 or less may be blended and extracted at a ratio of 90:10. More specifically, the deep roasted coffee beans have an L value of 16 to 21.5, more preferably 16.5 to 20, still more preferably 17 to 19.5, and particularly preferably 17.5 to 18.0. adjust. The L value of lightly roasted coffee beans is adjusted to 22 to 33, more preferably 22.5 to 27, still more preferably 23 to 26, and particularly preferably 23.5 to 25.5. Blend ratio is 100: 0-60: 40, more preferably 95: 5-70: 30, still more preferably 90: 10-8
By setting the ratio to 0:20, the object of the present invention is achieved.

用いるコーヒー豆の産地としては、ブラジル、コロンビア、タンザニア、モカ等が挙げられるが、特に限定されない。また、豆の品種としては、アラビカ種、ロブスタ種等が挙げられる。コーヒー豆は、1種類で用いても、複数の種類をブレンドして用いてもよい。焙煎は一般的な方法を用いて行い、各成分の調整に必要な抽出物を得るために焙煎の程度は適宜調整する。具体的には、焙煎を深くすると苦みが強くなり、焙煎が浅いと酸味が強くなる。 Examples of coffee beans used include Brazil, Colombia, Tanzania, and mocha, but are not particularly limited. Examples of bean varieties include Arabica and Robusta. One kind of coffee beans may be used, or a plurality of kinds may be blended. The roasting is performed using a general method, and the degree of roasting is appropriately adjusted in order to obtain an extract necessary for adjusting each component. Specifically, when the roasting is deepened, the bitterness becomes strong, and when the roasting is shallow, the acidity becomes strong.

コーヒー飲料のL値は、28〜62、より好ましくは33〜57、さらに好ましくは38〜52であることが好ましい。ここで、L値とは明度の指標となる値である。コーヒー飲料のL値は、色彩色差計CT−310(ミノルタ社製)を用いて、1cmセルで常法に従って測定することができる。 The L value of the coffee beverage is preferably 28 to 62, more preferably 33 to 57, and still more preferably 38 to 52. Here, the L value is a value serving as an index of brightness. The L value of the coffee beverage can be measured in a 1 cm cell using a color difference meter CT-310 (manufactured by Minolta) according to a conventional method.

本発明で規定している各成分を単独で添加することによっても、本発明の容器詰コーヒー飲料を製造することができる。クロロゲン酸類を単独添加して調整する場合は、クロロゲン酸類を含有する植物の抽出物を添加するのが好ましい。ここで用いることが可能なクロロゲン酸類を含有する植物原料としては、コーヒー(豆)、サンザシ、ブドウ、センキュウ、トウキ、オウレン、ウコン、アギ、カンショ、モロヘイヤ、ヒマワリ(種子)、リンゴ(果実)、タバコ(葉)、ナシ(葉)、モモ等が挙げられる。コーヒー飲料の呈味性の観点から言えば、コーヒーを原料とする抽出物を用いるのが好ましい。コーヒーを原料とする抽出物は、生コーヒー豆から抽出することが好ましい。生コーヒー豆抽出物は、生コーヒー豆を必要に応じて粉砕し、エタノール、含水エタノール、メタノール等を用いて室温から100℃の温度で抽出することにより得ることができる。また、フレーバーホルダーRC−30R、FH−1242等(長谷川香料社製)等の市販品を使用することもできる。また、5−カフェオイルキナ酸を単独添加する場合は、ヒマワリ種子を原料として、粉砕後水または含水アルコールで抽出して得られるヒマワリ種子抽出物をスチレン−ジビニルベンゼン系多孔性重合樹脂に吸着後メタノールのような有機溶媒で溶出処理して得られるクロロゲン酸類含有抽出物を、更に、デキストランゲル充填カラムに通して水で溶出することにより得られる溶出物を利用することができる。 The container-packed coffee beverage of the present invention can also be produced by adding each component specified in the present invention alone. When adjusting by adding chlorogenic acids alone, it is preferable to add a plant extract containing chlorogenic acids. Plant raw materials containing chlorogenic acids that can be used here include coffee (beans), hawthorn, grapes, senkyu, touki, auren, turmeric, agi, sweet potato, morohaya, sunflower (seed), apple (fruit), Examples include tobacco (leaves), pears (leaves), peaches, and the like. From the viewpoint of the taste of coffee beverages, it is preferable to use an extract made from coffee. The extract made from coffee is preferably extracted from green coffee beans. The raw coffee bean extract can be obtained by pulverizing the raw coffee beans as necessary and extracting the raw coffee beans at a temperature of room temperature to 100 ° C. using ethanol, hydrous ethanol, methanol or the like. Moreover, commercial items, such as flavor holder RC-30R, FH-1242 (made by Hasegawa Koryo Co., Ltd.), can also be used. In addition, when 5-caffeoylquinic acid is added alone, sunflower seed extract obtained by extracting sunflower seeds with water or hydrous alcohol after pulverization is adsorbed on styrene-divinylbenzene porous polymer resin. The eluate obtained by eluting the chlorogenic acid-containing extract obtained by elution treatment with an organic solvent such as methanol through a dextran gel packed column with water can be used.

また、本発明の容器詰コーヒー飲料には、所望により、ショ糖、グルコース、フルクトース、キシロース、果糖ブドウ糖液、糖アルコール等の糖分、乳成分、抗酸化剤、pH調整剤、乳化剤、香料等を添加することができる。乳成分としては、生乳、牛乳、全粉乳、脱脂粉乳、生クリーム、濃縮乳、脱脂乳、部分脱脂乳、れん乳等が挙げられる。本発明のコーヒー飲料のpHとしては、3〜7、さらに4〜7、特に5〜7が飲料の安定性の面で好ましい。 In addition, the container-packed coffee beverage of the present invention optionally contains sugars such as sucrose, glucose, fructose, xylose, fructose glucose solution, sugar alcohol, milk components, antioxidants, pH adjusters, emulsifiers, flavors and the like. Can be added. Examples of the milk component include raw milk, cow milk, whole milk powder, skim milk powder, fresh cream, concentrated milk, skim milk, partially skimmed milk, and milk. The pH of the coffee beverage of the present invention is preferably 3 to 7, more preferably 4 to 7, and particularly preferably 5 to 7 in terms of beverage stability.

抗酸化剤としては、アスコルビン酸又はその塩、エリソルビン酸又はその塩等が挙げられるが、このうちアスコルビン酸又はその塩等が特に好ましい。 Examples of the antioxidant include ascorbic acid or a salt thereof, erythorbic acid or a salt thereof, etc. Among them, ascorbic acid or a salt thereof is particularly preferable.

乳化剤としては、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、微結晶セルロース、レシチン類、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル等が好ましい。 As the emulsifier, sucrose fatty acid ester, glycerin fatty acid ester, microcrystalline cellulose, lecithins, sorbitan fatty acid ester, polyglycerin fatty acid ester and the like are preferable.

本発明に用いる容器としては、PETボトル、缶(アルミニウム、スチール)、紙、レトルトパウチ、瓶(ガラス)等が挙げられる。 Examples of the container used in the present invention include PET bottles, cans (aluminum, steel), paper, retort pouches, bottles (glass), and the like.

本発明におけるコーヒー抽出液の殺菌処理は、金属缶のように容器に充填後加熱殺菌できる場合にあっては、食品衛生法に定められた殺菌条件で行われる。PETボトル、紙容器のようにレトルト殺菌できないものについては、予め食品衛生法に定められた条件と同等の殺菌条件、例えばプレート式熱交換器で高温短時間殺菌後、一定の温度迄冷却して容器に充填する等の方法が採用される。 The sterilization treatment of the coffee extract in the present invention is performed under the sterilization conditions stipulated in the Food Sanitation Law when the container can be heat sterilized after filling into a container like a metal can. For items such as PET bottles and paper containers that cannot be sterilized by retort, sterilization conditions equivalent to those stipulated in the Food Sanitation Law in advance, such as high-temperature and short-time sterilization using a plate heat exchanger, are cooled to a certain temperature. A method such as filling the container is adopted.

以下、実施例により本発明をさらに詳細に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, the scope of the present invention is not limited to these Examples.

[1.クロロゲン酸類、及び成分(α、β)の分析法]クロロゲン酸類、成分(α、β)の分析方法として、HPLCによるグラジェント溶出法を用いた。分析機器としては、HPLC本体にWaters 2695セパレーションモジュール(日本ウォーターズ社製)を用い、検出器としてWaters 2996 PDA(日本ウォーターズ社製)を用いた。分析条件は以下の通りである。 [1. Method for Analyzing Chlorogenic Acids and Components (α, β)] As a method for analyzing chlorogenic acids and components (α, β), a gradient elution method by HPLC was used. As an analytical instrument, a Waters 2695 separation module (manufactured by Nihon Waters) was used for the HPLC main body, and a Waters 2996 PDA (manufactured by Nihon Waters) was used as a detector. The analysis conditions are as follows.

Figure 2007300937
Figure 2007300937

Figure 2007300937
Figure 2007300937

[(1)−1 クロロゲン酸類の定量方法]検量線作成方法:・5−カフェオイルキナ酸(5−CQA)の標準品(和光純薬工業社製)を蒸留水で20ppm〜100ppm程度の範囲内で3段階の濃度になるように調製し標準液とした。各濃度の標準液をHPLCに注入し、得られたピーク面積値と濃度から3点検量線を作成した。・試料の調整及び定量方法:各試料5mLを正確に量り、25mLのメスフラスコに入れ蒸留水で定容し、0.45μmのフィルターで濾過後、HPLCに注入し、前記3点検量線法により5−CQAを定量した。また、3−カフェオイルキナ酸(3−CQA)、4−カフェオイルキナ酸(4−CQA)、3−フェルラキナ酸(3−FQA)、5−フェルラキナ酸(5−FQA)、4−フェルラキナ酸(4−FQA)の定量については、標準品がないため定性のみ行い、各ピークの面積値を5−CQAの検量線を用いて推定値として算出し、6種類のクロロゲン酸類の合計値をクロロゲン酸類量とした。 [(1) -1 Quantitative determination method of chlorogenic acids] Calibration curve generation method: A standard product of 5-caffeoylquinic acid (5-CQA) (manufactured by Wako Pure Chemical Industries, Ltd.) in a range of about 20 ppm to 100 ppm with distilled water. A standard solution was prepared by adjusting the concentration to 3 levels. A standard solution of each concentration was injected into the HPLC, and a 3-check curve was created from the obtained peak area value and concentration. Sample preparation and quantification method: Weigh accurately 5 mL of each sample, place in a 25 mL volumetric flask, make a constant volume with distilled water, filter with a 0.45 μm filter, inject into HPLC, 5-CQA was quantified. Moreover, 3-caffeoylquinic acid (3-CQA), 4-caffeoylquinic acid (4-CQA), 3-ferlaquinic acid (3-FQA), 5-ferlaquinic acid (5-FQA), 4-ferlaquinic acid For the quantification of (4-FQA), there is no standard product, so only qualitative is performed, the area value of each peak is calculated as an estimated value using a 5-CQA calibration curve, and the total value of 6 types of chlorogenic acids is calculated as chlorogen. The amount of acids was used.

[(1)−2 成分(α、β)の分析方法] 成分(α、β)については、未同定であるが、(1)−1 クロロゲン酸類の分析時に得られる検出波長260nmでのクロマトグラムを用いて各成分のピーク面積値を解析し、{α成分の面積/β成分の面積}×100で求められる面積比(α/β値)を算出した。 [(1) -2 Method for Analyzing Components (α, β)] Although the components (α, β) have not yet been identified, (1) -1 Chromatogram at a detection wavelength of 260 nm obtained upon analysis of chlorogenic acids. Was used to analyze the peak area value of each component, and the area ratio (α / β value) obtained by {area of α component / area of β component} × 100 was calculated.

Figure 2007300937
Figure 2007300937

α成分については、前記HPLC条件により保持時間2.217minに検出され、最大吸収波長が 257.9nmであり、焙煎することにより増加する成分であることが今回明らかになった。β成分については、前記HPLC条件により保持時間2.915minに検出され、最大吸収波長が263.8nmであり、焙煎することにより減少する成分であることが今回明らかになった。表3に、各原料豆で試作したコーヒー飲料の検出波長260nmにおけるクロマトグラムを示す。表3上段は浅煎り豆で試作したコーヒー飲料のα成分及びβ成分、表3中段は中煎り豆で試作したコーヒー飲料のα成分及びβ成分、表3下段は深煎り豆で試作したコーヒー飲料のα成分及びβ成分である。 The α component was detected at a retention time of 2.217 min under the above HPLC conditions, and the maximum absorption wavelength was 257.9 nm, which was revealed this time as a component that increases by roasting. The β component was detected at a retention time of 2.915 min under the HPLC conditions, and the maximum absorption wavelength was 263.8 nm. This time, it was revealed that this component is reduced by roasting. In Table 3, the chromatogram in the detection wavelength of 260 nm of the coffee drink made as an experiment with each raw material bean is shown. The top row of Table 3 is the α and β components of the coffee beverages made with lightly roasted beans, the middle row of Table 3 is the α and β components of the coffee beverages made with medium roasted beans, and the bottom row of Table 3 is the coffee beverages made with deeply roasted beans. Α component and β component.

[(1)−3 ヒドロキシラジカルの測定方法] ラジカル(活性酸素)は品質劣化の指標となる物質であり、生成量が高まる程劣化が進行していることを示す。ヒドロキシラジカルの測定方法は、各試料を60℃にて加熱し、各時間毎に生成されるヒドロキシラジカルをESR法にて測定した。 (T. Am. Soc. Brew. Chem. 54(4): 198-205, 205-211, 1996に準ずる。) 試薬はスピントラップ剤:PBN(N-tert-Butyl-α-phenylnitrone)(和光純薬工業社製)を使用し、スピントラップ剤である試薬を50%エタノールで2.55Mに調整し、0.16mLを各試料8mLに添加後、よく撹拌した。この溶液を恒温浴槽内で60℃にて加熱を行い、各時間毎に生成されるヒドロキシラジカルをESRにより測定し、ヒドロキシラジカルのピーク高さ(PBN−OH)をMn(内標)に対する相対比として算出した。ESRの測定条件は表4の通りである。各試料を加熱したときに生成されるヒドロキシラジカルは、縦軸にラジカル生成量(Mnに対する相対比)を、横軸に加熱時間(min)を取った場合に、ある傾きを持った近似直線式で表すことができ、その直線式の傾き(ラジカル生成速度)をラジカルの生成量として評価した。 [(1) -3 Method for Measuring Hydroxyl Radical] A radical (active oxygen) is a substance that serves as an indicator of quality degradation, and indicates that degradation is progressing as the amount of production increases. As a method for measuring hydroxy radicals, each sample was heated at 60 ° C., and the hydroxy radicals generated every time were measured by the ESR method. (According to T. Am. Soc. Brew. Chem. 54 (4): 198-205, 205-211, 1996.) The reagent is a spin trap agent: PBN (N-tert-Butyl-α-phenylnitrone) (Jun Wako) The reagent which is a spin trap agent was adjusted to 2.55M with 50% ethanol, and 0.16 mL was added to 8 mL of each sample, and stirred well. This solution is heated in a thermostatic bath at 60 ° C., and the hydroxy radicals generated every time are measured by ESR, and the peak height of the hydroxy radicals (PBN-OH) is relative to Mn (inner standard). Calculated as Table 4 shows the measurement conditions of ESR. Hydroxy radicals generated when each sample is heated are approximate linear equations with a certain slope when the amount of radical generation (relative to Mn) is plotted on the vertical axis and the heating time (min) is plotted on the horizontal axis. The slope of the linear equation (radical production rate) was evaluated as the amount of radical production.

Figure 2007300937
Figure 2007300937

[実施例1](焙煎度合いの異なる原料豆で試作したコーヒー飲料の比較) 焙煎度合いの異なる原料豆単独で試作したコーヒー飲料のクロロゲン酸類含有量、成分αとβとの面積比、及び加熱時におけるラジカル生成量を調査した。 [Example 1] (Comparison of coffee drinks prototyped with raw beans having different roasting degrees) Content of chlorogenic acids, area ratio of components α and β, and coffee beverages prototyped with raw beans having different roasting degrees, and The amount of radicals generated during heating was investigated.

コーヒー豆の焙煎には5kgの釜を有する半熱風ドラム式サンプルロースターを使用した。バーナーに点火後、中火に調整し、ドラム内温度が200℃になった地点でブラジル生豆3kgを投入した。バーナーの火力を中火に保持したまま目的の焙煎度合いに達するまで焙煎し、焙煎後に排出、冷却を実施した。本検討に用いた各焙煎豆の焙煎時間と排出時のドラム内温度は表5の通りであった。焙煎したコーヒー豆はコーヒーカッターにて粉砕し、日本電色工業社の分光式色差計SE2000により表面色を測定した。 A semi-hot air drum type sample roaster having a 5 kg kettle was used for roasting coffee beans. After igniting the burner, the medium heat was adjusted, and 3 kg of Brazilian beans were introduced when the temperature inside the drum reached 200 ° C. It was roasted until the target roasting degree was reached while maintaining the burner's heating power at medium heat, and then discharged and cooled after roasting. Table 5 shows the roasting time of each roasted bean used in this study and the temperature in the drum at the time of discharge. The roasted coffee beans were crushed with a coffee cutter, and the surface color was measured with a spectroscopic color difference meter SE2000 manufactured by Nippon Denshoku Industries Co., Ltd.

Figure 2007300937
Figure 2007300937

コーヒー飲料の抽出は、300gの粉砕した焙煎コーヒー豆をコーヒー抽出機に投入した。豆表面を平らにならした後に抽出機上部より95℃の熱水をシャワーリングし、豆全体に熱水が浸透したのを確認した後にシャワーリングを継続しながら抽出液を回収した。その後、品質を保持するために得られた抽出液を30℃程度まで冷却した。また冷却した抽出液についてネル布を用いて濾過を行い、コーヒーの不溶性固形分を除去した。最終的にはコーヒー豆に対して5倍量にあたる約1500gの抽出液を得た。抽出効率想定は25%、シャワーリング開始から抽出液回収終了までの時間は30分だった。 For extraction of the coffee beverage, 300 g of pulverized roasted coffee beans were put into a coffee extractor. After flattening the bean surface, hot water at 95 ° C. was showered from the top of the extractor. After confirming that hot water had permeated the whole bean, the extract was collected while continuing showering. Thereafter, the extract obtained to maintain the quality was cooled to about 30 ° C. The cooled extract was filtered using flannel cloth to remove insoluble solids from the coffee. Eventually, about 1500 g of extract corresponding to 5 times the amount of coffee beans was obtained. The extraction efficiency was assumed to be 25%, and the time from the start of showering to the end of extraction liquid recovery was 30 minutes.

コーヒー抽出液の調製は、コーヒー固形量が1.0重量%になるように蒸留水で調整し、同時に重炭酸ナトリウム0.05重量%を添加してブラックコーヒーを調整した。 The coffee extract was adjusted with distilled water so that the coffee solid content was 1.0% by weight, and at the same time 0.05% by weight of sodium bicarbonate was added to prepare black coffee.

充填および殺菌方法は、調製したブラックコーヒーを90℃まで加熱した後、缶に充填し巻き締めをした。その後121℃、10分の条件にてレトルト殺菌を行った。 In the filling and sterilization method, the prepared black coffee was heated to 90 ° C., then filled into a can and wound. Thereafter, retort sterilization was performed at 121 ° C. for 10 minutes.

Figure 2007300937
Figure 2007300937

表6の結果から、焙煎度合いの異なる原料豆で試作したコーヒー飲料では、浅煎り豆を原料としたサンプル1ではクロロゲン酸類含有量が高くなり、且つα成分が少なくβ成分が多いため、面積比α/β値は低い値となった。また、サンプル1では加熱時におけるラジカル生成量も多いことが明らかになった。一方、深煎り豆を原料としたサンプル3ではクロロゲン酸類含有量が低くなり、且つα成分が増加しβ成分が減少するため、面積比α/β値は高い値となった。また、サンプル3では加熱時におけるラジカル生成量も少ないことが明らかになった。 From the results of Table 6, in the coffee beverages made with raw beans with different degrees of roasting, sample 1 made from lightly roasted beans has a high chlorogenic acid content and a small α component and a large β component. The ratio α / β value was low. Further, it was revealed that Sample 1 also has a large amount of radicals generated during heating. On the other hand, in the sample 3 using deep roasted beans as the raw material, the chlorogenic acid content was low, the α component increased, and the β component decreased, so the area ratio α / β value was high. Sample 3 also showed that the amount of radicals generated during heating was small.

[実施例2](焙煎度合いの異なる原料豆をブレンドしたコーヒー飲料の比較) 焙煎度合いの異なる原料豆をブレンドして試作したコーヒー飲料のクロロゲン酸類含有量、成分α及びβの面積比、及び加熱時におけるラジカル生成量を調査した。 [Example 2] (Comparison of coffee beverages blended with raw beans having different roasting degrees) Content of chlorogenic acids, area ratio of components α and β of coffee beverages prepared by blending raw beans with different roasting degrees, And the amount of radicals generated during heating was investigated.

生豆の焙煎方法、及びコーヒー飲料の製造方法は、実施例1と同様の方法で行った。焙煎度合いの異なる原料豆を下記のようにブレンドして、実施例1の製造方法によりコーヒー固形量が1.0重量%になるようにコーヒー飲料を製造し、クロロゲン酸類量、成分(α、β)、及びラジカル生成量を調査した。結果を表7に示す。 The method for roasting green beans and the method for producing a coffee beverage were performed in the same manner as in Example 1. Raw beans with different degrees of roasting are blended as follows, and a coffee beverage is produced by the production method of Example 1 so that the coffee solid content is 1.0% by weight, and the amount of chlorogenic acids, components (α, β) and the amount of radical generation were investigated. The results are shown in Table 7.

Figure 2007300937
Figure 2007300937

表7の結果から、焙煎度合いの異なる原料豆をブレンドしたコーヒー飲料でも、浅煎り豆のブレンド比が高いサンプル1及び2ではクロロゲン酸含有量が高くなり、且つα成分とβ成分の面積比が低い値となった。また、サンプル1及び2では加熱時におけるラジカル生成量も多いことが明らかになった。一方、深煎り豆のブレンド比が高いサンプル4及び5ではクロロゲン酸類含有量が低くなり、且つα成分とβ成分の面積比も高い値となった。また、サンプル4及び5では加熱時におけるラジカル生成量も少なくなることが明らかになった。これらの結果から、浅煎り豆を多くブレンドした原料豆で試作したコーヒー飲料では、クロロゲン酸類含有量が高く、且つα成分とβ成分との面積比が低くなり、加熱時におけるラジカル生成量
も多くなることが明らかになった。
From the results of Table 7, even in coffee beverages blended with raw beans with different degrees of roasting, samples 1 and 2 with a high blend ratio of shallow roast beans have a higher chlorogenic acid content and an area ratio of α and β components. Became a low value. Samples 1 and 2 also showed that the amount of radicals generated during heating was large. On the other hand, in samples 4 and 5 having a high blend ratio of deep roasted beans, the chlorogenic acid content was low, and the area ratio of the α and β components was also high. In addition, it was found that Samples 4 and 5 also reduce the amount of radicals generated during heating. From these results, coffee beverages made with raw beans blended with a lot of lightly roasted beans have a high chlorogenic acid content, a low area ratio of α and β components, and a large amount of radicals generated during heating. It became clear that

[実施例3](クロロゲン酸類含有量、α成分/β成分の面積比、及び加熱時のラジカル生成量と加温保管後の官能評価の関係) 焙煎度合いの異なる原料豆をブレンドして試作したコーヒー飲料のクロロゲン酸類含有量、α成分とβ成分との面積比、及び加熱時のラジカル生成量が加温保管後(70℃2週間)の品質劣化に及ぼす影響を調査した。 [Example 3] (Relationship between chlorogenic acid content, α component / β component area ratio, radical generation amount during heating and sensory evaluation after warming storage) Prototype by blending raw beans with different degrees of roasting The effects of the chlorogenic acid content, the area ratio between the α component and the β component, and the amount of radicals generated during heating on quality deterioration after heating storage (70 ° C. for 2 weeks) were investigated.

生豆の焙煎方法、及びコーヒー飲料の製造方法は、実施例1と同様の方法で行った。70℃2週間保管後の各試料に関して、官能評価、及び酸味の強度を5段階で評価した。尚、官能評価はコーヒーの香味に関して識別能力に優れた5人のパネラーにより実施した。 The method for roasting green beans and the method for producing a coffee beverage were performed in the same manner as in Example 1. For each sample after storage at 70 ° C. for 2 weeks, sensory evaluation and sourness intensity were evaluated in five stages. In addition, sensory evaluation was implemented by five panelists who were excellent in discrimination ability regarding the flavor of coffee.

実施例2と同様、焙煎度合いの異なる原料豆を表8のようにブレンドして、実施例1の製造方法によりコーヒー固形量が1.0重量%になるようにコーヒー飲料を製造し、クロロゲン酸類量、成分(α、β)、及びラジカル生成量を調査した。 As in Example 2, raw beans having different roasting degrees were blended as shown in Table 8, and a coffee beverage was produced by the production method of Example 1 so that the coffee solid content was 1.0% by weight. The amount of acids, components (α, β), and radical generation amount were investigated.

Figure 2007300937
Figure 2007300937

Figure 2007300937
Figure 2007300937

表8及び表9の結果から、これまでと同様、焙煎度合いの異なる原料豆をブレンドしたコーヒー飲料では、浅煎り豆のブレンド比が高くなると、クロロゲン酸類含有量が高く、且つα成分とβ成分の面積比が低い値となった。また、加熱時におけるラジカル生成量も浅煎り豆のブレンド比が高くなると多くなった。一方、深煎り豆のブレンド比が高くなると、クロロゲン酸類含有量が低くなり、且つα成分とβ成分の面積比も高い値となった。また、加熱時におけるラジカル生成量も深煎り豆のブレンド比が高くなると少なくなった。 From the results of Tables 8 and 9, as in the past, in coffee beverages blended with raw beans with different degrees of roasting, the content of chlorogenic acids increases and the α component and β The area ratio of the components was low. In addition, the amount of radicals generated during heating increased as the blend ratio of shallow roasted beans increased. On the other hand, when the blend ratio of deep roasted beans increased, the chlorogenic acid content decreased, and the area ratio of the α component and the β component also increased. In addition, the amount of radicals generated during heating decreased as the blend ratio of deep roasted beans increased.

70℃2週間保存後の官能評価の結果、浅煎り豆のブレンド比が高いサンプル1及び2では、発酵様の劣化臭が強く感じられるようになり、サンプル1では雑味も多く感じられるようになった。一方、焙煎度合いが強い深煎り豆を用いたサンプル9及び10では雑味、焦げ臭、酸味等が強く感じられ、サンプル8でも酸味が強く感じられた。以上の結果から、浅煎り豆のブレンド比が高くなると、クロロゲン酸類含有量が多く劣化の原因の1つとされるラジカル生成量も多くなり、加温保管による劣化が起こり発酵臭等が強く感じられるものと思われた。また、深煎り豆では焙煎度合いが強くなるとクロロゲン酸類量も低く、ラジカル生成量も少なくなったが、加温保管後における雑味、焦げ味、酸味等が強くなる傾向になった。以上の結果から、サンプル3からサンプル8までが官能評価が良好でかつ総合評価も良かった。 As a result of sensory evaluation after storage at 70 ° C. for 2 weeks, samples 1 and 2 with a high blend ratio of lightly roasted beans feel a strong fermentation-like odor, and sample 1 has a lot of miscellaneous taste. became. On the other hand, in samples 9 and 10 using deep roasted beans with a strong roast degree, miscellaneous taste, burnt odor, acidity, etc. were strongly felt, and in sample 8, acidity was also felt strongly. From the above results, when the blend ratio of lightly roasted beans increases, the amount of chlorogenic acids increases and the amount of radical generation that is one of the causes of deterioration also increases, causing deterioration due to warm storage and a strong smell of fermentation etc. It seemed to be something. Further, deep roasted beans had a lower amount of chlorogenic acids and a lower radical generation amount when the degree of roasting was stronger, but there was a tendency for miscellaneous taste, burnt taste, sour taste, etc. after warming storage to become stronger. From the above results, the sensory evaluation from sample 3 to sample 8 was good and the overall evaluation was also good.

[実施例4](中煎り豆で試作したコーヒー飲料と浅煎り豆と深煎り豆をブレンドしたコーヒー飲料の比較) クロロゲン酸類含有量を同程度にした中煎り豆のコーヒー飲料と浅煎り豆と深煎り豆をブレンドしたコーヒー飲料の加熱時におけるラジカル生成量、及び加温保管後(70℃2週間)の品質劣化状況を調査した。 [Example 4] (Comparison of coffee drink made with medium roasted beans, coffee drink blended with light roasted beans and deep roasted beans) The amount of radicals generated during the heating of the coffee beverage blended with deep roasted beans and the state of quality deterioration after heated storage (70 ° C. for 2 weeks) were investigated.

生豆の焙煎方法、及びコーヒー飲料の製造方法は、実施例1と同様の方法で行った。官能評価方法は、実施例3と同様の方法で行った。 The method for roasting green beans and the method for producing a coffee beverage were performed in the same manner as in Example 1. The sensory evaluation method was performed in the same manner as in Example 3.

実施例2と同様、焙煎度合いの異なる原料豆を表10のようにブレンドして、実施例1の製造方法によりコーヒー固形量が1.0重量%になるようにコーヒー飲料を製造し、クロロゲン酸類量、成分(α、β)及びラジカル生成量を調査した。 As in Example 2, raw beans having different roasting degrees were blended as shown in Table 10, and a coffee beverage was produced by the production method of Example 1 so that the coffee solid content was 1.0% by weight. Chlorogen The amount of acids, components (α, β), and radical production were investigated.

Figure 2007300937
Figure 2007300937

Figure 2007300937
Figure 2007300937

表10及び表11の結果より、中煎り豆単独で試作したサンプル1及び3では穀物感があり雑味、酸味等が強く感じられたが、深煎り豆と浅煎り豆をブレンドすることで、サンプル2では深煎り豆由来のビター感が感じられ風味良好であった。従って、同程度のクロロゲン酸類濃度であっても深煎り豆と浅煎り豆をブレンドした方が、風味良好であり加温保管後でも安定していた。しかし、浅煎り豆のブレンド比が高く、クロロゲン酸類量が多いサンプル4では、発酵臭が感じられるようになった。 From the results of Tables 10 and 11, Samples 1 and 3 that were made with medium roasted beans alone had a grainy feeling and a strong taste, acidity, etc., but by blending deep roasted beans and shallow roasted beans, In sample 2, a bitter feeling derived from deep roasted beans was felt and the flavor was good. Therefore, blending deep roasted beans and light roasted beans with a similar chlorogenic acid concentration gave a better flavor and was stable even after warm storage. However, sample 4 with a high blend ratio of lightly roasted beans and a large amount of chlorogenic acids began to feel a fermentation odor.

Claims (5)

次の成分(A)、(B)及び(C):(A)ピークα成分(B)ピークβ成分(C)クロロゲン酸類を含有し、高速液体クロマトグラフィー装置を用いた検出波長260nmのコーヒー抽出液の成分分析により得られるクロマトグラム上で、保持時間が2.0〜2.3分に出現する成分(A)と保持時間が2.7〜3.2分に出現する成分(B)とのピーク面積比が{(A)/(B)}×100=30〜100であり、成分(C)中の成分5−カフェオイルキナ酸の含有率が28.0〜35.0重量%であることを特徴とする容器詰コーヒー飲料。 The following components (A), (B) and (C): (A) peak α component (B) peak β component (C) coffee extraction with a detection wavelength of 260 nm using a high performance liquid chromatography apparatus containing chlorogenic acids On the chromatogram obtained by component analysis of the liquid, the component (A) that appears at a retention time of 2.0 to 2.3 minutes and the component (B) that appears at a retention time of 2.7 to 3.2 minutes The peak area ratio is {(A) / (B)} × 100 = 30-100, and the content of component 5-caffeoylquinic acid in component (C) is 28.0-35.0% by weight. A containerized coffee drink characterized by being. 成分(C)の含有量がコーヒー固形量1.0重量%あたりの換算値で360ppm以上〜840ppm以下である請求項1記載の容器詰コーヒー飲料。 The container-packed coffee beverage according to claim 1, wherein the content of the component (C) is 360 ppm to 840 ppm in terms of a converted value per 1.0% by weight of coffee solids. コーヒー豆を抽出して得られるコーヒー抽出液において、次の成分(A)、(B)及び(C):(A)ピークα成分(B)ピークβ成分(C)クロロゲン酸類を含有し、高速液体クロマトグラフィー装置を用いた検出波長260nmのコーヒー抽出液の成分分析により得られるクロマトグラム上で、保持時間が2.0〜2.3分に出現する成分(A)と保持時間が2.7〜3.2分に出現する成分(B)とのピーク面積比が{(A)/(B)}×100=30〜100であり、成分(C)中の成分5−カフェオイルキナ酸の含有率が28.0〜35.0重量%となるように調整することを特徴とする容器詰コーヒー飲料の製造方法。 The coffee extract obtained by extracting coffee beans contains the following components (A), (B) and (C): (A) peak α component (B) peak β component (C) chlorogenic acids, high speed On a chromatogram obtained by component analysis of a coffee extract having a detection wavelength of 260 nm using a liquid chromatography apparatus, the component (A) having a retention time of 2.0 to 2.3 minutes and a retention time of 2.7 The peak area ratio with the component (B) appearing at ~ 3.2 minutes is {(A) / (B)} × 100 = 30-100, and the component 5-caffeoylquinic acid in the component (C) The manufacturing method of the container-packed coffee drink characterized by adjusting so that a content rate may be 28.0-35.0 weight%. 前記調整のために、L値16〜21.5の焙煎コーヒー豆と、L値22〜33の焙煎コーヒー豆とを100:0〜60:40の比率でブレンドしてコーヒー抽出液を得ることを特徴とする請求項3記載の容器詰コーヒー飲料の製造方法。 For the adjustment, roasted coffee beans having an L value of 16 to 21.5 and roasted coffee beans having an L value of 22 to 33 are blended at a ratio of 100: 0 to 60:40 to obtain a coffee extract. The manufacturing method of the container-packed coffee drink of Claim 3 characterized by the above-mentioned. 得られたコーヒー抽出液にクロロゲン酸類を添加することを特徴とする請求項3又は4記載の容器詰コーヒー飲料の製造方法。 The method for producing a containerized coffee beverage according to claim 3 or 4, wherein chlorogenic acids are added to the obtained coffee extract.
JP2007187800A 2007-07-19 2007-07-19 Packaged coffee drink and method for producing the same Pending JP2007300937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187800A JP2007300937A (en) 2007-07-19 2007-07-19 Packaged coffee drink and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187800A JP2007300937A (en) 2007-07-19 2007-07-19 Packaged coffee drink and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005380686A Division JP4548844B2 (en) 2005-12-30 2005-12-30 Containerized coffee beverage and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007300937A true JP2007300937A (en) 2007-11-22

Family

ID=38835426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187800A Pending JP2007300937A (en) 2007-07-19 2007-07-19 Packaged coffee drink and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007300937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139968A (en) * 2016-02-08 2017-08-17 キリンビバレッジ株式会社 Bottled coffee drink and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175623A (en) * 1998-12-16 2000-06-27 Nihon Canpack Production of coffee beverage
JP2003204755A (en) * 2002-01-15 2003-07-22 Kao Corp Packed coffee beverage
JP2003204756A (en) * 2002-01-15 2003-07-22 Kao Corp Packed coffee beverage
JP2004261170A (en) * 2003-02-13 2004-09-24 S Ishimitsu & Co Ltd Method for producing coffee liquid and coffee liquid product
WO2005072533A1 (en) * 2004-01-30 2005-08-11 Kao Corporation Coffee drink composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000175623A (en) * 1998-12-16 2000-06-27 Nihon Canpack Production of coffee beverage
JP2003204755A (en) * 2002-01-15 2003-07-22 Kao Corp Packed coffee beverage
JP2003204756A (en) * 2002-01-15 2003-07-22 Kao Corp Packed coffee beverage
JP2004261170A (en) * 2003-02-13 2004-09-24 S Ishimitsu & Co Ltd Method for producing coffee liquid and coffee liquid product
WO2005072533A1 (en) * 2004-01-30 2005-08-11 Kao Corporation Coffee drink composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139968A (en) * 2016-02-08 2017-08-17 キリンビバレッジ株式会社 Bottled coffee drink and production method thereof

Similar Documents

Publication Publication Date Title
JP4548844B2 (en) Containerized coffee beverage and method for producing the same
UA111058C2 (en) Method of producing a coffee extract of non-roasted coffee beans
JP5390309B2 (en) Method for producing refined roasted coffee beans
JP2012125237A (en) Process for producing roasted coffee bean extract
KR101353167B1 (en) Packaged coffee drink
KR20070101270A (en) Packaged coffee drink
JP5398929B1 (en) Coffee beverage, method for producing the same, method for suppressing acidity of coffee beverage, and method for improving roasted feeling
US20080311271A1 (en) Container packed coffee beverage and process for production thereof
JP5965479B2 (en) Coffee drink
RU2731286C2 (en) Liquid espresso concentrate
EP3375295B1 (en) Method for processing green coffee beans
JP3973670B2 (en) Containerized coffee beverage
JP5107324B2 (en) Method for producing coffee extract and coffee beverage
Santosa et al. Sensory analysis, caffeine, chlorogenic acid and non-volatile taste compounds of arabica coffee (Coffea arabica) fermented with sugar addition for brew taste
JP2008022751A (en) Coffee extract liquid
WO2019142729A2 (en) Production method for extract of green coffee beans
JP2007300937A (en) Packaged coffee drink and method for producing the same
JP2015091271A (en) Coffee drink
JP2009028013A (en) Packaged coffee drink
JP5438232B1 (en) Coffee beverage and method for producing the same, and method for inhibiting flavor deterioration of coffee beverage
JP2009065891A (en) Coffee drink packed in container
JP5323277B1 (en) Coffee beverage, method for producing the same, and method for reducing miscellaneous taste of coffee beverage
JP2009148175A (en) Method for producing coffee extract
JP5721363B2 (en) Method for producing milk-containing coffee beverage, method for stabilizing and method for improving flavor
JP4871010B2 (en) Method for producing chlorogenic acid-containing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100830

A02 Decision of refusal

Effective date: 20101228

Free format text: JAPANESE INTERMEDIATE CODE: A02