JP4193181B2 - Magnetizer for magnetic testing of steel pipes - Google Patents

Magnetizer for magnetic testing of steel pipes Download PDF

Info

Publication number
JP4193181B2
JP4193181B2 JP2004136497A JP2004136497A JP4193181B2 JP 4193181 B2 JP4193181 B2 JP 4193181B2 JP 2004136497 A JP2004136497 A JP 2004136497A JP 2004136497 A JP2004136497 A JP 2004136497A JP 4193181 B2 JP4193181 B2 JP 4193181B2
Authority
JP
Japan
Prior art keywords
steel pipe
coil
coils
axial direction
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004136497A
Other languages
Japanese (ja)
Other versions
JP2005315810A (en
Inventor
睦 谷田
泰広 玉井
正喜 三根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004136497A priority Critical patent/JP4193181B2/en
Publication of JP2005315810A publication Critical patent/JP2005315810A/en
Application granted granted Critical
Publication of JP4193181B2 publication Critical patent/JP4193181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、鋼管の磁気探傷(磁粉探傷等)用磁化装置に関し、特に、鋼管の軸方向や周方向など各方向に延びる欠陥の何れをも精度良く検出し得るように磁化することが可能な磁化装置に関する。   The present invention relates to a magnetizing device for magnetic flaw detection (magnetic particle flaw detection, etc.) of a steel pipe, and in particular, it is possible to magnetize so that any defect extending in each direction such as the axial direction or the circumferential direction of a steel pipe can be detected with high accuracy. The present invention relates to a magnetizing apparatus.

従来より、磁性体である鋼管(特に管端部)を磁化することにより、当該鋼管の内外面に発生した欠陥を検出する磁粉探傷方法が知られている。より具体的に説明すれば、磁粉探傷方法は、磁化した鋼管に磁粉液を散布すれば、欠陥発生部位に生じる漏洩磁束によって磁粉が磁化されて凝集吸着することを利用し、当該吸着した磁粉を目視観察することによって欠陥を検出する探傷方法である。   2. Description of the Related Art Conventionally, there is known a magnetic particle flaw detection method for detecting defects generated on the inner and outer surfaces of a steel pipe by magnetizing a steel pipe (particularly, a pipe end) that is a magnetic body. More specifically, in the magnetic particle flaw detection method, if the magnetic powder liquid is sprayed on the magnetized steel pipe, the magnetic powder is magnetized and agglomerated and adsorbed by the leakage magnetic flux generated at the defect occurrence site. This is a flaw detection method for detecting defects by visual observation.

ここで、上記漏洩磁束は、鋼管の磁化によって生ずる磁束の方向に対して欠陥が垂直方向に延びる場合に顕著に発生するものである。一方、鋼管の内外面に発生する欠陥としては、その発生要因に応じて鋼管の軸方向や周方向など各方向に延びる種々の欠陥が存在する。従って、鋼管に発生し得る種々の方向の欠陥の何れをも精度良く検出するには、磁束が鋼管の内外面に沿った全方向に略均一に生じるような磁化方法(磁化装置)を採用することが理想的である。   Here, the leakage magnetic flux is remarkably generated when the defect extends in a direction perpendicular to the direction of the magnetic flux generated by the magnetization of the steel pipe. On the other hand, as defects generated on the inner and outer surfaces of the steel pipe, there are various defects extending in each direction such as an axial direction and a circumferential direction of the steel pipe depending on the generation factor. Therefore, in order to accurately detect any defect in various directions that can occur in the steel pipe, a magnetization method (magnetization apparatus) is adopted in which the magnetic flux is generated substantially uniformly in all directions along the inner and outer surfaces of the steel pipe. Ideally.

そこで、全方向に略均一に磁束を生じさせることを目的とし、従来、鋼管の軸方向に沿ってスパイラル状に巻回された第1コイルと、前記鋼管の軸方向に沿って延び、且つ、前記鋼管の軸方向に直交する水平軸方向に沿って前記鋼管を挟んで対向配置され、互いに電気的に接続された一対の第2コイルと、前記鋼管の軸方向に沿って延び、且つ、前記鋼管の軸方向及び前記水平軸方向に直交する垂直軸方向に沿って前記鋼管を挟んで対向配置され、互いに電気的に接続された一対の第3コイルと、前記第1コイル、前記第2コイル及び前記第3コイルのそれぞれに位相差が互いに120度である交流電流を供給するための三相交流電源とを備えた磁化装置が提案されている(例えば、特許文献1参照)。   Therefore, for the purpose of generating magnetic flux substantially uniformly in all directions, conventionally, the first coil wound in a spiral shape along the axial direction of the steel pipe, and extending along the axial direction of the steel pipe, and A pair of second coils disposed opposite to each other across the steel pipe along a horizontal axis direction perpendicular to the axial direction of the steel pipe, and electrically connected to each other; and extending along the axial direction of the steel pipe; and A pair of third coils arranged opposite to each other across the steel pipe along the axial direction perpendicular to the axial direction of the steel pipe and the horizontal axis direction, and electrically connected to each other, the first coil, and the second coil And a magnetizing device provided with a three-phase alternating current power supply for supplying alternating current whose phase difference is mutually 120 degrees to each of the 3rd coil is proposed (for example, refer to patent documents 1).

しかしながら、本発明の発明者らが種々の部位及び方向に人工欠陥を施した鋼管を特許文献1に記載の磁化装置で磁化して実際に試験したところ、鋼管の所定部位の所定方向に延びる欠陥については検出し難いことが分かった。
特開平7−103942号公報
However, when the inventors of the present invention actually tested a steel pipe with artificial defects in various parts and directions using the magnetizing apparatus described in Patent Document 1, a defect extending in a predetermined direction of a predetermined part of the steel pipe. It was found difficult to detect.
Japanese Patent Laid-Open No. 7-103942

本発明は、斯かる従来技術の問題点を解決するべくなされたものであり、鋼管の軸方向や周方向など各方向に延びる欠陥の何れをも精度良く検出し得るように磁化することが可能な鋼管の磁気探傷用磁化装置を提供することを課題とする。   The present invention has been made to solve such problems of the prior art, and can be magnetized so that any defect extending in each direction such as the axial direction or circumferential direction of a steel pipe can be detected with high accuracy. An object of the present invention is to provide a magnetizing device for magnetic flaw detection of a simple steel pipe.

前記課題を解決するべく、本発明の発明者らは鋭意検討した結果、鋼管の所定部位の所定方向に延びる欠陥が検出できないのは、第1コイル、第2コイル及び第3コイルにそれぞれ供給される交流電流の位相差が互いに120度とされている(たとえば、特許文献1の第4頁段落0031)ことに伴い、磁化による磁束が鋼管の内外面に沿った全方向に生じないことが原因であることを見出した。   In order to solve the above-mentioned problems, the inventors of the present invention have made extensive studies and as a result, it is supplied to the first coil, the second coil, and the third coil that a defect extending in a predetermined direction of a predetermined portion of the steel pipe cannot be detected. This is because the magnetic flux due to magnetization does not occur in all directions along the inner and outer surfaces of the steel pipe due to the phase difference between the alternating currents being 120 degrees (for example, paragraph 4 of page 4 of Patent Document 1). I found out.

より具体的に説明すれば、図6に示すように、鋼管Pの軸方向(図6の紙面奥行き方向)に沿ってスパイラル状に巻回された第1コイル11と、鋼管Pの軸方向と直交する水平軸方向に沿って鋼管Pを挟んで対向配置され、互いに電気的に接続された一対の第2コイル12a、12bと、鋼管Pの軸方向と直交する垂直軸方向に沿って鋼管Pを挟んで対向配置され、互いに電気的に接続された一対の第3コイル13a、13bとに、互いに120度の位相差(第1コイル11と第2コイル12a、12bとの位相差は120度、第1コイル11と第3コイル13a、13bとの位相差は240度)を有する交流電流(振幅、周波数は同一)を供給した場合、図7に示すような磁界分布(磁界ベクトルの軌跡)が形成されることが分かった。ここで、図7は、図6に示すコイル配置によって形成される磁界(鋼管Pの透磁率は未考慮)分布を示す図であり、(a)は第2コイル12aと第3コイル13aとの間(あるいは第2コイル12bと第3コイル13bとの間)の領域(以下、適宜A領域という)に形成される磁界分布を、(b)は第2コイル12bと第3コイル13aとの間(或いは第2コイル12aと第3コイル13bとの間)の領域(以下、適宜B領域という)に形成される磁界分布を数値計算によって算出した結果をそれぞれ示す。なお、図7における横軸は鋼管Pの軸方向(L方向)に沿った磁界強度を、縦軸は鋼管Pの周方向(T方向)に沿った磁界強度をそれぞれ示す。また、図7に示すグラフにおける点(●)は、各コイルに供給される交流電流の位相が20度進む毎にプロットした磁界強度を示す。   More specifically, as shown in FIG. 6, the first coil 11 wound in a spiral shape along the axial direction of the steel pipe P (the depth direction in FIG. 6), and the axial direction of the steel pipe P A pair of second coils 12a and 12b arranged opposite to each other across the steel pipe P along a horizontal axis direction orthogonal to each other, and the steel pipe P along a vertical axis direction orthogonal to the axial direction of the steel pipe P. A phase difference of 120 degrees between the pair of third coils 13a and 13b that are arranged opposite to each other and electrically connected to each other (the phase difference between the first coil 11 and the second coils 12a and 12b is 120 degrees). When an alternating current (amplitude and frequency are the same) having a phase difference of 240 degrees between the first coil 11 and the third coils 13a and 13b is supplied, the magnetic field distribution (the locus of the magnetic field vector) as shown in FIG. Was found to form. Here, FIG. 7 is a view showing a magnetic field (magnetic permeability of the steel pipe P is not considered) distribution formed by the coil arrangement shown in FIG. 6, and (a) shows the second coil 12a and the third coil 13a. A magnetic field distribution formed in a region between the second coil 12b and the third coil 13b (hereinafter referred to as A region as appropriate), (b) is between the second coil 12b and the third coil 13a. The results of calculating the magnetic field distribution formed in the region (hereinafter referred to as B region as appropriate) between the second coil 12a and the third coil 13b (hereinafter referred to as B region as appropriate) are shown. In FIG. 7, the horizontal axis indicates the magnetic field strength along the axial direction (L direction) of the steel pipe P, and the vertical axis indicates the magnetic field strength along the circumferential direction (T direction) of the steel pipe P. Moreover, the point (●) in the graph shown in FIG. 7 indicates the magnetic field strength plotted every time the phase of the alternating current supplied to each coil advances by 20 degrees.

図7に示すように、第1コイル11、第2コイル12a、12b及び第3コイル13a、13bに互いに120度の位相差を有する交流電流を供給した場合、交流電流の位相が進むにつれてB領域では楕円状の磁界分布が形成される(図7(b))ものの、A領域では直線状の磁界分布になる(図7(a))。換言すれば、供給される交流電流の位相が進むにつれて、B領域における磁界ベクトルは鋼管Pの内外面に沿った全方向を辿るのに対して、A領域における磁界ベクトルは大きさが変化するだけで鋼管Pの内外面に沿った所定の一方向しか辿らない。したがって、A領域では、前記一方向に対して垂直方向に延びる欠陥を検出することは可能であるが、その他の方向に延びる欠陥の検出能は低下し、特に、前記一方向に平行に延びる欠陥は非常に検出し難いことになる。なお、本数値計算の結果は、前述したように、実際に鋼管に人工欠陥を施して試験した結果と略合致し、これにより本数値計算による解析の妥当性を確認することができた。   As shown in FIG. 7, when an alternating current having a phase difference of 120 degrees is supplied to the first coil 11, the second coils 12a and 12b, and the third coils 13a and 13b, the region B is increased as the phase of the alternating current advances. In FIG. 7, an elliptical magnetic field distribution is formed (FIG. 7B), but in the area A, a linear magnetic field distribution is obtained (FIG. 7A). In other words, as the phase of the supplied alternating current advances, the magnetic field vector in the B region follows all directions along the inner and outer surfaces of the steel pipe P, whereas the magnetic field vector in the A region only changes in magnitude. Therefore, it follows only one predetermined direction along the inner and outer surfaces of the steel pipe P. Therefore, in the area A, it is possible to detect a defect extending in a direction perpendicular to the one direction, but the detection ability of the defect extending in the other direction is lowered, and in particular, a defect extending in parallel to the one direction. Will be very difficult to detect. As described above, the result of this numerical calculation substantially coincided with the result of actually testing a steel pipe with an artificial defect, thereby confirming the validity of the analysis by this numerical calculation.

本発明は、以上に説明した本発明の発明者らが見出した知見に基づいて完成されたものである。すなわち、本発明は、鋼管の軸方向に沿ってスパイラル状に巻回された第1コイルと、前記鋼管の軸方向に沿って延び、且つ、前記鋼管の軸方向と直交する第1方向に沿って前記鋼管を挟んで対向配置され、互いに電気的に接続された一対の第2コイルと、前記鋼管の軸方向に沿って延び、さらに、前記鋼管の軸方向及び前記第1方向と直交する第2方向に沿って前記鋼管を挟んで対向配置され、互いに電気的に接続された一対の第3コイルと、前記第1コイル、前記第2コイル及び前記第3コイルにそれぞれ交流電流を供給するための三相交流電源とを備えた磁化装置であって、前記三相交流電源からの通電時間中に、前記鋼管を周方向に少なくとも90°以上回転させて、前記鋼管の全ての部位を、前記磁化装置によって形成される磁界ベクトルが前記鋼管の内外面に沿った全方向を辿る領域に遷移させるための回転機構を備えることを特徴とする鋼管の磁気探傷用磁化装置を提供するものである。 The present invention has been completed based on the knowledge found by the inventors of the present invention described above. That is, the present invention includes a first coil wound in a spiral shape along the axial direction of the steel pipe, and a first direction extending along the axial direction of the steel pipe and orthogonal to the axial direction of the steel pipe. A pair of second coils that are arranged opposite to each other with the steel pipe interposed therebetween and are electrically connected to each other, and extend along the axial direction of the steel pipe, and are further orthogonal to the axial direction of the steel pipe and the first direction. To supply an alternating current to each of the pair of third coils that are disposed opposite to each other across the steel pipe along two directions and are electrically connected to each other, and the first coil, the second coil, and the third coil. A three-phase AC power source, and during the energization time from the three-phase AC power source, rotating the steel pipe at least 90 degrees in the circumferential direction, all the parts of the steel pipe, Magnetic field formed by a magnetizing device Vector in which to provide a magnetic flaw detection magnetizer of the steel pipe, characterized in that it comprises a rotation mechanism for transitioning to the area to follow all along the inner and outer surfaces of the steel pipe.

斯かる発明によれば、三相交流電源からの通電時間中、すなわち鋼管の磁化中に、鋼管を周方向に少なくとも90°以上回転させるための回転機構を備えるため、当該回転機構によって鋼管を回転させることにより、磁化が終了するまでの間に、鋼管の全ての部位が前述したB領域(図6参照)に必ず遷移させることが可能となる。前述のように、B領域では磁界ベクトルが鋼管の内外面に沿った全方向を辿る(図7(b))ため、A領域では検出できなかった方向の欠陥も検出できるようになる。以上のように、本発明に係る磁化装置によれば、鋼管の軸方向や周方向など各方向に延びる欠陥の何れをも精度良く検出し得るように磁化することが可能である。 According to such an invention, since the rotation mechanism for rotating the steel pipe at least 90 ° or more in the circumferential direction is provided during the energization time from the three-phase AC power source, that is, during the magnetization of the steel pipe, the steel pipe is rotated by the rotation mechanism. By doing so, it is possible to make sure that all the portions of the steel pipe make a transition to the aforementioned B region (see FIG. 6) until the magnetization is completed. As described above, in the region B, the magnetic field vector follows all directions along the inner and outer surfaces of the steel pipe (FIG. 7B), so that defects in a direction that cannot be detected in the region A can be detected. As described above, according to the magnetizing apparatus of the present invention, it is possible to magnetize so that any defect extending in each direction such as the axial direction or the circumferential direction of the steel pipe can be detected with high accuracy.

なお、本発明に係る第2コイルとしては、特許文献1に記載のように、鋼管の軸方向に沿って延びる複数の金属製細長部材を前記軸方向と直交する方向に並設して構成することが可能である。より具体的には、以上の構成を有する各第2コイルを鋼管を挟んで対向配置すると共に、一方の第2コイルを構成する細長部材の始端部と他方の第2コイルを構成する細長部材の終端部とを順次電気的に接続する構成を採用することが可能である。また、第2コイルとして、鋼管の軸方向に沿って延びるヨークに巻線を巻回して構成されるいわゆるヨークコイルを用い、鋼管を挟んで対向配置した各ヨークコイルの巻線同士を電気的に接続する構成を採用してもよい。本発明に係る第3コイルについても同様に、特許文献1に記載の構成やヨークコイルを用いた構成を採用することが可能である。また、本発明に係る回転機構としては、たとえば、鋼管の外径よりも小さい距離だけ離間された一対の回転ローラを用い、回転ローラ間に載置した鋼管に回転ローラの回転力を伝達することにより、鋼管を周方向に回転させる構成を採用することが可能である。   The second coil according to the present invention is configured by arranging a plurality of metal elongated members extending along the axial direction of the steel pipe in a direction perpendicular to the axial direction, as described in Patent Document 1. It is possible. More specifically, the second coils having the above-described configuration are arranged opposite to each other with the steel pipe interposed therebetween, and the start end portion of the elongated member constituting one second coil and the elongated member constituting the other second coil are arranged. It is possible to employ a configuration in which the terminal portions are sequentially electrically connected. Also, as the second coil, a so-called yoke coil is formed by winding a winding around a yoke extending in the axial direction of the steel pipe, and the windings of the yoke coils arranged opposite to each other with the steel pipe interposed therebetween are electrically connected. A configuration for connection may be employed. Similarly, for the third coil according to the present invention, the configuration described in Patent Document 1 and the configuration using a yoke coil can be employed. Further, as the rotating mechanism according to the present invention, for example, a pair of rotating rollers separated by a distance smaller than the outer diameter of the steel pipe is used, and the rotational force of the rotating roller is transmitted to the steel pipe placed between the rotating rollers. Therefore, it is possible to employ a configuration in which the steel pipe is rotated in the circumferential direction.

以上に説明したように、本発明に係る磁気探傷用磁化装置によれば、磁化によって生じる磁界ベクトルが鋼管の内外面に沿った全方向を辿るため、鋼管の軸方向や周方向など各方向に延びる欠陥の何れをも精度良く検出し得るように磁化することが可能である。   As described above, according to the magnetizing apparatus for magnetic testing according to the present invention, the magnetic field vector generated by the magnetization follows all directions along the inner and outer surfaces of the steel pipe. It is possible to magnetize so that any extending defect can be detected with high accuracy.

以下、添付図面を参照しつつ、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の一実施形態に係る磁気探傷用磁化装置の構成を模式的に示す斜視図である。図1に示すように、磁気探傷用磁化装置(以下、適宜磁化装置という)1は、鋼管Pの軸方向に沿ってスパイラル状に巻回された第1コイル11と、鋼管Pの軸方向に沿って延び、且つ、鋼管Pの軸方向と直交する第1方向(本実施形態では水平方向)に沿って鋼管Pを挟んで対向配置され、互いに電気的に接続された一対の第2コイル12a、12bと、鋼管Pの軸方向に沿って延び、且つ、鋼管Pの軸方向及び前記第1方向と直交する第2方向(本実施形態では垂直方向)に沿って鋼管Pを挟んで対向配置され、互いに電気的に接続された一対の第3コイル13と、第1コイル11、第2コイル12a、12b及び第3コイル13a、13bにそれぞれ120度位相の異なる交流電流を供給するための三相交流電源14とを備えている。さらに、本実施形態に係る磁化装置1は、三相交流電源14から出力された交流電流を調整し、当該調整後の交流電流を第2コイル12a、12b及び第3コイル13a、13bに供給するための電流調整回路15を備えている。   FIG. 1 is a perspective view schematically showing a configuration of a magnetic testing magnetizing apparatus according to an embodiment of the present invention. As shown in FIG. 1, a magnetizing device for magnetic flaw detection (hereinafter, appropriately referred to as a magnetizing device) 1 includes a first coil 11 wound in a spiral shape along the axial direction of a steel pipe P, and an axial direction of the steel pipe P. A pair of second coils 12 a that extend along the first direction (horizontal direction in the present embodiment) perpendicular to the axial direction of the steel pipe P and are opposed to each other with the steel pipe P interposed therebetween and are electrically connected to each other. 12b and extending along the axial direction of the steel pipe P, and opposed to each other across the steel pipe P along the axial direction of the steel pipe P and a second direction (vertical direction in the present embodiment) orthogonal to the first direction. And a pair of third coils 13 electrically connected to each other, and three for supplying alternating currents having a phase difference of 120 degrees to the first coil 11, the second coils 12a and 12b, and the third coils 13a and 13b, respectively. And a phase AC power source 14. Furthermore, the magnetizing apparatus 1 according to the present embodiment adjusts the alternating current output from the three-phase alternating current power supply 14, and supplies the adjusted alternating current to the second coils 12a and 12b and the third coils 13a and 13b. Current adjustment circuit 15 is provided.

本実施形態に係る第2コイル12a、12bは、鋼管Pの軸方向に沿って延びる複数の金属製細長部材を垂直方向に並設して構成されており、第2コイル12aを構成する各細長部材の終端部(通電方向下流側の端部)と第2コイル12bを構成する各細長部材の始端部(通電方向上流側の端部)とが順次電気的に接続され(接続線は図示省略)、第2コイル12aの端部に位置する細長部材(図1では最も下方に位置する細長部材)及び第2コイル12bの端部に位置する細長部材(図1では最も上方に位置する細長部材)が、電流調整回路15ひいては三相交流電源14と電気的に接続されている。以上の構成において、三相交流電源14から交流電源が供給されることにより、第2コイル12a、12bには、鋼管Pの軸方向に沿って互いに逆向きの電流が通電し、鋼管Pの周方向に沿った磁界が形成されることになる。   The second coils 12a and 12b according to the present embodiment are configured by arranging a plurality of metal elongated members extending along the axial direction of the steel pipe P in the vertical direction, and each of the elongated coils constituting the second coil 12a. The terminal end portion (end portion on the downstream side in the energization direction) of the member and the start end portion (end portion on the upstream side in the energization direction) of each elongated member constituting the second coil 12b are sequentially electrically connected (connection lines are not shown) ), An elongate member positioned at the end of the second coil 12a (the elongate member positioned lowest in FIG. 1) and an elongate member positioned at the end of the second coil 12b (elongated member positioned uppermost in FIG. 1) ) Is electrically connected to the current adjusting circuit 15 and thus to the three-phase AC power source 14. In the above configuration, when AC power is supplied from the three-phase AC power supply 14, currents in opposite directions are supplied to the second coils 12a and 12b along the axial direction of the steel pipe P. A magnetic field along the direction will be formed.

本実施形態に係る第3コイル13a、13bは、鋼管Pの軸方向に沿って延びる複数の金属製細長部材を水平方向に並設して構成されており、第3コイル13aを構成する各細長部材の終端部(通電方向下流側の端部)と第3コイル13bを構成する各細長部材の始端部(通電方向上流側の端部)とが順次電気的に接続され(接続線は図示省略)、第3コイル13aの端部に位置する細長部材(図1では最も手前に位置する細長部材)及び第3コイル13bの端部に位置する細長部材(図1では最も奥に位置する細長部材)が、電流調整回路15ひいては三相交流電源14と電気的に接続されている。以上の構成において、三相交流電源14から交流電源が供給されることにより、第3コイル13a、13bには、鋼管Pの軸方向に沿って互いに逆向きの電流が通電し、鋼管Pの周方向に沿った磁界が形成されることになる。   The third coils 13a and 13b according to the present embodiment are configured by arranging a plurality of metal elongated members extending along the axial direction of the steel pipe P in the horizontal direction, and each of the elongated coils constituting the third coil 13a. The terminal end portion (end portion on the downstream side in the energization direction) of the member and the start end portion (end portion on the upstream side in the energization direction) of each elongated member constituting the third coil 13b are sequentially electrically connected (connection lines are not shown) ), An elongated member positioned at the end of the third coil 13a (the elongated member positioned closest to the front in FIG. 1), and an elongated member positioned at the end of the third coil 13b (the elongated member positioned deepest in FIG. 1) ) Is electrically connected to the current adjusting circuit 15 and thus to the three-phase AC power source 14. In the above configuration, when AC power is supplied from the three-phase AC power supply 14, currents that are opposite to each other in the axial direction of the steel pipe P are supplied to the third coils 13a and 13b. A magnetic field along the direction will be formed.

電流調整回路15は、第2コイル12a、12b及び第3コイル13a、13bの何れか一方のコイルに通電する交流電流の振幅が他方のコイルに通電する交流電流の振幅の0〜0.4倍となるように、三相交流電源14から出力された交流電流を調整し、当該調整後の交流電流を第2コイル12a、12b及び第3コイル13a、13bに供給するように構成されている。なお、電流調整回路15としては、公知である種々の電流調整回路を用いることが可能である。   The current adjustment circuit 15 is configured such that the amplitude of the alternating current supplied to one of the second coils 12a and 12b and the third coils 13a and 13b is 0 to 0.4 times the amplitude of the alternating current supplied to the other coil. The AC current output from the three-phase AC power source 14 is adjusted so that the adjusted AC current is supplied to the second coils 12a and 12b and the third coils 13a and 13b. As the current adjustment circuit 15, various known current adjustment circuits can be used.

図2は、以上に説明した磁化装置1によって形成される磁界(鋼管Pの透磁率は未考慮)分布(磁界ベクトルの軌跡)の一例を示す図であり、(a)は第2コイル12aと第3コイル13aとの間(或いは第2コイル12bと第3コイル13bとの間)の領域(以下、適宜A領域という)に形成される磁界分布を、(b)は第2コイル12bと第3コイル13aとの間(或いは第2コイル12aと第3コイル13bとの間)の領域(以下、適宜B領域という)に形成される磁界分布を数値計算によって算出した結果をそれぞれ示す。ここで、図2における横軸は鋼管Pの軸方向(L方向)に沿った磁界強度を、縦軸は鋼管Pの周方向(T方向)に沿った磁界強度をそれぞれ示す。また、図2に示すグラフにおける点(●)は、供給される交流電流の位相が20度進む毎にプロットした磁界強度を示す。   FIG. 2 is a diagram showing an example of a magnetic field (the magnetic permeability of the steel pipe P is not considered) distribution (trajectory of the magnetic field vector) formed by the magnetizing apparatus 1 described above, and (a) shows the second coil 12a and The magnetic field distribution formed in the region between the third coil 13a (or between the second coil 12b and the third coil 13b) (hereinafter referred to as A region as appropriate), (b) shows the second coil 12b and the second coil 12b. The results of calculating the magnetic field distribution formed in the region between the three coils 13a (or between the second coil 12a and the third coil 13b) (hereinafter referred to as B region as appropriate) by numerical calculation are shown. Here, the horizontal axis in FIG. 2 indicates the magnetic field strength along the axial direction (L direction) of the steel pipe P, and the vertical axis indicates the magnetic field strength along the circumferential direction (T direction) of the steel pipe P. Further, a point (●) in the graph shown in FIG. 2 indicates the magnetic field strength plotted every time the phase of the supplied alternating current advances by 20 degrees.

なお、図2に示す結果を得るための数値計算方法としては、各コイル11、12a(12b)及び13a(13b)に通電する交流電流の振幅及び位相を考慮しながら各コイル単独で形成される所定箇所(たとえば、前記A領域の場合には、第2コイル12aと第3コイル13aとの中間地点)での磁界強度をビオ・サバールの法則を用いてそれぞれ算出し、当該算出された各磁界強度を重畳することによって前記所定箇所での磁界強度を得るという簡易的な方法を用いた。   In addition, as a numerical calculation method for obtaining the result shown in FIG. 2, each coil 11, 12 a (12 b) and 13 a (13 b) is formed by each coil alone in consideration of the amplitude and phase of the alternating current flowing through each coil The magnetic field strength at a predetermined location (for example, in the case of the A region, the intermediate point between the second coil 12a and the third coil 13a) is calculated using Bio-Savart's law, and each calculated magnetic field is calculated. A simple method of obtaining the magnetic field intensity at the predetermined location by superimposing the intensity was used.

図2に示す結果は、第2コイル12a、12bに通電する電流Ixを0とし、第1コイル11に通電する電流Izと第3コイル13a、12bに通電する電流Iyとを同じにした場合に得られた結果であり、A領域及びB領域の双方で磁界ベクトルが鋼管Pの内外面に沿った全方向を辿ることが分かった。同様にして、第2コイル12a、12b及び第3コイル13a、13bの何れか一方のコイルに通電する交流電流の振幅が他方のコイルに通電する交流電流の振幅の0〜0.25倍であれば、A領域及びB領域の双方で磁界ベクトルが鋼管Pの内外面に沿った全方向を辿ることになり、これにより鋼管Pの軸方向や周方向など各方向に延びる欠陥の何れをも精度良く検出し得るように磁化することが可能である。   The results shown in FIG. 2 are obtained when the current Ix applied to the second coils 12a and 12b is set to 0, and the current Iz supplied to the first coil 11 and the current Iy supplied to the third coils 13a and 12b are the same. The obtained results show that the magnetic field vector follows all directions along the inner and outer surfaces of the steel pipe P in both the A region and the B region. Similarly, the amplitude of the alternating current supplied to one of the second coils 12a, 12b and the third coils 13a, 13b should be 0 to 0.25 times the amplitude of the alternating current supplied to the other coil. For example, the magnetic field vector follows all directions along the inner and outer surfaces of the steel pipe P in both the A region and the B region, and thereby any defects extending in each direction such as the axial direction and the circumferential direction of the steel pipe P are accurate. Magnetization is possible so that it can be detected well.

なお、本実施形態では、三相交流電源14から電流調整回路15を介して、各コイル11、12a(12b)及び13a(13b)に調整後の交流電流を供給する構成について説明したが、本発明はこれに限るものではなく、電流調整回路15の代わりに移相器を用いる構成を採用することも可能である。   In addition, although this embodiment demonstrated the structure which supplies the alternating current after adjustment to each coil 11, 12a (12b) and 13a (13b) via the current adjustment circuit 15 from the three-phase alternating current power supply 14, this book The invention is not limited to this, and a configuration using a phase shifter instead of the current adjustment circuit 15 may be employed.

より具体的に説明すれば、第1コイル11、第2コイル12a、12b及び第3コイル13a、13bにそれぞれ供給される交流電流の位相差が互いに120度とならないように、三相交流電源14から出力された交流電流の位相をシフトし、当該位相シフト後の交流電流を第1コイル11、第2コイル12a、12b及び第3コイル13a、13bに供給するための移相器を備える構成を採用してもよい。なお、斯かる移相器としては、公知である種々の移相器を用いることが可能である。   More specifically, the three-phase AC power supply 14 is set so that the phase differences of the AC currents supplied to the first coil 11, the second coils 12a and 12b, and the third coils 13a and 13b are not 120 degrees from each other. A configuration comprising a phase shifter for shifting the phase of the alternating current output from, and supplying the alternating current after the phase shift to the first coil 11, the second coils 12a and 12b, and the third coils 13a and 13b. It may be adopted. As such a phase shifter, various known phase shifters can be used.

図3は、斯かる構成の磁化装置によって形成される磁界(鋼管Pの透磁率は未考慮)分布(磁界ベクトルの軌跡)の一例を示す図であり、図2と同様に、(a)はA領域に形成される磁界分布を、(b)はB領域に形成される磁界分布を数値計算によって算出した結果をそれぞれ示す。図3における横軸、縦軸、点(●)の意味、並びに、数値計算方法は、図2の場合と同様であるので、その説明は省略する。   FIG. 3 is a diagram showing an example of a magnetic field (the magnetic permeability of the steel pipe P is not considered) distribution (trajectory of the magnetic field vector) formed by the magnetizing device having such a configuration, and (a) is similar to FIG. The magnetic field distribution formed in the A region and (b) show the results of calculating the magnetic field distribution formed in the B region by numerical calculation. The meanings of the horizontal axis, the vertical axis, the point (●), and the numerical calculation method in FIG. 3 are the same as those in FIG.

図3に示す結果は、第2コイル12a、12bに通電する電流Ixと第3コイル13a、13bに通電する電流Iyとの位相差を90度とし、第2コイル12a、12bに通電する電流Ixと第1コイル11に通電する電流Izとの位相差を90度とした場合に得られた結果であり、A領域及びB領域の双方で磁界ベクトルが鋼管Pの内外面に沿った全方向を辿ることが分かった。同様にして、第1コイル11、第2コイル12a、12b及び第3コイル13a、13bにそれぞれ供給する交流電流の位相差が互いに120度とならないように移相器で位相シフトすれば、A領域及びB領域の双方で磁界ベクトルが鋼管Pの内外面に沿った全方向を辿ることになり、これにより鋼管Pの軸方向や周方向など各方向に延びる欠陥の何れをも精度良く検出し得るように磁化することが可能である。   The result shown in FIG. 3 is that the phase difference between the current Ix flowing through the second coils 12a and 12b and the current Iy flowing through the third coils 13a and 13b is 90 degrees, and the current Ix flowing through the second coils 12a and 12b. And the phase difference between the current Iz applied to the first coil 11 and the current Iz are 90 degrees, and the magnetic field vector is in all directions along the inner and outer surfaces of the steel pipe P in both the A region and the B region. I found it to follow. Similarly, if the phase shift is performed by the phase shifter so that the phase differences of the alternating currents supplied to the first coil 11, the second coils 12a and 12b, and the third coils 13a and 13b are not 120 degrees, the A region In both the B and B regions, the magnetic field vector follows all directions along the inner and outer surfaces of the steel pipe P, whereby any defect extending in each direction such as the axial direction or the circumferential direction of the steel pipe P can be detected with high accuracy. Can be magnetized.

また、電流調整回路15の代わりに周波数変換回路を用いる構成を採用することも可能である。より具体的に説明すれば、第1コイル11、第2コイル12a、12b及び第3コイル13a、13bにそれぞれ供給される交流電流の内、少なくとも一の交流電流の周波数が残りの交流電流の周波数と異なるように、三相交流電源14から出力された交流電流の周波数を変換し、当該周波数変換後の交流電流を第1コイル11、第2コイル12a、12b及び第3コイル13a、13bに供給するための周波数変換回路を備える構成を採用してもよい。なお、斯かる周波数変換回路としては、公知である種々の周波数変換回路を用いることが可能である。   It is also possible to adopt a configuration using a frequency conversion circuit instead of the current adjustment circuit 15. More specifically, at least one of the alternating currents supplied to the first coil 11, the second coils 12a and 12b, and the third coils 13a and 13b has a frequency of the remaining alternating current. The frequency of the alternating current output from the three-phase alternating current power supply 14 is converted, and the alternating current after the frequency conversion is supplied to the first coil 11, the second coils 12a and 12b, and the third coils 13a and 13b. A configuration including a frequency conversion circuit for the purpose may be employed. As such a frequency conversion circuit, various known frequency conversion circuits can be used.

図4は、斯かる構成の磁化装置によって形成される磁界(鋼管Pの透磁率は未考慮)分布(磁界ベクトルの軌跡)の一例を示す図であり、図2と同様に、(a)はA領域に形成される磁界分布を、(b)はB領域に形成される磁界分布を数値計算によって算出した結果をそれぞれ示す。図4における横軸、縦軸、点(●)の意味、並びに、数値計算方法は、図2の場合と同様であるので、その説明は省略する。   FIG. 4 is a diagram showing an example of a magnetic field (the magnetic permeability of the steel pipe P is not considered) distribution (trajectory of the magnetic field vector) formed by the magnetizing device having such a configuration, and (a) is similar to FIG. The magnetic field distribution formed in the A region and (b) show the results of calculating the magnetic field distribution formed in the B region by numerical calculation. The meanings of the horizontal axis, the vertical axis, the point (●), and the numerical calculation method in FIG. 4 are the same as those in FIG.

図4に示す結果は、第1コイル11に供給される交流電流の周波数を、第2コイル12a、12b及び第3コイル13a、13bにそれぞれ供給される交流電流の周波数の0.95倍とした場合に得られた結果であり、A領域及びB領域の双方で磁界ベクトルが鋼管Pの内外面に沿った全方向を辿ることが分かった。同様にして、第1コイル11、第2コイル12a、12b及び第3コイル13a、13bにそれぞれ供給される交流電流の内、少なくとも一の交流電流の周波数が残りの交流電流の周波数と異なるように周波数変換回路で周波数変換すれば、A領域及びB領域の双方で磁界ベクトルが鋼管Pの内外面に沿った全方向を辿ることになり、これにより鋼管Pの軸方向や周方向など各方向に延びる欠陥の何れをも精度良く検出し得るように磁化することが可能である。   The result shown in FIG. 4 is that the frequency of the alternating current supplied to the first coil 11 is 0.95 times the frequency of the alternating current supplied to the second coils 12a and 12b and the third coils 13a and 13b, respectively. It was found that the magnetic field vector followed all directions along the inner and outer surfaces of the steel pipe P in both the A region and the B region. Similarly, the frequency of at least one alternating current out of the alternating currents supplied to the first coil 11, the second coils 12a and 12b, and the third coils 13a and 13b is different from the frequency of the remaining alternating current. If the frequency conversion is performed by the frequency conversion circuit, the magnetic field vector follows all directions along the inner and outer surfaces of the steel pipe P in both the A region and the B region, and thereby, in each direction such as the axial direction and the circumferential direction of the steel pipe P. It is possible to magnetize so that any extending defect can be detected with high accuracy.

また、電流調整回路15を備えず、三相交流電源14から出力された交流電流を直接各コイル11、12a、12b、13a、13bに供給すると共に、鋼管Pを周方向に回転させるための回転機構を備える構成を採用することも可能である。より具体的に説明すれば、三相交流電源14からの通電時間中に、鋼管Pを周方向に少なくとも90°以上回転させるための回転機構を備える構成を採用してもよい。なお、回転機構としては、たとえば、鋼管Pの外径よりも小さい距離だけ離間された一対の回転ローラを用い、回転ローラ間に鋼管Pを載置して回転ローラの回転力を伝達することにより、鋼管Pを周方向に回転させる構成を採用すればよい。   Further, the current adjusting circuit 15 is not provided, and the AC current output from the three-phase AC power supply 14 is directly supplied to the coils 11, 12a, 12b, 13a, and 13b, and the rotation for rotating the steel pipe P in the circumferential direction. It is also possible to employ a configuration including a mechanism. If it demonstrates more concretely, you may employ | adopt the structure provided with the rotation mechanism for rotating the steel pipe P at least 90 degrees or more to the circumferential direction during the electricity supply time from the three-phase alternating current power supply 14. FIG. As the rotating mechanism, for example, a pair of rotating rollers separated by a distance smaller than the outer diameter of the steel pipe P is used, and the rotating force of the rotating roller is transmitted by placing the steel pipe P between the rotating rollers. A configuration in which the steel pipe P is rotated in the circumferential direction may be employed.

斯かる構成の磁化装置によれば、三相交流電源14からの通電時間中(すなわち鋼管Pの磁化中)に、回転機構によって鋼管Pが周方向に少なくとも90°以上回転するため、磁化が終了するまでの間に、鋼管Pの全ての部位が、磁界ベクトルが鋼管Pの内外面に沿った全方向を辿るB領域(図6及び図7(b)参照)に必ず遷移することになり、鋼管Pの軸方向や周方向など各方向に延びる欠陥の何れをも精度良く検出し得るように磁化することが可能である。   According to the magnetizing device having such a configuration, during the energization time from the three-phase AC power supply 14 (that is, during the magnetization of the steel pipe P), the steel pipe P is rotated at least 90 ° or more in the circumferential direction by the rotation mechanism, so In the meantime, all the parts of the steel pipe P will surely transition to the B region (see FIGS. 6 and 7B) in which the magnetic field vector follows all directions along the inner and outer surfaces of the steel pipe P. Magnetization is possible so that any defect extending in each direction such as the axial direction or circumferential direction of the steel pipe P can be detected with high accuracy.

さらに、本実施形態に係る第2コイル12a、12b及び第3コイル13a、13bは、鋼管Pの軸方向に沿って延びる複数の金属製細長部材を前記軸方向と直交する方向に並設して構成しているが、本発明はこれに限るものではなく、図5に示すように、第2コイル12a、12b及び第3コイル13a、13bとして、鋼管Pの軸方向(図5の紙面に垂直な方向)に沿って延びるヨークYに巻線Cを巻回して構成されるいわゆるヨークコイルを用い、鋼管Pを挟んで対向配置した各ヨークコイルの巻線同士を電気的に接続する(ヨークコイル12aと12bとを接続し、ヨークコイル13aと13bとを接続する)構成を採用することも可能である。   Further, the second coils 12a and 12b and the third coils 13a and 13b according to the present embodiment are provided by arranging a plurality of metal elongated members extending along the axial direction of the steel pipe P in a direction perpendicular to the axial direction. However, the present invention is not limited to this. As shown in FIG. 5, the second coil 12a, 12b and the third coil 13a, 13b are used as the axial direction of the steel pipe P (perpendicular to the plane of FIG. 5). A so-called yoke coil is formed by winding a winding C around a yoke Y extending along a certain direction), and the windings of the yoke coils arranged opposite to each other with the steel pipe P interposed therebetween are electrically connected (yoke coil). It is also possible to adopt a configuration in which 12a and 12b are connected and yoke coils 13a and 13b are connected.

図1は、本発明の一実施形態に係る磁気探傷用磁化装置の構成を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a configuration of a magnetic testing magnetizing apparatus according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る磁気探傷用磁化装置によって形成される磁界分布の一例を示す図である。FIG. 2 is a diagram showing an example of a magnetic field distribution formed by the magnetic flaw detector for magnetic testing according to one embodiment of the present invention. 図3は、本発明の他の実施形態に係る磁気探傷用磁化装置によって形成される磁界分布の一例を示す図である。FIG. 3 is a diagram showing an example of a magnetic field distribution formed by a magnetic flaw detection magnetizing apparatus according to another embodiment of the present invention. 図4は、本発明の他の実施形態に係る磁気探傷用磁化装置によって形成される磁界分布の一例を示す図である。FIG. 4 is a diagram showing an example of a magnetic field distribution formed by a magnetic flaw detection magnetizing apparatus according to another embodiment of the present invention. 図5は、本発明の他の実施形態に係る磁気探傷用磁化装置に用いられるコイルの構成を模式的に示す縦断面図である。FIG. 5 is a longitudinal sectional view schematically showing the configuration of a coil used in a magnetic flaw detection magnetizing apparatus according to another embodiment of the present invention. 図6は、従来の磁気探傷用磁化装置に用いられるコイルの配置構成を模式的に示す縦断面図である。FIG. 6 is a longitudinal sectional view schematically showing an arrangement configuration of coils used in a conventional magnetic flaw detector. 図7は、従来の磁気探傷用磁化装置によって形成される磁界分布を示す図である。FIG. 7 is a diagram showing a magnetic field distribution formed by a conventional magnetizing device for magnetic flaw detection.

符号の説明Explanation of symbols

1・・・磁気探傷用磁化装置
11・・・第1コイル
12a、12b・・・第2コイル
13a、13b・・・第3コイル
14・・・三相交流電源
15・・・電流調整回路
P・・・鋼管
DESCRIPTION OF SYMBOLS 1 ... Magnetizing apparatus for magnetic flaw detection 11 ... 1st coil 12a, 12b ... 2nd coil 13a, 13b ... 3rd coil 14 ... Three-phase alternating current power supply 15 ... Current adjustment circuit P ... Steel pipes

Claims (1)

鋼管の軸方向に沿ってスパイラル状に巻回された第1コイルと、
前記鋼管の軸方向に沿って延び、且つ、前記鋼管の軸方向と直交する第1方向に沿って前記鋼管を挟んで対向配置され、互いに電気的に接続された一対の第2コイルと、
前記鋼管の軸方向に沿って延び、且つ、前記鋼管の軸方向及び前記第1方向と直交する第2方向に沿って前記鋼管を挟んで対向配置され、互いに電気的に接続された一対の第3コイルと、
前記第1コイル、前記第2コイル及び前記第3コイルにそれぞれ交流電流を供給するための三相交流電源とを備えた磁化装置であって、
前記三相交流電源からの通電時間中に、前記鋼管を周方向に少なくとも90°以上回転させて、前記鋼管の全ての部位を、前記磁化装置によって形成される磁界ベクトルが前記鋼管の内外面に沿った全方向を辿る領域に遷移させるための回転機構を備えることを特徴とする鋼管の磁気探傷用磁化装置。
A first coil wound spirally along the axial direction of the steel pipe;
A pair of second coils that extend along the axial direction of the steel pipe and are opposed to each other across the steel pipe along a first direction orthogonal to the axial direction of the steel pipe, and are electrically connected to each other;
A pair of first electrodes that extend along the axial direction of the steel pipe and that are opposed to each other across the steel pipe along a second direction orthogonal to the axial direction of the steel pipe and the first direction, and are electrically connected to each other. 3 coils,
A magnetizing device comprising a three-phase AC power source for supplying an AC current to each of the first coil, the second coil, and the third coil;
During the energization time from the three-phase AC power source, the steel pipe is rotated at least 90 ° in the circumferential direction, and a magnetic field vector formed by the magnetizing device is applied to all the parts of the steel pipe on the inner and outer surfaces of the steel pipe. A magnetizing device for magnetic flaw detection of a steel pipe, comprising a rotation mechanism for making a transition to a region that follows all directions along .
JP2004136497A 2004-04-30 2004-04-30 Magnetizer for magnetic testing of steel pipes Expired - Fee Related JP4193181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136497A JP4193181B2 (en) 2004-04-30 2004-04-30 Magnetizer for magnetic testing of steel pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136497A JP4193181B2 (en) 2004-04-30 2004-04-30 Magnetizer for magnetic testing of steel pipes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008188080A Division JP4817079B2 (en) 2008-07-22 2008-07-22 Magnetizer for magnetic testing of steel pipes

Publications (2)

Publication Number Publication Date
JP2005315810A JP2005315810A (en) 2005-11-10
JP4193181B2 true JP4193181B2 (en) 2008-12-10

Family

ID=35443387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136497A Expired - Fee Related JP4193181B2 (en) 2004-04-30 2004-04-30 Magnetizer for magnetic testing of steel pipes

Country Status (1)

Country Link
JP (1) JP4193181B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749223B2 (en) * 2006-05-08 2011-08-17 日本電磁測器株式会社 Magnetic particle flaw detector for steel pipes
CN105334260A (en) * 2015-11-09 2016-02-17 四川大学 Steel tube pulse magnetization magnetic flux leakage detecting device
CN106990164A (en) * 2017-03-29 2017-07-28 四川大学 A kind of steel pipe longitudinal defect magnetic leakage crack detection device based on rotary magnetization

Also Published As

Publication number Publication date
JP2005315810A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP5201495B2 (en) Magnetic flaw detection method and magnetic flaw detection apparatus
KR102055034B1 (en) Eddy current flaw detection probe and eddy current flaw inspection apparatus
JP4749223B2 (en) Magnetic particle flaw detector for steel pipes
JP2008224495A (en) Eddy current inspection method, steel pipe inspected thereby and eddy current inspection device for executing the eddy current inspection method
Feng et al. Influence of motion induced eddy current on the magnetization of steel pipe and MFL signal
JP4766472B1 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP4817079B2 (en) Magnetizer for magnetic testing of steel pipes
JP4193181B2 (en) Magnetizer for magnetic testing of steel pipes
JP2019215282A (en) Inspection method and apparatus of flaw and defect in tubular body
JP2007139717A (en) Instrument and method for measuring magnetic characteristic of annular sample
Wu et al. A novel magnetic testing method for the loss of metallic cross-sectional area of bridge cables
JP2018169392A (en) Method and device for detecting metallic residues in metallic pipes
JP5721475B2 (en) Interpolation probe for eddy current testing of ferromagnetic steel tubes
JP2016197085A (en) Magnetic flaw detection method
JP2016133459A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP4713312B2 (en) Position detection system
JP2017090185A (en) Eddy current flaw detection probe and eddy current flaw detection device
RU2656112C1 (en) Method of electromagnetic control of welded joints and device for its implementation
Kildishev et al. Deperming technology in large ferromagnetic pipes
JP2001093729A (en) Method for demagnetizing member
JP2009287931A (en) Rust detecting device and method
JP2009287981A (en) Eddy-current flaw detector and eddy-current flaw detecting method
Espina-Herna´ ndez et al. Method to reduce arc blow during DC arc welding of pipelines
JP2018054301A (en) Magnetic leakage flux flaw detector
JP5134997B2 (en) Eddy current flaw detection probe, eddy current flaw detection apparatus, and eddy current flaw detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Ref document number: 4193181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees