JP2007297285A - Method for preparing optically active hydroxy compound - Google Patents

Method for preparing optically active hydroxy compound Download PDF

Info

Publication number
JP2007297285A
JP2007297285A JP2006123812A JP2006123812A JP2007297285A JP 2007297285 A JP2007297285 A JP 2007297285A JP 2006123812 A JP2006123812 A JP 2006123812A JP 2006123812 A JP2006123812 A JP 2006123812A JP 2007297285 A JP2007297285 A JP 2007297285A
Authority
JP
Japan
Prior art keywords
group
optically active
butyl
reaction
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006123812A
Other languages
Japanese (ja)
Inventor
Masahiko Hayashi
昌彦 林
Takanori Tanaka
孝徳 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Ube Corp
Original Assignee
Kobe University NUC
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, Ube Industries Ltd filed Critical Kobe University NUC
Priority to JP2006123812A priority Critical patent/JP2007297285A/en
Publication of JP2007297285A publication Critical patent/JP2007297285A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing an optically active hydroxy compound high in yield and optical purity. <P>SOLUTION: The method for preparing an optically active hydroxy compound represented by formula (4) (wherein R<SP>4</SP>is a hydrocarbon group or a heterocyclic group which may have a substituent; R<SP>5</SP>is an alkyl group; and * is an asymmetric carbon atom) comprises reacting an aldehyde compound with a dialkylzinc in the presence of an optically active Schiff base, and then treating the reaction mixture with an acid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光学活性なヒドロキシ化合物の新規な製法に関する。光学活性なヒドロキシ化合物、例えば、医薬・農薬等の原料や合成中間体として有用な化合物である。   The present invention relates to a novel process for producing optically active hydroxy compounds. An optically active hydroxy compound, for example, a compound useful as a raw material or synthetic intermediate for pharmaceuticals, agricultural chemicals and the like.

従来、光学活性なシッフ塩基を用いて、アルデヒド化合物とジアルキル亜鉛とを反応させて、光学活性なヒドロキシ化合物を製造する方法としては、例えば、光学活性なシッフ塩基(イミン結合の炭素上には置換基はない)及びチタンテトライソプロポキシドの存在下、ベンズアルデヒドとジエチル亜鉛とを反応させて、光学活性な1-フェニル-1-ブチルアルコールを得る方法が開示されている(例えば、非特許文献1参照)。しかしながら、この方法では、チタンテトライソプロポキシドを使用しなければならない上に、目的物の光学純度が必ずしも高いものではなく、又、脂肪族アルデヒドへの適用については何ら言及されていなかった。更に、(-)-3-エキソ-(ジメチルアミノ)イソボルネオールの存在下、種々のアルデヒド化合物とジエチル亜鉛とを反応させて、光学活性なヒドロキシ化合物を得る方法が開示されている(例えば、非特許文献2参照)。しかしながら、この方法では、使用する光学活性な配位子の合成が困難である上に、アルデヒド化合物としてn-ヘプタナ−ル(脂肪族アルデヒド)を使用した場合には、目的物の光学収率が悪くなるという問題点があった。
Synlett.,1441(1998) J.Am.Chem.Soc.,108,6071(1986)
Conventionally, as a method for producing an optically active hydroxy compound by reacting an aldehyde compound with dialkylzinc using an optically active Schiff base, for example, an optically active Schiff base (substituted on the carbon of the imine bond) is used. And a method of reacting benzaldehyde with diethylzinc in the presence of titanium tetraisopropoxide to obtain optically active 1-phenyl-1-butyl alcohol (for example, Non-Patent Document 1). reference). However, in this method, titanium tetraisopropoxide must be used, and the optical purity of the target product is not necessarily high, and there is no mention of application to aliphatic aldehydes. Furthermore, a method for obtaining an optically active hydroxy compound by reacting various aldehyde compounds with diethylzinc in the presence of (-)-3-exo- (dimethylamino) isoborneol is disclosed (for example, non- Patent Document 2). However, in this method, it is difficult to synthesize an optically active ligand to be used, and in addition, when n-heptanal (aliphatic aldehyde) is used as the aldehyde compound, the optical yield of the target product is low. There was a problem of getting worse.
Synlett., 1441 (1998) J. Am. Chem. Soc., 108, 6071 (1986)

本発明の課題は、即ち、上記問題点を解決し、収率及び光学純度が高い光学活性なヒドロキシ化合物の製法を提供することにある。   An object of the present invention is to solve the above problems and to provide a method for producing an optically active hydroxy compound having a high yield and optical purity.

本発明の課題は、一般式(1)   The subject of this invention is general formula (1).

Figure 2007297285
(式中、Rは、水素原子又は炭化水素基を示し、R及びRは、炭化水素基を示す。又、*は、不斉炭素原子を示す。)
で示される光学活性なシッフ塩基の存在下、一般式(2)
Figure 2007297285
(In the formula, R 1 represents a hydrogen atom or a hydrocarbon group, R 2 and R 3 represent a hydrocarbon group, and * represents an asymmetric carbon atom.)
In the presence of an optically active Schiff base represented by the general formula (2)

Figure 2007297285
(式中、Rは、置換基を有していても良い炭化水素基又は複素環基(縮合していても良い)を示す。)
で示されるアルデヒド化合物と一般式(3)
Figure 2007297285
(In the formula, R 4 represents a hydrocarbon group or a heterocyclic group which may have a substituent (which may be condensed).)
An aldehyde compound represented by the general formula (3)

Figure 2007297285
(式中、Rは、アルキル基を示す。)
で示されるジアルキル亜鉛とを反応させた後に、反応混合物を酸で処理することを特徴とする、一般式(4)
Figure 2007297285
(In the formula, R 5 represents an alkyl group.)
The reaction mixture is treated with an acid after the reaction with the dialkylzinc represented by the general formula (4):

Figure 2007297285
(式中、R及びRは、相異なって、前記と同義であり、*は、不斉炭素原子を示す。)
で示される光学活性なヒドロキシ化合物の製法によって解決される。
Figure 2007297285
(In the formula, R 4 and R 5 are different and have the same meanings as above, and * represents an asymmetric carbon atom.)
It solves by the manufacturing method of the optically active hydroxy compound shown by these.

本発明により、収率及び光学純度が高い光学活性なヒドロキシ化合物の製法を提供することが出来る。   According to the present invention, a method for producing an optically active hydroxy compound having a high yield and optical purity can be provided.

本発明の反応において使用するアルデヒド化合物は、前記の一般式(2)で示される。その一般式(2)において、Rは、置換基を有していても良い炭化水素基又は複素環基である。なお、複素環基は縮合していても良い。炭化水素基の炭素数は、一般に1〜30、特に1〜20である。炭化水素基としては、具体的には、例えば、アルキル基、特に、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素数1〜15の直鎖または分岐鎖アルキル基;シクロアルキル基、特に、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の炭素数3〜10のシクロアルキル基;アルケニル基、特に、ビニル基、プロペニル基、ブテニル基等の炭素数2〜6の直鎖または分岐鎖アルケニル基;アルキニル基、特に、エチニル基、プロピニル基、ブチニル基等の炭素数2〜6の直鎖または分岐鎖アルキニル基;アラルキル基、特に、ベンジル基、フェネチル基、フェニルプロピル基等の炭素数7〜20のアラルキル基;アリール基、特に、フェニル基、p-トリル基、ナフチル基、アントリル基等の炭素数6〜20のアリール基が挙げられる。 The aldehyde compound used in the reaction of the present invention is represented by the general formula (2). In the general formula (2), R 4 is a hydrocarbon group or a heterocyclic group which may have a substituent. The heterocyclic group may be condensed. The carbon number of the hydrocarbon group is generally 1-30, in particular 1-20. Specific examples of the hydrocarbon group include, for example, alkyl groups, particularly carbon such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, and decyl group. A linear or branched alkyl group of 1 to 15; a cycloalkyl group, in particular, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group or the like, and a cycloalkyl group having 3 to 10 carbon atoms An alkenyl group, particularly a straight chain or branched alkenyl group having 2 to 6 carbon atoms such as a vinyl group, a propenyl group or a butenyl group; an alkynyl group, particularly 2 to 6 carbon atoms such as an ethynyl group, a propynyl group or a butynyl group; A linear or branched alkynyl group of 7 to 2 carbon atoms such as an aralkyl group, particularly a benzyl group, a phenethyl group, and a phenylpropyl group Aralkyl group; an aryl group, especially phenyl group, p- tolyl group, a naphthyl group, and an aryl group having 6 to 20 carbon atoms such as an anthryl group.

又、複素環基(縮合していても良い)における複素原子の例は、酸素原子、窒素原子、硫黄原子である。複素環の環原子数は一般に3〜18である。複素環基の炭素数は、2〜25、例えば3〜20、特に4〜15である。複素環基としては、具体的には、例えば、フリル基、ベンゾフリル基、チエニル基、ピロリル基、ピリジル基、キノリル基、ピリミジル基、ピペリジル基、モルホニル基、チアゾリル基、ベンゾチアゾリル基、イミダゾリル基、トリアゾリル基等が挙げられる。なお、これらの基は、各種異性体も含む。   Examples of the hetero atom in the heterocyclic group (which may be condensed) are an oxygen atom, a nitrogen atom, and a sulfur atom. The number of ring atoms in the heterocycle is generally 3-18. The number of carbon atoms of the heterocyclic group is 2 to 25, for example 3 to 20, particularly 4 to 15. Specific examples of the heterocyclic group include furyl, benzofuryl, thienyl, pyrrolyl, pyridyl, quinolyl, pyrimidyl, piperidyl, morpholyl, thiazolyl, benzothiazolyl, imidazolyl, and triazolyl. Groups and the like. These groups include various isomers.

前記の炭化水素基及び複素環基は、置換基を有していても良い。その置換基としては、炭素原子を介して出来る置換基、酸素原子を介して出来る置換基、窒素原子を介して出来る置換基、硫黄原子を介して出来る置換基、ハロゲン原子等が挙げられる。   The hydrocarbon group and heterocyclic group may have a substituent. Examples of the substituent include a substituent formed through a carbon atom, a substituent formed through an oxygen atom, a substituent formed through a nitrogen atom, a substituent formed through a sulfur atom, and a halogen atom.

前記炭素原子を介して出来る置換基としては、例えば、アルキル基、特に、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の炭素数1〜15の直鎖または分岐鎖アルキル基;シクロアルキル基、特に、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等の炭素数3〜10のシクロアルキル基;アルケニル基、特に、ビニル基、アリル基、プロペニル基、シクロプロペニル基、シクロブテニル基、シクロペンテニル基等の炭素数2〜6の直鎖、分岐鎖または環状アルケニル基;複素環基、特に、キノリル基、ピリジル基、ピロリジル基、ピロリル基、フリル基、チエニル基等の少なくとも1つの酸素原子、窒素原子または硫黄原子を有する環原子数3〜18の複素環基;アリール基、特に、フェニル基、トリル基、フルオロフェニル基、キシリル基、ビフェニリル基、ナフチル基、アントリル基、フェナントリル基等の炭素数6〜20のアリール基;アシル基(アセタール化されていても良い)、特に、アセチル基、プロピオニル基、アクリロイル基、ピバロイル基、シクロヘキシルカルボニル基、ベンゾイル基、ナフトイル基、トルオイル基等の炭素数1〜20のアシル基;カルボキシル基;アルコキシカルボニル基、特に、メトキシカルボニル基、エトキシカルボニル基等の炭素数1〜6のアルコキシカルボニル基;アリールオキシカルボニル基、特に、フェノキシカルボニル基等の炭素数7〜21のアリールオキシカルボニル基;ハロゲン化アルキル基、特に、トリフルオロメチル基等の炭素数1〜15の直鎖または分岐鎖のハロゲン化(例えば、フッ化、塩化、臭化またはヨウ化)アルキル基;シアノ基が挙げられる。なお、これらの基は、各種異性体を含む。   Examples of the substituent formed through the carbon atom include a linear or branched alkyl having 1 to 15 carbon atoms such as an alkyl group, particularly a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. A cycloalkyl group, particularly a cycloalkyl group having 3 to 10 carbon atoms such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group; an alkenyl group, particularly a vinyl group, an allyl group, a propenyl group, C2-C6 linear, branched or cyclic alkenyl groups such as cyclopropenyl, cyclobutenyl and cyclopentenyl; heterocyclic groups, in particular quinolyl, pyridyl, pyrrolidyl, pyrrolyl, furyl, thienyl A heterocyclic group having 3 to 18 ring atoms having at least one oxygen atom, nitrogen atom or sulfur atom, such as a group; A reel group, particularly a phenyl group, a tolyl group, a fluorophenyl group, a xylyl group, a biphenylyl group, a naphthyl group, an anthryl group, a phenanthryl group and the like; an aryl group (which may be acetalized); ), Especially an acetyl group, a propionyl group, an acryloyl group, a pivaloyl group, a cyclohexylcarbonyl group, a benzoyl group, a naphthoyl group, a toluoyl group, etc., an acyl group having 1 to 20 carbon atoms; a carboxyl group; an alkoxycarbonyl group, particularly a methoxycarbonyl An alkoxycarbonyl group having 1 to 6 carbon atoms such as an ethoxycarbonyl group; an aryloxycarbonyl group, particularly an aryloxycarbonyl group having 7 to 21 carbon atoms such as a phenoxycarbonyl group; an alkyl halide group, particularly trifluoromethyl 1-15 carbon atoms such as group Halogenated linear or branched chain (e.g., fluoride, chloride, bromide or iodide) alkyl group; a cyano group. These groups include various isomers.

前記酸素原子を介して出来る置換基としては、例えば、ヒドロキシル基;メトキシル基、エトキシル基、プロポキシル基、ブトキシル基、ペンチルオキシル基、ヘキシルオキシル基、ヘプチルオキシル基等の炭素数1〜15の直鎖または分岐鎖アルコキシル基;ベンジルオキシル基等の炭素数7〜15のアラルキルオキシル基;フェノキシル基、トルイルオキシル基、ナフチルオキシル基等の炭素数6〜20のアリールオキシル基が挙げられる。なお、これらの基は、各種異性体を含む。   Examples of the substituent formed through the oxygen atom include a hydroxyl group; a methoxyl group, an ethoxyl group, a propoxyl group, a butoxyl group, a pentyloxyl group, a hexyloxyl group, a heptyloxyl group and the like. Examples thereof include a chain or branched alkoxyl group; an aralkyloxyl group having 7 to 15 carbon atoms such as a benzyloxyl group; and an aryloxyl group having 6 to 20 carbon atoms such as a phenoxyl group, a toluyloxyl group, and a naphthyloxyl group. These groups include various isomers.

前記窒素原子を介して出来る置換基としては、例えば、メチルアミノ基、エチルアミノ基、ブチルアミノ基、シクロへキシルアミノ基、フェニルアミノ基、ナフチルアミノ基等の炭素数1〜20の第一アミノ基;ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、メチルエチルアミノ基、メチルブチルアミノ基、ジフェニルアミノ基、N-メチル-N-メタンスルホニルアミノ基等の炭素数2〜20の第二アミノ基;モルホリノ基、ピペリジノ基、ピペラジニル基、ピラゾリジニル基、ピロリジノ基、インドリル基等の炭素数5〜20の複素環式アミノ基;イミノ基が挙げられる。なお、これらの基は、各種異性体を含む。   Examples of the substituent formed through the nitrogen atom include a primary amino group having 1 to 20 carbon atoms such as a methylamino group, an ethylamino group, a butylamino group, a cyclohexylamino group, a phenylamino group, and a naphthylamino group. A secondary amino group having 2 to 20 carbon atoms such as a dimethylamino group, a diethylamino group, a dibutylamino group, a methylethylamino group, a methylbutylamino group, a diphenylamino group or an N-methyl-N-methanesulfonylamino group; A heterocyclic amino group having 5 to 20 carbon atoms such as a group, piperidino group, piperazinyl group, pyrazolidinyl group, pyrrolidino group, indolyl group; imino group. These groups include various isomers.

前記硫黄原子を介して出来る置換基としては、例えば、メルカプト基;チオメトキシル基、チオエトキシル基、チオプロポキシル基等の炭素数1〜20のチオアルコキシル基;チオフェノキシル基、チオトルイルオキシル基、チオナフチルオキシル基等の炭素数6〜20のチオアリールオキシル基等が挙げられる。なお、これらの基は、各種異性体を含む。   Examples of the substituent formed through the sulfur atom include a mercapto group; a thioalkoxyl group having 1 to 20 carbon atoms such as a thiomethoxyl group, a thioethoxyl group, and a thiopropoxyl group; a thiophenoxyl group and a thiotoluyloxyl group. And a thioaryloxyl group having 6 to 20 carbon atoms such as a thionaphthyloxyl group. These groups include various isomers.

前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。   Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

本発明の反応において使用するジアルキル亜鉛は、前記の一般式(3)で示される。その一般式(3)において、Rは、アルキル基(一般に炭素数1〜20)であるが、好ましくは、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の炭素数1〜6のアルキル基が挙げられる。なお、これらの基は、各種異性体も含む。 The dialkylzinc used in the reaction of the present invention is represented by the general formula (3). In the general formula (3), R 5 is an alkyl group (generally having 1 to 20 carbon atoms), preferably, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, etc. Examples thereof include an alkyl group having 1 to 6 carbon atoms. These groups include various isomers.

前記ジアルキル亜鉛の使用量は、アルデヒド化合物1モルに対して、好ましくは1〜5モル、更に好ましくは2〜3モルである。   The amount of the dialkyl zinc used is preferably 1 to 5 mol, more preferably 2 to 3 mol, per 1 mol of the aldehyde compound.

本発明の光学活性なシッフ塩基は、一般式(1)   The optically active Schiff base of the present invention has the general formula (1)

Figure 2007297285
Figure 2007297285

(式中、R、R、R及び*は、前記と同義である。)
で示される。
(Wherein R 1 , R 2 , R 3 and * are as defined above.)
Indicated by

その一般式(1)において、Rは、水素原子又は炭化水素基(炭素数は一般に1〜30、特に1〜20)である。炭化水素基としては、具体的には、例えば、アルキル基、特に、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素数1〜15の直鎖または分岐鎖アルキル基;シクロアルキル基、特に、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の炭素数3〜10のシクロアルキル基;アルケニル基、特に、ビニル基、プロペニル基、ブテニル基等の炭素数2〜6の直鎖または分岐鎖アルケニル基;アルキニル基、特に、エチニル基、プロピニル基、ブチニル基等の炭素数2〜6の直鎖または分岐鎖アルキニル基;アラルキル基、特に、ベンジル基、フェネチル基、フェニルプロピル基等の炭素数7〜20のアラルキル基;アリール基、特に、フェニル基、p-トリル基、ナフチル基、アントリル基等の炭素数6〜20のアリール基が挙げられる。なお、これらの基は、各種異性体も含む。 In the general formula (1), R 1 is a hydrogen atom or a hydrocarbon group (the carbon number is generally 1 to 30, particularly 1 to 20). Specific examples of the hydrocarbon group include, for example, alkyl groups, particularly carbon such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, and decyl group. A linear or branched alkyl group of 1 to 15; a cycloalkyl group, in particular, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group or the like, and a cycloalkyl group having 3 to 10 carbon atoms An alkenyl group, particularly a straight chain or branched alkenyl group having 2 to 6 carbon atoms such as a vinyl group, a propenyl group or a butenyl group; an alkynyl group, particularly 2 to 6 carbon atoms such as an ethynyl group, a propynyl group or a butynyl group; A linear or branched alkynyl group of 7 to 2 carbon atoms such as an aralkyl group, particularly a benzyl group, a phenethyl group, and a phenylpropyl group Aralkyl group; an aryl group, especially phenyl group, p- tolyl group, a naphthyl group, and an aryl group having 6 to 20 carbon atoms such as an anthryl group. These groups include various isomers.

又、R及びRは、炭化水素基であるが、前記のRで示したものと同義である。なお、*は、不斉炭素原子を示す。 R 2 and R 3 are hydrocarbon groups and have the same meanings as those described above for R 1 . * Represents an asymmetric carbon atom.

前記光学活性なシッフ塩基の使用量は、アルデヒド化合物1モルに対して、好ましくは0.5〜100ミリモル、更に好ましくは0.8〜70ミリモルである。   The amount of the optically active Schiff base used is preferably 0.5 to 100 mmol, more preferably 0.8 to 70 mmol, with respect to 1 mol of the aldehyde compound.

なお、光学活性なシッフ塩基は、反応工程式(1)   The optically active Schiff base is represented by the reaction process formula (1)

Figure 2007297285
Figure 2007297285

(式中、R、R、R及び*は、前記と同義であり、Xは、ハロゲン原子を示す。)
で示されるように、3-tert-ブチル-2-ヒドロキシベンズアルデヒド化合物を、グリニャ−ル試薬を用いて(3-tert-ブチル-2-ヒドロキシフェニル)メタノール化合物とした後、これを酸化して3-tert-ブチル-2-ヒドロキシ-1-ケトベンゼン化合物とし、次いで、これに光学活性ロイシノール化合物を反応させて得られる化合物である。
(Wherein R 1 , R 2 , R 3 and * are as defined above, and X represents a halogen atom.)
As shown in the above, the 3-tert-butyl-2-hydroxybenzaldehyde compound is converted into a (3-tert-butyl-2-hydroxyphenyl) methanol compound using a Grignard reagent and then oxidized to give 3 It is a compound obtained by making -tert-butyl-2-hydroxy-1-ketobenzene compound and then reacting it with an optically active leucinol compound.

シッフ塩基製造のこれら反応は、反応に悪影響しない以下に例示するような溶媒の存在下または不存在下に行ってよい。グリニャ−ル試薬を用いる反応において、3-tert-ブチル-2-ヒドロキシベンズアルデヒド化合物1モルに対してグリニャ−ル試薬2〜3モルであり、反応温度は0〜80℃、反応時間は1〜24時間であってよい。酸化反応において、金属触媒、特にパラジウム触媒、例えばパラジウム炭素を(例えば、(3-tert-ブチル-2-ヒドロキシフェニル)メタノール化合物100重量部に対して5〜50重量部)用いることが好ましく、エチレン雰囲気が好ましく、反応温度は50〜120℃、反応時間は 1〜48時間であってよい。光学活性ロイシノール化合物を用いる反応において、3-tert-ブチル-2-ヒドロキシ-1-ケトベンゼン化合物1モルに対して光学活性ロイシノール化合物1〜1.1モルであり、反応温度は80〜150℃、反応時間は1〜48時間であってよい。   These reactions for the production of the Schiff base may be carried out in the presence or absence of a solvent as exemplified below, which does not adversely influence the reaction. In the reaction using a Grignard reagent, there are 2-3 moles of Grignard reagent per mole of 3-tert-butyl-2-hydroxybenzaldehyde compound, the reaction temperature is 0 to 80 ° C., and the reaction time is 1 to 24. It may be time. In the oxidation reaction, it is preferable to use a metal catalyst, particularly a palladium catalyst such as palladium carbon (for example, 5 to 50 parts by weight with respect to 100 parts by weight of (3-tert-butyl-2-hydroxyphenyl) methanol compound). An atmosphere is preferred, the reaction temperature may be 50-120 ° C., and the reaction time may be 1-48 hours. In the reaction using the optically active leucinol compound, the optically active leucinol compound is 1 to 1.1 mol per 1 mol of the 3-tert-butyl-2-hydroxy-1-ketobenzene compound, and the reaction temperature is 80 to 150 ° C. The time may be 1 to 48 hours.

本発明の反応において使用する光学活性シッフ塩基のうち、以下の置換基を有するものは新規な化合物である。   Among the optically active Schiff bases used in the reaction of the present invention, those having the following substituents are novel compounds.

Figure 2007297285
Figure 2007297285

(式中、R、R及びRは、以下のいずれかの場合である。
(1)R=水素原子、R及びRは、同一又は異なっていても良い炭化水素基、
(但し、R=水素原子、R=フェニル基、R=イソプロピル基を除く)
(2)R=t-ブチル基、R=α-ナフチル基、R=t-ブチル基)
(Wherein R 1 , R 2 and R 3 are any of the following cases.
(1) R 1 = hydrogen atom, R 2 and R 3 are the same or different hydrocarbon groups,
(However, R 1 = hydrogen atom, R 2 = phenyl group, R 3 = except isopropyl group)
(2) R 1 = t-butyl group, R 2 = α-naphthyl group, R 3 = t-butyl group)

本発明において使用する酸としては、無機酸および有機酸、例えば、塩酸、硫酸、硝酸、リン酸、酢酸、トリフルオロ酢酸等が挙げられるが、好ましくは塩酸、硫酸などの無機酸が使用される。なお、これらの酸は、単独又は二種以上を混合して使用しても良い。   Examples of the acid used in the present invention include inorganic acids and organic acids, for example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, trifluoroacetic acid, etc., preferably inorganic acids such as hydrochloric acid and sulfuric acid are used. . In addition, you may use these acids individually or in mixture of 2 or more types.

前記酸の使用量は、アルデヒド化合物1モルに対して、好ましくは3〜100モル、更に好ましくは10〜30モルである。   The amount of the acid used is preferably 3 to 100 mol, more preferably 10 to 30 mol, per 1 mol of the aldehyde compound.

本発明の反応は溶媒の存在下又は非存在下において行われるが、溶媒を使用する場合には、反応を阻害しないものならば特に限定されず、例えば、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素類(分岐状及び環状のものも含む);塩化メチレン、クロロホルム等のハロゲン化脂肪族炭化水素類(分岐状及び環状のものも含む);ベンゼン、トルエン、キシレン等の芳香族炭化水素類;クロロベンゼン、ジクロロベンゼン等のハロゲン化芳香族炭化水素類が挙げられるが、好ましくは脂肪族炭化水素類が使用される。なお、これらの溶媒は、単独又は二種以上を混合して使用しても良い。   Although the reaction of the present invention is carried out in the presence or absence of a solvent, the use of a solvent is not particularly limited as long as it does not inhibit the reaction. For example, aliphatic carbonization such as pentane, hexane, heptane and the like. Hydrogen (including branched and cyclic); Halogenated aliphatic hydrocarbons (including branched and cyclic) such as methylene chloride and chloroform; Aromatic hydrocarbons such as benzene, toluene and xylene; Halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene are exemplified, but aliphatic hydrocarbons are preferably used. In addition, you may use these solvents individually or in mixture of 2 or more types.

前記溶媒の使用量は、反応の均一性や攪拌性により適宜調節するが、アルデヒド化合物1gに対して、一般に1〜300g、好ましくは10〜100g、更に好ましくは15〜60gである。   The amount of the solvent used is appropriately adjusted depending on the uniformity of reaction and stirrability, but is generally 1 to 300 g, preferably 10 to 100 g, and more preferably 15 to 60 g with respect to 1 g of the aldehyde compound.

本発明は、例えば、反応工程式(2)   The present invention provides, for example, reaction process formula (2)

Figure 2007297285
Figure 2007297285

(式中、R、R、R、R、R及び*は、前記と同義である。なお、nは、1又は2である。)
で示されるように、光学活性なシッフ塩基の存在下、ジアルキル亜鉛及びアルデヒド化合物を反応させた後に、反応混合物を酸で処理する等の方法によって行われる。その際の反応温度は、好ましくは-70〜30℃、更に好ましくは-50〜25℃、特に好ましくは-40〜15℃である。反応は一般に液相で行われ、反応圧力は特に制限されない。反応時間は特に限定されないが、ジアルキル亜鉛を反応させる時間は0.1〜2時間であり、アルデヒド化合物を反応させる時間は1〜48時間であり、酸で処理する時間は0.1〜1時間である。
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 and * are as defined above. Note that n is 1 or 2.)
In the presence of an optically active Schiff base, the dialkylzinc and the aldehyde compound are reacted and then the reaction mixture is treated with an acid. The reaction temperature at that time is preferably -70 to 30 ° C, more preferably -50 to 25 ° C, particularly preferably -40 to 15 ° C. The reaction is generally performed in a liquid phase, and the reaction pressure is not particularly limited. Although the reaction time is not particularly limited, the time for reacting the dialkylzinc is 0.1 to 2 hours, the time for reacting the aldehyde compound is 1 to 48 hours, and the time for treating with the acid is 0.1 to 1 hour. It is.

なお、本発明の好ましい態様としては、光学活性シッフ塩基とジアルキル亜鉛(配位子に対して過剰量)とを反応させて亜鉛錯体を形成後、アルデヒド化合物を加えて、残存するジアルキル亜鉛と反応させた後に、酸で処理することによって光学活性なヒドロキシ化合物を得ることである。 As a preferred embodiment of the present invention, an optically active Schiff base and dialkyl zinc (excess amount with respect to the ligand) are reacted to form a zinc complex, and then an aldehyde compound is added to react with the remaining dialkyl zinc. Then, an optically active hydroxy compound is obtained by treating with an acid.

本発明によって光学活性なヒドロキシ化合物が得られるが、これは、例えば、加水分解、中和、抽出、濾過、濃縮、蒸留、再結晶、カラムクロマトグラフィー等の一般的な方法によって単離・精製される。   According to the present invention, an optically active hydroxy compound is obtained, which can be isolated and purified by a general method such as hydrolysis, neutralization, extraction, filtration, concentration, distillation, recrystallization, column chromatography and the like. The

なお、本発明の光学活性シッフ塩基とジアルキル亜鉛とを反応させて得られる亜鉛錯体は、一般式(5)   The zinc complex obtained by reacting the optically active Schiff base of the present invention with dialkylzinc is represented by the general formula (5).

Figure 2007297285
Figure 2007297285

(式中、R、R、R、*及びnは、前記と同義である。)
で示される新規な化合物である。
(Wherein R 1 , R 2 , R 3 , * and n are as defined above.)
It is a novel compound shown by these.

亜鉛錯体は、一量体または二量体である。一量体(左側の化学式)および二量体(右側の化学式)は、次のような化学構造を有すると考えられる。   The zinc complex is a monomer or a dimer. Monomers (the chemical formula on the left) and dimers (the chemical formula on the right) are considered to have the following chemical structures.

Figure 2007297285
Figure 2007297285

次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。なお、本発明の反応によって得られる光学活性ヒドロキシ化合物の光学純度は、光学活性カラムを用いた高速液体クロマトグラフィーにより、以下の条件で測定した。   Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto. In addition, the optical purity of the optically active hydroxy compound obtained by the reaction of the present invention was measured under the following conditions by high performance liquid chromatography using an optically active column.

カラム:CHIRALPAK OD-H(ダイセル社製)
溶媒 :ヘキサン/2-プロパノール(=97.5/2.5(容量比))
流速 :1.0ml/min.
波長 :254nm
Column: CHIRALPAK OD-H (Daicel)
Solvent: Hexane / 2-propanol (= 97.5 / 2.5 (volume ratio))
Flow rate: 1.0ml / min.
Wavelength: 254nm

合成例1(3-tert-ブチル-2-ヒドロキシベンズアルデヒドの合成)
攪拌装置、温度計及び還流冷却器を備えた内容積500mlのナスフラスコに、2-t-ブチルフェノール25.0g(166mmol)、純度92.3%のパラホルムアルデヒド16.2g(16.6mmol)、4-ピコリン6.18g(66.3mmol)及びトルエン300mlを加え、アルゴン雰囲気にて、攪拌しながら95℃で6時間反応させた。次いで、反応液を室温まで冷却し、デカンテーションにより反応液下層の油状物を除去した。上澄み部分を1mol/l塩酸60mlにて2回洗浄し、無水硫酸マグネシウムにより乾燥させた。濾過後、濾液を濃縮した後、得られた濃縮物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル(=100/3(容量比)))により精製し、無色液体として、3-tert-ブチル-2-ヒドロキシベンズアルデヒド13.1gを得た(単離収率;44%)。
Synthesis Example 1 (Synthesis of 3-tert-butyl-2-hydroxybenzaldehyde)
In an eggplant flask having an internal volume of 500 ml equipped with a stirrer, a thermometer and a reflux condenser, 25.0 g (166 mmol) of 2-t-butylphenol, 16.2 g (16.6 mmol) of paraformaldehyde of 92.3% purity, 6.18 g of 4-picoline ( 66.3 mmol) and 300 ml of toluene were added, and the mixture was reacted at 95 ° C. for 6 hours with stirring in an argon atmosphere. Next, the reaction solution was cooled to room temperature, and the oily substance in the lower layer of the reaction solution was removed by decantation. The supernatant was washed twice with 60 ml of 1 mol / l hydrochloric acid and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated, and the resulting concentrate was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate (= 100/3 (volume ratio))) to give 3-tert- 13.1 g of butyl-2-hydroxybenzaldehyde was obtained (isolation yield; 44%).

合成例2((3-tert-ブチル-2-ヒドロキシフェニル)フェニルメタノールの合成)
攪拌装置、滴下装置及び還流冷却器を備えた内容積100mlのナスフラスコに、マグネシウム片1.0g(16.5mmol)及びテトラヒドロフラン15mlを加え、窒素雰囲気にて、ブロモベンゼン6.5g(41.3mmol)をゆるやかに滴下し、フェニルマグネシウムブロマイドを調製した。次いで、合成例1で合成した3-tert-ブチル-2-ヒドロキシベンズアルデヒド2.9g(16.5mmol)を攪拌しながら0℃でゆるやかに滴下し、攪拌しながら室温で1時間、80℃で15分間反応させた。反応終了後、反応液を0℃まで冷却し、1mol/l塩酸50mlをゆるやかに加え、反応液を酸性とした。得られた反応液をジエチルエーテル50mlにて3回抽出した後、無水硫酸ナトリウムにより乾燥させた。濾過後、濾液を濃縮し、得られた濃縮物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル(=25/1(容量比)))により精製し、無色液体として、(3-tert-ブチル-2-ヒドロキシフェニル)フェニルメタノール4.1gを得た(単離収率;97%)。
Synthesis Example 2 (Synthesis of (3-tert-butyl-2-hydroxyphenyl) phenylmethanol)
To an eggplant flask having an internal volume of 100 ml equipped with a stirrer, a dropping device and a reflux condenser, add 1.0 g (16.5 mmol) of magnesium pieces and 15 ml of tetrahydrofuran, and gently add 6.5 g (41.3 mmol) of bromobenzene in a nitrogen atmosphere. The solution was added dropwise to prepare phenylmagnesium bromide. Next, 2.9 g (16.5 mmol) of 3-tert-butyl-2-hydroxybenzaldehyde synthesized in Synthesis Example 1 was slowly added dropwise at 0 ° C. with stirring, and reacted at room temperature for 1 hour and at 80 ° C. for 15 minutes with stirring. I let you. After completion of the reaction, the reaction solution was cooled to 0 ° C., and 50 ml of 1 mol / l hydrochloric acid was slowly added to make the reaction solution acidic. The resulting reaction solution was extracted three times with 50 ml of diethyl ether and then dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated, and the resulting concentrate was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate (= 25/1 (volume ratio))) to give (3-tert- 4.1 g of butyl-2-hydroxyphenyl) phenylmethanol was obtained (isolation yield: 97%).

合成例3(3-tert-ブチル-2-ヒドロキシベンゾフェノンの合成)
攪拌装置を備えた内容積25mlのアンプル管に、10質量%パラジウム炭素1.17g、合成例2で合成した(3-tert-ブチル-2-ヒドロキシフェニル)フェニルメタノール3.9g(15.2mmol)及びアセトニトリル20mlを加え、エチレン雰囲気にて、攪拌しながら100℃で7時間反応させた。反応終了後、反応液を濾過して濃縮し、得られた濃縮物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)により精製し、黄色液体として、3-tert-ブチル-2-ヒドロキシベンゾフェノン3.2gを得た(単離収率;83%)。
Synthesis Example 3 (Synthesis of 3-tert-butyl-2-hydroxybenzophenone)
In an ampoule tube with an internal volume of 25 ml equipped with a stirrer, 1.17 g of 10% by mass palladium carbon, 3.9 g (15.2 mmol) of (3-tert-butyl-2-hydroxyphenyl) phenylmethanol synthesized in Synthesis Example 2 and 20 ml of acetonitrile And was allowed to react at 100 ° C. for 7 hours with stirring in an ethylene atmosphere. After completion of the reaction, the reaction mixture was filtered and concentrated, and the resulting concentrate was purified by silica gel column chromatography (developing solvent: hexane) to give 3.2 g of 3-tert-butyl-2-hydroxybenzophenone as a yellow liquid. Obtained (isolation yield; 83%).

製造例1([R=水素原子、R=フェニル基、R=t-ブチル基];(S)-2-{N-[(2-ヒドロキシ-3-tert-ブチル-フェニル)-フェニル-メチレン]-アミノ}-3,3-ジメチル-1-ブタノールの合成)
攪拌装置及び還流冷却器を備えた内容積100mlのナスフラスコに、合成例3で合成した3-tert-ブチル-2-ヒドロキシベンゾフェノン1.9g(7.4mmol)、L-tert-ロイシノール1.0g(8.5mmol)、硫酸ナトリウム2.0g(14.2mmol)及びトルエン10mlを加え、攪拌しながら115℃で24時間反応させた。反応終了後、反応液を濾過して濃縮し、得られた濃縮物をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル(=15/1(容量比)))により精製し、黄色固体として、(S)-2-{N-[(2-ヒドロキシ-3-tert-ブチル-フェニル)-フェニル-メチレン]-アミノ}-3,3-ジメチル-1-ブタノール2.4gを得た(単離収率;92%)
なお、(S)-2-{N-[(2-ヒドロキシ-3-tert-ブチル-フェニル)-フェニル-メチレン]-アミノ}-3,3-ジメチル-1-ブタノールは、以下の物性値で示される新規な化合物である。
Production Example 1 ([R 1 = hydrogen atom, R 2 = phenyl group, R 3 = t-butyl group]; (S) -2- {N-[(2-hydroxy-3-tert-butyl-phenyl)- Synthesis of phenyl-methylene] -amino} -3,3-dimethyl-1-butanol
In a eggplant flask having an internal volume of 100 ml equipped with a stirrer and a reflux condenser, 1.9 g (7.4 mmol) of 3-tert-butyl-2-hydroxybenzophenone synthesized in Synthesis Example 3 and 1.0 g (8.5 mmol) of L-tert-leucineol were synthesized. ), 2.0 g (14.2 mmol) of sodium sulfate and 10 ml of toluene were added and reacted at 115 ° C. for 24 hours with stirring. After completion of the reaction, the reaction solution was filtered and concentrated, and the resulting concentrate was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate (= 15/1 (volume ratio))) to give a yellow solid, 2.4 g of (S) -2- {N-[(2-hydroxy-3-tert-butyl-phenyl) -phenyl-methylene] -amino} -3,3-dimethyl-1-butanol was obtained (isolated product). Rate; 92%)
Note that (S) -2- {N-[(2-hydroxy-3-tert-butyl-phenyl) -phenyl-methylene] -amino} -3,3-dimethyl-1-butanol has the following physical property values: It is a novel compound shown.

融点;143℃
比旋光度;[α]29 D -44.2°(c 1.0,CHCl3)
IR(KBr法,νmax(cm-1));3476、2960、1593、1442、1324、1288、1254、1214、1141、919、752、706
1H-NMR(CDCl3,δ(ppm));0.93(s,9H)、1.48(s,9H)、2.04(s,1H)、3.25(dd,1H,J=7.99,4.00Hz)、3.86〜3.82(m,2H)、6.60(dd,2H,J=20.78,7.59Hz)、7.45〜7.17(m,6H)、16.23(s,1H)
13C-NMR(CDCl3,δ(ppm));27.1、29.5、33.9、35.0、63.5、70.9、128.0、128.2、128.3、128.6、129.0、129.4、130.3、134.5、137.9、163.0、175.9
Melting point: 143 ° C
Specific rotation: [α] 29 D -44.2 ° (c 1.0, CHCl 3 )
IR (KBr method, ν max (cm −1 )); 3476, 2960, 1593, 1442, 1324, 1288, 1254, 1214, 1141, 919, 752, 706
1 H-NMR (CDCl 3 , δ (ppm)); 0.93 (s, 9H), 1.48 (s, 9H), 2.04 (s, 1H), 3.25 (dd, 1H, J = 7.99, 4.00 Hz), 3.86 ~ 3.82 (m, 2H), 6.60 (dd, 2H, J = 20.78,7.59Hz), 7.45 ~ 7.17 (m, 6H), 16.23 (s, 1H)
13 C-NMR (CDCl 3 , δ (ppm)); 27.1, 29.5, 33.9, 35.0, 63.5, 70.9, 128.0, 128.2, 128.3, 128.6, 129.0, 129.4, 130.3, 134.5, 137.9, 163.0, 175.9

又、合成例1〜3および製造例1と同様な方法で、以下のような種々の光学活性シッフ塩基を合成した。   In addition, the following various optically active Schiff bases were synthesized by the same method as in Synthesis Examples 1 to 3 and Production Example 1.

比較製造例1([R=t-ブチル基、R=水素原子、R=イソプロピル基];(S)-2-[N-(2-ヒドロキシ-3',5'-ジ-tert-ブチルサリチリデン)-アミノ]-3-メチル-1-ブタノールの合成)
最終工程の単離収率;89%
1H-NMR(CDCl3,δ(ppm));0.94(d,3H,J=6.7Hz)、0.96(d,3H,J=6.7Hz)、1.31(s,9H)、1.45(s,9H)、1.60(brs,1H)、1.90(m,1H)、3.00(m,1H)、3.80(m,2H)、7.14(s,1H)、7.41(s,1H)、8.38(s,1H)、13.5(brs,1H)
Comparative Production Example 1 ([R 1 = t-butyl group, R 2 = hydrogen atom, R 3 = isopropyl group]; (S) -2- [N- (2-hydroxy-3 ′, 5′-di-tert -Butylsalicylidene) -amino] -3-methyl-1-butanol)
Isolation yield of the final process; 89%
1 H-NMR (CDCl 3 , δ (ppm)); 0.94 (d, 3H, J = 6.7 Hz), 0.96 (d, 3H, J = 6.7 Hz), 1.31 (s, 9H), 1.45 (s, 9H ), 1.60 (brs, 1H), 1.90 (m, 1H), 3.00 (m, 1H), 3.80 (m, 2H), 7.14 (s, 1H), 7.41 (s, 1H), 8.38 (s, 1H) , 13.5 (brs, 1H)

製造例2([R=t-ブチル基、R=フェニル基、R=イソプロピル基];(S)-2-{N-[(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-フェニル-メチレン]-アミノ}-3-メチル-1-ブタノールの合成)
最終工程の単離収率;83%
Production Example 2 ([R 1 = t-butyl group, R 2 = phenyl group, R 3 = isopropyl group]; (S) -2- {N-[(2-hydroxy-3,5-di-tert-butyl Synthesis of phenyl) -phenyl-methylene] -amino} -3-methyl-1-butanol
Final process isolation yield; 83%

製造例3([R=t-ブチル基、R=4-t-ブチルフェニル基、R=イソプロピル基];(S)-2-{N-[(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-(4-tert-ブチルフェニル)-メチレン]-アミノ}-3-メチル-1-ブタノールの合成)
最終工程の単離収率;62%
1H-NMR(CDCl3,δ(ppm));0.87(d,3H,J=7.1Hz)、0.93(d,3H,J=7.1Hz)、1.38(s,9H)、1.48(s,9H)、1.78〜1.88(m,1H)、3.29〜3.41(m,1H)、3.71〜3.84(m,2H)、6.60(d,1H,J=2.7Hz)、7.36(d,1H,J=2.7Hz)、7.09〜7.54(m,4H)、16.0(brs,1H)
Production Example 3 ([R 1 = t-butyl group, R 2 = 4-t-butylphenyl group, R 3 = isopropyl group]; (S) -2- {N-[(2-hydroxy-3,5- Synthesis of di-tert-butylphenyl)-(4-tert-butylphenyl) -methylene] -amino} -3-methyl-1-butanol
Isolated yield of the final process: 62%
1 H-NMR (CDCl 3 , δ (ppm)); 0.87 (d, 3H, J = 7.1 Hz), 0.93 (d, 3H, J = 7.1 Hz), 1.38 (s, 9H), 1.48 (s, 9H) ), 1.78 to 1.88 (m, 1H), 3.29 to 3.41 (m, 1H), 3.71 to 3.84 (m, 2H), 6.60 (d, 1H, J = 2.7Hz), 7.36 (d, 1H, J = 2.7 Hz), 7.09-7.54 (m, 4H), 16.0 (brs, 1H)

製造例4([R=t-ブチル基、R=α-ナフチル基、R=イソプロピル基];(S)-2-{N-[(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-(1-ナフチル)-メチレン]-アミノ}-3-メチル-1-ブタノールの合成)
最終工程の単離収率;56%
1H-NMR(CDCl3,δ(ppm));0.78(d,3H,J=7.1Hz)、0.91(s,9H)、1.22(d,3H,J=7.1Hz)、1.58(s,9H)、1.88〜2.02(m,1H)、3.02〜3.19(m,1H)、3.61〜3.79(m,2H)、6.45(d,1H,J=2.7Hz)、7.21〜8.04(m,8H)、16.0(brs,1H)
Production Example 4 ([R 1 = t-butyl group, R 2 = α-naphthyl group, R 3 = isopropyl group]; (S) -2- {N-[(2-hydroxy-3,5-di-tert -Butylphenyl)-(1-naphthyl) -methylene] -amino} -3-methyl-1-butanol)
Final process isolation yield; 56%
1 H-NMR (CDCl 3 , δ (ppm)); 0.78 (d, 3H, J = 7.1 Hz), 0.91 (s, 9H), 1.22 (d, 3H, J = 7.1 Hz), 1.58 (s, 9H) ), 1.88 to 2.02 (m, 1H), 3.02 to 3.19 (m, 1H), 3.61 to 3.79 (m, 2H), 6.45 (d, 1H, J = 2.7Hz), 7.21 to 8.04 (m, 8H), 16.0 (brs, 1H)

製造例5([R=t-ブチル基、R=β-ナフチル基、R=イソプロピル基];(S)-2-{N-[(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-(2-ナフチル)-メチレン]-アミノ}-3-メチル-1-ブタノールの合成)
最終工程の単離収率;78%
1H-NMR(CDCl3,δ(ppm));0.69〜0.92(m,6H)、1.05(s,9H)、1.40(s,9H)、1.79〜1.92(m,1H)、3.18〜3.30(m,1H)、3.68〜3.79(m,2H)、6.68(d,1H,J=2.7Hz)、7.39(d,1H,J=2.7Hz)、7.22〜8.01(m,7H)、16.0(brs,1H)
Production Example 5 ([R 1 = t-butyl group, R 2 = β-naphthyl group, R 3 = isopropyl group]; (S) -2- {N-[(2-hydroxy-3,5-di-tert -Butylphenyl)-(2-naphthyl) -methylene] -amino} -3-methyl-1-butanol)
Isolation yield of the final process: 78%
1 H-NMR (CDCl 3 , δ (ppm)); 0.69 to 0.92 (m, 6H), 1.05 (s, 9H), 1.40 (s, 9H), 1.79 to 1.92 (m, 1H), 3.18 to 3.30 ( m, 1H), 3.68 to 3.79 (m, 2H), 6.68 (d, 1H, J = 2.7Hz), 7.39 (d, 1H, J = 2.7Hz), 7.22 to 8.01 (m, 7H), 16.0 (brs) , 1H)

比較製造例2([R=水素原子、R=水素原子、R=イソプロピル基];(S)-2-[N-(2-ヒドロキシ-3'-tert-ブチルサリチリデン)-アミノ]-3-メチル-1-ブタノールの合成)
最終工程の単離収率;98%
1H-NMR(CDCl3,δ(ppm));0.94(d,3H,J=3.2Hz)、0.96(d,3H,J=3.2Hz)、1.44(s,9H)、1.79(brs,1H)、1.94(m,1H)、3.02(m,1H)、3.79(m,2H)、6.83(m,1H)、7.14(m,1H)、7.34(m,1H)、8.35(s,1H)、13.8(brs,1H)
Comparative Production Example 2 ([R 1 = hydrogen atom, R 2 = hydrogen atom, R 3 = isopropyl group]; (S) -2- [N- (2-hydroxy-3′-tert-butylsalicylidene)- Synthesis of amino] -3-methyl-1-butanol
Isolated yield of the final process; 98%
1 H-NMR (CDCl 3 , δ (ppm)); 0.94 (d, 3H, J = 3.2 Hz), 0.96 (d, 3H, J = 3.2 Hz), 1.44 (s, 9H), 1.79 (brs, 1H ), 1.94 (m, 1H), 3.02 (m, 1H), 3.79 (m, 2H), 6.83 (m, 1H), 7.14 (m, 1H), 7.34 (m, 1H), 8.35 (s, 1H) , 13.8 (brs, 1H)

製造例6([R=水素原子、R=フェニル基、R=イソプロピル基];(S)-2-{N-[(2-ヒドロキシ-3-tert-ブチルフェニル)-フェニル-メチレン]-アミノ}-3-メチル-1-ブタノールの合成)
最終工程の単離収率;94%
Production Example 6 ([R 1 = hydrogen atom, R 2 = phenyl group, R 3 = isopropyl group]; (S) -2- {N-[(2-hydroxy-3-tert-butylphenyl) -phenyl-methylene Synthesis of] -amino} -3-methyl-1-butanol
Isolated yield of the final step; 94%

製造例7([R=水素原子、R=4-t-ブチルフェニル基、R=イソプロピル基];(S)-2-{N-[(2-ヒドロキシ-3-tert-ブチルフェニル)-(4-tert-ブチルフェニル)-メチレン]-アミノ}-3-メチル-1-ブタノールの合成)
最終工程の単離収率;76%
なお、本化合物は新規な化合物である。
1H-NMR(CDCl3,δ(ppm));0.87(d,3H,J=6.8Hz)、0.95(d,3H,J=6.8Hz)、1.38(s,9H)、1.48(s,9H)、1.60(brs,1H)、1.89〜1.94(m,1H)、3.29〜3.34(m,1H)、3.74〜3.80(m,2H)、6.55(m,1H)、6.66(d,1H,J=7.1Hz)、7.05〜7.21(m,2H)、7.27(d,1H,J=9.8Hz)、7.45(d,1H,J=8.1Hz)、16.3(brs,1H)
Production Example 7 ([R 1 = hydrogen atom, R 2 = 4-t-butylphenyl group, R 3 = isopropyl group]; (S) -2- {N-[(2-hydroxy-3-tert-butylphenyl )-(4-tert-Butylphenyl) -methylene] -amino} -3-methyl-1-butanol)
Final process isolation yield; 76%
In addition, this compound is a novel compound.
1 H-NMR (CDCl 3 , δ (ppm)); 0.87 (d, 3H, J = 6.8 Hz), 0.95 (d, 3H, J = 6.8 Hz), 1.38 (s, 9H), 1.48 (s, 9H ), 1.60 (brs, 1H), 1.89 to 1.94 (m, 1H), 3.29 to 3.34 (m, 1H), 3.74 to 3.80 (m, 2H), 6.55 (m, 1H), 6.66 (d, 1H, J = 7.1Hz), 7.05 to 7.21 (m, 2H), 7.27 (d, 1H, J = 9.8Hz), 7.45 (d, 1H, J = 8.1Hz), 16.3 (brs, 1H)

製造例8([R=水素原子、R=α-ナフチル基、R=イソプロピル基];(S)-2-{N-[(2-ヒドロキシ-3-tert-ブチルフェニル)-(1-ナフチル)-メチレン]-アミノ}-3-メチル-1-ブタノールの合成)
最終工程の単離収率;60%
なお、本化合物は新規な化合物である。
1H-NMR(CDCl3,δ(ppm));0.88(m,6H)、1.29(m,1H)、1.51(s,9H)、1.94(s,9H)、3.06(m,1H)、3.71(m,2H)、6.49(m,2H)、7.25〜7.68(m,6H)、7.93(m,2H)、16.3(s,1H)
Production Example 8 ([R 1 = hydrogen atom, R 2 = α-naphthyl group, R 3 = isopropyl group]; (S) -2- {N-[(2-hydroxy-3-tert-butylphenyl)-( Synthesis of 1-naphthyl) -methylene] -amino} -3-methyl-1-butanol
Isolated yield of the final process; 60%
In addition, this compound is a novel compound.
1 H-NMR (CDCl 3 , δ (ppm)); 0.88 (m, 6H), 1.29 (m, 1H), 1.51 (s, 9H), 1.94 (s, 9H), 3.06 (m, 1H), 3.71 (m, 2H), 6.49 (m, 2H), 7.25-7.68 (m, 6H), 7.93 (m, 2H), 16.3 (s, 1H)

製造例9([R=水素原子、R=β-ナフチル基、R=イソプロピル基];(S)-2-{N-[(2-ヒドロキシ-3-tert-ブチルフェニル)-(2-ナフチル)-メチレン]-アミノ}-3-メチル-1-ブタノールの合成)
最終工程の単離収率;82%
なお、本化合物は新規な化合物である。
1H-NMR(CDCl3,δ(ppm));0.92(d,9H,7.59Hz)、1.50(s,9H)、3.27〜3.33(m,1H)、3.84(s,2H)、6.52(dd,1H,J=7.99,7.99Hz)、6.63(dd,1H,J=8.39,5.20Hz)、7.94〜7.24(m,9H)、7.82(s,1H)
Production Example 9 ([R 1 = hydrogen atom, R 2 = β-naphthyl group, R 3 = isopropyl group]; (S) -2- {N-[(2-hydroxy-3-tert-butylphenyl)-( Synthesis of 2-naphthyl) -methylene] -amino} -3-methyl-1-butanol
Isolation yield of final process; 82%
In addition, this compound is a novel compound.
1 H-NMR (CDCl 3 , δ (ppm)); 0.92 (d, 9H, 7.59 Hz), 1.50 (s, 9H), 3.27 to 3.33 (m, 1H), 3.84 (s, 2H), 6.52 (dd , 1H, J = 7.99,7.99Hz), 6.63 (dd, 1H, J = 8.39,5.20Hz), 7.94-7.24 (m, 9H), 7.82 (s, 1H)

製造例10([R=水素原子、R=メチル基、R=イソプロピル基];(S)-2-{N-[1-(2-ヒドロキシ-3-tert-ブチルフェニル)-エチリデン]-アミノ}-3-メチル-1-ブタノールの合成)
最終工程の単離収率;52%
なお、本化合物は新規な化合物である。
1H-NMR(CDCl3,δ(ppm));0.98(m,6H)、1.26〜1.28(m,1H)、1.44(s,9H)、1.97〜2.02(m,1H)、2.41(s,3H)、3.73〜3.90(m,3H)、6.73(dd,1H,J=6.8,7.3Hz)、7.33(d,1H,J=6.8Hz)、7.46(d,1H,J=7.3 Hz)、16.8(s,1H)
Production Example 10 ([R 1 = hydrogen atom, R 2 = methyl group, R 3 = isopropyl group]; (S) -2- {N- [1- (2-hydroxy-3-tert-butylphenyl) -ethylidene Synthesis of] -amino} -3-methyl-1-butanol
Final process isolation yield; 52%
In addition, this compound is a novel compound.
1 H-NMR (CDCl 3 , δ (ppm)); 0.98 (m, 6H), 1.26 to 1.28 (m, 1H), 1.44 (s, 9H), 1.97 to 2.02 (m, 1H), 2.41 (s, 3H), 3.73 to 3.90 (m, 3H), 6.73 (dd, 1H, J = 6.8, 7.3Hz), 7.33 (d, 1H, J = 6.8Hz), 7.46 (d, 1H, J = 7.3 Hz), 16.8 (s, 1H)

比較製造例3([R=水素原子、R=水素原子、R=t-ブチル基];(S)-2-[N-(2-ヒドロキシ-3',5'-ジ-tert-ブチルサリチリデン)-アミノ]-3,3-ジメチル-1-ブタノールの合成)
最終工程の単離収率;99%
1H-NMR(CDCl3,δ(ppm));0.99(s,9H)、1.34(d,1H,J=8.34,4.00Hz)、1.44(s,9H)、2.94(dd,1H,J=9.19,2.80)、3.77(ddd,1H,J=10.79,10.79,4.00Hz)、3.94(ddd,1H,J=8.39,8.39,2.80)、6.84(dd,1H,J=7.99,7.99Hz)、7.16(dd,1H,J=7.59,1.6Hz)、7.34(dd,1H,J=7.59,1.60Hz)、8.36(s,1H)、13.82(s,1H)
Comparative Production Example 3 ([R 1 = hydrogen atom, R 2 = hydrogen atom, R 3 = t-butyl group]; (S) -2- [N- (2-hydroxy-3 ′, 5′-di-tert -Butylsalicylidene) -amino] -3,3-dimethyl-1-butanol)
Isolated yield of the final process; 99%
1 H-NMR (CDCl 3 , δ (ppm)); 0.99 (s, 9H), 1.34 (d, 1H, J = 8.34, 4.00 Hz), 1.44 (s, 9H), 2.94 (dd, 1H, J = 9.19, 2.80), 3.77 (ddd, 1H, J = 10.79, 10.79, 4.00Hz), 3.94 (ddd, 1H, J = 8.39, 8.39, 2.80), 6.84 (dd, 1H, J = 7.99, 7.99Hz), 7.16 (dd, 1H, J = 7.59, 1.6Hz), 7.34 (dd, 1H, J = 7.59, 1.60Hz), 8.36 (s, 1H), 13.82 (s, 1H)

製造例11([R=水素原子、R=β-ナフチル基、R=t-ブチル基];(S)-2-{N-[(2-ヒドロキシ-3-tert-ブチルフェニル)-(2-ナフチル)-メチレン]-アミノ}-3,3-ジメチル-1-ブタノールの合成)
最終工程の単離収率;63%
なお、本化合物は新規な化合物である。
1H-NMR(CDCl3,δ(ppm));0.92(s,9H)、1.45(s,1H)、1.50(s,9H)、3.27〜3.33(m,1H)、3.84(m,2H)、6.52(dd,1H,J=7.99,7.99Hz)、6.63(dd,1H,J=8.4,5.2 Hz)、7.24〜7.94(m,9H)、16.27(s,1H)
Production Example 11 ([R 1 = hydrogen atom, R 2 = β-naphthyl group, R 3 = t-butyl group]; (S) -2- {N-[(2-hydroxy-3-tert-butylphenyl) Synthesis of-(2-naphthyl) -methylene] -amino} -3,3-dimethyl-1-butanol
Final process isolation yield; 63%
In addition, this compound is a novel compound.
1 H-NMR (CDCl 3 , δ (ppm)); 0.92 (s, 9H), 1.45 (s, 1H), 1.50 (s, 9H), 3.27 to 3.33 (m, 1H), 3.84 (m, 2H) 6.52 (dd, 1H, J = 7.99, 7.99Hz), 6.63 (dd, 1H, J = 8.4, 5.2 Hz), 7.24-7.94 (m, 9H), 16.27 (s, 1H)

製造例12([R=t-ブチル基、R=α-ナフチル基、R=t-ブチル基];(S)-2-{N-[(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-(1-ナフチル)-メチレン]-アミノ}-3,3-ジメチル-1-ブタノールの合成)
最終工程の単離収率;63%
なお、本化合物は新規な化合物である。
1H-NMR(CDCl3,δ(ppm));0.85(s,9H)、0.89(s,9H)、1.26(m,1H)、1.52(s,9H)、3.17(m,1H)、3.88(m,2H)、7.26〜7.75(m,7H)、7.89〜7.97(m,2H)、16.1(br s,1H)、0.91(s,9H)、1.00(s,9H)、1.27(m,1H)、1.52(s,9H)、3.04(m,1H)、3.72(m,2H)、6.44(m,2H)、7.26〜7.75(m,5H)、7.89〜7.97(m,2H)、16.1(br s,1H)
Production Example 12 ([R 1 = t-butyl group, R 2 = α-naphthyl group, R 3 = t-butyl group]; (S) -2- {N-[(2-hydroxy-3,5-di- -tert-Butylphenyl)-(1-naphthyl) -methylene] -amino} -3,3-dimethyl-1-butanol)
Final process isolation yield; 63%
In addition, this compound is a novel compound.
1 H-NMR (CDCl 3 , δ (ppm)); 0.85 (s, 9H), 0.89 (s, 9H), 1.26 (m, 1H), 1.52 (s, 9H), 3.17 (m, 1H), 3.88 (m, 2H), 7.26-7.75 (m, 7H), 7.89-7.97 (m, 2H), 16.1 (br s, 1H), 0.91 (s, 9H), 1.00 (s, 9H), 1.27 (m, 1H), 1.52 (s, 9H), 3.04 (m, 1H), 3.72 (m, 2H), 6.44 (m, 2H), 7.26-7.75 (m, 5H), 7.89-7.97 (m, 2H), 16.1 (br s, 1H)

実施例1([R=水素原子、R=フェニル基、R=t-ブチル基、R=フェニル基、R=エチル基];光学活性な1-フェニル-1-プロパノールの合成)
攪拌装置を備えた内容積25mlのアンプル管に、(S)-2-{N-[(2-ヒドロキシ-3-tert-ブチル-フェニル)-フェニル-メチレン]-アミノ}-3,3-ジメチル-1-ブタノール6.6mg(0.019mmol)及びヘキサン4mlを加えた。当該混合液を-40℃で攪拌しながら、アルゴン雰囲気にて、ジエチル亜鉛0.4ml(3.9mmol)を加え、0℃で30分間攪拌して、亜鉛錯体を形成させた。次いで、-40℃まで冷却し、ベンズアルデヒド200mg(1.9mmol)を加え、0℃で攪拌しながら24時間反応させた。反応終了後、得られた反応混合物をジエチルエーテルに溶解させ、氷水で冷却した1mol/l塩酸20ml中に加えた後、ジエチルエーテル10mlで3回抽出した。得られた有機層を、無水硫酸ナトリウムで乾燥させた。濾過後、濾液を濃縮し、濃縮物をシリカゲルカラムクロマトグラフィーで精製(展開溶媒;n-ヘキサン/酢酸エチル=15/1(容量比))した。次いで、得られた液体を減圧下で蒸留し、無色透明液体として、光学活性な1-フェニル-1-プロパノール225.1mgを得た(単離収率;88%、光学収率;96%ee(R))。
Example 1 ([R 1 = hydrogen atom, R 2 = phenyl group, R 3 = t-butyl group, R 4 = phenyl group, R 5 = ethyl group]; synthesis of optically active 1-phenyl-1-propanol )
An ampule tube with an internal volume of 25 ml equipped with a stirrer was added to (S) -2- {N-[(2-hydroxy-3-tert-butyl-phenyl) -phenyl-methylene] -amino} -3,3-dimethyl. 6.6 mg (0.019 mmol) of 1-butanol and 4 ml of hexane were added. While stirring the mixture at −40 ° C., 0.4 ml (3.9 mmol) of diethylzinc was added in an argon atmosphere and stirred at 0 ° C. for 30 minutes to form a zinc complex. Next, the mixture was cooled to −40 ° C., 200 mg (1.9 mmol) of benzaldehyde was added, and the mixture was reacted at 0 ° C. with stirring for 24 hours. After completion of the reaction, the resulting reaction mixture was dissolved in diethyl ether, added to 20 ml of 1 mol / l hydrochloric acid cooled with ice water, and extracted three times with 10 ml of diethyl ether. The obtained organic layer was dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated, and the concentrate was purified by silica gel column chromatography (developing solvent; n-hexane / ethyl acetate = 15/1 (volume ratio)). Then, the obtained liquid was distilled under reduced pressure to obtain 225.1 mg of optically active 1-phenyl-1-propanol as a colorless transparent liquid (isolation yield; 88%, optical yield; 96% ee ( R)).

実施例2〜25及び比較例1〜3(光学活性なヒドロキシ化合物の合成)
実施例1において、アルデヒド化合物、配位子及び配位子量(アルデヒド化合物に対して)を変えたこと以外は、実施例1と同様に反応を行った。結果を表1に示す。
Examples 2 to 25 and Comparative Examples 1 to 3 (Synthesis of optically active hydroxy compounds)
In Example 1, the reaction was performed in the same manner as in Example 1 except that the aldehyde compound, the ligand, and the ligand amount (relative to the aldehyde compound) were changed. The results are shown in Table 1.

Figure 2007297285
Figure 2007297285

製造例13([R=水素原子、R=フェニル基、R=t-ブチル基];亜鉛錯体(触媒活性種)の合成)
攪拌装置を備えた内容積5mlのアンプル管に、(S)-2-{N-[(2-ヒドロキシ-3-tert-ブチル-フェニル)-フェニル-メチレン]-アミノ}-3,3-ジメチル-1-ブタノール40mg(0.115mmol)、ジエチル亜鉛0.012ml(0.117mmol)及びn-ヘキサン2mlを混合し、アルゴン雰囲気にて、攪拌しながら0℃で30分間反応させた。反応終了後、反応液を減圧下で濃縮し、黄色固体として、亜鉛錯体を得た。
当該亜鉛錯体は、以下の物性値で示される新規な化合物である。
Production Example 13 ([R 1 = hydrogen atom, R 2 = phenyl group, R 3 = t-butyl group]; synthesis of zinc complex (catalytically active species))
An ampule tube with an internal volume of 5 ml equipped with a stirrer was charged with (S) -2- {N-[(2-hydroxy-3-tert-butyl-phenyl) -phenyl-methylene] -amino} -3,3-dimethyl. 1-butanol 40 mg (0.115 mmol), diethylzinc 0.012 ml (0.117 mmol) and n-hexane 2 ml were mixed and reacted at 0 ° C. for 30 minutes with stirring in an argon atmosphere. After completion of the reaction, the reaction solution was concentrated under reduced pressure to obtain a zinc complex as a yellow solid.
The zinc complex is a novel compound represented by the following physical property values.

1H-NMR(C6D6,δ(ppm));1.09(s,9H)、1.66(s,9H)、3.43(d,1H,J=6.40Hz)、4.13(dd,1H,J=10.40,6.40Hz)、4.32(d,1H,J=10.40Hz)、6.50(t,1H,J=7.60Hz)、6.73(dd,1H,J=7.60Hz,2.00Hz)、7.04(t,1H,J=7.20Hz)、7.11(t,2H,J=7.60Hz)、7.27(dd,1H,J=7.60Hz,2.00Hz)、7.37(d,2H,J=7.60Hz)
なお、光学活性なシッフ塩基の水酸基に相当する、0.7ppm付近(アミノアルコール由来の水酸基のプロトン)及び16ppm付近(ベンゼン環に結合している水酸基のプロトン)のピークは完全に消失していた。
1 H-NMR (C 6 D 6 , δ (ppm)); 1.09 (s, 9H), 1.66 (s, 9H), 3.43 (d, 1H, J = 6.40 Hz), 4.13 (dd, 1H, J = 10.40, 6.40Hz), 4.32 (d, 1H, J = 10.40Hz), 6.50 (t, 1H, J = 7.60Hz), 6.73 (dd, 1H, J = 7.60Hz, 2.00Hz), 7.04 (t, 1H , J = 7.20Hz), 7.11 (t, 2H, J = 7.60Hz), 7.27 (dd, 1H, J = 7.60Hz, 2.00Hz), 7.37 (d, 2H, J = 7.60Hz)
In addition, peaks corresponding to the hydroxyl group of the optically active Schiff base, around 0.7 ppm (hydroxyl proton derived from amino alcohol) and 16 ppm (hydroxyl proton bonded to the benzene ring) completely disappeared.

本発明は、光学活性なヒドロキシ化合物の新規な製法に関する。光学活性なヒドロキシ化合物は、例えば、医薬・農薬等の原料や合成中間体として有用な化合物である。   The present invention relates to a novel process for producing optically active hydroxy compounds. An optically active hydroxy compound is, for example, a compound useful as a raw material for pharmaceuticals and agricultural chemicals or a synthetic intermediate.

Claims (3)

一般式(1)
Figure 2007297285
(式中、Rは、水素原子又は炭化水素基を示し、R及びRは、炭化水素基を示す。又、*は、不斉炭素原子を示す。)
で示される光学活性なシッフ塩基の存在下、一般式(2)
Figure 2007297285
(式中、Rは、置換基を有していても良い炭化水素基又は複素環基を示す。なお、複素環基は縮合していても良い。)
で示されるアルデヒド化合物と一般式(3)
Figure 2007297285
(式中、Rは、アルキル基を示す。)
で示されるジアルキル亜鉛とを反応させた後に、反応混合物を酸で処理することを特徴とする、一般式(4)
Figure 2007297285
(式中、R及びRは、相異なって、前記と同義であり、*は、不斉炭素原子を示す。)
で示される光学活性なヒドロキシ化合物の製法。
General formula (1)
Figure 2007297285
(In the formula, R 1 represents a hydrogen atom or a hydrocarbon group, R 2 and R 3 represent a hydrocarbon group, and * represents an asymmetric carbon atom.)
In the presence of an optically active Schiff base represented by the general formula (2)
Figure 2007297285
(In the formula, R 4 represents a hydrocarbon group or a heterocyclic group which may have a substituent. The heterocyclic group may be condensed.)
An aldehyde compound represented by the general formula (3)
Figure 2007297285
(In the formula, R 5 represents an alkyl group.)
The reaction mixture is treated with an acid after the reaction with the dialkylzinc represented by the general formula (4).
Figure 2007297285
(In the formula, R 4 and R 5 are different and have the same meanings as above, and * represents an asymmetric carbon atom.)
The manufacturing method of the optically active hydroxy compound shown by these.
一般式(1)
Figure 2007297285
(式中、R、R及びRは、以下のいずれかの場合である。
(1)R=水素原子、R及びRは、同一又は異なっていても良い炭化水素基、
(但し、R=水素原子、R=フェニル基、R=イソプロピル基を除く)
(2)R=t-ブチル基、R=α-ナフチル基、R=t-ブチル基)
で示される光学活性なシッフ塩基。
General formula (1)
Figure 2007297285
(Wherein R 1 , R 2 and R 3 are any of the following cases.
(1) R 1 = hydrogen atom, R 2 and R 3 are the same or different hydrocarbon groups,
(However, R 1 = hydrogen atom, R 2 = phenyl group, R 3 = except isopropyl group)
(2) R 1 = t-butyl group, R 2 = α-naphthyl group, R 3 = t-butyl group)
An optically active Schiff base represented by
光学活性シッフ塩基とジアルキル亜鉛との反応によって生成する、一般式(5)
Figure 2007297285
(式中、Rは、水素原子又は炭化水素基を示し、R及びRは、炭化水素基を示す。又、*は、不斉炭素原子を示し、nは、1又は2である。)
で示される光学活性シッフ塩基を配位子とする新規な亜鉛錯体。
Generated by reaction of optically active Schiff base with dialkylzinc, general formula (5)
Figure 2007297285
(Wherein R 1 represents a hydrogen atom or a hydrocarbon group, R 2 and R 3 represent a hydrocarbon group, * represents an asymmetric carbon atom, and n is 1 or 2. .)
A novel zinc complex having the optically active Schiff base represented by
JP2006123812A 2006-04-27 2006-04-27 Method for preparing optically active hydroxy compound Pending JP2007297285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006123812A JP2007297285A (en) 2006-04-27 2006-04-27 Method for preparing optically active hydroxy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006123812A JP2007297285A (en) 2006-04-27 2006-04-27 Method for preparing optically active hydroxy compound

Publications (1)

Publication Number Publication Date
JP2007297285A true JP2007297285A (en) 2007-11-15

Family

ID=38767097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006123812A Pending JP2007297285A (en) 2006-04-27 2006-04-27 Method for preparing optically active hydroxy compound

Country Status (1)

Country Link
JP (1) JP2007297285A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313445A (en) * 1988-06-13 1989-12-18 Toyo Stauffer Chem Co Method for catalytic asymmetric and amplifying synthesis of secondary alcohol having high level of optical purity
JPH0436252A (en) * 1990-05-30 1992-02-06 Nippon Alkyl Alum Kk Production of optically active alkinyl alcohol
JPH09100285A (en) * 1995-10-03 1997-04-15 Ube Ind Ltd Production of optically active 5-hydroxy-3-oxo-6-heptynoic acid ester derivative
JP2000007597A (en) * 1998-06-17 2000-01-11 Tosoh Akzo Corp Stereoselective production of optically active alcohol
JP2004196710A (en) * 2002-12-18 2004-07-15 Univ Waseda Ligand and asymmetric catalyst
WO2006041000A1 (en) * 2004-10-15 2006-04-20 Mitsui Chemicals, Inc. Titanium compound and method for producing optically active cyanohydrins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313445A (en) * 1988-06-13 1989-12-18 Toyo Stauffer Chem Co Method for catalytic asymmetric and amplifying synthesis of secondary alcohol having high level of optical purity
JPH0436252A (en) * 1990-05-30 1992-02-06 Nippon Alkyl Alum Kk Production of optically active alkinyl alcohol
JPH09100285A (en) * 1995-10-03 1997-04-15 Ube Ind Ltd Production of optically active 5-hydroxy-3-oxo-6-heptynoic acid ester derivative
JP2000007597A (en) * 1998-06-17 2000-01-11 Tosoh Akzo Corp Stereoselective production of optically active alcohol
JP2004196710A (en) * 2002-12-18 2004-07-15 Univ Waseda Ligand and asymmetric catalyst
WO2006041000A1 (en) * 2004-10-15 2006-04-20 Mitsui Chemicals, Inc. Titanium compound and method for producing optically active cyanohydrins

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012004735; E.J. Corey, et al.: 'ZINC COMPLEXES OF CHIRAL PHENOLS AS CATALYSTS FOR ENANTIOSELECTIVE ADDITION OF ORGANOZINC REAGENTS T' Tetrahedron Letters Vo1.28, No.44, 1987, p.5237-5240 *
JPN6012004738; Masahiko Hayashi, et al.: 'Enantioselective addition Of diketene to aldehydes promoted by chiral schiff base-titanium alkoxide' Israel Journal of Chemistry Vol.41, No.4, 2001, p.241-246 *

Similar Documents

Publication Publication Date Title
Coşkun et al. An efficient catalytic method for fulvene synthesis
JP6732744B2 (en) Method for producing biphenylamines from azobenzols by ruthenium catalysis
CN113896674B (en) Synthesis method of apremilast
CN113549062B (en) Chiral quaternary ammonium salt phase transfer catalyst with high steric hindrance derived from cinchona alkaloid and synthesis method thereof
Saidi et al. A simple one-pot three-component reaction for preparation of secondary amines and amino esters mediated by lithium perchlorate
JP2012082155A (en) Triazolium salt and method for producing the same, and method for producing alkylated oxindol using azide alcohol and asymmetric reaction
JP6702623B2 (en) Method for preparing compounds such as 3-arylbutanal useful in the synthesis of medetomidine
DK2526081T3 (en) METHOD OF PRODUCING aryl and HETEROARYLEDDIKESYREDERIVATER
JP2007297285A (en) Method for preparing optically active hydroxy compound
JP5023683B2 (en) Process for producing benzofluorene derivative and intermediate thereof
CN108752213B (en) Method for preparing alpha-hydroxymethyl-beta-dicarbonyl compound by visible light excited disulfide catalysis
JP5212177B2 (en) Method for producing γ-ketoacetal compound and pyrrole derivative
CN111056890A (en) Method for preparing aryl ketone by free radical-free radical coupling reaction of ketoacid decarboxylation and fatty aldehyde decarbonylation based on iron catalysis
JP4380160B2 (en) Process for producing 7-quinolinyl-3,5-dihydroxyhept-6-enoic acid ester
Yang et al. Synthesis and separation of the atropisomers of 2-(5-benzo [b] fluorenyl)-2′-hydroxy-1, 1′-binaphthyl and related compounds
CN108912077B (en) Preparation method of chiral phthalide derivative
WO2008059960A1 (en) Method for producing quarter-pyridine derivative and intermediate of quarter-pyridine derivative
JP4759722B2 (en) Process for producing aromatic carboxylic acid ester having a substituent
JP2007246517A (en) Process for producing optically active 5-hydroxy-3-keto ester compound
WO2006123648A1 (en) Process for producing 3-substituted thiophene
CN109320481B (en) Carboxylic acid NHPI ester decarboxylation alkylation method and application thereof in synthesis of diaryl derivatives
JP2010111633A (en) Guanidine compound, and polymer-fixed complex of guanidine compound
AU2005273649B2 (en) Enantioselective synthesis of 13-oxotricyclo[8.2.1.0 3,8]trideca-3(8),4,6-triene-5-carboxylates
JP2001002675A (en) Production of 3-formylthiophene derivative
CN115677442A (en) Method for synthesizing alkylaryl alkyne compound by photocatalysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108