JP2007300709A - Ac-ac direct converter - Google Patents

Ac-ac direct converter Download PDF

Info

Publication number
JP2007300709A
JP2007300709A JP2006125142A JP2006125142A JP2007300709A JP 2007300709 A JP2007300709 A JP 2007300709A JP 2006125142 A JP2006125142 A JP 2006125142A JP 2006125142 A JP2006125142 A JP 2006125142A JP 2007300709 A JP2007300709 A JP 2007300709A
Authority
JP
Japan
Prior art keywords
power supply
value
input
command value
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006125142A
Other languages
Japanese (ja)
Other versions
JP4816226B2 (en
Inventor
Yugo Tadano
裕吾 只野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006125142A priority Critical patent/JP4816226B2/en
Publication of JP2007300709A publication Critical patent/JP2007300709A/en
Application granted granted Critical
Publication of JP4816226B2 publication Critical patent/JP4816226B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an AC power supply side from having a leading power factor due to an LC filter on the AC power supply side. <P>SOLUTION: In power factor control where the input power factor is sustained at "1" by a controller 4 performing PWM control of each two-way switch by inserting an AC-AC direct conversion circuit 3 constituted of an input LC filter 2 and a two-way switch into each phase of an AC power supply 1, a power factor compensation circuit 5 determines the compensation value of filter lead component of power supply voltage Vs by means of a coefficient unit 5A having the filter constants as coefficients and corrects a power supply current command value Isref by the product of the power supply voltage Vs and the compensation value to obtain an input current command Ismcref. It also include to estimate an input current command value, to estimate a power conversion efficiency, and the like, and to take account of the inductance of the AC power supply in the filter constant. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、単相または多相の交流電源から入力する電圧または周波数を、任意の電圧または周波数に変換して出力する交流−交流直接変換装置(マトリックスコンバータ)に係り、特に前記交流−交流直接変換装置の入力フィルタのインピーダンスを考慮した電源電流の力率制御に関する。   The present invention relates to an AC-AC direct conversion device (matrix converter) that converts a voltage or frequency input from a single-phase or multi-phase AC power source into an arbitrary voltage or frequency and outputs the voltage or frequency. The present invention relates to power factor control of power supply current in consideration of the impedance of an input filter of a converter.

従来から存在するこの種の交流−交流直接変換装置は、自己消弧形の半導体素子を用いた双方向スイッチを高速に切換え、単相または多相の交流入力を任意の電圧または周波数の電力に変換する変換装置であり、図8に基本構成を示す。三相交流電源1のR,S,Tの各相に入力フィルタ(InputFilter)2と双方向スイッチS1〜S9構成の交流−交流直接変換回路3を介挿し、制御装置(コントローラ)4によって各双方向スイッチを電源周波数よりも十分高い周波数でPWM制御することにより、入力電圧をモータなどの負荷Loadに直接に印加しながら任意の電圧または周波数に制御したU,V,Wの交流出力を得る。   This type of AC-AC direct conversion device that has existed in the past switches a bidirectional switch using a self-extinguishing semiconductor element at high speed, and converts a single-phase or multi-phase AC input to power of an arbitrary voltage or frequency. FIG. 8 shows a basic configuration of a conversion device for conversion. An input filter (InputFilter) 2 and an AC-AC direct conversion circuit 3 having bidirectional switches S1 to S9 are inserted in the R, S, and T phases of the three-phase AC power source 1, and both are controlled by a controller (controller) 4. By performing PWM control of the direction switch at a frequency sufficiently higher than the power supply frequency, an AC output of U, V, W controlled to an arbitrary voltage or frequency is obtained while directly applying an input voltage to a load Load such as a motor.

交流−交流直接変換装置における双方向スイッチのスイッチングパターンは、例えばキャリア振幅による変調方式の場合には、入力電圧と同期した信号となるPWMコンバータパターンと、出力周波数と電圧に従って作成されるPWMインバータパターンとのAND条件で決まる。これにより、交流−交流直接変換装置の入力電流はPWMコンバータパターンで制限され、出力電圧と周波数はPWMインバータパターンで制御され、入力力率を「1」に保ちながら入力電流の正弦波化、出力波形の正弦波化、周波数変換動作を同時に実現する。なお、双方向スイッチは、図示のように単方向スイッチを複数用いて構成する場合もある。   The switching pattern of the bidirectional switch in the AC-AC direct conversion device includes, for example, a PWM converter pattern that is a signal synchronized with the input voltage and a PWM inverter pattern that is created according to the output frequency and voltage in the case of a modulation method using carrier amplitude. And the AND condition. As a result, the input current of the AC-AC direct conversion device is limited by the PWM converter pattern, the output voltage and frequency are controlled by the PWM inverter pattern, and the input current is converted to a sine wave and output while keeping the input power factor “1”. Realizes waveform sine wave and frequency conversion at the same time. The bidirectional switch may be configured by using a plurality of unidirectional switches as shown in the figure.

図8のような交流−交流直接変換装置において、電源側に介挿する入力フィルタ(LCフィルタ)2は、入力交流電圧が直流平滑回路を介することなく双方向スイッチのスイッチング動作によって周波数変換制御されるため、このスイッチング周波数成分の高調波を低減するものである。この入力フィルタ2を介挿した場合、交流−交流直接変換装置の入口(フィルタ後段)で力率1制御を行ったとしても、入力フィルタのインピーダンス等の影響があり、系統連系点の電源1の電流は完全な力率1とはならずに進み成分が発生する。   In the AC-AC direct conversion device as shown in FIG. 8, the input filter (LC filter) 2 inserted on the power supply side is frequency-converted and controlled by the switching operation of the bidirectional switch without the input AC voltage passing through the DC smoothing circuit. Therefore, the harmonics of this switching frequency component are reduced. When this input filter 2 is inserted, even if power factor 1 control is performed at the inlet of the AC-AC direct conversion device (after the filter), there is an influence of the impedance of the input filter, and the power source 1 at the grid connection point. Current does not reach a perfect power factor of 1, and a component is generated.

PWMコンバータにおける力率の改善方式として、電源側との中間にDC回路を介したPWMコンバータ&インバータの組み合わせにおいて、入力フィルタの影響を考慮した制御法を本願出願人は既に提案している(例えば、特許文献1参照)。この制御法は、PWMコンバータのPWM制御として、基本波指令信号と搬送波信号との振幅比較で各相のスイッチング素子をオンまたはオフしている。このような挙動になるPWMコンバータにおいて、T形フィルタの各要素のフィルタ特性と比例項ゲイン、積分項ゲインの特性を考慮したコンバータ電流指令値とすることで、入力フィルタの影響による制御誤差を無くす。   As a method for improving the power factor in the PWM converter, the present applicant has already proposed a control method that takes into account the influence of the input filter in the combination of the PWM converter and inverter via a DC circuit in the middle with the power supply side (for example, , See Patent Document 1). In this control method, as the PWM control of the PWM converter, the switching element of each phase is turned on or off by comparing the amplitudes of the fundamental wave command signal and the carrier wave signal. In a PWM converter that behaves like this, control errors due to the influence of the input filter are eliminated by setting the converter current command value in consideration of the filter characteristics of each element of the T-type filter and the characteristics of the proportional term gain and integral term gain. .

他の力率調整方式として、PWMサイクロコンバータにおいて、交流電源から検出する電源電圧情報に、入力力率補償角εを加算してスイッチングパターンを作成することで、入力フィルタのインピーダンス分を補正して入力力率を「1」に制御する方式が提案されている(例えば、特許文献2参照)。   As another power factor adjustment method, the PWM cycloconverter corrects the impedance of the input filter by adding the input power factor compensation angle ε to the power supply voltage information detected from the AC power supply to create a switching pattern. A method of controlling the input power factor to “1” has been proposed (see, for example, Patent Document 2).

さらに他の力率調整方式として、PWMサイクロコンバータにおいて、入力電流と入力電圧を取り込み、相互の位相差を補正する指令を制御回路に与えることで力率1制御を実現する方式のものがある(例えば、特許文献3参照)。
特開2004−254429号公報 特開2000−299984号公報 特開2001−309660号公報
As another power factor adjustment method, there is a method that realizes power factor 1 control in a PWM cycloconverter by taking an input current and an input voltage and giving a command to correct a mutual phase difference to a control circuit ( For example, see Patent Document 3).
JP 2004-254429 A JP 2000-299984 A JP 2001-309660 A

特許文献1の力率調整手法は、PWMコンバータ単体に適用されるもので、挙動の異なる交流−交流直接変換装置に適用しても同様の力率改善効果が得られるものではない。   The power factor adjustment method of Patent Document 1 is applied to a PWM converter alone, and even when applied to an AC-AC direct conversion device having a different behavior, the same power factor improvement effect cannot be obtained.

また、特許文献2では、入力力率補償角εは、入力力率または入力電圧波形と電流波形の位相差を見て、力率1になるようにその都度調整を行う必要があり、交流−交流直接変換装置の挙動が変動する度に、入力力率補償角εを調整しなければならない。   Further, in Patent Document 2, the input power factor compensation angle ε needs to be adjusted each time so that the input power factor or the phase difference between the input voltage waveform and the current waveform becomes 1, and the power factor is 1; Every time the behavior of the AC direct conversion device fluctuates, the input power factor compensation angle ε must be adjusted.

また、特許文献3では、力率検出装置が必要となり、特にフィルタより電源側に計器用変圧器や計器用変流器を取り付ける必要があり、装置の小型化やコスト低下には不向きとなり、DCリアクトルやコンデンサが不要で小型化やコスト低下が可能と言われている交流−交流直接変換装置のメリットを生かせない。また、これらの計器用変圧器や計器用変流器の検出遅れによる制御応答性の遅れが、制御精度を低下させ精度良く力率制御が出来ない問題がある。   In Patent Document 3, a power factor detection device is required, and in particular, an instrument transformer or an instrument current transformer must be attached to the power supply side of the filter, which is not suitable for downsizing and cost reduction of the device. The advantages of the AC-AC direct conversion device, which is said to be possible to reduce the size and cost without the need for reactors and capacitors, cannot be used. In addition, a delay in control responsiveness due to a detection delay of these instrument transformers and instrument current transformers causes a problem that the control accuracy is lowered and power factor control cannot be performed with high accuracy.

本発明の目的は、交流電源側のLCフィルタによって交流電源側が進み力率になるのを防止できる交流−交流直接変換装置を提供することにある。   An object of the present invention is to provide an AC-AC direct conversion device that can prevent an AC power supply side from advancing and becoming a power factor by an LC filter on the AC power supply side.

前記の課題を解決するための本発明は、以下の構成を特徴とする。   The present invention for solving the above-described problems is characterized by the following configuration.

(1)単相または多相交流電源の各相に高調波抑制用の入力LCフィルタと双方向スイッチ構成の交流−交流直接変換回路を介挿して負荷に接続し、前記各双方向スイッチのPWM制御を行う制御装置によって前記交流電源の電圧または周波数を任意の電圧または周波数に変換した出力を得る交流−交流直接変換装置において、
電源電圧Vsと電源電流指令値Isrefとを入力すると共に、前記交流−交流直接変換回路の電源電圧Vsと電源電流Isとの位相差を打ち消す前記入力LCフィルタのフィルタ進み成分の補償値を求め、電源電流指令値Isrefを電源電圧Vsと前記補償値との積値で補正して交流−交流直接変換回路の入力電流指令値Ismcrefを前記制御装置に出力する力率補償回路を備え、
前記電源電流Isを力率「1」に制御することを特徴とする。
(1) Each phase of a single-phase or multi-phase AC power supply is connected to a load via an input LC filter for suppressing harmonics and an AC-AC direct conversion circuit having a bidirectional switch configuration, and the PWM of each bidirectional switch In an AC-AC direct conversion device that obtains an output obtained by converting the voltage or frequency of the AC power source into an arbitrary voltage or frequency by a control device that performs control,
A power supply voltage Vs and a power supply current command value Isref are input, and a compensation value of a filter advance component of the input LC filter that cancels a phase difference between the power supply voltage Vs and the power supply current Is of the AC-AC direct conversion circuit is obtained. A power factor compensation circuit that corrects the power supply current command value Isref with a product value of the power supply voltage Vs and the compensation value and outputs the input current command value Ismcref of the AC-AC direct conversion circuit to the control device;
The power supply current Is is controlled to a power factor “1”.

(2)前記力率補償回路は、前記交流−交流直接変換回路の出力相電圧指令値Vrefpから前記電源電流指令値Isrefを推定し、その推定値Isref’(電源電流指令値の推定値)と単位入力電流指令値irefのベクトルとの積値を前記電源電圧Vsと補償値との積値で補正して入力電流指令値Ismcrefを前記制御装置に出力することを特徴とする。   (2) The power factor compensation circuit estimates the power supply current command value Isref from the output phase voltage command value Vrefp of the AC-AC direct conversion circuit, and an estimated value Isref ′ (estimated value of the power supply current command value) The product value of the unit input current command value iref is corrected with the product value of the power supply voltage Vs and the compensation value, and the input current command value Ismcref is output to the control device.

(3)前記力率補償回路は、前記交流−交流直接変換回路の電力変換効率およびフィルタの電力損失も含めた総合電力変換効率ηを考慮したで前記電源電流指令の推定値Isref’’と単位入力電流指令値irefのベクトルとの積値を前記電源電圧Vsと補償値との積値での積値で補正して入力電流指令値Ismcrefを前記制御装置に出力することを特徴とする。   (3) The power factor compensation circuit includes the estimated value Isref ″ and the unit of the power supply current command in consideration of the total power conversion efficiency η including the power conversion efficiency of the AC-AC direct conversion circuit and the power loss of the filter. The product of the vector of the input current command value iref is corrected with the product value of the product of the power supply voltage Vs and the compensation value, and the input current command value Ismcref is output to the control device.

(4)単相または多相交流電源の各相に高調波抑制用の入力LCフィルタと双方向スイッチ構成の交流−交流直接変換回路を介挿して負荷に接続し、前記各双方向スイッチのPWM制御を行う制御装置によって前記交流電源の電圧または周波数を任意の電圧または周波数に変換した出力を得る交流−交流直接変換装置において、
電源電流指令値Isrefと電源電圧Vsから前記交流−交流直接変換回路の入力電圧指令値Vsmcrefを求め、この入力電圧指令値Vsmcrefと前記入力電流指令値Ismcrefの位相差Δθmcrefを前記制御装置に出力する力率補償回路を備えたことを特徴とする。
(4) Each phase of the single-phase or multi-phase AC power supply is connected to a load via an input LC filter for suppressing harmonics and an AC-AC direct conversion circuit having a bidirectional switch configuration, and the PWM of each bidirectional switch In an AC-AC direct conversion device that obtains an output obtained by converting the voltage or frequency of the AC power source into an arbitrary voltage or frequency by a control device that performs control,
The input voltage command value Vsmcref of the AC-AC direct conversion circuit is obtained from the power supply current command value Isref and the power supply voltage Vs, and the phase difference Δθmcref between the input voltage command value Vsmcref and the input current command value Ismcref is output to the control device. A power factor compensation circuit is provided.

(5)前記力率補償回路は、前記交流電源のインダクタンス成分を前記フィルタ定数のインダクタンスに上乗せして前記補償値を求めることを特徴とする。   (5) The power factor compensation circuit obtains the compensation value by adding an inductance component of the AC power source to an inductance of the filter constant.

(6)前記力率補償回路は、前記電源相電圧Vsの検出値または前記入力電圧指令値Vsmcを選択可能にしたことを特徴とする。   (6) The power factor compensation circuit is characterized in that the detection value of the power supply phase voltage Vs or the input voltage command value Vsmc can be selected.

以上のとおり、本発明によれば、交流−交流直接変換装置における交流電源側のLCフィルタによって交流電源側が進み力率になるのを防止できる。また、交流−交流直接変換装置の挙動に応じた力率補償ができる。また、交流電源側の力率検出装置を不要にして精度良く力率補償ができる。   As described above, according to the present invention, it is possible to prevent the AC power supply side from proceeding to the power factor by the LC filter on the AC power supply side in the AC-AC direct conversion device. Moreover, power factor compensation according to the behavior of the AC-AC direct conversion device can be performed. In addition, power factor compensation can be performed accurately without the need for a power factor detection device on the AC power source side.

(実施形態1)
図1は、本実施形態の回路構成図を示し、図8と異なる部分は制御装置4への入力電流指令値に予めフィルタ進み成分の補償値を上乗せする力率補償回路5を追加した点にある。以下、この力率補償を原理的に説明する。
(Embodiment 1)
FIG. 1 shows a circuit configuration diagram of the present embodiment. The difference from FIG. 8 is that a power factor compensation circuit 5 for adding a compensation value of a filter advance component in advance to an input current command value to the control device 4 is added. is there. Hereinafter, this power factor compensation will be described in principle.

図8のような一般的な三相交流−交流直接変換装置において、入力フィルタと交流−交流直接変換回路の単相等価回路は図2のようになる。交流−交流直接変換装置の基本的な制御として、通常は電源電圧Vsおよび出力電流I0を検出して行い、出力電圧指令に従って三相入力電圧を切り刻んでPWM制御を行う。入力側は三相出力電流を切り刻んでPWM制御を行う。したがって、図2では変換回路の入力側を電流源、変換回路の出力側を電圧源として考えており、その入出力は互いに依存しあっている。 In the general three-phase AC-AC direct conversion device as shown in FIG. 8, the single-phase equivalent circuit of the input filter and the AC-AC direct conversion circuit is as shown in FIG. As basic control of the AC-AC direct conversion device, usually, the power supply voltage Vs and the output current I 0 are detected, and the three-phase input voltage is cut in accordance with the output voltage command to perform PWM control. The input side performs PWM control by chopping the three-phase output current. Therefore, in FIG. 2, the input side of the conversion circuit is considered as a current source, and the output side of the conversion circuit is considered as a voltage source, and the input and output are mutually dependent.

ここで、入力側の制御に注目すると、交流−交流直接変換回路の入力電圧は図2で示すVsmc、つまりフィルタコンデンサ部(共振抑制抵抗を含む)の両端電圧となる。しかしながら、通常は電源電圧Vsを検出して、その位相に合わせるように入力電流Ismcの力率1制御を行うため、実際の電源電流Isでは電源電圧Vsとの間に位相差を生じる。   Here, paying attention to the control on the input side, the input voltage of the AC-AC direct conversion circuit is Vsmc shown in FIG. 2, that is, the voltage across the filter capacitor unit (including the resonance suppression resistor). However, since the power source voltage Vs is normally detected and the power factor 1 control of the input current Ismc is performed so as to match the phase, the actual power source current Is causes a phase difference from the power source voltage Vs.

図2の単相等価回路に基づき、入力フィルタ部の回路方程式を導くと、(1)式となる。なお、以下の式中、矢印「→」を付して示す各電圧、電流はベクトル量である。   When the circuit equation of the input filter unit is derived based on the single-phase equivalent circuit of FIG. 2, Equation (1) is obtained. In the following equations, each voltage and current indicated by an arrow “→” is a vector quantity.

Figure 2007300709
Figure 2007300709

電源電流Isについて整理すると、(2)式となる。   When the power supply current Is is arranged, the equation (2) is obtained.

Figure 2007300709
Figure 2007300709

変換回路の入力電流Ismcを入力電流指令として交流−交流直接変換回路を制御した場合、(2)式第1項は2次ローパスフィルタとして機能し、第2項は電源電圧Vsに関連した誤差項となって電源電流Isに影響する。任意のフィルタパラメータにおいて、それぞれの項の電源電流Isに対するボード線図の例を図3に示す。誤差項に着目すると、電源電圧Vsに対し電源電流Isは位相が90度進み、50[Hz]基本波付近で電源電圧Vsの数百分の1程度のゲインとなることが分かる。   When the AC-AC direct conversion circuit is controlled using the input current Ismc of the conversion circuit as an input current command, the first term of equation (2) functions as a secondary low-pass filter, and the second term is an error term related to the power supply voltage Vs. This affects the power supply current Is. FIG. 3 shows an example of a Bode diagram for the power supply current Is of each term in an arbitrary filter parameter. Focusing on the error term, it can be seen that the phase of the power supply current Is advances by 90 degrees with respect to the power supply voltage Vs, and has a gain of about one hundredth of the power supply voltage Vs in the vicinity of the 50 [Hz] fundamental wave.

この誤差項の影響をなくすため、予め交流−交流直接変換回路の入力電流指令値に誤差項を打ち消す項を追加する。すなわち、前記入力電流指令値Ismcrefを(3)式とする。   In order to eliminate the influence of this error term, a term for canceling the error term is added in advance to the input current command value of the AC-AC direct conversion circuit. That is, the input current command value Ismcref is expressed by equation (3).

Figure 2007300709
Figure 2007300709

この(3)式中、Isrefは、所望する理想の電源電流指令値である。(3)式を(2)式に代入すると、電源電流Isはローパスフィルタ(LPF)項のみとなり、基本波成分においてIs≒Isrefとなる。   In this equation (3), Isref is a desired ideal power supply current command value. When the expression (3) is substituted into the expression (2), the power supply current Is becomes only the low-pass filter (LPF) term, and Is≈Isref in the fundamental wave component.

また、交流−交流直接変換回路の入力電圧Vsmcは、(1)−(3)式より、(4)式となる。   Further, the input voltage Vsmc of the AC-AC direct conversion circuit is expressed by equation (4) from equations (1)-(3).

Figure 2007300709
Figure 2007300709

上記のことから、入力電流指令値Ismcrefに予めフィルタ進み成分の補償値を上乗せすることで,電源電流Isを力率1に制御することができる。   From the above, the power supply current Is can be controlled to a power factor of 1 by adding the compensation value of the filter advance component in advance to the input current command value Ismcref.

以上のことから、本実施形態では、図1に示すように、図8の構成に力率補償回路5を追加する。同図中、力率補償回路5は、係数器5Aと減算器5Bで構成し、係数器5Aでは交流−交流直接変換回路3の電源電圧Vsに(3)式の第2項の係数を乗じ、減算器5Bでは電源側入力電流指令値Isrefから係数器5Aの出力を減じて交流−交流直接変換回路3の入力電流指令値Ismcrefとする。すなわち、交流−交流直接変換回路の入力になる電源電圧Vsを前記入力LCフィルタのフィルタ定数を係数とするローパスフィルタを通してフィルタ進み成分の補償値を求め、電源電流指令値Isrefを電源電圧Vsとの積値で補正して入力電流指令値Ismcrefを前記制御装置に出力する力率補償回路によって、交流電源側が進み力率になるのを防止する。   From the above, in this embodiment, as shown in FIG. 1, a power factor compensation circuit 5 is added to the configuration of FIG. In the figure, the power factor compensation circuit 5 includes a coefficient unit 5A and a subtractor 5B, and the coefficient unit 5A multiplies the power supply voltage Vs of the AC-AC direct conversion circuit 3 by the coefficient of the second term of the equation (3). The subtractor 5B subtracts the output of the coefficient unit 5A from the power supply side input current command value Isref to obtain the input current command value Ismcref of the AC-AC direct conversion circuit 3. That is, the power supply voltage Vs that is input to the AC-AC direct conversion circuit is obtained through a low-pass filter whose coefficient is the filter constant of the input LC filter to obtain a compensation value of the filter advance component, and the power supply current command value Isref is calculated from the power supply voltage Vs. A power factor compensation circuit that corrects with the product value and outputs the input current command value Ismcref to the control device prevents the AC power source from leading to a power factor.

この構成により、変換回路の入力電流指令は、入力フィルタの影響による進み成分を補償するため、交流電源の力率を改善することができる。   With this configuration, the input current command of the conversion circuit compensates for the advance component due to the influence of the input filter, so that the power factor of the AC power supply can be improved.

(実施形態2)
実施形態1のように、入力電流指令の位相だけでなく大きさも直接与える場合は、(3)式でフィルタ進み成分を補償できるが、通常は負荷に対し出力電圧指令を与えて交流−交流直接変換装置を制御し、入力電流の大きさは要求される負荷電流に依存して与えられるといった事例が多い。
(Embodiment 2)
In the case of directly giving not only the phase but also the magnitude of the input current command as in the first embodiment, the filter advance component can be compensated by the equation (3), but normally, the output voltage command is given to the load and the AC-AC direct In many cases, the converter is controlled and the magnitude of the input current is given depending on the required load current.

そこで、本実施形態では、出力相電圧指令値Vrefpから入力電流指令値ismcrefを推定し、その推定値を用いてフィルタ進み成分を補償するものであり、以下、詳細に説明する。   Therefore, in the present embodiment, the input current command value ismcref is estimated from the output phase voltage command value Vrefp, and the filter advance component is compensated using the estimated value, which will be described in detail below.

交流−交流直接変換装置の入出力の有効電力の授受が基本的に一致すると考えると、(5)式が成り立つ。   When it is considered that the exchange of the active power of the input / output of the AC-AC direct conversion device basically matches, the equation (5) is established.

Figure 2007300709
Figure 2007300709

ただし、出力相電圧指令値Vrefpは出力線間電圧指令の相変換値、cosθは入力力率、cosφは出力力率である。   However, the output phase voltage command value Vrefp is the phase conversion value of the output line voltage command, cos θ is the input power factor, and cos φ is the output power factor.

上記の(5)式において、フィルタの影響を除去するため、入力力率cosθを1とする。また、出力力率cosφは、出力相電圧指令値Vrefpおよび出力電流I0の検出値からその位相演算で求められる。 In the above equation (5), the input power factor cos θ is set to 1 in order to remove the influence of the filter. Further, the output power factor cos φ is obtained by the phase calculation from the output phase voltage command value Vrefp and the detected value of the output current I 0 .

以上を(5)式に代入して求めた推定入力電流の大きさ|Is|は、電源電圧Vsの検出値から求めた単位入力電流指令値iref(電源電圧位相と一致した大きさ1のベクトル)に掛け合わせてIsrefを求め、その後、(3)式のフィルタ補償式に代入して変換回路の入力電流指令値Ismcを(6)式のように導くことができる。   The magnitude | Is | of the estimated input current obtained by substituting the above into the expression (5) is the unit input current command value iref obtained from the detected value of the power supply voltage Vs (vector of magnitude 1 that matches the power supply voltage phase). ) To obtain Isref, which is then substituted into the filter compensation equation of equation (3) to derive the input current command value Ismc of the conversion circuit as in equation (6).

Figure 2007300709
Figure 2007300709

上式により、入力電流指令が与えられることなく、出力電圧指令値が与えられた場合における入力フィルタ進み力率改善が可能となる。   According to the above formula, the input filter advance power factor can be improved when the output voltage command value is given without giving the input current command.

以上のことから、本実施形態では、図1の力率補償回路5に代えて、図4に示す力率補償回路6とするものである。図4において、係数器6Aと減算器6Bは図1の係数器5Aと減算器5Bと同じものである。この減算器5Bの電源側電流指令値Isrefに代えて、(5)式および(6)式に従った演算要素6C〜6Hにより電源電流指令値Isrefを求める。   From the above, in this embodiment, the power factor compensation circuit 6 shown in FIG. 4 is used instead of the power factor compensation circuit 5 shown in FIG. In FIG. 4, the coefficient unit 6A and the subtractor 6B are the same as the coefficient unit 5A and the subtractor 5B in FIG. Instead of the power source side current command value Isref of the subtractor 5B, the power source current command value Isref is obtained by the arithmetic elements 6C to 6H according to the equations (5) and (6).

6Cは出力相電圧指令値Vrefpの大きさ(絶対値)を求める。6Dは出力電流Ioの検出値の大きさ(絶対値)を求める。6Eは出力相電圧指令値Vrefpと出力電流Ioの検出値との位相角(cosφ)を求める。6Fは6C〜6Eの各演算出力と、電源電圧Vsの検出値および電源力率指令値cosθrefから、(6)式の第1項の係数を求める。   6C calculates the magnitude (absolute value) of the output phase voltage command value Vrefp. 6D calculates the magnitude (absolute value) of the detected value of the output current Io. 6E obtains the phase angle (cosφ) between the output phase voltage command value Vrefp and the detected value of the output current Io. 6F obtains the coefficient of the first term of the equation (6) from each calculation output of 6C to 6E, the detected value of the power supply voltage Vs, and the power supply power factor command value cosθref.

6Gは電源電圧Vsの検出値から単位入力電流指令値irefを求める。6Hは6Fの演算結果を係数として単位入力電流指令値irefに乗じ、(6)式の第1項に相当する電源側入力電流指令値の推定値を求め、これを減算器6Bの入力とする。   6G obtains a unit input current command value iref from the detected value of the power supply voltage Vs. 6H multiplies the unit input current command value iref by using the calculation result of 6F as a coefficient to obtain an estimated value of the power supply side input current command value corresponding to the first term of the equation (6), which is used as the input of the subtractor 6B. .

したがって、本実施形態によれば、入力電流指令値が与えられない場合に、出力電圧指令を基に入出力有効電力の関係から入力電流指令値を推定して力率改善を行うことができる。   Therefore, according to the present embodiment, when the input current command value is not given, the power factor can be improved by estimating the input current command value from the relationship between the input and output active power based on the output voltage command.

(実施形態3)
実施形態2の入力電流指令値の推定は理論値であり、交流−交流直接変換回路の電力変換効率およびフィルタの電力損失等も含めた総合電力変換効率が100%の場合に成り立つが、実際はそのときの負荷や容量、装置構成等に依存し、およそ90%台の値となる。そこで、本実施形態では(6)式に総合電力変換効率ηで補正した(7)式に従って入力電流を推定する。
(Embodiment 3)
The estimation of the input current command value according to the second embodiment is a theoretical value, and is established when the total power conversion efficiency including the power conversion efficiency of the AC-AC direct conversion circuit and the power loss of the filter is 100%. Depending on the load, capacity, device configuration, etc., the value is about 90%. Therefore, in this embodiment, the input current is estimated according to the equation (7) corrected by the total power conversion efficiency η in the equation (6).

Figure 2007300709
Figure 2007300709

図5は(7)式に従った力率補償回路7を示し、各演算要素は力率補償回路6とは演算要素6Fでの演算に総合電力変換効率ηを取り込み、この総合電力変換効率ηを含めて(7)式の第1項の演算を行う。   FIG. 5 shows the power factor compensation circuit 7 in accordance with the equation (7). Each calculation element incorporates the total power conversion efficiency η into the calculation in the calculation element 6F with the power factor compensation circuit 6, and this total power conversion efficiency η The calculation of the first term of the equation (7) is performed.

なお、総合電力変換効率ηについては、あらかじめ負荷に応じた効率テーブル等を用意しておき、負荷電流検出値からそのテーブルを介して推定効率を決定する。これにより、電源電流推定値がより正確な値となり、フィルタ補償精度が向上する。   As for the total power conversion efficiency η, an efficiency table or the like corresponding to the load is prepared in advance, and the estimated efficiency is determined from the load current detection value via the table. As a result, the power supply current estimated value becomes a more accurate value, and the filter compensation accuracy is improved.

(実施形態4)
上述の実施形態1、2、3では、変換回路の入力電流指令値Ismcrefを制御装置4に与える場合を示すが、本実施形態では、前記入力電流指令値Ismcrefと入力電圧指令値Vsmcrefの位相差Δθmcを計算して力率制御のための位相差データを得る。この位相差Δθmcの計算には(8)式を用いることができる。
(Embodiment 4)
In the first, second, and third embodiments, the case where the input current command value Ismcref of the conversion circuit is given to the control device 4 is shown. In this embodiment, the phase difference between the input current command value Ismcref and the input voltage command value Vsmcref is shown. Δθmc is calculated to obtain phase difference data for power factor control. Equation (8) can be used to calculate the phase difference Δθmc.

Figure 2007300709
Figure 2007300709

なお、(8)式中の添え字α、βは、三相/二相変換した値であることを意味する。   Note that the subscripts α and β in the equation (8) mean values obtained by three-phase / two-phase conversion.

図6は位相差Δθmcの演算回路8を示し、係数器8Aは電源電流指令値Isrefに(4)式の第2項係数を乗じ、減算器8Bは電源電圧Vsから係数器8Aの出力を減じることで入力電圧指令値Vsmcrefを求める。位相演算器8Cは入力電圧指令値Vsmcrefの位相θvsmcを(8)式の第2項の演算で求め、位相演算器8Dは前記の力率補償回路5〜7に得る入力電流指令値Ismcrefの位相θismcを(8)式の第1項の演算で求める。加算器8Eは位相θvsmcと位相θismcの位相差指令値Δθmcrefを求める。   FIG. 6 shows the arithmetic circuit 8 for the phase difference Δθmc. The coefficient unit 8A multiplies the power supply current command value Isref by the second term coefficient of the equation (4), and the subtractor 8B subtracts the output of the coefficient unit 8A from the power supply voltage Vs. Thus, the input voltage command value Vsmcref is obtained. The phase calculator 8C obtains the phase θvsmc of the input voltage command value Vsmcref by the calculation of the second term of the equation (8), and the phase calculator 8D calculates the phase of the input current command value Ismcref obtained in the power factor compensation circuits 5-7. θismc is obtained by the calculation of the first term of equation (8). The adder 8E obtains a phase difference command value Δθmcref between the phase θvsmc and the phase θismc.

本実施形態の効果は前者と同様であるが、その時々の負荷電流値において、フィルタの影響による交流電源の電流と電圧の位相差を予め把握できる。   Although the effect of this embodiment is the same as that of the former, in the load current value at that time, the phase difference between the current and voltage of the AC power source due to the influence of the filter can be grasped in advance.

(実施形態5)
上述までの実施形態には、電源インピーダンスの影響は考慮されていない。実際は、電源インピーダンスのインダクタンス成分が影響してフィルタパラメータLfに上乗せされた形となる。このことは、純粋なフィルタパラメータのみでフィルタ補償式を与えた場合より電流位相を遅らせることになる。つまり、フィルタによる進み電流成分を遅れさせて力率1(位相一致)にしたつもりが、過補償となって逆に遅れ電流となることが多い。
(Embodiment 5)
In the embodiments described above, the influence of the power source impedance is not considered. Actually, the inductance component of the power source impedance has an effect on the filter parameter Lf. This delays the current phase as compared with the case where the filter compensation formula is given only with pure filter parameters. In other words, the intention to delay the lead current component by the filter to a power factor of 1 (phase matching) often results in overcompensation and conversely a lag current.

本実施形態では、電源インピーダンスのインダクタンス成分を考慮して、数式(2)や数式(4)のフィルタパラメータLfに数式(9)のように電源インピーダンスのインダクタンス値Lfsを加算しておく。   In the present embodiment, in consideration of the inductance component of the power source impedance, the inductance value Lfs of the power source impedance is added to the filter parameter Lf of Formula (2) and Formula (4) as shown in Formula (9).

Figure 2007300709
Figure 2007300709

ただし、Lf’は電源インピーダンス分を考慮したフィルタパラメータ、Lfはフィルタパラメータ、Lfsは電源インピーダンスのインダクタンス値である。   Here, Lf ′ is a filter parameter considering the power supply impedance, Lf is a filter parameter, and Lfs is an inductance value of the power supply impedance.

電源インピーダンス成分は装置を接続する電源の特性によるため一概には言えないが、実際に計測した値の平均値等で求めるのが好ましいが、推定値として与えることでもよい。   Although the power source impedance component cannot be generally described because it depends on the characteristics of the power source to which the apparatus is connected, it is preferable to obtain the average value of actually measured values, but it may be given as an estimated value.

本実施形態により、電源インピーダンスのインダクタンス成分を考慮し、フィルタパラメータLfに上乗せすることでさらなる補償精度向上ができる。   According to this embodiment, the compensation component can be further improved by adding the filter parameter Lf in consideration of the inductance component of the power source impedance.

(実施形態6)
フィルタの影響を考慮すると、交流−交流直接変換回路の入力電圧Vsmcは(4)式となるが、通常は電源電圧Vsの検出値を用いて制御することが多い。フィルタの影響を考えて制御するのであれば、本来は(4)式を用いるべきであるが、数式が微分的であり、そのまま用いると条件によっては不安定になる場合がある。
(Embodiment 6)
When the influence of the filter is taken into consideration, the input voltage Vsmc of the AC-AC direct conversion circuit is expressed by equation (4), but is usually controlled by using the detected value of the power supply voltage Vs. If the control is performed in consideration of the influence of the filter, the equation (4) should be used originally, but the equation is differential, and if used as it is, it may become unstable depending on the conditions.

本実施形態では,電源電圧Vsの検出値をそのまま力率補償に用いるか,(4)式で求めた入力電圧Vsmcを用いるか選択できるようにして使い分けるようにする。実際に用いられるフィルタパラメータを代入してVsとVsmcを比較したときに、その位担差に特に大差がない場合や、Vsmcを用いて不安定であった場合はVsをそのまま制御に用いることとする。   In the present embodiment, the detected value of the power supply voltage Vs is used as it is for power factor compensation or the input voltage Vsmc obtained by the equation (4) can be selected and used separately. When Vs and Vsmc are compared by substituting filter parameters that are actually used, if there is no significant difference in position difference, or if Vsmc is unstable, Vs is used as it is for control. To do.

本実施形態によれば、交流−交流直接変換回路の入力電圧値として、電源電圧Vsもしくはフィルタパラメータを考慮した入力電圧Vsmcのどちらかを条件に応じて選択可能にすることで、力率制御の安定化を図ることができる。   According to the present embodiment, as the input voltage value of the AC-AC direct conversion circuit, either the power supply voltage Vs or the input voltage Vsmc in consideration of the filter parameter can be selected according to the condition, thereby enabling the power factor control. Stabilization can be achieved.

(シミュレーション)
本発明による力率補償回路により、交流−交流直接変換回路の交流入力側に介挿されるLCフィルタの影響で系統連系点が進み力率になるのを防止できることを、シミュレーションで検証した。
(simulation)
It was verified by simulation that the power factor compensation circuit according to the present invention can prevent the grid interconnection point from being advanced and becoming a power factor due to the influence of the LC filter inserted on the AC input side of the AC-AC direct conversion circuit.

図7の(a)はフィルタ進み補償なしの場合であり、系統連系点の電圧Vと電流Iの位相が一致していない。これに対して、図7の(b)はフィルタ進み補償した場合であり、系統連系点の電圧Vと電流Iの位相が一致、つまり力率「1」を得ることができる。   FIG. 7A shows the case without filter advance compensation, and the phase of the voltage V and the current I at the grid connection point do not match. On the other hand, FIG. 7B shows a case where the filter advance compensation is performed, and the phase of the voltage V and the current I at the grid connection point coincide, that is, a power factor “1” can be obtained.

本発明の実施形態1を示す回路構成図。The circuit block diagram which shows Embodiment 1 of this invention. 入力フィルタと交流−交流直接変換回路の単相等価回路図。The single-phase equivalent circuit diagram of an input filter and an AC-AC direct conversion circuit. 電源電流Isに対するボード線図。The Bode diagram with respect to the power supply current Is. 本発明の実施形態2を示す回路構成図。The circuit block diagram which shows Embodiment 2 of this invention. 本発明の実施形態3を示す回路構成図。The circuit block diagram which shows Embodiment 3 of this invention. 本発明の実施形態4を示す回路構成図。The circuit block diagram which shows Embodiment 4 of this invention. シミュレーション波形図。Simulation waveform diagram. 交流−交流直接変換装置の基本構成図。The basic block diagram of an alternating current-alternating current direct conversion apparatus.

符号の説明Explanation of symbols

1 交流電源
2 入力LCフィルタ
3 交流−交流直接変換回路
4 制御装置
5、6、7 力率補償回路
8 位相差演算回路
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Input LC filter 3 AC-AC direct conversion circuit 4 Controller 5, 6, 7 Power factor compensation circuit 8 Phase difference calculation circuit

Claims (6)

単相または多相交流電源の各相に高調波抑制用の入力LCフィルタと双方向スイッチ構成の交流−交流直接変換回路を介挿して負荷に接続し、前記各双方向スイッチのPWM制御を行う制御装置によって前記交流電源の電圧または周波数を任意の電圧または周波数に変換した出力を得る交流−交流直接変換装置において、
電源電圧Vsと電源電流指令値Isrefとを入力すると共に、前記交流−交流直接変換回路の電源電圧Vsと電源電流Isとの位相差を打ち消す前記入力LCフィルタのフィルタ進み成分の補償値を求め、電源電流指令値Isrefを電源電圧Vsと前記補償値との積値で補正して交流−交流直接変換回路の入力電流指令値Ismcrefを前記制御装置に出力する力率補償回路を備え、
前記電源電流Isを力率「1」に制御することを特徴とする交流−交流直接変換装置。
Each phase of the single-phase or multi-phase AC power supply is connected to a load via an input LC filter for suppressing harmonics and an AC-AC direct conversion circuit having a bidirectional switch configuration, and PWM control of each bidirectional switch is performed. In an AC-AC direct conversion device that obtains an output obtained by converting the voltage or frequency of the AC power source into an arbitrary voltage or frequency by a control device,
A power supply voltage Vs and a power supply current command value Isref are input, and a compensation value of a filter advance component of the input LC filter that cancels a phase difference between the power supply voltage Vs and the power supply current Is of the AC-AC direct conversion circuit is obtained. A power factor compensation circuit that corrects the power supply current command value Isref with a product value of the power supply voltage Vs and the compensation value and outputs the input current command value Ismcref of the AC-AC direct conversion circuit to the control device;
An AC-AC direct conversion device, wherein the power source current Is is controlled to a power factor “1”.
前記力率補償回路は、前記交流−交流直接変換回路の出力相電圧指令値Vrefpから前記電源電流指令値Isrefを推定し、その推定値Isref’(電源電流指令値の推定値)と単位入力電流指令値irefのベクトルとの積値を前記電源電圧Vsと補償値との積値で補正して入力電流指令値Ismcrefを前記制御装置に出力することを特徴とする請求項1に記載の交流−交流直接変換装置。   The power factor compensation circuit estimates the power supply current command value Isref from the output phase voltage command value Vrefp of the AC-AC direct conversion circuit, and estimates the value Isref ′ (estimated value of the power supply current command value) and unit input current. 2. The AC− of claim 1, wherein an input current command value Ismcref is output to the control device by correcting a product value of the vector of the command value iref with a product value of the power supply voltage Vs and a compensation value. AC direct conversion device. 前記力率補償回路は、前記交流−交流直接変換回路の電力変換効率およびフィルタの電力損失も含めた総合電力変換効率ηを考慮したで前記電源電流指令の推定値Isref’’と単位入力電流指令値irefのベクトルとの積値を前記電源電圧Vsと補償値との積値での積値で補正して入力電流指令値Ismcrefを前記制御装置に出力することを特徴とする請求項2に記載の交流−交流直接変換装置。   The power factor compensation circuit takes into account the total power conversion efficiency η including the power conversion efficiency of the AC-AC direct conversion circuit and the power loss of the filter, and the estimated value Isref ″ of the power source current command and the unit input current command 3. The input current command value Ismcref is output to the control device by correcting a product value of the value iref with a vector by a product value of the power supply voltage Vs and a compensation value. AC-AC direct conversion device. 単相または多相交流電源の各相に高調波抑制用の入力LCフィルタと双方向スイッチ構成の交流−交流直接変換回路を介挿して負荷に接続し、前記各双方向スイッチのPWM制御を行う制御装置によって前記交流電源の電圧または周波数を任意の電圧または周波数に変換した出力を得る交流−交流直接変換装置において、
電源電流指令値Isrefと電源電圧Vsから前記交流−交流直接変換回路の入力電圧指令値Vsmcrefを求め、この入力電圧指令値Vsmcrefと前記入力電流指令値Ismcrefの位相差Δθmcrefを前記制御装置に出力する力率補償回路を備えたことを特徴とする交流−交流直接変換装置。
Each phase of the single-phase or multi-phase AC power supply is connected to a load via an input LC filter for suppressing harmonics and an AC-AC direct conversion circuit having a bidirectional switch configuration, and PWM control of each bidirectional switch is performed. In an AC-AC direct conversion device that obtains an output obtained by converting the voltage or frequency of the AC power source into an arbitrary voltage or frequency by a control device,
The input voltage command value Vsmcref of the AC-AC direct conversion circuit is obtained from the power supply current command value Isref and the power supply voltage Vs, and the phase difference Δθmcref between the input voltage command value Vsmcref and the input current command value Ismcref is output to the control device. An AC-AC direct conversion device comprising a power factor compensation circuit.
前記力率補償回路は、前記交流電源のインダクタンス成分を前記フィルタ定数のインダクタンスに上乗せして前記補償値を求めることを特徴とする請求項1〜4のいずれか1項に記載の交流−交流直接変換装置。   5. The AC-AC direct according to claim 1, wherein the power factor compensation circuit obtains the compensation value by adding an inductance component of the AC power source to an inductance of the filter constant. 6. Conversion device. 前記力率補償回路は、前記電源相電圧Vsの検出値または前記入力電圧指令値Vsmcを選択可能にしたことを特徴とする請求項1〜5のいずれか1項に記載の交流−交流直接変換装置。
6. The AC-AC direct conversion according to claim 1, wherein the power factor compensation circuit can select a detection value of the power supply phase voltage Vs or the input voltage command value Vsmc. apparatus.
JP2006125142A 2006-04-28 2006-04-28 AC-AC direct conversion device Expired - Fee Related JP4816226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125142A JP4816226B2 (en) 2006-04-28 2006-04-28 AC-AC direct conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125142A JP4816226B2 (en) 2006-04-28 2006-04-28 AC-AC direct conversion device

Publications (2)

Publication Number Publication Date
JP2007300709A true JP2007300709A (en) 2007-11-15
JP4816226B2 JP4816226B2 (en) 2011-11-16

Family

ID=38769733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125142A Expired - Fee Related JP4816226B2 (en) 2006-04-28 2006-04-28 AC-AC direct conversion device

Country Status (1)

Country Link
JP (1) JP4816226B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144987A1 (en) * 2008-05-30 2009-12-03 株式会社安川電機 Control device for matrix converter and output voltage generating method thereof
JP2011030312A (en) * 2009-07-22 2011-02-10 Meidensha Corp Spare charger and spare charging method of ac-ac direct converter
JP2016538820A (en) * 2013-11-15 2016-12-08 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Overvoltage protection device for in-vehicle power supply network for automobile during load interruption

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299984A (en) * 1999-04-13 2000-10-24 Yaskawa Electric Corp Controller for three-phase/single-phase pwm cycloconverter
JP2001069759A (en) * 1999-08-24 2001-03-16 Yaskawa Electric Corp Control of power converter
JP2001309660A (en) * 2000-04-19 2001-11-02 Yaskawa Electric Corp Input power factor detection device for pwm cyclo- converter and its control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299984A (en) * 1999-04-13 2000-10-24 Yaskawa Electric Corp Controller for three-phase/single-phase pwm cycloconverter
JP2001069759A (en) * 1999-08-24 2001-03-16 Yaskawa Electric Corp Control of power converter
JP2001309660A (en) * 2000-04-19 2001-11-02 Yaskawa Electric Corp Input power factor detection device for pwm cyclo- converter and its control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144987A1 (en) * 2008-05-30 2009-12-03 株式会社安川電機 Control device for matrix converter and output voltage generating method thereof
US8243482B2 (en) 2008-05-30 2012-08-14 Kabushiki Kaisha Yaskawa Denki Control device for matrix converter
JP5387859B2 (en) * 2008-05-30 2014-01-15 株式会社安川電機 Matrix converter control device and output voltage generation method thereof
JP2011030312A (en) * 2009-07-22 2011-02-10 Meidensha Corp Spare charger and spare charging method of ac-ac direct converter
JP2016538820A (en) * 2013-11-15 2016-12-08 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Overvoltage protection device for in-vehicle power supply network for automobile during load interruption
US9981561B2 (en) 2013-11-15 2018-05-29 Seg Automotive Germany Gmbh Overvoltage protection for a motor vehicle electrical system in the event of a load dump

Also Published As

Publication number Publication date
JP4816226B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP5644396B2 (en) Harmonic current suppression device and harmonic current suppression method for power converter
JP6295782B2 (en) Power conversion device, power generation system, control device, and power conversion method
JP5097453B2 (en) Power converter
TWI584549B (en) Method for adaptively generating and controlling arbitrary periodic waveforms in a grid-tied system
JP5742980B1 (en) Power converter control method
JP2014068498A (en) Control method for power conversion device
JP5025295B2 (en) Semiconductor power converter
JP6372201B2 (en) Power converter
CN111357186A (en) Power conversion system
JP2009106017A (en) Active filter function device
JP4816226B2 (en) AC-AC direct conversion device
JP5888074B2 (en) Power converter
JP6379978B2 (en) Power converter control device
JP5115730B2 (en) PWM converter device
JP2009153297A (en) Controller of self-excited converter
WO2017010142A1 (en) Power conversion device
JP5838554B2 (en) Power converter
WO2015193964A1 (en) Electric vehicle control device
JP2009195059A (en) Power conversion method and power conversion apparatus
JP2008228439A (en) Power conversion apparatus and stabilization method therefor
JP2011172387A (en) Power conversion controller, converter control circuit, power conversion control method, power conversion control program and recording medium
JP7050392B2 (en) Power converter
JP5652593B2 (en) Power converter
JP4411848B2 (en) PWM converter in consideration of input filter, control method thereof, and harmonic suppression device
JP2009254122A (en) Control circuit for power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4816226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees