JP2007299855A - Stacked electrochemical device - Google Patents

Stacked electrochemical device Download PDF

Info

Publication number
JP2007299855A
JP2007299855A JP2006125340A JP2006125340A JP2007299855A JP 2007299855 A JP2007299855 A JP 2007299855A JP 2006125340 A JP2006125340 A JP 2006125340A JP 2006125340 A JP2006125340 A JP 2006125340A JP 2007299855 A JP2007299855 A JP 2007299855A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
electrode plate
separator
separator sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006125340A
Other languages
Japanese (ja)
Other versions
JP4753369B2 (en
Inventor
Koji Inoue
光司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006125340A priority Critical patent/JP4753369B2/en
Publication of JP2007299855A publication Critical patent/JP2007299855A/en
Application granted granted Critical
Publication of JP4753369B2 publication Critical patent/JP4753369B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact stacked electrochemical device excellent in electric characteristic and reliability. <P>SOLUTION: A positive electrode plate and a negative electrode plate are stacked via a separator sheet, and part of an outer periphery of the separator sheet is stuck to the positive electrode plate and the negative electrode plate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気二重層キャパシタ、リチウム二次電池等、複数の電極板をセパレータを介して積層した積層型電気化学デバイスに関するものである。   The present invention relates to a multilayer electrochemical device in which a plurality of electrode plates such as an electric double layer capacitor and a lithium secondary battery are stacked via a separator.

電気二重層キャパシタは、電荷の蓄積に分極性電極と電解質の界面に生じる電気二重層を利用したコンデンサであり、この電気二重層の厚さが数ナノメートルと非常に小さく、かつ、活性炭のような比表面積の大きな材料が分極性電極(以下活物質ともいう)に用いられることによって、大きな容量を実現してきた。電気二重層キャパシタは、構成材料に重金属などの有害物質を使用していないことから環境汚染の危険性がなく、さらに二次電池のように化学反応を伴わないことから充放電サイクル寿命に優れているといった特徴がある。このため、電気二重層キャパシタは、二次電池の代替デバイスとして、マイコンやメモリーなどのバックアップ電源として広く用いられるようになった。   An electric double layer capacitor is a capacitor that uses an electric double layer generated at the interface between a polarizable electrode and an electrolyte to accumulate electric charge. The electric double layer has a very small thickness of several nanometers and is similar to activated carbon. A large capacity has been realized by using a material having a large specific surface area for a polarizable electrode (hereinafter also referred to as an active material). Electric double layer capacitors do not use hazardous materials such as heavy metals in their constituent materials, so there is no risk of environmental contamination, and because they do not involve chemical reactions like secondary batteries, they have excellent charge / discharge cycle life. There is a feature such as. For this reason, electric double layer capacitors have come to be widely used as backup power sources for microcomputers and memories as an alternative device for secondary batteries.

近年、電気二重層キャパシタの特徴を活かし、電気自動車などのモーター駆動用エネルギー源あるいはエネルギー回生システムとして、また無停電電源装置等新しい用途が検討され、電気二重層キャパシタが期待されている。従来用途のメモリーなどのバックアップ電源としては、電極板やセパレータを捲回した型の電気二重層キャパシタが主流として用いられているが、自動車等の高い出力が必要な用途に用いるためには、複数の電極板を積層した積層型電気二重層キャパシタが好適である。   In recent years, taking advantage of the characteristics of the electric double layer capacitor, new applications such as an energy source for driving a motor such as an electric vehicle or an energy regeneration system and an uninterruptible power supply device have been studied, and an electric double layer capacitor is expected. Conventionally, as a backup power source for memories, etc., an electric double layer capacitor with a rolled electrode plate or separator is mainly used. A multilayer electric double layer capacitor in which these electrode plates are laminated is suitable.

電極板を積層した電気二重層キャパシタを始めとする積層型電気化学デバイスにおいて、多くの工夫が成されてきた。それらの目的は、出来るだけケース内に無駄な空間を発生させず、正極と負極を正確にセパレータを介して積層させるというものである。   Many devices have been devised in multilayer electrochemical devices such as electric double layer capacitors in which electrode plates are laminated. Their purpose is to cause the positive electrode and the negative electrode to be accurately stacked through the separator without generating a useless space in the case as much as possible.

例えば特許文献1に開示されているように、屏風状に電極やセパレータを折り曲げて外装ケースに収納する技術が開示されている。また、特許文献2にはポリエチレン等樹脂系セパレータを袋状にして、その中に電極板を収納する技術が記載されている。   For example, as disclosed in Patent Document 1, a technique is disclosed in which electrodes and separators are folded in a folding screen and stored in an outer case. Patent Document 2 describes a technique in which a resin separator such as polyethylene is formed in a bag shape and an electrode plate is accommodated therein.

特開平3-1455号公報Japanese Patent Laid-Open No. 3-1455 特公昭62−31786号公報Japanese Patent Publication No.62-31786

しかしながら、積層型電気化学デバイスにおいて、電極やセパレータを屏風状にすることに対しては、電極の折り曲げ部分での電流の偏りを避けるために、活物質の存在しない部分と活物質が存在する部分とを交互に規則的且つ正確に正極と負極の基板上に製作しなければならなく、製造上、加工が非常に困難である。   However, in a stacked electrochemical device, when the electrodes and separators are in a folding screen, in order to avoid current bias in the bent part of the electrode, a part where there is no active material and a part where there is an active material Must be manufactured alternately and regularly on the positive and negative electrode substrates, which is very difficult to manufacture.

また、樹脂系セパレータを袋状にして、その中に電極を収納させることに対しては、電極の周囲を熱融着接合して電極を収納する袋状セパレータとしてから積層を行うと、積層ズレを防ぐことができるものの、ポリエチレンやポリプロピレンなどの樹脂系セパレータを加熱によって熱融着させるため、融着しわが生じ、しわによって電極間距離が増大することで電気特性を劣化させる。さらに、周囲を熱融着接合するため容量に寄与しないスペースが存在することとなり、体積あたりの容量値が低下するという問題点がある。   In addition, in the case where the resin separator is made into a bag shape and the electrode is accommodated therein, if the lamination is performed after forming a bag-like separator that accommodates the electrode by heat-sealing and bonding the periphery of the electrode, the laminating displacement is caused. However, since a resin-based separator such as polyethylene or polypropylene is thermally fused by heating, fusion wrinkles are generated, and the distance between the electrodes is increased by the wrinkles, thereby deteriorating electrical characteristics. Furthermore, since the surroundings are heat-sealed and joined, there is a space that does not contribute to the capacity, and the capacity value per volume is reduced.

本発明は、上記の問題を解決すべくなされたものであり、特に、電極とセパレータシートの接続を工夫し、特性の優れた積層型電気化学デバイスを提供することを目的とする。   The present invention has been made to solve the above-described problems, and in particular, an object of the present invention is to provide a stacked electrochemical device having excellent characteristics by devising the connection between an electrode and a separator sheet.

前記課題を解決するため、本発明の積層型電気化学デバイスは、正極板と負極板がセパレータシートを介して積層され、前記セパレータシートの外周部の一部が前記正極板および/または前記負極板と接続されたことを特徴とする。   In order to solve the above-mentioned problems, in the multilayer electrochemical device of the present invention, a positive electrode plate and a negative electrode plate are laminated via a separator sheet, and a part of the outer periphery of the separator sheet is the positive electrode plate and / or the negative electrode plate. It is connected with.

また、前記セパレータシートの外周部の一部が熱可塑性樹脂により前記正極板および/または前記負極板と接着されてもよい。   Further, a part of the outer peripheral portion of the separator sheet may be bonded to the positive electrode plate and / or the negative electrode plate with a thermoplastic resin.

本発明では、セパレータシートの外周部の一部が正極板および/または負極板と接着されるため、セパレータにしわを生じることなく、また、安価な材質のセパレータの使用が可能となり、低コストで特性がよく、信頼性の高い積層型電気デバイスを提供できる。   In the present invention, since a part of the outer peripheral portion of the separator sheet is bonded to the positive electrode plate and / or the negative electrode plate, it is possible to use a separator made of an inexpensive material without causing wrinkles in the separator, and at a low cost. A stacked electrical device with good characteristics and high reliability can be provided.

さらに、電気二重層キャパシタにおいては、安価な天然セルロースを材質とするセパレータの使用が可能となり、ESR、静電容量、自己放電特性の良好な信頼性の高い製品を提供できる。   Further, in the electric double layer capacitor, it is possible to use a separator made of inexpensive natural cellulose, and it is possible to provide a highly reliable product with good ESR, capacitance, and self-discharge characteristics.

本発明の実施の形態を以下に図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施の形態による積層型電気二重層キャパシタを説明する図であり、図1(a)は平面図、図1(b)は側面図、図1(c)は断面図である。図1に示すように、積層型電気二重層キャパシタ4は、複数枚の正極板および負極板からなる電極板を有する電極積層体5および電解液を収納した外装フィルム3と電極積層体5に接続されて外装フィルム3の外部に突出した正極リード板2及び負極リード板1とを有する。外装フィルム3は、例えば内面に熱可塑性樹脂を配する金属箔との複合フィルムなどからなるシートを袋状にしたのもので形成され、その中に電極積層体5及び電解液を収容した後、真空雰囲気中で封止される。電極積層体5は正極板と負極板をセパレータシートを介して交互に積層されて形成される。   FIG. 1 is a diagram for explaining a multilayer electric double layer capacitor according to an embodiment of the present invention. FIG. 1 (a) is a plan view, FIG. 1 (b) is a side view, and FIG. is there. As shown in FIG. 1, the multilayer electric double layer capacitor 4 is connected to an electrode laminate 5 having an electrode plate composed of a plurality of positive and negative plates, an exterior film 3 containing an electrolytic solution, and the electrode laminate 5. And a positive electrode lead plate 2 and a negative electrode lead plate 1 that protrude to the outside of the exterior film 3. The exterior film 3 is formed of, for example, a sheet made of a composite film with a metal foil that disposes a thermoplastic resin on the inner surface, and the electrode laminate 5 and the electrolytic solution are accommodated therein. Sealed in a vacuum atmosphere. The electrode laminate 5 is formed by alternately laminating positive and negative plates through separator sheets.

図2は本発明の正極板を示す平面図である。正極板8は正極リード端子6と正極リード端子と対角に位置する突起部が引き出された集電体の矩形状の集電体部分上に形成された活物質7の塗布部と活物質が形成されない正極リード端子6と正極リード端子と対角に位置する突起部とから構成され、正極リード端子6の引き出し部、および正極リード端子と対角に位置する突起部にはセパレータシートと接着するための接着用材料、例えば熱可塑性樹脂9が形成される。   FIG. 2 is a plan view showing the positive electrode plate of the present invention. The positive electrode plate 8 has an active material 7 coated portion and an active material formed on a rectangular current collector portion of a current collector from which a protrusion located diagonally to the positive electrode lead terminal 6 and the positive electrode lead terminal is drawn. The positive electrode lead terminal 6 and the positive electrode lead terminal which are not formed are formed with a protrusion positioned diagonally to the positive electrode lead terminal 6, and the separator sheet is bonded to the lead portion of the positive electrode lead terminal 6 and the protrusion positioned diagonally to the positive electrode lead terminal. For this purpose, an adhesive material, for example, a thermoplastic resin 9 is formed.

図3は本発明の負極板を示す平面図である。負極板11は負極リード端子12と負極リード端子と対角に位置する突起部が引き出された集電体の矩形状の集電体部分上に形成された活物質10と活物質が形成されない負極リード端子12と負極リード端子と対角に位置する突起部とから構成され、負極リード端子12の引き出し部、および負極リード端子と対角に位置する突起部にはセパレータシートと接着するための熱可塑性樹脂9が形成される。電気二重層キャパシタの場合は、負極板も正極板と同様の材料のものが使用できる。正極板、負極板は、従来と同様にアルミニウム箔またはニッケル箔等からなる集電体と炭素材料を主成分とする活物質(分極性電極)とを一体化させたものを用いることができる。炭素材料としては、木材、鋸屑、椰子殻、パルプ廃液などの植物系物質、石炭、石油重質油、またはそれらを熱分解して得られる石炭系及び石油系ピッチ、石油コークス、カーボンエアロゲル、タールピッチなどの化石燃料系物質、フェノール樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデンなどの合成高分子系物質など各種のものが用いられ、これら原料を炭化後、ガス賦活法または薬品賦活法によって賦活した比表面積が700〜3000m2/g、特に1000〜2000m2/gが好ましい。導電剤としては、アセチレンブラック、ケッチェンブラックのようなカーボンブラック、天然黒鉛、熱膨張黒鉛炭素繊維が好ましく、5〜30重量%程度添加するのがより好ましい。バインダー物質としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フルオロオレフィン共重合体架橋ポリマー、ポリビニルアルコールなどが用いられ、3〜20重量%程度のバインダを含んで作製するのが好ましく、特にポリテトラフルオロエチレンが耐熱性、耐薬品性、シート強度の観点から好ましい。 FIG. 3 is a plan view showing the negative electrode plate of the present invention. The negative electrode plate 11 includes a negative electrode lead terminal 12 and a negative electrode lead terminal, and an active material 10 formed on a rectangular current collector portion of a current collector from which a protrusion located diagonally is drawn, and a negative electrode on which no active material is formed The lead terminal 12 and the negative electrode lead terminal are formed with protrusions positioned diagonally, and the lead-out portion of the negative electrode lead terminal 12 and the protrusions positioned diagonally with the negative electrode lead terminal are heat for bonding with the separator sheet. A plastic resin 9 is formed. In the case of an electric double layer capacitor, the negative electrode plate can be made of the same material as the positive electrode plate. As the positive electrode plate and the negative electrode plate, those obtained by integrating a current collector made of an aluminum foil or a nickel foil and an active material (polarizable electrode) mainly composed of a carbon material can be used as in the conventional case. Carbon materials include plant materials such as wood, sawdust, coconut husk and pulp waste, coal, heavy petroleum oil, or coal-based and petroleum-based pitches obtained by pyrolyzing them, petroleum coke, carbon aerogel, tar Various materials such as fossil fuel-based materials such as pitch, synthetic polymer materials such as phenolic resin, polyvinyl chloride resin, and polyvinylidene chloride are used. After carbonizing these raw materials, they were activated by gas activation method or chemical activation method. a specific surface area of 700~3000m 2 / g, in particular 1000 to 2000 2 / g are preferred. As the conductive agent, carbon black such as acetylene black and ketjen black, natural graphite, and thermally expanded graphite carbon fiber are preferable, and it is more preferable to add about 5 to 30% by weight. As the binder material, polytetrafluoroethylene, polyvinylidene fluoride, fluoroolefin copolymer cross-linked polymer, polyvinyl alcohol, or the like is used, and it is preferable that the binder material is prepared by including about 3 to 20% by weight of a binder. Ethylene is preferred from the viewpoints of heat resistance, chemical resistance and sheet strength.

次に、正極板、負極板の作製方法の例を説明する。フェノール樹脂を炭化・賦活した活性炭粉末とカーボンブラックをバインダにて混練し、次いで圧延を行いシート状物を成形する。得られたシート状物をアルミニウム又はニッケルなどの粗面化された集電体箔に導電性カーボンペーストを用いて接着する。さらに、加熱乾燥することで一体化を行い、これを正極板または負極板とする。正極板または負極板は、活物質と集電体とを重ね合わせて圧延することにより、これらを互いに圧着させる方法で作製されてもよい。活物質は集電体の片面に接着してもよいし、両面に接着しもよい。またメチルセルロースやポリフッ化ビニリデン等のバインダを溶媒に溶解した溶液に炭素材料を分散させてスラリーとし、スラリーを集電体の片面あるいは両面に塗工することで正極板または負極板を作製してもよい。   Next, an example of a method for manufacturing the positive electrode plate and the negative electrode plate will be described. An activated carbon powder carbonized and activated with phenol resin and carbon black are kneaded with a binder, and then rolled to form a sheet. The obtained sheet is bonded to a roughened current collector foil such as aluminum or nickel using a conductive carbon paste. Furthermore, it integrates by heat-drying and makes this a positive electrode plate or a negative electrode plate. The positive electrode plate or the negative electrode plate may be produced by a method in which an active material and a current collector are overlapped and rolled to bond them together. The active material may be bonded to one side of the current collector or may be bonded to both sides. Alternatively, a positive electrode plate or a negative electrode plate can be produced by dispersing a carbon material in a solution in which a binder such as methyl cellulose or polyvinylidene fluoride is dissolved in a solvent to form a slurry, and coating the slurry on one or both sides of the current collector. Good.

リチウム二次電池の場合には、電解質と電極の組み合わせを公知のものの中から適宜選択して使用することができる。好ましくはゲル電解質と電極活物質、必要により導電剤をバインダーで一体化させたものを用いるとよい。通常、負極には、炭素材料、リチウム金属、リチウム合金、酸化物材料などの負極活物質を用い、正極には、リチウムイオンがインターカレート可能な酸化物、または炭素材料などの正極活物質が用いられる。   In the case of a lithium secondary battery, a combination of an electrolyte and an electrode can be appropriately selected from known ones and used. Preferably, a gel electrolyte and an electrode active material, and if necessary, a conductive agent integrated with a binder may be used. Usually, a negative electrode active material such as a carbon material, lithium metal, a lithium alloy, or an oxide material is used for the negative electrode, and a positive electrode active material such as an oxide capable of intercalating lithium ions or a carbon material is used for the positive electrode. Used.

正極板の製造は正極活物質と必要に応じて導電剤とバインダーを溶液に分散したスラリーをアルミニウムなどの集電体に塗布して行なう。負極板の製造は負極活物質と必要に応じて導電剤とバインダーを溶液に分散したスラリーを銅、ニッケル等の集電体に塗布して行なう。   The positive electrode plate is produced by applying a positive electrode active material and, if necessary, a slurry in which a conductive agent and a binder are dispersed in a solution to a current collector such as aluminum. The negative electrode plate is produced by applying a slurry in which a negative electrode active material and, if necessary, a conductive agent and a binder are dispersed in a solution, to a current collector such as copper or nickel.

電気二重層キャパシタの場合には、セパレータシートは、厚さが薄く、電子絶縁性及びイオン透過性の高い材料が好ましく、特に限定されるものではないが、たとえば、ポリエチレンやポリプロピレンなどの不織布、またはビスコースレイヨンや天然セルロースの抄紙等が好適に使用される。電気化学デバイスに応じて材料選定することが好ましい。例えばリチウム二次電池の場合には、ポリエチレン、ポリプロピレン等のポリオレフィン類の一種、又は二種以上(二種以上の場合、2層以上のフィルムを張り合わせたものなどがある)、ポリエチレンテレフタレートのようなポリエステル類、エチレン−テトラフルオロエチレン共重合体のような熱可塑性フッ素樹脂類、セルロース類などが採用される。   In the case of an electric double layer capacitor, the separator sheet is preferably a material having a small thickness and a high electronic insulation and ion permeability, and is not particularly limited. For example, a nonwoven fabric such as polyethylene or polypropylene, or Viscose rayon, natural cellulose paper, and the like are preferably used. It is preferable to select a material according to the electrochemical device. For example, in the case of a lithium secondary battery, one or more types of polyolefins such as polyethylene and polypropylene, or two or more types (in the case of two or more types, such as a laminate of two or more layers), polyethylene terephthalate, etc. Polyesters, thermoplastic fluororesins such as ethylene-tetrafluoroethylene copolymer, and celluloses are employed.

正極板、負極板のそれぞれの集電体上に形成される、セパレータシートと接着するための接着材料は特に限定されるものではなく接着剤として用いられるエポキシ樹脂、シリコーン樹脂等の熱硬化性樹脂も使用できるが、熱可塑性樹脂を使用する際には、耐溶剤性および金属、樹脂との接着性の高い材料が好ましく、たとえば、ポリフロピレンやポリエチレン、アイオノマーなどを選定することが好ましい。   The adhesive material for bonding to the separator sheet, which is formed on the current collector of each of the positive electrode plate and the negative electrode plate, is not particularly limited, and is a thermosetting resin such as an epoxy resin or a silicone resin used as an adhesive. However, when a thermoplastic resin is used, a material having high solvent resistance and high adhesion to metals and resins is preferable. For example, polyfloprene, polyethylene, ionomer, and the like are preferably selected.

図4は、本発明の実施の形態の正極板の正極リード端子と正極リード端子と対角に位置する突起部に熱可塑性樹脂を形成しその上にセパレータシートをセットした図である。図5は、本発明の実施の形態の負極板の負極リード端子と負極リード端子と対角に位置する突起部に熱可塑性樹脂を形成し、その上にセパレータシートをセットした図である。図4に示すように、熱可塑性樹脂が正極リード端子6と正極リード端子の対角に位置する突起部に形成された正極板上に、正極板上の活物質と熱可塑性樹脂を覆う大きさのセパレータシート13を載置し、ヒートプレス等により正極板とセパレータシート13を熱可塑性樹脂により接着部16にて接着し、正極ユニット14を形成する。負極ユニットについても図5に示すように正極ユニットの作製と同様に負極板とセパレータシート13を負極リード端子12と負極リード端子の対角に位置する突起部に形成された熱可塑性樹脂により接着部16にて接着し、負極ユニット15を形成する。   FIG. 4 is a view in which a thermoplastic resin is formed on the positive electrode lead terminal and the positive electrode lead terminal of the positive electrode plate according to the embodiment of the present invention, and a separator sheet is set thereon. FIG. 5 is a view in which a thermoplastic resin is formed on the negative electrode lead terminal and the negative electrode lead terminal of the negative electrode plate according to the embodiment of the present invention, and a separator sheet is set thereon. As shown in FIG. 4, the thermoplastic resin covers the active material and the thermoplastic resin on the positive electrode plate on the positive electrode plate formed on the protrusions located diagonally between the positive electrode lead terminal 6 and the positive electrode lead terminal. The separator sheet 13 is placed, and the positive electrode plate and the separator sheet 13 are bonded by a thermoplastic resin at the bonding portion 16 by a heat press or the like to form the positive electrode unit 14. As for the negative electrode unit, as shown in FIG. 5, the negative electrode plate and the separator sheet 13 are bonded to each other by the thermoplastic resin formed on the protrusions located at the opposite corners of the negative electrode lead terminal 12 and the negative electrode lead terminal. The negative electrode unit 15 is formed by bonding at 16.

図6は、本発明の実施の形態の正極ユニットと負極ユニットを重ねた状態を示す斜視図であり、図7は本発明の実施の形態の正極ユニットと負極ユニットを積層した電極積層体の斜視図であり、図8は本発明の正負極リード板取り付け後の電極積層体の斜視図である。図6に示すように、正極ユニット14上に負極ユニット15を重ねる。その際には正極リード端子6と負極リード端子12はショートを防止するために重ならないようにセットする。複数枚の正極ユニットと複数枚の負極ユニットを交互に積層して図7に示すような電極積層体5を形成する。ここでは外側が負極ユニット15となるように積層している。次に、図8に示すように正極リード端子6は一括して正極リード板2と接続され、負極リード端子12は一括して負極リード板1と接続される。電極積層体5を外装フィルム3に収納することにより図1に示すような積層型電気二重層キャパシタが得られる。なお、ここでは、正極板および負極板それぞれの片面にセパレータシートを接着したが、正極板或いは負極板の一方の両面にセパレータシートを接着し、他方はセパレータシートを接着しないで積層することもできる。また、接着する場所は正負極リード端子と対角に位置する突起部としたが、特に場所、接着部の大きさ、場所数には制限はなく、セパレータシートが固定されればよい。   FIG. 6 is a perspective view illustrating a state in which the positive electrode unit and the negative electrode unit according to the embodiment of the present invention are stacked, and FIG. 7 is a perspective view of an electrode laminate in which the positive electrode unit and the negative electrode unit according to the embodiment of the present invention are stacked. FIG. 8 is a perspective view of the electrode laminate after the positive and negative electrode lead plates of the present invention are attached. As shown in FIG. 6, the negative electrode unit 15 is stacked on the positive electrode unit 14. At that time, the positive electrode lead terminal 6 and the negative electrode lead terminal 12 are set so as not to overlap to prevent short circuit. A plurality of positive electrode units and a plurality of negative electrode units are alternately stacked to form an electrode stack 5 as shown in FIG. Here, the negative electrode unit 15 is laminated on the outside. Next, as shown in FIG. 8, the positive electrode lead terminals 6 are collectively connected to the positive electrode lead plate 2, and the negative electrode lead terminals 12 are collectively connected to the negative electrode lead plate 1. By housing the electrode laminate 5 in the exterior film 3, a multilayer electric double layer capacitor as shown in FIG. 1 is obtained. Here, the separator sheet is bonded to one side of each of the positive electrode plate and the negative electrode plate, but the separator sheet can be bonded to one side of the positive electrode plate or the negative electrode plate, and the other can be laminated without bonding the separator sheet. . Moreover, although the place to adhere | attach was made into the projection part located diagonally with the positive / negative electrode lead terminal, there is no restriction | limiting in particular in a place, the magnitude | size of an adhesion part, and the number of places, and a separator sheet should just be fixed.

図9は参考例による正極ユニットの平面図である。参考例の正極ユニット114は袋状セパレータ113のほぼ中央部に正極板108を配置し、活物質を塗布していない正極リード端子106が袋状セパレータ113から突出して周縁部の3辺を熱融着して固定している。   FIG. 9 is a plan view of a positive electrode unit according to a reference example. In the positive electrode unit 114 of the reference example, the positive electrode plate 108 is arranged at the substantially central portion of the bag-shaped separator 113, and the positive electrode lead terminal 106 not coated with the active material protrudes from the bag-shaped separator 113 and the three sides of the peripheral portion are thermally fused. It is worn and fixed.

図10は参考例による正極ユニット上に負極板をセットした状態を示す図であり、図10(a)は平面図であり、図10(b)は斜視図である。参考例の正極ユニット114に負極板111を正極板と対向するように配置し、正極リード端子106と負極リード端子112とはショートを防止するために重ならないようにセットする。   FIG. 10 is a diagram showing a state where the negative electrode plate is set on the positive electrode unit according to the reference example, FIG. 10 (a) is a plan view, and FIG. 10 (b) is a perspective view. The negative electrode plate 111 is disposed on the positive electrode unit 114 of the reference example so as to face the positive electrode plate, and the positive electrode lead terminal 106 and the negative electrode lead terminal 112 are set so as not to overlap to prevent short circuit.

図11は参考例による電極積層体の斜視図であり、図12は参考例の正負極リード板取り付け後の電極積層体の斜視図である。参考例の場合も、図7、図8の場合と同様に正極ユニット114と、負極板111を交互に積層して、正極リード端子106を一括して正極リード板2と接続し、負極リード端子112を一括して負極リード板1と接続することにより積層型電気二重層キャパシタを得ることができる。   FIG. 11 is a perspective view of the electrode laminate according to the reference example, and FIG. 12 is a perspective view of the electrode laminate after the positive and negative electrode lead plates of the reference example are attached. In the case of the reference example, as in the case of FIGS. 7 and 8, the positive electrode units 114 and the negative electrode plates 111 are alternately laminated, and the positive electrode lead terminals 106 are collectively connected to the positive electrode lead plate 2. A multilayer electric double layer capacitor can be obtained by connecting 112 to the negative electrode lead plate 1 in a lump.

以下、図面を参照して実施例について説明する。     Embodiments will be described below with reference to the drawings.

(実施例1)
比表面積1500m2/gのフェノール系活性炭とカーボンブラックを重量比8:1の割合で混合し、この混合粉末にバインダとしてNメチルピロリドンに溶解したポリフッ化ビニリデン(混合粉末:バインダ=9:1)を加え混練してスラリーを得た。次いでエッチング処理された厚さ30μmのアルミニウム箔にリード端子部分とリード端子と対角に位置する突起部の突出部を除き、そのスラリーを均一に両面塗布し、その後、乾燥させることで活物質の厚みが両側70μmずつの分極性正極板または負極板を得た。
Example 1
Polyvinylidene fluoride having a specific surface area of 1500 m 2 / g mixed with carbon black at a weight ratio of 8: 1 and dissolved in N-methylpyrrolidone as a binder (mixed powder: binder = 9: 1) And kneaded to obtain a slurry. Next, on the etched aluminum foil having a thickness of 30 μm, the lead terminal portion and the protruding portion of the protruding portion located diagonally to the lead terminal are removed, and the slurry is uniformly coated on both sides, and then dried to obtain the active material. A polarizable positive electrode plate or negative electrode plate having a thickness of 70 μm on both sides was obtained.

次に、図2、図3に示すように活物質を塗布していない正負極リード端子及びリード端子と対角に位置する突起部に接着用材料の熱可塑性樹脂としてポリプロピレン樹脂を熱融着し、正極板8、負極板11を得た。次いで図4、図5に示すように正極板、負極板にそれぞれを覆う大きさの天然セルロース材質のセパレータシート13を載置し、正負極リード端子6、12上およびそれぞれの対角の位置にに設けられたポリプロピレン樹脂とセパレータシート13をヒートプレスにより熱融着することで接着部16にて接着固定し、正極ユニット14、負極ユニット15を作製した。   Next, as shown in FIGS. 2 and 3, a polypropylene resin is thermally fused as a thermoplastic resin of an adhesive material to the positive and negative electrode lead terminals not coated with the active material and the protrusions located diagonally to the lead terminals. A positive electrode plate 8 and a negative electrode plate 11 were obtained. Next, as shown in FIGS. 4 and 5, a separator sheet 13 made of a natural cellulose material having a size covering the positive electrode plate and the negative electrode plate is placed on the positive and negative electrode lead terminals 6, 12 and diagonal positions thereof. The polypropylene resin and the separator sheet 13 provided on are bonded and fixed at the bonding portion 16 by heat-sealing by heat press, and the positive electrode unit 14 and the negative electrode unit 15 were produced.

以上のようにして得られた正極ユニット14及び負極ユニット15を図7に示すように交互に積層した。最も外側の電極板は負極板になるようにし、その負極板の外側にセパレータシート13を載置した(負極ユニット(セパレータシート/負極板)/正極ユニット/負極ユニット/・・・・・/負極ユニット(セパレータシート/負極板)/セパレータシートという順番で電極板及びセパレータを積層した)。   The positive electrode unit 14 and the negative electrode unit 15 obtained as described above were alternately stacked as shown in FIG. The outermost electrode plate is a negative electrode plate, and a separator sheet 13 is placed outside the negative electrode plate (negative electrode unit (separator sheet / negative electrode plate) / positive electrode unit / negative electrode unit /.. ./Negative electrode The electrode plate and the separator were laminated in the order of unit (separator sheet / negative electrode plate) / separator sheet).

ついで、図8に示すように積層した正極ユニットの正極リード端子6と正極リード板2を一括して超音波溶接した。同様に、負極リード端子12と負極リード板1を一括して超音波溶接し、正負極リード板を取り付けた電極積層体5を得た。   Next, the positive electrode lead terminal 6 and the positive electrode lead plate 2 of the stacked positive electrode unit as shown in FIG. 8 were ultrasonically welded together. Similarly, the negative electrode lead terminal 12 and the negative electrode lead plate 1 were ultrasonically welded together to obtain an electrode laminate 5 to which the positive and negative electrode lead plates were attached.

これにより得られた電極積層体5を、図1に示すように、外装フィルム3に収納し、次に電解液を注入した。電解液は、テトラエチルアンモニウムテトラフルオロボレートを0.7mol/lの濃度でプロピレンカーボネートに溶解することによって調製した電解液を使用した。電解液注入後、真空雰囲気中にて外装体を封止し、このようにして実施例1の積層型電気二重層キャパシタを作製した。   As shown in FIG. 1, the electrode laminate 5 thus obtained was housed in the exterior film 3, and then an electrolyte solution was injected. As the electrolytic solution, an electrolytic solution prepared by dissolving tetraethylammonium tetrafluoroborate in propylene carbonate at a concentration of 0.7 mol / l was used. After injecting the electrolytic solution, the outer package was sealed in a vacuum atmosphere, and thus the multilayer electric double layer capacitor of Example 1 was produced.

(実施例2)
セパレータシートにポリエチレンを使用以外は実施例1と同様な方法で積層型電気二重層キャパシタ を作製した。
(Example 2)
A multilayer electric double layer capacitor was produced in the same manner as in Example 1 except that polyethylene was used for the separator sheet.

(比較例)
活物質は、実施例1と同様ものを使用した。参考例として示した図9〜図12に示すように、正極板を2枚のポリエチレン材質からなるセパレータシートに挟み、リード端子引き出し辺以外の周囲3辺のセパレータ同士を熱融着することで正極板を袋状セパレータ113に収容し、正極ユニット114を作製した。以上のようにして袋状セパレータ113に収納された正極ユニット114及び負極板111が得られた後、正極ユニット114と負極板111を交互に積層した。最も外側の電極板は負極板111になるようにし、その負極板の外側にセパレータシート113を設置した(セパレータシート/負極板/正極ユニット/負極板/・・・・・/負極板/セパレータシートという順番で電極及びセパレータシートを積層した)。このようにして電極積層体105を作製した以外は実施例1と同様の方法で積層型電気二重層キャパシタを作製した。
(Comparative example)
The same active material as in Example 1 was used. As shown in FIGS. 9 to 12 shown as reference examples, the positive electrode plate is sandwiched between two separator sheets made of polyethylene, and the separators on the three surrounding sides other than the lead terminal lead-out side are heat-sealed to each other. The plate was accommodated in a bag-shaped separator 113 to produce a positive electrode unit 114. After the positive electrode unit 114 and the negative electrode plate 111 housed in the bag-like separator 113 were obtained as described above, the positive electrode unit 114 and the negative electrode plate 111 were alternately stacked. The outermost electrode plate is the negative electrode plate 111, and the separator sheet 113 is installed outside the negative electrode plate (separator sheet / negative electrode plate / positive electrode unit / negative electrode plate /.../ negative electrode plate / separator sheet). The electrode and the separator sheet were laminated in this order). A laminated electric double layer capacitor was produced in the same manner as in Example 1 except that the electrode laminate 105 was produced in this manner.

実施例1、実施例2及び比較例の方法で作製した積層型電気二重層キャパシタについて、ESR、静電容量、自己放電特性の測定を行った。これらの特性の測定は、サンプル作製後と、60℃、2.7V、1,000時間の負荷(電圧)を印加し室温まで冷却した後について行なった。   The multilayer electric double layer capacitors produced by the methods of Example 1, Example 2, and Comparative Example were measured for ESR, capacitance, and self-discharge characteristics. These characteristics were measured after the sample was prepared and after applying a load (voltage) of 60 ° C., 2.7 V, 1,000 hours and cooling to room temperature.

ここでESRは、交流1kHzの正弦波の発振器を用いて、キャパシタに交流電流10mAを流し積層型電気二重層キャパシタ両端の電圧を測定し算出することで求めた。静電容量は、2.7Vで30分間充電した後、電流100mAで放電したときの2.0Vから1.5V間の傾きより算出することで求めた。自己放電特性(SD)は、2.7Vで1時間充電したのち開回路にし、24時間後の端子間電圧を測定することで求めた。   Here, the ESR was obtained by measuring and calculating the voltage across the multilayer electric double layer capacitor by passing an alternating current of 10 mA through the capacitor using a sine wave oscillator with an alternating current of 1 kHz. The electrostatic capacity was determined by calculating from the slope between 2.0 V and 1.5 V when the battery was charged at 2.7 V for 30 minutes and then discharged at a current of 100 mA. The self-discharge characteristic (SD) was obtained by charging the battery at 2.7 V for 1 hour, then opening the circuit, and measuring the voltage between the terminals after 24 hours.

実施例1、実施例2及び比較例の方法で作製した積層型電気二重層コンデンサの、初期特性及び電圧印加前後のESR、静電容量(Cap)及び自己放電特性(SD)の平均値を表1に示す。なお、ESR及び静電容量(Cap)、自己放電特性(SD)は作製したサンプル10個の平均値であり、静電容量は、比較例の初期の値を1としたときの相対値で表した。   Table 1 shows average values of initial characteristics, ESR before and after voltage application, capacitance (Cap), and self-discharge characteristics (SD) of multilayer electric double layer capacitors manufactured by the methods of Example 1, Example 2, and Comparative Example. It is shown in 1. The ESR, capacitance (Cap), and self-discharge characteristics (SD) are average values of 10 samples prepared, and the capacitance is expressed as a relative value when the initial value of the comparative example is 1. did.

Figure 2007299855
Figure 2007299855

表1より、実施例1、実施例2と比較例のESR及び静電容量、自己放電特性を比べると、初期の値は同等値である。比較例の体積を1としたとき、実施例は0.92となり、体積あたりの容量特性に優れたものが出来た。これは、比較例は電極の周囲でセパレータを熱融着するため容量に寄与しないスペースが存在するためである。   From Table 1, when the ESR, capacitance, and self-discharge characteristics of Example 1 and Example 2 and Comparative Example are compared, the initial values are equivalent. When the volume of the comparative example was 1, the example was 0.92, and an excellent capacity characteristic per volume was obtained. This is because in the comparative example, there is a space that does not contribute to the capacity because the separator is thermally fused around the electrode.

電圧印加後では、実施例1のが最もESR上昇及び静電容量減少率が少なく、自己放電特性においても良好な値を示している。これらの要因として、天然セルロースセパレータの方がポリエチレンセパレータよりも高温で、乾燥でき電解液中に含まれる水分量がおさえられたことが挙げられる。   After voltage application, Example 1 has the smallest ESR increase and capacitance reduction rate, and shows a good value in self-discharge characteristics. As these factors, the natural cellulose separator can be dried at a higher temperature than the polyethylene separator, and the amount of water contained in the electrolytic solution is suppressed.

また比較例においては、10個のサンプルのうち2個において24時間後の電圧が2.0V以下になってしまうものがあった。内部を分解し解析した結果、セパレータ融着しわが生じており、しわによって電気特性を劣化させたと考える。実施例1、実施例2においては、セパレータシートが正電極、負電極とポリプロプレン樹脂を融着し接着した際、融着しわが生じず、60℃−2.7V/1000Hの高温負荷試験においても良好な結果が得られたと考える。   Further, in the comparative example, in two of the ten samples, the voltage after 24 hours would be 2.0 V or less. As a result of disassembling and analyzing the inside, separator fusion wrinkles are generated, and it is considered that the electrical characteristics are deteriorated by the wrinkles. In Examples 1 and 2, when the separator sheet was fused and bonded to the positive electrode, the negative electrode and the polypropylene resin, no fusion wrinkle occurred, and in a high temperature load test at 60 ° C.-2.7 V / 1000 H. I think that good results were obtained.

以上の結果より、セパレータシートの外周部の一部が正極板および負極板と熱可塑性樹脂を介して熱融着により接着、固定することで、安価な天然セルロース材質セパレータの使用も可能となり、さらに体積効率に優れ、信頼性も向上させることが出来る。   From the above results, it is possible to use an inexpensive natural cellulose material separator by bonding and fixing a part of the outer peripheral portion of the separator sheet by thermal fusion via a positive electrode plate and a negative electrode plate with a thermoplastic resin. It is excellent in volumetric efficiency and can improve reliability.

また、本発明を実施することにより、積層型電気二重層キャパシタの製品において信頼性に優れた製品作製が可能となり、ESR、静電容量、自己放電特性において良好な結果が得られた。今回、積層型電気二重層キャパシタについて実施例を示したが、積層型電気二重層キャパシタに限らず、積層型電気化学デバイスに応用が可能である。   In addition, by implementing the present invention, it was possible to produce a product having excellent reliability in the product of the multilayer electric double layer capacitor, and good results were obtained in ESR, capacitance, and self-discharge characteristics. In the present embodiment, an example of a multilayer electric double layer capacitor has been described. However, the present invention is not limited to a multilayer electric double layer capacitor and can be applied to a multilayer electrochemical device.

本発明の実施の形態による積層型電気二重層キャパシタを説明する図、図1(a)は、平面図、図1(b)は、側面図、図1(c)は、断面図。FIG. 1A is a plan view, FIG. 1B is a side view, and FIG. 1C is a cross-sectional view illustrating a multilayer electric double layer capacitor according to an embodiment of the present invention. 本発明の正極板を示す平面図。The top view which shows the positive electrode plate of this invention. 本発明の負極板を示す平面図。The top view which shows the negative electrode plate of this invention. 本発明の実施の形態の正極板の正極リード端子と正極リード端子と対角に位置する突起部に熱可塑性樹脂を形成しその上にセパレータシートをセットした図。The figure which formed the thermoplastic resin in the projection part located diagonally with the positive electrode lead terminal and positive electrode lead terminal of the positive electrode plate of embodiment of this invention, and set the separator sheet on it. 本発明の実施の形態の負極板の負極リード端子と負極リード端子と対角に位置する突起部に熱可塑性樹脂を形成しその上にセパレータシートをセットした図。The figure which formed the thermoplastic resin in the projection part located diagonally with the negative electrode lead terminal and negative electrode lead terminal of the negative electrode plate of embodiment of this invention, and set the separator sheet on it. 本発明の実施の形態の正極ユニットと負極ユニットを重ねた状態を示す斜視図。The perspective view which shows the state which accumulated the positive electrode unit and negative electrode unit of embodiment of this invention. 本発明の実施の形態の正極ユニットと負極ユニットを積層した電極積層体の斜視図。The perspective view of the electrode laminated body which laminated | stacked the positive electrode unit and negative electrode unit of embodiment of this invention. 本発明の正負極リード板取り付け後の電極積層体の斜視図。The perspective view of the electrode laminated body after the positive / negative electrode lead board attachment of this invention. 参考例による正極ユニットの平面図。The top view of the positive electrode unit by a reference example. 参考例による正極ユニット上に負極板をセットした状態を示す図、図10(a)は平面図、図10(b)は斜視図である。The figure which shows the state which set the negative electrode plate on the positive electrode unit by a reference example, FIG. 10 (a) is a top view, FIG.10 (b) is a perspective view. 参考例による電極積層体の斜視図。The perspective view of the electrode laminated body by a reference example. 参考例の正負極リード板取り付け後の電極積層体の斜視図。The perspective view of the electrode laminated body after the positive / negative electrode lead board attachment of a reference example.

符号の説明Explanation of symbols

1 負極リード板
2 正極リード板
3 外装フィルム
4 電気二重層キャパシタ
5,105 電極積層体
6,106 正極リード端子
7 活物質(正極)
8,108 正極板
9 熱可塑性樹脂
10 活物質(負極)
11,111 負極板
12,112 負極リード端子
13,113 セパレータシート
113 袋状セパレータ
14,114 正極ユニット
15 負極ユニット
16 接着部
DESCRIPTION OF SYMBOLS 1 Negative electrode lead board 2 Positive electrode lead board 3 Exterior film 4 Electric double layer capacitor 5,105 Electrode laminated body 6,106 Positive electrode lead terminal 7 Active material (positive electrode)
8,108 Positive electrode plate 9 Thermoplastic resin 10 Active material (negative electrode)
11, 111 Negative electrode plate 12, 112 Negative electrode lead terminal 13, 113 Separator sheet 113 Bag-like separator 14, 114 Positive electrode unit 15 Negative electrode unit 16 Adhesive part

Claims (2)

正極板と負極板がセパレータシートを介して積層され、前記セパレータシートの外周部の一部が前記正極板および/または前記負極板と接続されたことを特徴とする積層型電気化学デバイス。   A laminated electrochemical device, wherein a positive electrode plate and a negative electrode plate are laminated via a separator sheet, and a part of the outer periphery of the separator sheet is connected to the positive electrode plate and / or the negative electrode plate. 前記セパレータシートの外周部の一部が熱可塑性樹脂により前記正極板および/または前記負極板と接着されたことを特徴とする請求項1記載の積層型電気化学デバイス。   2. The multilayer electrochemical device according to claim 1, wherein a part of the outer peripheral portion of the separator sheet is bonded to the positive electrode plate and / or the negative electrode plate with a thermoplastic resin.
JP2006125340A 2006-04-28 2006-04-28 Stacked electrochemical device Expired - Fee Related JP4753369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125340A JP4753369B2 (en) 2006-04-28 2006-04-28 Stacked electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125340A JP4753369B2 (en) 2006-04-28 2006-04-28 Stacked electrochemical device

Publications (2)

Publication Number Publication Date
JP2007299855A true JP2007299855A (en) 2007-11-15
JP4753369B2 JP4753369B2 (en) 2011-08-24

Family

ID=38769125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125340A Expired - Fee Related JP4753369B2 (en) 2006-04-28 2006-04-28 Stacked electrochemical device

Country Status (1)

Country Link
JP (1) JP4753369B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529617A (en) * 2007-06-04 2010-08-26 エスケー エナジー カンパニー リミテッド Method for stacking high-power lithium batteries
WO2011007624A1 (en) * 2009-07-17 2011-01-20 太陽誘電株式会社 Electrochemical device
JP2012039068A (en) * 2010-08-06 2012-02-23 Samsung Electro-Mechanics Co Ltd Electrochemical capacitor and its manufacturing method
JP2012059696A (en) * 2010-09-13 2012-03-22 Samsung Sdi Co Ltd Secondary battery and manufacturing method thereof
JP2012182468A (en) * 2009-07-17 2012-09-20 Taiyo Yuden Co Ltd Electrochemical device
JP2013507732A (en) * 2009-10-07 2013-03-04 エスケー イノベーション カンパニー リミテッド Battery electrode assembly and method of manufacturing the same
JP2014038817A (en) * 2012-08-21 2014-02-27 Toc Capacita Co Ltd Connection structure and connection method for electrode tabs and tab leads of capacitor
US20140147724A1 (en) * 2011-04-07 2014-05-29 Nissan Motor Co., Ltd. Battery, battery manufacturing method, and packaged electrode
WO2017047550A1 (en) * 2015-09-17 2017-03-23 株式会社村田製作所 Electric double layer capacitor and method for manufacturing same
JP2017117798A (en) * 2013-02-15 2017-06-29 エルジー・ケム・リミテッド Electrode assembly and polymer secondary battery cell including the same
US20170365420A1 (en) * 2015-03-05 2017-12-21 Murata Manufacturing Co., Ltd. Electric double-layer capacitor
WO2018134961A1 (en) * 2017-01-20 2018-07-26 日産自動車株式会社 Method for manufacturing mono cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200114805A (en) 2019-03-29 2020-10-07 삼성에스디아이 주식회사 Secondary Battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180752A (en) * 1984-09-28 1986-04-24 Matsushita Electric Ind Co Ltd Lead storage battery
JPH0794374A (en) * 1993-05-19 1995-04-07 Matsushita Electric Ind Co Ltd Electric double-layer capacitor
JPH09199101A (en) * 1996-01-12 1997-07-31 Mitsui Petrochem Ind Ltd Bag-shaped separator for lead-acid battery
JP2002289487A (en) * 2001-03-26 2002-10-04 Nissan Diesel Motor Co Ltd Electric double layer capacitor module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180752A (en) * 1984-09-28 1986-04-24 Matsushita Electric Ind Co Ltd Lead storage battery
JPH0794374A (en) * 1993-05-19 1995-04-07 Matsushita Electric Ind Co Ltd Electric double-layer capacitor
JPH09199101A (en) * 1996-01-12 1997-07-31 Mitsui Petrochem Ind Ltd Bag-shaped separator for lead-acid battery
JP2002289487A (en) * 2001-03-26 2002-10-04 Nissan Diesel Motor Co Ltd Electric double layer capacitor module

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529617A (en) * 2007-06-04 2010-08-26 エスケー エナジー カンパニー リミテッド Method for stacking high-power lithium batteries
WO2011007624A1 (en) * 2009-07-17 2011-01-20 太陽誘電株式会社 Electrochemical device
JP2011040711A (en) * 2009-07-17 2011-02-24 Taiyo Yuden Co Ltd Electrochemical device
JP2012182468A (en) * 2009-07-17 2012-09-20 Taiyo Yuden Co Ltd Electrochemical device
US8804310B2 (en) 2009-07-17 2014-08-12 Taiyo Yuden Co., Ltd. Electrochemical device
JP2013507732A (en) * 2009-10-07 2013-03-04 エスケー イノベーション カンパニー リミテッド Battery electrode assembly and method of manufacturing the same
EP2487747A4 (en) * 2009-10-07 2015-06-24 Sk Innovation Co Ltd Electrode assembly for a battery and method for manufacturing same
JP2012039068A (en) * 2010-08-06 2012-02-23 Samsung Electro-Mechanics Co Ltd Electrochemical capacitor and its manufacturing method
JP2012059696A (en) * 2010-09-13 2012-03-22 Samsung Sdi Co Ltd Secondary battery and manufacturing method thereof
US9048487B2 (en) 2010-09-13 2015-06-02 Samsung Sdi Co., Ltd. Secondary battery and manufacturing method thereof
TWI467834B (en) * 2011-04-07 2015-01-01 Nissan Motor Battery, battery manufacturing method and bag electrode
US20140147724A1 (en) * 2011-04-07 2014-05-29 Nissan Motor Co., Ltd. Battery, battery manufacturing method, and packaged electrode
JP2014038817A (en) * 2012-08-21 2014-02-27 Toc Capacita Co Ltd Connection structure and connection method for electrode tabs and tab leads of capacitor
JP2017117798A (en) * 2013-02-15 2017-06-29 エルジー・ケム・リミテッド Electrode assembly and polymer secondary battery cell including the same
US10615392B2 (en) 2013-02-15 2020-04-07 Lg Chem, Ltd. Electrode assembly and polymer secondary battery cell including the same
US20170365420A1 (en) * 2015-03-05 2017-12-21 Murata Manufacturing Co., Ltd. Electric double-layer capacitor
WO2017047550A1 (en) * 2015-09-17 2017-03-23 株式会社村田製作所 Electric double layer capacitor and method for manufacturing same
JPWO2017047550A1 (en) * 2015-09-17 2018-03-01 株式会社村田製作所 Electric double layer capacitor and manufacturing method thereof
WO2018134961A1 (en) * 2017-01-20 2018-07-26 日産自動車株式会社 Method for manufacturing mono cell
CN110199424A (en) * 2017-01-20 2019-09-03 远景Aesc日本有限公司 The manufacturing method of monocell
EP3573163A4 (en) * 2017-01-20 2020-01-08 Envision AESC Japan Ltd. Method for manufacturing mono cell
US11431032B2 (en) 2017-01-20 2022-08-30 Envision Aesc Japan Ltd. Method for manufacturing mono cell
CN110199424B (en) * 2017-01-20 2022-09-30 远景Aesc日本有限公司 Method for manufacturing single cell

Also Published As

Publication number Publication date
JP4753369B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4753369B2 (en) Stacked electrochemical device
US7623339B2 (en) Electrochemical device
JP2001250742A (en) Electric double layer capacitor and its manufacturing method
JP2012169576A (en) Electrochemical device
JP3341886B2 (en) Polarizing electrode, manufacturing method thereof, and electric double layer capacitor using the polarizing electrode
TWI287240B (en) Separator sheet and method for manufacturing electric double layer capacitor using the same
JP2011086760A (en) Energy storage element
JP2012138408A (en) Electrochemical device and manufacturing method thereof
TWI517192B (en) Packaging structures of an energy storage device
JP2007287724A (en) Laminated electrochemical device
JP4931239B2 (en) Power storage device
JP2004349306A (en) Electric double layer capacitor and electric double layer capacitor laminate
US7310219B2 (en) Electrochemical capacitor
JP2007201248A (en) Laminated electrochemical device
JP4986241B2 (en) Electrochemical device and manufacturing method thereof
JP2011159642A (en) Electrochemical device
JP2004303759A (en) Method for manufacturing electrochemical device
JP2004253562A (en) Electrochemical capacitor
JP5924689B2 (en) Manufacturing method of electric double layer capacitor module
JP2009088279A (en) Electrochemical device
JP5359870B2 (en) Capacitors
JP2006303269A (en) Electric double layer capacitor and electric double layer capacitor module
JP2005064207A (en) Electrochemical device and method of manufacturing same
JP2011061172A (en) Chip-type electric double layer capacitor, and method for manufacturing chip-type electric double layer capacitor
JP2006049670A (en) Electrochemical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees