JP2007300518A - Temperature-compensated piezoelectric oscillating circuit and temperature compensation method - Google Patents

Temperature-compensated piezoelectric oscillating circuit and temperature compensation method Download PDF

Info

Publication number
JP2007300518A
JP2007300518A JP2006128158A JP2006128158A JP2007300518A JP 2007300518 A JP2007300518 A JP 2007300518A JP 2006128158 A JP2006128158 A JP 2006128158A JP 2006128158 A JP2006128158 A JP 2006128158A JP 2007300518 A JP2007300518 A JP 2007300518A
Authority
JP
Japan
Prior art keywords
temperature
circuit
voltage
compensation
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006128158A
Other languages
Japanese (ja)
Inventor
Tomio Sato
富雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006128158A priority Critical patent/JP2007300518A/en
Publication of JP2007300518A publication Critical patent/JP2007300518A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature-compensated piezoelectric oscillating circuit and a temperature compensation method, with which temperature compensation characteristics can be stabilized, even at a low-temperature region and a high-temperature region. <P>SOLUTION: The temperature-compensated piezoelectric oscillating circuit is provided with a piezoelectric vibrator, with a piezoelectric element excited at a predetermined frequency, an amplifier 142 for oscillation for exciting the piezoelectric element by supplying current and a frequency temperature compensating circuit for compensating the variations in the oscillation frequency due to temperature variations. In the temperature-compensation method thereof, temperature-compensation waveform corresponding to the temperature variation output from the frequency/temperature compensating circuit and equivalent waveform, consisting of one or more trapezoidal shapes regarded as being substantially equivalent are generated, and the temperature compensating waveform is compensated by impressing an inverted equivalent waveform by inverting the equivalent waveform to the output terminal of the frequency temperature compensation circuit. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水晶振動子等の圧電振動子を使用した圧電発振器に関し、特に簡単な回路構成によってATカット水晶振動子の発振周波数の温度補償が可能な温度補償型圧電発振回路および温度補償方法に関する。   The present invention relates to a piezoelectric oscillator using a piezoelectric resonator such as a crystal resonator, and more particularly to a temperature-compensated piezoelectric oscillation circuit and a temperature compensation method capable of temperature compensation of an oscillation frequency of an AT-cut crystal resonator with a simple circuit configuration. .

携帯電話に代表される陸上移動体通信器の使用エリアは拡大の一途を辿っている。それと同時に、携帯電話の普及もすさまじく技術開発競争は激化している。携帯電話に使用される水晶発振器も小型化、ローコスト化、更に高性能化が要求されている。特にGPSシステムとの共存を要求されるシステムでは温度特性が優れているだけでなく、低ノイズ化が強く要求されている。   The area of use of land mobile communication devices represented by mobile phones is steadily expanding. At the same time, the competition for technological development is intensifying due to the proliferation of mobile phones. Crystal oscillators used in mobile phones are also required to be smaller, lower cost, and higher performance. In particular, a system that requires coexistence with a GPS system not only has excellent temperature characteristics, but also strongly requires low noise.

図9に携帯電話に使用されている水晶振動子(At−Cut)の切断角度の違いによる温度特性を示す。図9に示す様に振動子の温度特性は3次関数に近い特性を示すが、これだけでは特性上十分ではなくこの特性以上の高い周波数安定度が得られるよう温度補償を行っていた。   FIG. 9 shows temperature characteristics depending on a difference in cutting angle of a crystal resonator (At-Cut) used in a mobile phone. As shown in FIG. 9, the temperature characteristics of the vibrator show characteristics close to a cubic function. However, this is not sufficient in terms of characteristics, and temperature compensation is performed so as to obtain a higher frequency stability than this characteristic.

このような問題を解決するために、特許文献1の温度補償型圧電発振回路100では、図10に示すように、水晶振動子141を備えた水晶発振回路140と、両端の電位差により容量が変化する可変容量ダイオードVCaと、各回路をアイソレーションする高抵抗Rak、Raaと、コンデンサC1と、周囲温度を検出する温度センサ部120と、温度センサ部120の電圧に基づいて温度補償電圧を発生する補償電圧発生回路130と、を備えて構成される。   In order to solve such a problem, in the temperature compensated piezoelectric oscillation circuit 100 of Patent Document 1, as shown in FIG. 10, the capacitance varies depending on the crystal oscillation circuit 140 including the crystal resonator 141 and the potential difference between both ends. A variable capacitance diode VCa, high resistances Rak and Raa for isolating each circuit, a capacitor C1, a temperature sensor unit 120 for detecting the ambient temperature, and a temperature compensation voltage based on the voltage of the temperature sensor unit 120. And a compensation voltage generation circuit 130.

図4(C)は、水晶振動子の温度特性を示すグラフG1と、補償電圧発生回路130で発生した温度補償電圧を可変容量ダイオードVCaの両端に印加することにより水晶振動子に印加される補償温度特性を示すグラフG2と、温度補償結果を示すグラフG3である。図4(C)の温度t4からt8の区間は、グラフG3に示すように温度補償結果がなだらかで比較的安定している。   FIG. 4C shows a graph G1 showing the temperature characteristics of the crystal resonator and the compensation applied to the crystal resonator by applying the temperature compensation voltage generated by the compensation voltage generation circuit 130 to both ends of the variable capacitance diode VCa. It is the graph G2 which shows a temperature characteristic, and the graph G3 which shows a temperature compensation result. In the section from the temperature t4 to the temperature t8 in FIG. 4C, the temperature compensation result is gentle and relatively stable as shown in the graph G3.

特開2005−6028号公報Japanese Patent Laid-Open No. 2005-6028

しかしながら、図4(C)の低温領域である温度t1からt4の区間、および、高温領域である温度t8からt11の区間は、グラフG3に示すように温度特性が3次カーブとなり、温度特性を安定させることができない、という問題がある。   However, in the section from the temperature t1 to t4, which is the low temperature region in FIG. 4C, and the section from the temperature t8 to t11, which is the high temperature region, the temperature characteristic becomes a cubic curve as shown in the graph G3. There is a problem that it cannot be stabilized.

本発明は、このような事情に鑑みてなされたものであり、低温領域および高温領域においても温度補償特性を安定させることができる温度補償型圧電発振回路および温度補償方法を提供することを目的とするものである。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a temperature compensation type piezoelectric oscillation circuit and a temperature compensation method capable of stabilizing temperature compensation characteristics even in a low temperature region and a high temperature region. To do.

上記課題を解決するために、本発明の温度補償型圧電発振回路の温度補償方法では、発振周波数が温度により変化し得る発振信号における前記発振周波数についての温度特性を補償すべく、前記温度特性と実質的に等価とみなせる1つ以上の台形が反転された1つ以上の反転台形からなる補償特性を前記温度特性に加える工程を含むことを要旨とする。   In order to solve the above problems, in the temperature compensation method for a temperature-compensated piezoelectric oscillation circuit according to the present invention, in order to compensate for the temperature characteristics of the oscillation frequency in an oscillation signal whose oscillation frequency can change with temperature, The gist of the invention is to include a step of adding a compensation characteristic including one or more inverted trapezoids obtained by inverting one or more trapezoids that can be regarded as substantially equivalent to the temperature characteristic.

上記課題を解決するために、本発明の温度補償型圧電発振回路の温度補償方法では、所定の周波数で励振される圧電素子を備えた圧電振動子と、前記圧電素子に電流を流して励振させる発振用増幅器と、温度変化による発振周波数の変化を補償する周波数温度補償回路と、を備えた温度補償型圧電発振回路の温度補償方法において、前記周波数温度補償回路から出力される温度変化に対応する温度補償波形と実質的に等価とみなせる1つ以上の台形形状からなる等価波形を生成し、前記等価波形を反転させた反転等価波形を前記周波数温度補償回路の出力端子に印加することにより、前記温度補償波形を補償することを要旨とする。   In order to solve the above-described problem, in the temperature compensation method for a temperature-compensated piezoelectric oscillation circuit according to the present invention, a piezoelectric vibrator having a piezoelectric element excited at a predetermined frequency, and an electric current is passed through the piezoelectric element for excitation. A temperature compensation method for a temperature compensated piezoelectric oscillation circuit comprising an oscillation amplifier and a frequency temperature compensation circuit that compensates for a change in oscillation frequency due to a temperature change, corresponding to a temperature change output from the frequency temperature compensation circuit. Generating an equivalent waveform having one or more trapezoidal shapes that can be regarded as substantially equivalent to the temperature compensation waveform, and applying an inverted equivalent waveform obtained by inverting the equivalent waveform to an output terminal of the frequency temperature compensation circuit; The gist is to compensate the temperature compensation waveform.

また、本発明の温度補償型圧電発振回路では、所定の周波数で励振される圧電素子を備えた圧電振動子と、前記圧電素子に電流を流して励振させる発振用増幅器と、温度変化による発振周波数の変化を補償する周波数温度補償回路と、を備えた温度補償型圧電発振回路において、前記温度補償型圧電発振回路は、前記周波数温度補償回路から出力される温度変化に対応する温度補償波形と実質的に等価とみなせる1つ以上の台形形状からなる等価波形を反転させた反転等価波形を生成する2次補償電圧発生回路を備え、前記反転等価波形を前記周波数温度補償回路の出力端子に印加することにより、前記温度補償波形を補償する。   Further, in the temperature compensated piezoelectric oscillation circuit of the present invention, a piezoelectric vibrator having a piezoelectric element excited at a predetermined frequency, an oscillation amplifier for exciting the piezoelectric element by passing a current, and an oscillation frequency due to temperature change A temperature-compensated piezoelectric oscillation circuit comprising a frequency-temperature compensation circuit that compensates for a change in the temperature-compensated piezoelectric oscillation circuit, and the temperature-compensated piezoelectric oscillation circuit substantially includes a temperature-compensated waveform corresponding to a temperature change output from the frequency-temperature compensated circuit. A secondary compensation voltage generation circuit for generating an inverted equivalent waveform obtained by inverting an equivalent waveform composed of one or more trapezoidal shapes that can be regarded as equivalent to each other, and applying the inverted equivalent waveform to an output terminal of the frequency temperature compensation circuit Thus, the temperature compensation waveform is compensated.

この構成によれば、周波数温度補償回路による補償結果の温度補償波形において、安定させることができなかった温度領域の波形に対し反転等価波形を印加し補償することにより、すべての温度領域で温度特性が安定した温度補償型圧電発振回路を提供できる。   According to this configuration, in the temperature compensation waveform as a result of compensation by the frequency temperature compensation circuit, by applying an inversion equivalent waveform to compensate for the temperature region waveform that could not be stabilized, temperature characteristics in all temperature regions Can provide a stable temperature compensated piezoelectric oscillation circuit.

以下、本発明を具体化した実施形態について図面に従って説明する。
(第1実施形態)
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings.
(First embodiment)

<温度補償型圧電発振回路の構成>
まず、第1実施形態に係る温度補償型圧電発振回路の構成について、図1を参照して説明する。図1は、本発明の第1実施形態に係る温度補償型圧電発振回路の構成を説明する回路図である。図1に示すように、温度補償型圧電発振回路1は、従来の温度補償型圧電発振回路100に、2次補償電圧発生部200を追加して構成されている。
<Configuration of temperature compensated piezoelectric oscillation circuit>
First, the configuration of the temperature compensated piezoelectric oscillation circuit according to the first embodiment will be described with reference to FIG. FIG. 1 is a circuit diagram illustrating a configuration of a temperature compensated piezoelectric oscillation circuit according to the first embodiment of the present invention. As shown in FIG. 1, the temperature compensated piezoelectric oscillation circuit 1 is configured by adding a secondary compensation voltage generator 200 to the conventional temperature compensated piezoelectric oscillation circuit 100.

従来の温度補償型圧電発振回路100は、どのような構成でも構わないが、本第1実施形態においては、定電圧回路110、温度センサ部120、1次補償電圧発生回路130、水晶発振回路140、から構成されている。   The conventional temperature compensated piezoelectric oscillation circuit 100 may have any configuration. In the first embodiment, the constant voltage circuit 110, the temperature sensor unit 120, the primary compensation voltage generation circuit 130, and the crystal oscillation circuit 140 are used. , Is composed of.

定電圧回路110は、外部電圧VCCの入力を受けて安定した内部電圧Vrefを生成する。温度センサ部120は、外部温度に対応する電圧Vt1を出力する。1次補償電圧発生回路130は、電圧Vt1を入力し、可変容量素子VCaのカソード側に高抵抗Rakを介して補償電圧VCakを、可変容量素子VCaのアノード側に高抵抗Raaを介して補償電圧VCaaを、それぞれ出力する。   The constant voltage circuit 110 receives the external voltage VCC and generates a stable internal voltage Vref. The temperature sensor unit 120 outputs a voltage Vt1 corresponding to the external temperature. The primary compensation voltage generation circuit 130 receives the voltage Vt1, inputs the compensation voltage VCak via the high resistance Rak to the cathode side of the variable capacitance element VCa, and compensates the compensation voltage VCak via the high resistance Raa to the anode side of the variable capacitance element VCa. VCaa is output.

可変容量素子VCaのカソード側は、水晶発振回路140の水晶振動子141に接続され、可変容量素子VCaのアノード側は、コンデンサC1を介して外部制御端子VCONTに接続されている。また、可変容量素子VCbのカソード側は、外部制御端子VCONTに接続され、可変容量素子VCbのアノード側は、コンデンサC2を介して接地電位GNDに接続されている。   The cathode side of the variable capacitance element VCa is connected to the crystal resonator 141 of the crystal oscillation circuit 140, and the anode side of the variable capacitance element VCa is connected to the external control terminal VCONT via the capacitor C1. The cathode side of the variable capacitance element VCb is connected to the external control terminal VCONT, and the anode side of the variable capacitance element VCb is connected to the ground potential GND through the capacitor C2.

2次補償電圧発生部200は、電圧Vt1を入力し、可変容量素子VCbのカソード側に高抵抗Rbkを介して補償電圧VCbkを、可変容量素子VCbのアノード側に高抵抗Rbaを介して補償電圧VCbaを、それぞれ出力する。   The secondary compensation voltage generator 200 receives the voltage Vt1, receives the compensation voltage VCbk via the high resistance Rbk on the cathode side of the variable capacitance element VCb, and the compensation voltage via the high resistance Rba on the anode side of the variable capacitance element VCb. Each VCba is output.

<温度センサ部の構成>
次に、温度センサ部の構成について図2を参照して説明する。図2は、温度センサ部の構成を示す回路図である。図2に示すように、温度センサ部120は、演算増幅器OP1、ダイオードD11、抵抗R11、R12、R13、R14、可変抵抗R15、から構成されている。内部電圧Vrefと接地電位GNDの間に、抵抗R11、ダイオードD11、抵抗R12が直列に接続され、抵抗R13、R14が直列に接続されている。演算増幅器OP1の+端子(非反転入力端子)は、ダイオードD11のアノードに接続され、−端子(反転入力端子)は、抵抗R13とR14の接続点に接続されている。可変抵抗R15は、演算増幅器OP1の−端子と出力端子の間に接続されている。
<Configuration of temperature sensor>
Next, the configuration of the temperature sensor unit will be described with reference to FIG. FIG. 2 is a circuit diagram showing a configuration of the temperature sensor unit. As shown in FIG. 2, the temperature sensor unit 120 includes an operational amplifier OP1, a diode D11, resistors R11, R12, R13, R14, and a variable resistor R15. Between the internal voltage Vref and the ground potential GND, a resistor R11, a diode D11, and a resistor R12 are connected in series, and resistors R13 and R14 are connected in series. The + terminal (non-inverting input terminal) of the operational amplifier OP1 is connected to the anode of the diode D11, and the − terminal (inverting input terminal) is connected to the connection point between the resistors R13 and R14. The variable resistor R15 is connected between the negative terminal and the output terminal of the operational amplifier OP1.

温度センサ部120は、演算増幅器OP1の出力端子から外部温度に対応する電圧Vt1を出力する。電圧Vt1は、図4(A)に示すように、外部温度の低温側(t1以下)から高温側(t11以上)に向かって内部電圧Vrefから接地電位GND(0V)までリニアに減少する。   The temperature sensor unit 120 outputs a voltage Vt1 corresponding to the external temperature from the output terminal of the operational amplifier OP1. As shown in FIG. 4A, the voltage Vt1 linearly decreases from the internal voltage Vref to the ground potential GND (0 V) from the low temperature side (t1 or lower) to the high temperature side (t11 or higher) of the external temperature.

<1次補償電圧発生回路の構成>
次に、1次補償電圧発生回路の構成について図3を参照して説明する。図3は、1次補償電圧発生回路の構成を示す回路図である。図3に示すように、1次補償電圧発生回路130は、基準電圧発生回路131と、演算増幅器OPaa、OPab、OPacと、抵抗Raa1、Raa2、Raa3、Raa4、Rab1、Rab2、Rab3、Rac1、Rac2、Rac3、R15と、コンデンサCa1、Ca2と、から構成されている。
<Configuration of primary compensation voltage generation circuit>
Next, the configuration of the primary compensation voltage generation circuit will be described with reference to FIG. FIG. 3 is a circuit diagram showing a configuration of the primary compensation voltage generation circuit. As shown in FIG. 3, the primary compensation voltage generation circuit 130 includes a reference voltage generation circuit 131, operational amplifiers OPaa, OPab, OPac, resistors Raa1, Raa2, Raa3, Raa4, Rab1, Rab2, Rab3, Rac1, Rac2 , Rac3, R15 and capacitors Ca1, Ca2.

基準電圧発生回路131は、内部電圧Vrefと接地電位GNDの間に、抵抗Ra1、Ra2、Ra3、Ra4が直列に接続され構成されている。抵抗Ra1とRa2の接続点から電圧Vab1が、抵抗Ra2とRa3の接続点から電圧Vaa1が、抵抗Ra3とRa4の接続点から電圧Vac1が、出力される。   The reference voltage generating circuit 131 is configured by connecting resistors Ra1, Ra2, Ra3, Ra4 in series between the internal voltage Vref and the ground potential GND. The voltage Vab1 is output from the connection point between the resistors Ra1 and Ra2, the voltage Vaa1 is output from the connection point between the resistors Ra2 and Ra3, and the voltage Vac1 is output from the connection point between the resistors Ra3 and Ra4.

演算増幅器OPaaは、+端子に電圧Vaa1が入力され、−端子に抵抗Raa1を介して電圧Vt1が入力され、出力端子と−端子間に抵抗Raa2が接続され、出力端子に抵抗Raa3の一端が接続されている。   In the operational amplifier OPaa, the voltage Vaa1 is input to the + terminal, the voltage Vt1 is input to the − terminal via the resistor Raa1, the resistor Raa2 is connected between the output terminal and the − terminal, and one end of the resistor Raa3 is connected to the output terminal. Has been.

演算増幅器OPabは、+端子に電圧Vab1が入力され、−端子に抵抗Rab1を介して電圧Vt1が入力され、出力端子と−端子間に抵抗Rab2が接続され、出力端子に抵抗Rab3の一端が接続されている。   In the operational amplifier OPab, the voltage Vab1 is input to the + terminal, the voltage Vt1 is input to the − terminal via the resistor Rab1, the resistor Rab2 is connected between the output terminal and the − terminal, and one end of the resistor Rab3 is connected to the output terminal. Has been.

演算増幅器OPacは、+端子に電圧Vac1が入力され、−端子に抵抗Rac1を介して電圧Vt1が入力され、出力端子と−端子間に抵抗Rac2が接続され、出力端子に抵抗Rac3の一端が接続されている。   In the operational amplifier OPac, the voltage Vac1 is input to the + terminal, the voltage Vt1 is input to the − terminal via the resistor Rac1, the resistor Rac2 is connected between the output terminal and the − terminal, and one end of the resistor Rac3 is connected to the output terminal. Has been.

抵抗Raa3の他端には、他端が内部電圧Vrefに接続された抵抗Raa4の一端と、他端が接地電位GNDに接続されたコンデンサCa1の一端がそれぞれ接続され、出力信号VCakを出力する。   The other end of the resistor Raa3 is connected to one end of a resistor Raa4 whose other end is connected to the internal voltage Vref and one end of a capacitor Ca1 whose other end is connected to the ground potential GND, and outputs an output signal VCak.

抵抗Rab3の他端と抵抗Rac3の他端は相互に接続され、他端が接地電位GNDに接続された抵抗R15の一端と、他端が接地電位GNDに接続されたコンデンサCa2の一端がそれぞれ接続され、出力信号VCaaを出力する。   The other end of the resistor Rab3 and the other end of the resistor Rac3 are connected to each other, one end of the resistor R15 having the other end connected to the ground potential GND, and one end of the capacitor Ca2 having the other end connected to the ground potential GND, respectively. The output signal VCaa is output.

1次補償電圧発生回路130は、図4(C)のグラフG1に示す温度特性を補償するために、補償電圧VCakを図1の可変容量素子VCaのカソード端子に、補償電圧VCaaを図1の可変容量素子VCaのアノード端子に印加する。これにより得られる図4(C)のグラフG2に示す容量変化により、グラフG1の温度特性が補償され、図4(C)のグラフG3に示す1次温度補償結果が得られる。   The primary compensation voltage generation circuit 130 compensates the temperature characteristic shown in the graph G1 of FIG. 4C by using the compensation voltage VCak at the cathode terminal of the variable capacitor VCa in FIG. 1 and the compensation voltage VCaa in FIG. The voltage is applied to the anode terminal of the variable capacitance element VCa. The temperature characteristic of the graph G1 is compensated by the capacitance change shown in the graph G2 of FIG. 4C obtained as a result, and the primary temperature compensation result shown in the graph G3 of FIG. 4C is obtained.

図4(A)は、温度変化に対応する、温度センサ部120からの出力電圧Vt1と、図3のVaa2、Vab2、Vac2の電位の変化を示すグラフ図である。図4(B)は、温度変化に対応する、温度センサ部120からの出力電圧Vt1と、図3のVCak、Vab2、VCaaの電位の変化と、図1の可変容量素子VCaのカソード−アノード間電位ΔVaの電位の変化を示すグラフ図である。図4(B)の電位ΔVaの変化により、図4(C)のグラフG2に示す容量変化が得られる。   FIG. 4A is a graph showing the change in the output voltage Vt1 from the temperature sensor unit 120 and the potentials of Vaa2, Vab2, and Vac2 in FIG. 3 corresponding to the temperature change. 4B shows the output voltage Vt1 from the temperature sensor unit 120 corresponding to the temperature change, changes in the potentials of VCak, Vab2, and VCaa in FIG. 3, and between the cathode and anode of the variable capacitance element VCa in FIG. It is a graph which shows the change of the electric potential of electric potential (DELTA) Va. With the change in the potential ΔVa in FIG. 4B, the change in capacitance shown in the graph G2 in FIG. 4C is obtained.

<2次補償電圧発生部の構成>
次に、2次補償電圧発生部の構成について図5を参照して説明する。図5は、2次補償電圧発生部の構成を説明する回路図である。図5に示すように、2次補償電圧発生部200は、2次補償電圧発生回路210、220から構成されている。
<Configuration of secondary compensation voltage generator>
Next, the configuration of the secondary compensation voltage generator will be described with reference to FIG. FIG. 5 is a circuit diagram illustrating the configuration of the secondary compensation voltage generator. As shown in FIG. 5, the secondary compensation voltage generation unit 200 includes secondary compensation voltage generation circuits 210 and 220.

2次補償電圧発生回路210は、基準電圧発生回路211と、演算増幅器OP2、OPba、OPbb、OPbc、OPbdと、抵抗R26、R27、Rba1、Rba2、Rba3、Rbb1、Rbb2、Rbb3、Rbc1、Rbc2、Rbc3、Rbd1、Rbd2、Rbd3、Rs、Rtから構成されている。   The secondary compensation voltage generation circuit 210 includes a reference voltage generation circuit 211, operational amplifiers OP2, OPba, OPbb, OPbc, OPbd, resistors R26, R27, Rba1, Rba2, Rba3, Rbb1, Rbb2, Rbb3, Rbc1, Rbc2, It consists of Rbc3, Rbd1, Rbd2, Rbd3, Rs, and Rt.

基準電圧発生回路211は、内部電圧Vrefと接地電位GNDの間に、抵抗Rb1、Rb2、Rb3、Rb4、Rb5、Rb6が直列に接続され構成されている。抵抗Rb1とRb2の接続点から電圧Vbc1が、抵抗Rb2とRb3の接続点から電圧Vbb1が、抵抗Rb3とRb4の接続点から電圧Vb01が、抵抗Rb4とRb5の接続点から電圧Vbd1が、抵抗Rb5とRb6の接続点から電圧Vba1が、出力される。   The reference voltage generation circuit 211 is configured by connecting resistors Rb1, Rb2, Rb3, Rb4, Rb5, and Rb6 in series between the internal voltage Vref and the ground potential GND. The voltage Vbc1 from the connection point of the resistors Rb1 and Rb2, the voltage Vbb1 from the connection point of the resistors Rb2 and Rb3, the voltage Vb01 from the connection point of the resistors Rb3 and Rb4, the voltage Vbd1 from the connection point of the resistors Rb4 and Rb5, and the resistor Rb5 And the voltage Vba1 is output from the connection point of Rb6.

演算増幅器OP2は、+端子に電圧Vb01が入力され、−端子に抵抗R26を介して電圧Vt1が入力され、出力端子と−端子間に抵抗R27が接続されている。   In the operational amplifier OP2, the voltage Vb01 is input to the + terminal, the voltage Vt1 is input to the − terminal via the resistor R26, and the resistor R27 is connected between the output terminal and the − terminal.

演算増幅器OPbaは、+端子に電圧Vba1が入力され、−端子に抵抗Rba1を介して電圧Vt2が入力され、出力端子と−端子間に抵抗Rba2が接続され、出力端子に抵抗Rba3の一端が接続されている。   In the operational amplifier OPba, the voltage Vba1 is input to the + terminal, the voltage Vt2 is input to the − terminal via the resistor Rba1, the resistor Rba2 is connected between the output terminal and the − terminal, and one end of the resistor Rba3 is connected to the output terminal. Has been.

演算増幅器OPbbは、+端子に電圧Vbb1が入力され、−端子に抵抗Rbb1を介して電圧Vt1が入力され、出力端子と−端子間に抵抗Rbb2が接続され、出力端子に抵抗Rbb3の一端が接続されている。   In the operational amplifier OPbb, the voltage Vbb1 is input to the + terminal, the voltage Vt1 is input to the − terminal via the resistor Rbb1, the resistor Rbb2 is connected between the output terminal and the − terminal, and one end of the resistor Rbb3 is connected to the output terminal. Has been.

演算増幅器OPbcは、+端子に電圧Vbc1が入力され、−端子に抵抗Rbc1を介して電圧Vt2が入力され、出力端子と−端子間に抵抗Rbc2が接続され、出力端子に抵抗Rbc3の一端が接続されている。   In the operational amplifier OPbc, the voltage Vbc1 is input to the + terminal, the voltage Vt2 is input to the − terminal via the resistor Rbc1, the resistor Rbc2 is connected between the output terminal and the − terminal, and one end of the resistor Rbc3 is connected to the output terminal. Has been.

演算増幅器OPbdは、+端子に電圧Vbd1が入力され、−端子に抵抗Rbd1を介して電圧Vt1が入力され、出力端子と−端子間に抵抗Rbd2が接続され、出力端子に抵抗Rbd3の一端が接続されている。   In the operational amplifier OPbd, the voltage Vbd1 is input to the + terminal, the voltage Vt1 is input to the − terminal via the resistor Rbd1, the resistor Rbd2 is connected between the output terminal and the − terminal, and one end of the resistor Rbd3 is connected to the output terminal. Has been.

抵抗Rba3の他端と、抵抗Rbb3の他端と、抵抗Rbc3の他端と、抵抗Rbd3の他端は、相互に接続され、抵抗Rsの一端と接続される。抵抗Rsの他端は、他端が接地電位GNDに接続された抵抗Rtの一端と接続され、出力電位VCbkを出力する。   The other end of the resistor Rba3, the other end of the resistor Rbb3, the other end of the resistor Rbc3, and the other end of the resistor Rbd3 are connected to each other and connected to one end of the resistor Rs. The other end of the resistor Rs is connected to one end of a resistor Rt whose other end is connected to the ground potential GND, and outputs an output potential VCbk.

2次補償電圧発生回路220は、演算増幅器OPbeと、抵抗Rbe1、Rbe2とから構成され、演算増幅器OPbeの+端子は、接地電位GNDに、−端子は、抵抗Rbe1を介して内部電位Vrefに接続されている。また、演算増幅器OPbeの出力端子と−端子の間に抵抗Rbe2が接続されている。2次補償電圧発生回路220の出力電位VCbaは、常時、接地電位GNDとなる。   The secondary compensation voltage generation circuit 220 includes an operational amplifier OPbe and resistors Rbe1 and Rbe2. The operational amplifier OPbe has a positive terminal connected to the ground potential GND and a negative terminal connected to the internal potential Vref via the resistor Rbe1. Has been. A resistor Rbe2 is connected between the output terminal and the negative terminal of the operational amplifier OPbe. Output potential VCba of secondary compensation voltage generation circuit 220 is always at ground potential GND.

2次補償電圧発生部200は、図6(C)のグラフG3に示す1次温度補償結果を補償するために、補償電圧VCbkを図1の可変容量素子VCbのカソード端子に、補償電圧VCbaを図1の可変容量素子VCbのアノード端子に印加する。これにより得られる図6(C)のグラフG4に示す容量変化により、グラフG3の1次温度補償結果が補償され、図6(C)のグラフG5に示す2次温度補償結果が得られる。   The secondary compensation voltage generator 200 compensates the primary temperature compensation result shown in the graph G3 of FIG. 6C by applying the compensation voltage VCbk to the cathode terminal of the variable capacitor VCb of FIG. 1 and the compensation voltage VCba. The voltage is applied to the anode terminal of the variable capacitor VCb in FIG. The primary temperature compensation result of the graph G3 is compensated by the capacitance change shown in the graph G4 of FIG. 6C obtained as a result, and the secondary temperature compensation result shown in the graph G5 of FIG. 6C is obtained.

図6(A)は、温度変化に対応する、温度センサ部120からの出力電圧Vt1と、図5のVt2、Vba2、Vbb2、Vbc2、Vbd2の電位の変化を示すグラフ図である。   6A is a graph showing changes in the output voltage Vt1 from the temperature sensor unit 120 and the potentials Vt2, Vba2, Vbb2, Vbc2, and Vbd2 in FIG. 5 corresponding to the temperature change.

演算増幅器OP2の出力電圧Vt2は、+端子の電圧Vb01と、演算増幅器OP2の利得R26/R27を調整することによって決まり、図6(A)に示すように、電圧Vt1を電圧Vb01に対して反転したグラフとなる。   The output voltage Vt2 of the operational amplifier OP2 is determined by adjusting the voltage Vb01 at the + terminal and the gain R26 / R27 of the operational amplifier OP2, and as shown in FIG. 6A, the voltage Vt1 is inverted with respect to the voltage Vb01. Graph.

演算増幅器OPbaの出力電圧Vba2は、+端子の電圧Vba1と、演算増幅器OPbaの利得Rba1/Rba2を調整することによって決まり、図6(A)に示すように、温度t1以下では内部電圧Vref、温度t1からt2にかけて内部電圧Vrefから接地電位GNDまでリニアに立ち下り、温度t2以上では、接地電位GNDを保つ。   The output voltage Vba2 of the operational amplifier OPba is determined by adjusting the voltage Vba1 at the + terminal and the gain Rba1 / Rba2 of the operational amplifier OPba. As shown in FIG. 6A, the internal voltage Vref and the temperature are reduced below the temperature t1. It falls linearly from the internal voltage Vref to the ground potential GND from t1 to t2, and at the temperature t2 or higher, the ground potential GND is maintained.

演算増幅器OPbbの出力電圧Vbb2は、+端子の電圧Vbb1と、演算増幅器OPbbの利得Rbb1/Rbb2を調整することによって決まり、図6(A)に示すように、温度t3以下では接地電位GND、温度t3からt4にかけて接地電位GNDから内部電圧Vrefまでリニアに立ち上り、温度t4以上では、内部電圧Vrefを保つ。   The output voltage Vbb2 of the operational amplifier OPbb is determined by adjusting the voltage Vbb1 at the + terminal and the gain Rbb1 / Rbb2 of the operational amplifier OPbb. As shown in FIG. 6A, at the temperature t3 or lower, the ground potential GND, From t3 to t4, the voltage rises linearly from the ground potential GND to the internal voltage Vref, and at the temperature t4 or higher, the internal voltage Vref is maintained.

演算増幅器OPbcの出力電圧Vbc2は、+端子の電圧Vbc1と、演算増幅器OPbcの利得Rbc1/Rbc2を調整することによって決まり、図6(A)に示すように、温度t10以下では内部電圧Vref、温度t10からt11にかけて内部電圧Vrefから接地電位GNDまでリニアに立ち下り、温度t11以上では、接地電位GNDを保つ。   The output voltage Vbc2 of the operational amplifier OPbc is determined by adjusting the voltage Vbc1 at the + terminal and the gain Rbc1 / Rbc2 of the operational amplifier OPbc. As shown in FIG. 6A, the internal voltage Vref and the temperature are reduced below the temperature t10. From t10 to t11, the voltage falls linearly from the internal voltage Vref to the ground potential GND, and at the temperature t11 or higher, the ground potential GND is maintained.

演算増幅器OPbdの出力電圧Vbd2は、+端子の電圧Vbd1と、演算増幅器OPbdの利得Rbd1/Rbd2を調整することによって決まり、図6(A)に示すように、温度t8以下では接地電位GND、温度t8からt9にかけて接地電位GNDから内部電圧Vrefまでリニアに立ち上り、温度t9以上では、内部電圧Vrefを保つ。   The output voltage Vbd2 of the operational amplifier OPbd is determined by adjusting the voltage Vbd1 at the + terminal and the gain Rbd1 / Rbd2 of the operational amplifier OPbd. As shown in FIG. 6A, the ground potential GND and the temperature are reduced below the temperature t8. From t8 to t9, the voltage rises linearly from the ground potential GND to the internal voltage Vref, and at the temperature t9 or higher, the internal voltage Vref is maintained.

図6(B)は、温度変化に対応する、図6(A)の出力電圧Vba2、Vbb2、Vbc2、Vbd2の合成結果である出力電圧VCbkの変化を示すグラフ図である。なお、出力電圧VCbaは接地電位GNDに固定されているので、可変容量素子VCbのカソード−アノード間の電圧差ΔVb=VCbkとなる。   FIG. 6B is a graph showing a change in the output voltage VCbk, which is a combined result of the output voltages Vba2, Vbb2, Vbc2, and Vbd2 in FIG. 6A, corresponding to the temperature change. Since the output voltage VCba is fixed to the ground potential GND, the voltage difference ΔVb = VCbk between the cathode and the anode of the variable capacitance element VCb.

温度t1では、Vba2=Vbc2=Vref、Vbb2=Vbd2=0Vなので、出力電圧VCbkの電圧値V1は、次の(1)式で求められる。
V1=Vref×Rbb3×Rbd3×(Rba3+Rbc3)/(Rba3×Rbc3×(Rbb3+Rbd3)+Rbb3×Rbd3×(Rba3+Rbc3)) ・・・(1)
Since Vba2 = Vbc2 = Vref and Vbb2 = Vbd2 = 0 V at the temperature t1, the voltage value V1 of the output voltage VCbk is obtained by the following equation (1).
V1 = Vref × Rbb3 × Rbd3 × (Rba3 + Rbc3) / (Rba3 × Rbc3 × (Rbb3 + Rbd3) + Rbb3 × Rbd3 × (Rba3 + Rbc3)) (1)

温度t2では、Vbc2=Vref、Vba2=Vbb2=Vbd2=0Vなので、出力電圧VCbkの電圧値V2は、次の(2)式で求められる。
V2=Vref×Rba3×Rbb3×Rbd3/(Rbc3×(Rba3×Rbb3+Rbb3×Rbd3+Rba3×Rbd3)+Rba3×Rbb3×Rbd3) ・・・(2)
Since Vbc2 = Vref and Vba2 = Vbb2 = Vbd2 = 0 V at the temperature t2, the voltage value V2 of the output voltage VCbk is obtained by the following equation (2).
V2 = Vref × Rba3 × Rbb3 × Rbd3 / (Rbc3 × (Rba3 × Rbb3 + Rbb3 × Rbd3 + Rba3 × Rbd3) + Rba3 × Rbb3 × Rbd3) (2)

温度t4では、Vbc2=Vbd2=Vref、Vba2=Vbb2=0Vなので、出力電圧VCbkの電圧値V3は、次の(3)式で求められる。
V3=Vref×Rba3×Rbd3×(Rbb3+Rbc3)/(Rbb3×Rbc3×(Rba3+Rbd3)+Rba3×Rbd3×(Rbb3+Rbc3)) ・・・(3)
Since Vbc2 = Vbd2 = Vref and Vba2 = Vbb2 = 0 V at the temperature t4, the voltage value V3 of the output voltage VCbk can be obtained by the following equation (3).
V3 = Vref × Rba3 × Rbd3 × (Rbb3 + Rbc3) / (Rbb3 × Rbc3 × (Rba3 + Rbd3) + Rba3 × Rbd3 × (Rbb3 + Rbc3)) (3)

温度t9では、Vbb2=Vbc2=Vbd2=Vref、Vba2=0Vなので、出力電圧VCbkの電圧値V4は、次の(4)式で求められる。
V4=Vref×Rba3×(Rbb3×Rbc3+Rbc3×Rbd3+Rbb3×Rbd3)/(Rba3×(Rbb3×Rbc3+Rbc3×Rbd3+Rbb3×Rbd3)+Rbb3×Rbc3×Rbd3) ・・・(4)
Since Vbb2 = Vbc2 = Vbd2 = Vref and Vba2 = 0 V at the temperature t9, the voltage value V4 of the output voltage VCbk is obtained by the following equation (4).
V4 = Vref × Rba3 × (Rbb3 × Rbc3 + Rbc3 × Rbd3 + Rbb3 × Rbd3) / (Rba3 × (Rbb3 × Rbc3 + Rbc3 × Rbd3 + Rbb3 × Rbd3) + Rbb3 × Rb3) (Rbc3 × Rb4)

温度t11では、Vbb2=Vbd2=Vref、Vba2=Vbc2=0Vなので、出力電圧VCbkの電圧値V5は、次の(5)式で求められる。
V5=Vref×Rba3×Rbc3×(Rbb3+Rbd3)/(Rbb3×Rbd3×(Rba3+Rbc3)+Rba3×Rbc3×(Rbb3+Rbd3)) ・・・(5)
Since Vbb2 = Vbd2 = Vref and Vba2 = Vbc2 = 0 V at the temperature t11, the voltage value V5 of the output voltage VCbk is obtained by the following equation (5).
V5 = Vref × Rba3 × Rbc3 × (Rbb3 + Rbd3) / (Rbb3 × Rbd3 × (Rba3 + Rbc3) + Rba3 × Rbc3 × (Rbb3 + Rbd3)) (5)

なお、Rba3、Rbb3、Rbc3、Rbd3の値は、(1)式〜(5)式を連立して解くことにより求めることができる。   Note that the values of Rba3, Rbb3, Rbc3, and Rbd3 can be obtained by simultaneously solving the equations (1) to (5).

図1の可変容量素子VCbのカソード−アノード間にΔVb(=VCbk)を印加することにより、図6(C)のグラフG4に示す容量変化を外部制御端子VCONTに印加されるので、グラフG3の1次温度補償結果が補償され、グラフG5に示す2次温度補償結果が得られる。   By applying ΔVb (= VCbk) between the cathode and anode of the variable capacitor VCb in FIG. 1, the capacitance change shown in the graph G4 in FIG. 6C is applied to the external control terminal VCONT. The primary temperature compensation result is compensated, and the secondary temperature compensation result shown in graph G5 is obtained.

以上に述べた前記実施形態によれば、以下の効果が得られる。   According to the embodiment described above, the following effects can be obtained.

本実施形態では、周波数温度補償回路による補償結果の温度補償波形(図6(C)のグラフG3)において、安定させることができなかった温度領域(温度t4以下と温度t8以上)の波形に対し反転等価波形である図6(C)のグラフG5に示す台形状の容量変化を印加し補償することにより、すべての温度領域で温度特性が安定した温度補償型圧電発振回路を提供できる。   In the present embodiment, in the temperature compensation waveform (graph G3 in FIG. 6C) of the compensation result by the frequency temperature compensation circuit, the waveform in the temperature region (temperature t4 or less and temperature t8 or more) that could not be stabilized. By applying and compensating for the trapezoidal capacitance change shown in the graph G5 of FIG. 6C, which is an inverted equivalent waveform, it is possible to provide a temperature compensated piezoelectric oscillation circuit with stable temperature characteristics in all temperature regions.

以上、本発明の実施形態を説明したが、本発明はこうした実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内において様々な形態で実施し得ることができる。以下、変形例を挙げて説明する。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, In the range which does not deviate from the meaning of this invention, it can be implemented with various forms. Hereinafter, a modification will be described.

(変形例1)本発明に係る温度補償型圧電発振回路の第1変形例について説明する。前記第1実施形態では、図5に示すように、可変容量素子VCbのアノード側に印加する電圧VCbaを接地電位GNDに固定した場合を説明したが、図7(A)に示すように、アノード側電圧VCbaを出力する回路として2次補償電圧発生回路210と同様の構成で各抵抗値を変更した2次補償電圧発生回路210aで構成してもよい。このような構成にすれば、図7(B)に示すように、可変容量素子VCbのカソード−アノード間の電圧ΔVbをより複雑な台形波形にすることも可能である。   (Modification 1) A first modification of the temperature compensated piezoelectric oscillation circuit according to the present invention will be described. In the first embodiment, as shown in FIG. 5, the case where the voltage VCba applied to the anode side of the variable capacitor VCb is fixed to the ground potential GND has been described. However, as shown in FIG. A circuit for outputting the side voltage VCba may be configured by a secondary compensation voltage generation circuit 210a in which each resistance value is changed in the same configuration as the secondary compensation voltage generation circuit 210. With such a configuration, as shown in FIG. 7B, the voltage ΔVb between the cathode and the anode of the variable capacitor VCb can be formed into a more complicated trapezoidal waveform.

(変形例2)本発明に係る温度補償型圧電発振回路の第2変形例について説明する。前記第1実施形態では、図1に示すように、外部制御端子VCONTを2次補償電圧発生部200により占有してしまい、外部制御ができなくなるという問題があった。本変形例2では、図8に示すように、2次補償電圧発生部200の出力電圧VCbkと外部制御端子VCONTの間に演算増幅器OP3を設け、演算増幅器OP3の+端子に外部制御信号VCONT1を入力することにより、外部制御信号による制御を可能にできる。   (Modification 2) A second modification of the temperature compensated piezoelectric oscillation circuit according to the present invention will be described. In the first embodiment, as shown in FIG. 1, there is a problem that the external control terminal VCONT is occupied by the secondary compensation voltage generator 200 and external control cannot be performed. In the second modification, as shown in FIG. 8, an operational amplifier OP3 is provided between the output voltage VCbk of the secondary compensation voltage generator 200 and the external control terminal VCONT, and an external control signal VCONT1 is applied to the + terminal of the operational amplifier OP3. By inputting, control by an external control signal can be enabled.

第1実施形態に係る温度補償型圧電発振回路の構成を説明する回路図。The circuit diagram explaining the composition of the temperature compensation type piezoelectric oscillation circuit concerning a 1st embodiment. 温度センサ部の構成を説明する回路図。The circuit diagram explaining the structure of a temperature sensor part. 1次補償電圧発生回路の構成を説明する回路図。The circuit diagram explaining the structure of a primary compensation voltage generation circuit. 1次補償電圧発生回路の動作を説明するグラフ図。The graph explaining operation | movement of a primary compensation voltage generation circuit. 2次補償電圧発生部の構成を説明する回路図。The circuit diagram explaining the structure of a secondary compensation voltage generation part. 2次補償電圧発生部の動作を説明するグラフ図。The graph explaining operation | movement of a secondary compensation voltage generation part. 変形例2の2次補償電圧発生部の構成を説明する図。The figure explaining the structure of the secondary compensation voltage generation part of the modification 2. 変形例3の温度補償型圧電発振回路の構成を説明する回路図。FIG. 9 is a circuit diagram illustrating a configuration of a temperature compensated piezoelectric oscillation circuit according to Modification 3. 携帯電話に使用されている水晶振動子(At−Cut)の切断角度の違いによる温度特性を示すグラフ図。The graph which shows the temperature characteristic by the difference in the cutting angle of the crystal oscillator (At-Cut) currently used for the mobile telephone. 従来の温度補償型圧電発振回路の構成を説明する回路図。The circuit diagram explaining the structure of the conventional temperature compensation type | mold piezoelectric oscillation circuit.

符号の説明Explanation of symbols

1…温度補償型圧電発振回路、100…従来の温度補償型圧電発振回路、110…定電圧回路、120…温度センサ部、130…1次補償電圧発生回路、131…基準電圧発生回路、140…水晶発振回路、141…水晶振動子、142…発振用増幅器、200…2次補償電圧発生部、210…2次補償電圧発生回路、211…基準電圧発生回路、220…2次補償電圧発生回路。
DESCRIPTION OF SYMBOLS 1 ... Temperature compensation type piezoelectric oscillation circuit, 100 ... Conventional temperature compensation type piezoelectric oscillation circuit, 110 ... Constant voltage circuit, 120 ... Temperature sensor part, 130 ... Primary compensation voltage generation circuit, 131 ... Reference voltage generation circuit, 140 ... Crystal oscillator circuit 141... Crystal oscillator 142 Amplifier amplifier 200 Secondary compensation voltage generator 210 Secondary compensation voltage generator 211 Reference voltage generator 220 Secondary compensation voltage generator

Claims (3)

発振周波数が温度により変化し得る発振信号における前記発振周波数についての温度特性を補償すべく、前記温度特性と実質的に等価とみなせる1つ以上の台形が反転された1つ以上の反転台形からなる補償特性を前記温度特性に加える工程を含むことを特徴とする温度補償型圧電発振回路の温度補償方法。   In order to compensate for the temperature characteristic of the oscillation frequency in an oscillation signal whose oscillation frequency can be changed by temperature, it comprises one or more inverted trapezoids in which one or more trapezoids that can be regarded as substantially equivalent to the temperature characteristics are inverted. A temperature compensation method for a temperature compensated piezoelectric oscillation circuit, comprising a step of adding a compensation characteristic to the temperature characteristic. 所定の周波数で励振される圧電素子を備えた圧電振動子と、前記圧電素子に電流を流して励振させる発振用増幅器と、温度変化による発振周波数の変化を補償する周波数温度補償回路と、を備えた温度補償型圧電発振回路の温度補償方法において、
前記周波数温度補償回路から出力される温度変化に対応する温度補償波形と実質的に等価とみなせる1つ以上の台形形状からなる等価波形を生成し、
前記等価波形を反転させた反転等価波形を前記周波数温度補償回路の出力端子に印加することにより、前記温度補償波形を補償する、
ことを特徴とする温度補償型圧電発振回路の温度補償方法。
A piezoelectric vibrator including a piezoelectric element excited at a predetermined frequency, an oscillation amplifier that excites the piezoelectric element by passing a current, and a frequency temperature compensation circuit that compensates for a change in oscillation frequency due to a temperature change. In the temperature compensation method of the temperature compensated piezoelectric oscillation circuit,
Generating one or more trapezoidal equivalent waveforms that can be considered substantially equivalent to a temperature compensation waveform corresponding to a temperature change output from the frequency temperature compensation circuit;
By applying an inverted equivalent waveform obtained by inverting the equivalent waveform to the output terminal of the frequency temperature compensation circuit, the temperature compensation waveform is compensated.
A temperature compensation method for a temperature compensated piezoelectric oscillation circuit.
所定の周波数で励振される圧電素子を備えた圧電振動子と、前記圧電素子に電流を流して励振させる発振用増幅器と、温度変化による発振周波数の変化を補償する周波数温度補償回路と、を備えた温度補償型圧電発振回路において、
前記温度補償型圧電発振回路は、前記周波数温度補償回路から出力される温度変化に対応する温度補償波形と実質的に等価とみなせる1つ以上の台形形状からなる等価波形を反転させた反転等価波形を生成する2次補償電圧発生回路を備え、
前記反転等価波形を前記周波数温度補償回路の出力端子に印加することにより、前記温度補償波形を補償する、
ことを特徴とする温度補償型圧電発振回路。
A piezoelectric vibrator including a piezoelectric element excited at a predetermined frequency, an oscillation amplifier that excites the piezoelectric element by passing a current, and a frequency temperature compensation circuit that compensates for a change in oscillation frequency due to a temperature change. In a temperature compensated piezoelectric oscillation circuit,
The temperature compensated piezoelectric oscillation circuit is an inverted equivalent waveform obtained by inverting an equivalent waveform having one or more trapezoidal shapes that can be regarded as substantially equivalent to a temperature compensation waveform corresponding to a temperature change output from the frequency temperature compensation circuit. A secondary compensation voltage generation circuit for generating
Compensating the temperature compensation waveform by applying the inverted equivalent waveform to the output terminal of the frequency temperature compensation circuit;
A temperature compensated piezoelectric oscillation circuit characterized by the above.
JP2006128158A 2006-05-02 2006-05-02 Temperature-compensated piezoelectric oscillating circuit and temperature compensation method Withdrawn JP2007300518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006128158A JP2007300518A (en) 2006-05-02 2006-05-02 Temperature-compensated piezoelectric oscillating circuit and temperature compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006128158A JP2007300518A (en) 2006-05-02 2006-05-02 Temperature-compensated piezoelectric oscillating circuit and temperature compensation method

Publications (1)

Publication Number Publication Date
JP2007300518A true JP2007300518A (en) 2007-11-15

Family

ID=38769611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006128158A Withdrawn JP2007300518A (en) 2006-05-02 2006-05-02 Temperature-compensated piezoelectric oscillating circuit and temperature compensation method

Country Status (1)

Country Link
JP (1) JP2007300518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133816A (en) * 2018-04-19 2018-08-23 セイコーエプソン株式会社 Oscillator, electronic apparatus, and mobile object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018133816A (en) * 2018-04-19 2018-08-23 セイコーエプソン株式会社 Oscillator, electronic apparatus, and mobile object

Similar Documents

Publication Publication Date Title
US8058941B2 (en) Voltage control type temperature compensation piezoelectric oscillator
JP2017108282A (en) Frequency calibration circuit and frequency calibration method
JP4745102B2 (en) Reference current control circuit, crystal oscillator control IC with temperature compensation function, crystal oscillator and mobile phone
US7205858B2 (en) Temperature compensated piezoelectric oscillator and electronic apparatus comprising it
JP2008005195A (en) Voltage-controlled crystal oscillator
CN110224689B (en) Oscillation starting circuit
JP5034772B2 (en) Temperature compensated piezoelectric oscillator
JP2007300518A (en) Temperature-compensated piezoelectric oscillating circuit and temperature compensation method
JP5253318B2 (en) Oscillator
JP5291564B2 (en) Oscillator
Nemoto et al. A 2.5 ppm fully integrated CMOS analog TCXO
JP3876594B2 (en) Temperature compensated oscillator
JP2009272734A (en) Piezoelectric oscillator
JP5178457B2 (en) Oscillator
JP2002026658A (en) Quartz oscillator circuit
JP2009290379A (en) Oscillator
JP2005277776A (en) Frequency-compensated voltage controlled oscillator
JP4428124B2 (en) Temperature compensated oscillator
CN213906935U (en) MEMS microphone and electronic product
JP2005006030A (en) Temperature compensated piezoelectric oscillator
JP2004007036A (en) Two-output type crystal oscillator
JPH10270941A (en) Temperature compensated piezoelectric oscillator
JP2004356872A (en) Temperature-compensated piezoelectric oscillator
JP2006100985A (en) Crystal oscillator and oscillation device employing it
JPH1093343A (en) Temperature compensation method for piezoelectric oscillating circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707