JP2007298482A - Magnetic particle inspection device for steel pipe - Google Patents

Magnetic particle inspection device for steel pipe Download PDF

Info

Publication number
JP2007298482A
JP2007298482A JP2006128951A JP2006128951A JP2007298482A JP 2007298482 A JP2007298482 A JP 2007298482A JP 2006128951 A JP2006128951 A JP 2006128951A JP 2006128951 A JP2006128951 A JP 2006128951A JP 2007298482 A JP2007298482 A JP 2007298482A
Authority
JP
Japan
Prior art keywords
steel pipe
magnetic
pipe
coils
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006128951A
Other languages
Japanese (ja)
Other versions
JP4749223B2 (en
Inventor
Mitsutaka Hori
充孝 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Denji Sokki Co Ltd
Original Assignee
Nihon Denji Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denji Sokki Co Ltd filed Critical Nihon Denji Sokki Co Ltd
Priority to JP2006128951A priority Critical patent/JP4749223B2/en
Publication of JP2007298482A publication Critical patent/JP2007298482A/en
Application granted granted Critical
Publication of JP4749223B2 publication Critical patent/JP4749223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic particle inspection device for a steel pipe capable of certainly detecting a flaw in all directions on the outer peripheral surface and inner peripheral surface in a predetermined range of the steel pipe. <P>SOLUTION: The magnetic particle inspection device for the steel pipe magnetizes the steel pipe with a composite magnetic field by a magnetization coil for generating magnetic fluxes in three axes orthogonal to each other around the steel pipe. The magnetic particle inspection device comprises one pair of first magnetization coils Lx that are arranged in facing positions along the pipe radial direction outside the steel pipe and generate a magnetic flux in the pipe radial direction, one pair of second magnetization coils Ly that are arranged in facing positions outside the steel pipe orthogonal to the facing direction of the coils Lx and generate a magnetic flux in the pipe radial direction, and one pair of third magnetization coils Lz that are wound around the steel pipe, are arranged in facing positions gripping the first and second magnetization coils in the pipe axis direction, and generate a magnetic flux in the pipe radial direction. These magnetization coils Lx, Ly and Lz include respective excitation circuits for supplying magnetizing currents of frequencies that are lower than 50 Hz and have a relation of mutually non-integral multiple. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼管を囲んで互いに直交する3軸方向に磁束を発生する3軸の磁化コイルを備え、それぞれの発生する磁束が合成されて鋼管を透磁するようになった鋼管用磁粉探傷装置に関するものである。   The present invention provides a magnetic particle flaw detector for a steel pipe that includes a triaxial magnetizing coil that surrounds a steel pipe and generates magnetic fluxes in three axial directions orthogonal to each other, and the generated magnetic fluxes are combined to permeate the steel pipe. It is about.

磁粉探傷装置の原理は、周知のように、磁性材表面を磁化し、その前又は後に磁粉を散布して、割れ等の傷が存在すると、その形状に応じて磁極が発生して磁粉の分布密度が変化して模様が形成されることにより、紫外線照射により蛍光磁粉模様を観察して探傷を行うものである。その際、磁束方向が割れ傷の方向に揃うと有効に磁化されず、したがって交差方向もしくは特に直交方向に磁束を発生させるのが好ましい。そこで、特許文献1には、2個の単極ヨークを交差状に組合わせて合成ヨークとし、各単極ヨークの磁極に位相差を有する電流を付与して円形磁場を発生させることにより、鋼管の胴部の端部を挟んで鋼管を回転させて順に鋼管端部の外周面及び内周面並びにその端面を探傷可能にする鋼管用磁粉探傷装置が開示されている。また、特許文献2によれば、位相差を有する励磁に代えて、複数個の磁化コイルに互いに周波数の異なる交流電流を通電して、磁力線のベクトル合成により、検出感度の方向性を無くそうとする磁粉探傷用磁化装置も開示されている。   As is well known, the principle of a magnetic particle flaw detector is to magnetize the surface of a magnetic material and then spray the magnetic powder before or after it, and if there are scratches such as cracks, magnetic poles are generated according to the shape and the distribution of magnetic particles When the pattern is formed by changing the density, flaw detection is performed by observing the fluorescent magnetic powder pattern by ultraviolet irradiation. At that time, if the direction of the magnetic flux is aligned with the direction of the crack, it is not effectively magnetized. Therefore, it is preferable to generate the magnetic flux in the cross direction or particularly in the orthogonal direction. Therefore, Patent Document 1 discloses a steel tube by combining two single-pole yokes in a cross shape to form a composite yoke, and applying a current having a phase difference to the magnetic poles of each single-pole yoke to generate a circular magnetic field. There is disclosed a magnetic particle flaw detector for a steel pipe that enables the flaw detection of the outer peripheral surface and the inner peripheral surface of the end portion of the steel pipe and the end face in order by rotating the steel pipe across the end of the body portion of the steel pipe. According to Patent Document 2, instead of excitation having a phase difference, a plurality of magnetizing coils are supplied with alternating currents having different frequencies, and the direction of detection sensitivity is eliminated by vector composition of magnetic field lines. A magnetic device for flaw detection is also disclosed.

一方、特許文献3によれば、鋼管を探傷するために、磁粉が表面に散布された鋼管の管軸方向に直流又は交流磁場を発生させる第1の磁化手段と、管軸方向と直交する方向に回転磁場を発生させて鋼管を横磁化する第2の磁化手段とを備えた磁粉探傷装置が開示されている。
特開平6−249835号公報 特開平11−160283号公報 特開平7−253412号公報
On the other hand, according to Patent Document 3, in order to detect flaws in a steel pipe, a first magnetization means for generating a direct current or an alternating magnetic field in the pipe axis direction of the steel pipe in which magnetic powder is dispersed on the surface, and a direction orthogonal to the pipe axis direction Discloses a magnetic particle flaw detector provided with a second magnetization means for transversely magnetizing a steel pipe by generating a rotating magnetic field.
JP-A-6-249835 JP-A-11-160283 Japanese Patent Laid-Open No. 7-253412

この特許文献3による方法は、管軸方向の磁場とその直交方向の回転磁場との合成により、管軸方向の磁束を周期的に管径方向の磁束で横方向に偏向させるもので、特に管端面の傷はその方向の如何に依らず探傷されるが、単に管軸方向の磁束を直交方向の回転磁場により偏向するだけでは、特許文献1のように管周面に沿った円形磁場、つまり360°の範囲にわたり方向の変化する磁場を発生させることはできない。また、特許文献2にも管周面に沿ってあらゆる方向の磁場を発生させる点については言及されていない。加えて、特許文献3では鋼管内周面の探傷については言及されておらず、特許文献1では管端部の内周面を探傷できるだけである。さらに、内径が小さくなると、ヨークを相応に小型にする必要があり、効率低下によりその冷却も必要になる。従来、鋼管内周面の奥に侵入した領域の探傷は、別途に磁化コイルを挿入する方法が採られていた。   The method according to Patent Document 3 is a method in which the magnetic flux in the tube axis direction is periodically deflected laterally by the magnetic flux in the tube radial direction by combining the magnetic field in the tube axis direction and the rotating magnetic field in the direction orthogonal thereto. The scratches on the end face are detected regardless of the direction, but if the magnetic flux in the tube axis direction is simply deflected by the rotating magnetic field in the orthogonal direction, a circular magnetic field along the tube peripheral surface as in Patent Document 1, that is, It is not possible to generate a magnetic field that changes direction over a range of 360 °. Further, Patent Document 2 does not mention the point of generating a magnetic field in any direction along the pipe peripheral surface. In addition, Patent Document 3 does not mention the flaw detection on the inner peripheral surface of the steel pipe, and Patent Document 1 can only flaw the inner peripheral surface of the pipe end. Furthermore, when the inner diameter is reduced, the yoke needs to be correspondingly reduced in size, and its cooling is also required due to a reduction in efficiency. Conventionally, a method of inserting a magnetizing coil separately has been employed for flaw detection in a region that has penetrated into the inner peripheral surface of a steel pipe.

本発明は、このような点に鑑みて、通常の肉厚を有する鋼管の所定範囲の外周面及び内周面のあらゆる方向の傷を確実に検知可能にする鋼管用磁粉探傷装置を提供することを目的とする。   In view of such a point, the present invention provides a magnetic particle flaw detector for a steel pipe that can reliably detect scratches in all directions on an outer peripheral surface and an inner peripheral surface of a predetermined range of a steel pipe having a normal thickness. With the goal.

本発明は、この目的を達成するために、請求項1により、鋼管を囲んで互いに直交する3軸方向に磁束を発生する磁化コイルによる合成磁場により、鋼管を磁化するようになった鋼管用磁粉探傷装置において、鋼管の外側の管径方向に沿った対向位置に配置されて管径方向に磁束を発生する第1の1対の磁化コイルと、その対向方向に直交して鋼管の外側の対向位置に配置されて管径方向に磁束を発生する第2の1対の磁化コイルと、鋼管を囲むように巻回され、かつ第1及び第2の磁化コイルを管軸方向に挟む対向位置に配置されることにより管軸方向に磁束を発生する第3の1対の磁化コイルとを備え、第1、第2及び第3の磁化コイルに、50Hzよりも低く、かつ互いに非整数倍の関係を有する周波数の磁化電流を供給する励磁回路がそれぞれ付属していることを特徴とする鋼管用磁粉探傷装置。   In order to achieve this object, the present invention provides a magnetic powder for a steel pipe according to claim 1, wherein the steel pipe is magnetized by a synthetic magnetic field generated by a magnetizing coil that surrounds the steel pipe and generates magnetic flux in three axial directions perpendicular to each other. In the flaw detection apparatus, a first pair of magnetized coils that are arranged at opposing positions along the pipe radial direction outside the steel pipe and generate magnetic flux in the pipe radial direction, and are opposed to the outside of the steel pipe perpendicular to the opposing direction. A second pair of magnetized coils that are arranged at positions and generate magnetic flux in the radial direction of the tube, and are positioned so as to surround the steel pipe, and at opposite positions sandwiching the first and second magnetized coils in the tube axis direction And a third pair of magnetizing coils that generate magnetic flux in the tube axis direction by being arranged, and the first, second, and third magnetizing coils have a relationship lower than 50 Hz and a non-integer multiple of each other. Circuit for supplying a magnetizing current of a frequency having Steel pipe for magnetic particle flaw detection apparatus characterized in that it comes respectively.

これにより、直交3軸の磁化コイルの内部には、非整数倍の関係を有する周波数の励磁により、いずれかの正逆方向の1軸の磁束と残り2軸の正逆方向の磁束との3軸の合成磁束、いずれかの正逆方向の1軸の磁束と残り1軸の正逆方向の磁束との2軸の合成磁束、いずれかの正逆方向の1軸の磁束より、所定時間にわたり鋼管周面及び端面に沿って経時的に変化するあらゆる方向の磁場が発生される。一般的な商用電源よりも低い周波数に対応して鋼管の外側からの磁化により、内周面も探傷可能となる。   As a result, by the excitation of the frequency having a non-integer multiple relationship, three of the uniaxial magnetic flux in any forward / reverse direction and the remaining two axial forward / reverse magnetic fluxes are generated inside the orthogonal triaxial magnetizing coil. The combined magnetic flux of one axis, the biaxial synthetic magnetic flux of one uniaxial magnetic flux in the forward / reverse direction and the remaining one axial forward / reverse magnetic flux, and the uniaxial magnetic flux in either forward / reverse direction for a predetermined time. Magnetic fields are generated in all directions that change with time along the circumferential surface and the end surface of the steel pipe. Corresponding to a frequency lower than that of a general commercial power source, the inner peripheral surface can also be flawed by magnetization from the outside of the steel pipe.

特に肉厚の厚い鋼管の内周面も探傷可能にするには、請求項2により、互いに非整数倍の関係を有する周波数がいずれも10Hzより低いようにする。   In particular, in order to enable flaw detection on the inner peripheral surface of a thick steel pipe, the frequencies having a non-integer multiple relationship with each other are made lower than 10 Hz.

請求項1の発明によれば、互い非整数倍の異なる周波数の直交3軸方向の磁束の合成により、磁化コイルで囲まれた範囲の鋼管周面或は鋼管端面に沿ってあらゆる方向に変化する磁場が形成され、傷の方向に無関係に信頼度の高い探傷が可能になる。また、50Hzよりも低い周波数の合成磁場により、肉厚が5mm程度の鋼管の内周面の探傷も可能となる。請求項2の発明によれば、肉厚が18mm程度の鋼管内周面の探傷も可能となる。   According to the first aspect of the present invention, the magnetic flux changes in all directions along the circumferential surface of the steel pipe or the end face of the steel pipe surrounded by the magnetizing coil by synthesizing the magnetic fluxes in the orthogonal three-axis directions with different frequencies of non-integer multiples. A magnetic field is formed, enabling highly reliable flaw detection regardless of the direction of the flaw. Moreover, the flaw detection of the inner peripheral surface of a steel pipe having a thickness of about 5 mm is also possible by a synthetic magnetic field having a frequency lower than 50 Hz. According to the invention of claim 2, flaw detection can be performed on the inner peripheral surface of a steel pipe having a wall thickness of about 18 mm.

図1乃至図5を基に本発明の実施の形態による鋼管用磁粉探傷装置を説明する。その探傷コイルは、検査対象の鋼管の中心を通る垂直のX軸方向の対向位置に配置された1対の磁化コイルLx、鋼管中心を通り、かつX軸に直交する水平のY軸方向の対向位置に配置された1対の磁化コイルLyと、鋼管中心を通り、かつX軸、Y軸に直交するZ軸方向の対向位置に磁化コイルLx、Lyを挟んで配置された1対の磁化コイルLzとで構成される。   A magnetic particle flaw detector for steel pipes according to an embodiment of the present invention will be described with reference to FIGS. The flaw detection coil is a pair of magnetizing coils Lx arranged at opposite positions in the vertical X-axis direction passing through the center of the steel pipe to be inspected, opposite in the horizontal Y-axis direction passing through the steel pipe center and orthogonal to the X-axis. A pair of magnetizing coils Ly arranged at a position, and a pair of magnetizing coils arranged between the magnetizing coils Lx and Ly at opposite positions in the Z-axis direction passing through the center of the steel pipe and orthogonal to the X-axis and Y-axis Lz.

磁化コイルLx、Lyは、その空芯部を鋼管1の外周面を包囲する正方形状の継鉄1の突出部1aに嵌合させて取付けられ、それぞれX軸及びY軸を中心とする周囲に9回巻回されて互いに直交する管径方向に磁束を発生する。磁化コイルLzは検査対象の鋼管を囲むように9回巻回され、継鉄1にその横断方向に取付けられたコの字形のブラケット2の先端部に取付けられている。磁化コイルLx、Ly、Lzの各対のコイル同志は、それぞれX軸、Y軸及びZ軸に沿って同一方向に磁束を発生するように直列に接続されている。鋼管の外側に位置する磁化コイルLx、Lyの各対間の離間距離は、検査対象の鋼管外径よりも大きめに例えば35cm程度離間し、磁化コイルLzの内径は35cm程度に設定され、またその管軸方向の離間距離は磁化コイルLx、Lyの幅に対応して40cm程度に設定されている。   The magnetizing coils Lx and Ly are attached by fitting their air core portions to the protruding portions 1a of the square yoke 1 surrounding the outer peripheral surface of the steel pipe 1, and around the X axis and the Y axis, respectively. It is wound nine times and generates magnetic flux in the tube diameter direction perpendicular to each other. The magnetizing coil Lz is wound nine times so as to surround the steel pipe to be inspected, and is attached to the tip of a U-shaped bracket 2 attached to the yoke 1 in the transverse direction. The pair of magnetizing coils Lx, Ly, and Lz are connected in series so as to generate magnetic fluxes in the same direction along the X axis, the Y axis, and the Z axis, respectively. The separation distance between each pair of magnetizing coils Lx and Ly located outside the steel pipe is set to be, for example, about 35 cm larger than the outer diameter of the steel pipe to be inspected, and the inner diameter of the magnetizing coil Lz is set to about 35 cm. The separation distance in the tube axis direction is set to about 40 cm corresponding to the width of the magnetizing coils Lx and Ly.

磁化コイルLx、Ly、Lzには、図3に示すように、50もしくは60Hzの三相商用交流電圧を入力とする整流回路1x、1y、1zと、付属のスイッチング制御手段3x、3y、3zで制御されるサイリスタにより構成されるインバータ2x、2y、2zとをそれぞれ備えて、所属の磁化コイルLx、Ly、Lzに例えば600A程度の交流の磁化電流を供給する励磁回路が付属している。スイッチング制御手段3xは、インバータ2xをDC/AC変換を行うようにスイッチング制御して9Hzの磁化電流を出力させる。スイッチング制御手段3yはインバータ2yに7Hz、スイッチング制御手段3zはインバータ2zに5Hzの磁化電流を出力させる。   As shown in FIG. 3, the magnetizing coils Lx, Ly, and Lz include rectifier circuits 1x, 1y, and 1z that receive a three-phase commercial AC voltage of 50 or 60 Hz, and attached switching control means 3x, 3y, and 3z. Each of the inverters 2x, 2y, 2z composed of controlled thyristors is provided, and an excitation circuit for supplying an alternating magnetizing current of about 600 A, for example, to the associated magnetizing coils Lx, Ly, Lz is attached. The switching control means 3x performs switching control so that the inverter 2x performs DC / AC conversion, and outputs a 9 Hz magnetizing current. The switching control means 3y causes the inverter 2y to output a magnetizing current of 7 Hz, and the switching control means 3z causes the inverter 2z to output a magnetizing current of 5 Hz.

これらの励磁周波数は非整数倍の関係を有することにより、複数周期にわたり互いの強さ及び極性の関係が経時的に変化する磁束φx、φy、φzを基に、方向が変化する合成磁場が、磁化コイルLx、Ly、Lz内に発生する。また、鉄材への透磁深度は、下記の式に従い、周波数を低くする程深くなることは一般的に知られているが、試験により50Hzの商用電源周波数よりも低く設定することにより、鋼管胴部の肉厚が5mm程度でも内周面に十分達することができ、さらに10Hz以下になると肉厚18mm程度でも十分鋼管内周面へも透磁し得ることが確認されている。   Since these excitation frequencies have a non-integer multiple relationship, a synthetic magnetic field whose direction changes based on magnetic fluxes φx, φy, and φz in which the relationship between each other's strength and polarity changes over time over a plurality of periods, It occurs in the magnetizing coils Lx, Ly, Lz. Further, although it is generally known that the permeability depth to the iron material becomes deeper as the frequency is lowered according to the following formula, the steel pipe body is set by lowering the commercial power supply frequency of 50 Hz by a test. It has been confirmed that even when the thickness of the portion is about 5 mm, the inner peripheral surface can be sufficiently reached, and when the thickness is 10 Hz or less, even the thickness of about 18 mm can be sufficiently permeable to the inner peripheral surface of the steel pipe.

δ=√{ρ/(πμf)}
δ:浸透深さ〔m〕、μ:透磁率、ρ:抵抗率〔Ωm〕、f:周波数〔Hz〕
δ = √ {ρ / (πμf)}
δ: penetration depth [m], μ: permeability, ρ: resistivity [Ωm], f: frequency [Hz]

このように構成された鋼管用磁粉探傷装置の動作は次の通りである。例えば外径30cm及び肉厚18mmの鋼管9が、外周面、内周面及び両端部の端面に磁粉液を散布されて、磁化コイルLzの空芯部及び磁化コイルLx、Lyの各対間の中心位置に挿入された状態で、所属の磁化電流が供給されると、図5Aに示すように、探傷コイルの内部に、一対の磁化コイルLzにより管軸方向の強さの変化する5Hzの磁束φzが正方向及び逆方向に発生すると共に、磁化コイルLxにより、図1で見て正逆の垂直方向の強さの変化する9Hzの磁束φx、磁化コイルLyにより正逆の水平方向の強さの変化する7Hzの磁束φyが発生する。   The operation of the magnetic particle flaw detector for steel pipes configured as described above is as follows. For example, a steel pipe 9 having an outer diameter of 30 cm and a wall thickness of 18 mm is sprayed with magnetic powder liquid on the outer peripheral surface, the inner peripheral surface, and the end surfaces of both end portions, and between the air core portion of the magnetizing coil Lz and the magnetizing coils Lx and Ly When the associated magnetization current is supplied in the state of being inserted at the center position, as shown in FIG. 5A, a magnetic flux of 5 Hz in which the strength in the tube axis direction is changed by the pair of magnetization coils Lz inside the flaw detection coil. φz is generated in the forward direction and the reverse direction, and the magnetizing coil Lx changes the forward and reverse vertical strength as seen in FIG. A magnetic flux φy of 7 Hz is generated.

これにより、鋼管9の高透磁率の胴部全域において、直交3軸の磁束φx、φy、φzによる合成磁場が生じる。図4は位相位置0°が互いに揃った時点からのそれぞれの磁化電流を示すもので、実際には1秒間について下記の表1に示すように、+振幅の励磁電流によるφzに対して、種々の例示した経時タイミングa〜iにおいて、残り2軸の管断面における±X或は±Y軸方向の磁束φx、φyにより、合成磁場が形成される。つまり、管周面に沿った管軸方向の+φzが、横方向に偏向され、それぞれの励磁電流の振幅関係に応じて管周面において管軸方向から直交方向にわたり方向及び強さが変化する磁場が発生する。φz=0の時点ではX軸或はY軸方向のY軸方向に直交する完全に横方向の磁場も生じ、逆管軸方向の−φzに対しても同様な磁場が形成される。   As a result, a combined magnetic field is generated by the orthogonal three-axis magnetic fluxes φx, φy, and φz in the entire region of the steel pipe 9 having a high permeability. FIG. 4 shows the respective magnetization currents from the time when the phase positions 0 ° are aligned with each other. Actually, as shown in Table 1 below for 1 second, various values are obtained with respect to φz due to the + amplitude excitation current. In the illustrated timings a to i, a combined magnetic field is formed by the magnetic fluxes φx and φy in the ± X or ± Y axis directions in the remaining two-axis tube cross sections. That is, + φz in the tube axis direction along the tube peripheral surface is deflected in the lateral direction, and the magnetic field whose direction and strength change from the tube axis direction to the orthogonal direction on the tube peripheral surface according to the amplitude relationship of each excitation current. Will occur. At φz = 0, a completely transverse magnetic field perpendicular to the Y-axis direction in the X-axis or Y-axis direction is also generated, and a similar magnetic field is formed for −φz in the reverse tube axis direction.

Figure 2007298482
Figure 2007298482

次の1秒後には、位相が0°に揃った状態から互いに非整数倍であることにより、位相位置0°が互いにずれて次の1秒にわたり磁束φx、φy、φzにより、1秒前とは異なる極性及び強さ関係下での合成磁場が形成される。実際には、10秒程度で、管周面に沿って十分な強さの360°の範囲で方向の変化する磁場が発生し、外周面及び内周面のあらゆる方向の傷が検知されること確認されている。つまり、変化して弱い磁場も含まれるとしても、図5Bに示すように、管軸方向に極性が反転し、かつ十分な強さの磁場φが、方向を変化させつつ管周面に沿って360°の範囲に発生される。鋼管端面に沿ってもφz=0の時点で、φx、φyの合成磁場により、360°の範囲で方向の変化する十分な強さの磁場が発生する。尚、それぞれの周波数9,7,5の最小公倍数は、315、即ち最も周期の短い9Hzの35秒分の315周期に相当し、7Hzの245周期、5Hzの175周期を1周期の合成パターンとして、合成磁場がパターン周期35秒で周期的に発生することになるが、前述のように、それ以内で充分な回転磁界を得ることができる。   After the next 1 second, the phase positions are shifted from each other by a non-integer multiple from the state in which the phases are aligned at 0 °, so that the phase position is shifted from each other by the magnetic fluxes φx, φy, and φz over the next 1 second. Forms a composite magnetic field under different polarity and strength relationships. In fact, in about 10 seconds, a magnetic field whose direction changes in the range of 360 ° with sufficient strength is generated along the peripheral surface of the tube, and scratches in all directions on the outer peripheral surface and the inner peripheral surface are detected. It has been confirmed. That is, even if a weak magnetic field is changed, as shown in FIG. 5B, the polarity is reversed in the tube axis direction, and a sufficiently strong magnetic field φ changes along the tube peripheral surface while changing the direction. It is generated in the range of 360 °. Even along the end face of the steel tube, when φz = 0, a combined magnetic field of φx and φy generates a sufficiently strong magnetic field whose direction changes in the range of 360 °. The least common multiple of each frequency 9, 7, and 5 corresponds to 315, that is, 315 cycles of 35 seconds of 9 Hz, which is the shortest cycle, and 245 cycles of 7 Hz and 175 cycles of 5 Hz are combined into one cycle. The synthetic magnetic field is periodically generated with a pattern period of 35 seconds. As described above, a sufficient rotating magnetic field can be obtained within the range.

このように、管径方向に沿った9Hzの磁束φx及び直交する管径方向に沿った7Hzの磁束φyの合成磁界と、管軸方向に沿った5Hzの磁束φzとにより、透磁率の高い鋼管9の胴部には、その外周面だけでなく、胴部を深く透磁して内周面の全域に沿って360°の範囲で方向の変化する磁場が形成される。したがって、あらゆる方向の傷が、紫外線照射による蛍光磁粉模様の乱れにより確実に検知される。これにより、10秒間の励磁による所定範囲の探傷ごとに鋼管9をスライドさせ全域を探傷する。鋼管9の管軸方向の両端部でも特に磁束φx及び磁束φyにより、その端面に沿って360°の範囲で方向の変化する合成磁場が発生されて、同様に確実に探傷される。特に内径が小さくなって内周面を目視し難い場合、スコープにより観察することができる。   Thus, a steel tube having a high magnetic permeability is obtained by a combined magnetic field of a magnetic flux φx of 9 Hz along the pipe radial direction and a magnetic flux φy of 7 Hz along the orthogonal pipe radial direction and a magnetic flux φz of 5 Hz along the pipe axis direction. A magnetic field whose direction changes in a range of 360 ° along the entire area of the inner peripheral surface by deeply penetrating not only the outer peripheral surface but also the inner peripheral surface is formed in the body portion 9. Therefore, flaws in all directions are reliably detected by the disturbance of the fluorescent magnetic powder pattern caused by ultraviolet irradiation. Thereby, the steel pipe 9 is slid for every flaw detection in a predetermined range by excitation for 10 seconds, and the whole area is flaw detected. At both ends in the tube axis direction of the steel pipe 9, a combined magnetic field whose direction changes in the range of 360 ° along the end surface is generated by the magnetic flux φx and the magnetic flux φy, and the flaw is similarly detected. In particular, when the inner diameter becomes small and it is difficult to visually check the inner peripheral surface, it can be observed with a scope.

因みに、非整数倍の関係に依らず、例えば5、7,10Hz或は4、8,10Hzのように、少なくとも2軸が整数倍の関係を有すると、整数倍同士の低い周波数の5Hz或は4Hzで同じパターンの2軸の合成磁束が繰返し発生され、合成磁場の方向変化が制約される。鋼管胴部の肉厚が薄くなった場合、11、13、15Hz程度或はさらに薄くなった場合非整数倍の関係を有するさらに高い周波数への励磁切換式に構成することもできる。   Incidentally, regardless of the non-integer multiple relationship, if at least two axes have an integral multiple relationship, such as 5, 7, 10 Hz, or 4, 8, 10 Hz, for example, 5 Hz or Two-axis composite magnetic flux having the same pattern is repeatedly generated at 4 Hz, and the direction change of the composite magnetic field is restricted. When the thickness of the steel tube body is reduced, it can be configured as an excitation switching type to a higher frequency having a non-integer multiple relationship when the thickness is about 11, 13, 15 Hz or even thinner.

本発明の実施の形態による鋼管用磁粉探傷装置の正面図である。It is a front view of the magnetic particle flaw detector for steel pipes by embodiment of this invention. 同磁粉探傷装置の直交3軸の磁化コイルの配置関係を説明する斜視図である。It is a perspective view explaining the arrangement | positioning relationship of the orthogonal three-axis magnetizing coil of the same magnetic particle flaw detector. 同磁粉探傷装置の励磁回路を示す図である。It is a figure which shows the excitation circuit of the same magnetic particle flaw detector. 同励磁回路の出力する磁化電流の位相関係を説明する図である。It is a figure explaining the phase relationship of the magnetizing current which the same excitation circuit outputs. 同磁粉探傷装置の動作を説明する図である。It is a figure explaining operation | movement of the same magnetic particle flaw detector.

符号の説明Explanation of symbols

9 鋼管
Lx X軸方向の磁化コイル
Ly Y軸方向の磁化コイル
Lz Z軸方向の磁化コイル
9 Steel tube Lx Magnetization coil in X-axis direction Ly Magnetization coil in Y-axis direction Lz Magnetization coil in Z-axis direction

Claims (2)

鋼管を囲んで互いに直交する3軸方向に磁束を発生する磁化コイルによる合成磁場により、鋼管を磁化するようになった鋼管用磁粉探傷装置において、
鋼管の外側の管径方向に沿った対向位置に配置されて管径方向に磁束を発生する第1の1対の磁化コイルと、その対向方向に直交して前記鋼管の外側の対向位置に配置されて前記管径方向に磁束を発生する第2の1対の磁化コイルと、前記鋼管を囲むように巻回され、かつ第1及び第2の前記磁化コイルを管軸方向に挟む対向位置に配置されることにより、前記管軸方向に磁束を発生する第3の1対の磁化コイルとを備え、
第1、第2及び第3の前記磁化コイルに、50Hzよりも低く、かつ互いに非整数倍の関係を有する周波数の磁化電流を供給する励磁回路がそれぞれ付属していることを特徴とする鋼管用磁粉探傷装置。
In a magnetic particle flaw detector for a steel pipe that is adapted to magnetize the steel pipe by a synthetic magnetic field generated by a magnetization coil that generates magnetic flux in three axial directions that are orthogonal to each other surrounding the steel pipe,
A first pair of magnetizing coils that are arranged at opposing positions along the pipe radial direction outside the steel pipe and generate magnetic flux in the pipe radial direction, and are arranged at opposing positions outside the steel pipe perpendicular to the opposing direction. And a second pair of magnetized coils that generate magnetic flux in the tube radial direction and a position that is wound around the steel tube and sandwiches the first and second magnetized coils in the tube axis direction. A third pair of magnetizing coils that generate magnetic flux in the tube axis direction by being disposed;
The first, second and third magnetizing coils are each provided with an excitation circuit for supplying a magnetizing current having a frequency lower than 50 Hz and having a non-integer multiple relationship with each other. Magnetic particle inspection equipment.
互いに非整数倍の関係を有する周波数がいずれも10Hzより低いことを特徴とする請求項1記載の鋼管用磁粉探傷装置。   2. A magnetic particle flaw detector for steel pipes according to claim 1, wherein the frequencies having a non-integer multiple relationship are all lower than 10 Hz.
JP2006128951A 2006-05-08 2006-05-08 Magnetic particle flaw detector for steel pipes Active JP4749223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006128951A JP4749223B2 (en) 2006-05-08 2006-05-08 Magnetic particle flaw detector for steel pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006128951A JP4749223B2 (en) 2006-05-08 2006-05-08 Magnetic particle flaw detector for steel pipes

Publications (2)

Publication Number Publication Date
JP2007298482A true JP2007298482A (en) 2007-11-15
JP4749223B2 JP4749223B2 (en) 2011-08-17

Family

ID=38768082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006128951A Active JP4749223B2 (en) 2006-05-08 2006-05-08 Magnetic particle flaw detector for steel pipes

Country Status (1)

Country Link
JP (1) JP4749223B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081375A (en) * 2009-10-09 2011-04-21 Xerox Corp Toner composition and process
CN102353714A (en) * 2011-07-06 2012-02-15 射阳县智能探伤设备有限公司 Pipe-end induction-based magnetic particle flaw detector
EP2455752A1 (en) * 2010-11-19 2012-05-23 Stanislav Starman Equipment for detection of defects in rotary metal bodies by a magnetic powder method
JP2012198087A (en) * 2011-03-22 2012-10-18 Denshi Jiki Kogyo Kk Magnetization device for inspection object, magnetic particle inspection device, and adjustment method of magnetization device for inspection object
JP2013178280A (en) * 2013-06-18 2013-09-09 Denshi Jiki Kogyo Kk Method for adjusting magnetization device of inspection object
JP2014020984A (en) * 2012-07-20 2014-02-03 Nippon Denji Sokki Kk Magnetizing apparatus for magnetic particle testing
RU2648011C1 (en) * 2014-06-12 2018-03-21 Хеллинг Гмбх Device for non-destructive testing metal parts
CN116794157A (en) * 2023-06-21 2023-09-22 上海射磁探伤机制造有限公司 Pipe end flaw detector and flaw detection method for pipe end flaw detector

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177379A (en) * 1974-12-27 1976-07-05 Tokushu Toryo Kk JIKITAN SHOSOCHI
JPS5269381A (en) * 1975-12-05 1977-06-09 Sumitomo Metal Ind Method of magnetically detecting flaw
JPS56117178A (en) * 1980-02-20 1981-09-14 Shimadzu Corp Metal detector
JPS63177053A (en) * 1987-01-19 1988-07-21 Nippon Steel Corp Method and apparatus for detecting surface flaw of steel material
JPH0250676U (en) * 1988-10-03 1990-04-09
JPH03223668A (en) * 1990-01-30 1991-10-02 Nkk Corp Magnetic powder flaw detector
JPH0424062U (en) * 1990-06-21 1992-02-27
JPH0635965U (en) * 1992-10-19 1994-05-13 日本鋼管株式会社 Magnetic particle flaw detector
JPH06249835A (en) * 1993-02-23 1994-09-09 Kawasaki Steel Corp Magnetic particle flaw detecting device for steel pipe
JPH07103943A (en) * 1993-09-30 1995-04-21 Nippon Denji Sokki Kk Magnetization apparatus for flaw detection
JPH07151732A (en) * 1993-12-01 1995-06-16 Nkk Corp Steel tube end magnetization device
JPH07253412A (en) * 1994-03-14 1995-10-03 Nkk Corp Magnetic powder flaw detector
JPH11160283A (en) * 1997-12-02 1999-06-18 Nippon Denji Sokki Kk Magnetic powder flaw detecting magnetizing apparatus
JP2004037438A (en) * 2002-07-05 2004-02-05 Nippon Jiki Kogyo Kk Magnetic particle flaw detection method magnetized by triaxial pulsed currents using combined coil
JP2005315810A (en) * 2004-04-30 2005-11-10 Sumitomo Metal Ind Ltd Magnetizing equipment for detecting magnetic flaw in steel pipe

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177379A (en) * 1974-12-27 1976-07-05 Tokushu Toryo Kk JIKITAN SHOSOCHI
JPS5269381A (en) * 1975-12-05 1977-06-09 Sumitomo Metal Ind Method of magnetically detecting flaw
JPS56117178A (en) * 1980-02-20 1981-09-14 Shimadzu Corp Metal detector
JPS63177053A (en) * 1987-01-19 1988-07-21 Nippon Steel Corp Method and apparatus for detecting surface flaw of steel material
JPH0250676U (en) * 1988-10-03 1990-04-09
JPH03223668A (en) * 1990-01-30 1991-10-02 Nkk Corp Magnetic powder flaw detector
JPH0424062U (en) * 1990-06-21 1992-02-27
JPH0635965U (en) * 1992-10-19 1994-05-13 日本鋼管株式会社 Magnetic particle flaw detector
JPH06249835A (en) * 1993-02-23 1994-09-09 Kawasaki Steel Corp Magnetic particle flaw detecting device for steel pipe
JPH07103943A (en) * 1993-09-30 1995-04-21 Nippon Denji Sokki Kk Magnetization apparatus for flaw detection
JPH07151732A (en) * 1993-12-01 1995-06-16 Nkk Corp Steel tube end magnetization device
JPH07253412A (en) * 1994-03-14 1995-10-03 Nkk Corp Magnetic powder flaw detector
JPH11160283A (en) * 1997-12-02 1999-06-18 Nippon Denji Sokki Kk Magnetic powder flaw detecting magnetizing apparatus
JP2004037438A (en) * 2002-07-05 2004-02-05 Nippon Jiki Kogyo Kk Magnetic particle flaw detection method magnetized by triaxial pulsed currents using combined coil
JP2005315810A (en) * 2004-04-30 2005-11-10 Sumitomo Metal Ind Ltd Magnetizing equipment for detecting magnetic flaw in steel pipe

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081375A (en) * 2009-10-09 2011-04-21 Xerox Corp Toner composition and process
EP2455752A1 (en) * 2010-11-19 2012-05-23 Stanislav Starman Equipment for detection of defects in rotary metal bodies by a magnetic powder method
JP2012198087A (en) * 2011-03-22 2012-10-18 Denshi Jiki Kogyo Kk Magnetization device for inspection object, magnetic particle inspection device, and adjustment method of magnetization device for inspection object
CN102353714A (en) * 2011-07-06 2012-02-15 射阳县智能探伤设备有限公司 Pipe-end induction-based magnetic particle flaw detector
JP2014020984A (en) * 2012-07-20 2014-02-03 Nippon Denji Sokki Kk Magnetizing apparatus for magnetic particle testing
JP2013178280A (en) * 2013-06-18 2013-09-09 Denshi Jiki Kogyo Kk Method for adjusting magnetization device of inspection object
RU2648011C1 (en) * 2014-06-12 2018-03-21 Хеллинг Гмбх Device for non-destructive testing metal parts
CN116794157A (en) * 2023-06-21 2023-09-22 上海射磁探伤机制造有限公司 Pipe end flaw detector and flaw detection method for pipe end flaw detector
CN116794157B (en) * 2023-06-21 2024-03-19 上海射磁探伤机制造有限公司 Pipe end flaw detector and flaw detection method for pipe end flaw detector

Also Published As

Publication number Publication date
JP4749223B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4749223B2 (en) Magnetic particle flaw detector for steel pipes
JP5201495B2 (en) Magnetic flaw detection method and magnetic flaw detection apparatus
US9453818B2 (en) Eddy current flaw detection probe and eddy current flaw inspection apparatus
Feng et al. Influence of motion induced eddy current on the magnetization of steel pipe and MFL signal
JP4766472B1 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP2013072667A (en) Probe for eddy current flaw detection
JP3053521B2 (en) Magnetic particle flaw detector
JP4628165B2 (en) Magnetic powder flaw detector
JP6170081B2 (en) Magnetizer for steel pipe, magnetic particle flaw detector
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP4817079B2 (en) Magnetizer for magnetic testing of steel pipes
CN210347535U (en) Magnetic powder detection device for large-wall-thickness narrow-interval weld joint back chipping part
JP4193181B2 (en) Magnetizer for magnetic testing of steel pipes
JP5403828B2 (en) Magnetizing device for inspection object, magnetic particle flaw detector
JP2004177177A (en) Magnetic field generator for defect detection of magnetic powder
CN113556044B (en) Connection method of alternating current 90-degree phase difference circuit for magnetic particle inspection machine
JP2009287981A (en) Eddy-current flaw detector and eddy-current flaw detecting method
JPS59225348A (en) Magnetic flaw detecting apparatus
JP5465803B2 (en) Method for adjusting magnetizing device of object to be inspected
JPS6125312B2 (en)
Massa Finding the optimum conditions for weld testing by magnetic particles
JPH07151732A (en) Steel tube end magnetization device
CN110470727B (en) Tubular natural defect sample for electromagnetic detection and manufacturing method
WO2020065875A1 (en) Abnormal material portion detection method using eddy current and abnormal material portion
RU2344909C2 (en) Arc welding method for magnetised bodies during recovery operations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4749223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250