WO2008059960A1 - Method for producing quarter-pyridine derivative and intermediate of quarter-pyridine derivative - Google Patents

Method for producing quarter-pyridine derivative and intermediate of quarter-pyridine derivative Download PDF

Info

Publication number
WO2008059960A1
WO2008059960A1 PCT/JP2007/072287 JP2007072287W WO2008059960A1 WO 2008059960 A1 WO2008059960 A1 WO 2008059960A1 JP 2007072287 W JP2007072287 W JP 2007072287W WO 2008059960 A1 WO2008059960 A1 WO 2008059960A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
derivative
represented
quarterpyridine
alkyl group
Prior art date
Application number
PCT/JP2007/072287
Other languages
French (fr)
Japanese (ja)
Inventor
Yong Wang
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to JP2008544208A priority Critical patent/JP5407332B2/en
Publication of WO2008059960A1 publication Critical patent/WO2008059960A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/61Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings

Definitions

  • the present invention relates to a production method of a quarterpyridine derivative and an intermediate thereof, and more particularly to a production method of a quarterpyridine derivative and an intermediate thereof capable of easily producing a quarterpyridine derivative.
  • a dye-sensitized solar cell including a dye, a semiconductor electrode, an electrolyte, and a metal electrode is called a Gretzell cell, and is considered to be advantageous in terms of cost as compared with a conventional silicon solar cell. Not only that, it is also excellent in terms of flexibility and design, and is expected to be applied in a wide range of fields. However, the photoelectric conversion efficiency is still not sufficient, and the current situation is that development of high-performance dyes is required for practical use.
  • Various metal complexes and organic dyes (metal-free) are being considered as dyes. Ruthenium complexes are promising in terms of power and performance, and many ruthenium complexes have already been studied and developed.
  • bipyridine complexes for example, see Non-Patent Documents 1, 2 and 3
  • terpyridine complexes for example, see Non-Patent Document 4
  • quaterpyridine complexes for example, Non-Patent Documents 5, 6 and Patent Document 1.
  • the bipyridine and terpyridin complexes are generally specific in that the two NCS ligands are in the cis form, and the quarterpyridine complex is in the trans form. The petals become broader and the absorption on the longer wavelength side becomes stronger.
  • the "COOEt” group of the quarterpyridine derivative is converted to a Ru complex (dye) and then converted to a "COOH” group by hydrolysis.
  • the COOH group is a TiO battery for dye-sensitized solar cells.
  • the quarterpyridine derivative is obtained by synthesizing a biviridine derivative (organic metal) represented by the following formula (2A) from a biviridine derivative represented by the following formula (1A), and then a biviridine derivative represented by the following formula (3A): The compound was synthesized by reacting with a bipyridine derivative represented by the following formula (2A).
  • Non-Patent Document 1 J. Phys. Chem. B, 2003, 107, 8981-8987
  • Non-Patent Document 2 Langmuir, 2002, 18, 952-954
  • Non-Patent Document 3 Langmuir, 2001, 17, 5992- 5999
  • Non-Patent Document 4 J. Am. Chem. Soc., 2001, 123, 1613-1624
  • Non-Patent Document 5 Inorg. Chem., 2002, 41, 367-378
  • Non-Patent Document 6 Inorg. Chem., 2006, 45, 4642-4653
  • Patent Document 1 JP-A-2005-190875
  • the present invention has been made in view of the above-mentioned problems, and can be easily derived from quarterpyridine. It is characterized by providing a production method of a quarterpyridine derivative and an intermediate thereof capable of producing a product.
  • a biviridine derivative represented by the following formula (1) and an organometallic intermediate represented by the following formula (2) are reacted with each other using a transition metal catalyst.
  • Z is a monovalent organic group
  • Y is a perfluoroalkylsulfonyl group
  • R 3 and R 4 are each independently a monovalent organic group, and are bonded to each other to form a cyclic structure. To form an ayo lei group.
  • M is a metal
  • R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group
  • L is a ligand
  • n is; It is an integer of 3.
  • Z is a monovalent organic group
  • R 1 and are each independently hydrogen, an alkyl group, an aryl group or a substituted alkyl group
  • R 3 and R 4 are each independently A monovalent organic group that may be bonded to each other to form a cyclic structure.
  • Z is a monovalent organic group
  • R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group
  • R 3 and R 4 are each Independently a monovalent organic group, which may be bonded to each other to form a cyclic structure.
  • R 1 and IT are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group.
  • Z is a monovalent organic group
  • Y is a perfluoroalkylsulfonyl group
  • R 3 and R 4 are each independently a monovalent organic group, and are bonded to each other to form a cyclic structure. To form Ayorayo.
  • is a metal
  • R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group or a substituted alkyl group
  • L is a ligand
  • is; It is an integer of 3.
  • is a monovalent organic group
  • R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group
  • R 3 and R 4 are each Independently a monovalent organic group, which may be bonded to each other to form a cyclic structure.
  • the method for producing a quarterpyridine derivative of the present invention easily produces a predetermined intermediate in the production process, and finally produces a quarterpyridine derivative using them. It becomes possible to produce derivatives. It is possible to produce it stably industrially.
  • the quarterpyridine derivative of the present invention can be easily synthesized, the quarterpyridine derivative can be easily produced as a whole by using these for the production of the quarterpyridine derivative. Therefore, it is possible to produce industrially stably.
  • the production method of the quarterpyridine derivative (quarterpyridine derivative A) of the present invention includes the biviridine derivative (biviridine derivative A) of the present invention represented by the above formula (1) and the present invention represented by the above formula (2).
  • An organometallic intermediate (organometallic intermediate 1) is reacted with a transition metal catalyst to produce the quarterpyridine derivative (quarterpyridine derivative A) of the present invention represented by the above formula (3).
  • the reaction is preferably carried out by adding organometallic intermediate 1, biviridine derivative A and a transition metal catalyst to an organic solvent in an inert gas atmosphere.
  • the reaction temperature is preferably 20 to; 180 ° C is preferred for the reaction time;! To 72 hours is preferred.
  • transition metal catalysts include organic palladium catalysts and organic nickel catalysts. Among these, phosphine, dibenzylideneacetone, an organopalladium catalyst having a acetyl group or a halogen group is preferable as a ligand.
  • Pd (PPh) P
  • the addition amount of a salt such as LiCl is preferably from! To 5 mol, and more preferably from! To 3 mol, per 1 mol of bipyridine derivative A.
  • the organic solvent is preferably a hydrocarbon solvent or an amide solvent. For example, mention can be made of toluene, xylene, DMF and the like.
  • the addition amount of the organic solvent is preferably 0.1 to 5 L with respect to 1 mol of the biviridine derivative A; more preferably! To 3 L.
  • examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, an i-butyl group, an s-butyl group, and a t-butyl group. it can.
  • examples of the aryl group include a phenyl group and a naphthyl group.
  • Examples of the substituted alkyl group include a benzyl group and a methoxymethyl group.
  • R 1 and R 2 hydrogen, methyl group, pentyl group, nonyl group, and heptadecyl group are preferable.
  • the metal (M) tin, zinc, boron and the like are preferable.
  • examples of the ligand L include an alkyl group, an aryl group, an alkoxyl group, chlorine, bromine and iodine.
  • One embodiment of the quarter pyridine derivative of the present invention obtained by the method for producing quarter pyridine derivative A of the present invention is a quarter pyridine derivative (quarter pyridine derivative A) represented by the above formula (3).
  • Z is a monovalent organic group
  • R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group or a substituted alkyl group
  • R 3 and R 4 are Are each independently a monovalent organic group and may be bonded to each other to form a cyclic structure.
  • the alkyl group for R 1 and R 2 include a methyl group, an ethyl group, a propyl group, an i propyl group, a butyl group, an i butyl group, an s butyl group, and a t butyl group.
  • the aryl group include a phenyl group and a naphthyl group.
  • Examples of the substituted alkyl group include a benzyl group and a methoxymethyl group.
  • R 1 and R 2 hydrogen, a methyl group, a pentyl group, a Noel group, and a heptadecyl group are preferable.
  • Examples of Z that is a monovalent organic group include an alkyl group and an aryl group.
  • Examples of the alkyl group include an ethyl group, a propyl group, an i-propyl group, a butyl group, an i-butyl group, and a cyclohexyl group.
  • Z is preferably an i propyl group.
  • R 3 and R 4 include an alkyl group and an aryl group.
  • the alkyl group is preferably an alkyl group having! Further, when R 3 and R 4 are bonded to each other to form a cyclic structure is "one CH C (CH) CH one" and the like are preferable.
  • the quarterpyridine derivative A of the present invention further becomes an intermediate of the quarterpyridine derivative B represented by the above formula (4).
  • the quarterpyridine derivative A can be synthesized from the organometallic intermediate 1 of the present invention synthesized from the following biviridine derivative B and the biviridine derivative A of the present invention, and therefore can be easily synthesized in high yield. . Therefore, it is possible to easily produce the quarterpyridine derivative B with a high yield, and thereby it is possible to produce it industrially and stably.
  • the acetal and ester of the quarterpyridine derivative A represented by the above formula (3) are hydrolyzed to formyl.
  • the formyl group obtained in step 1 / is oxidized to form a carboxyl group, thereby producing quarterpyridine derivative B.
  • Hydrolysis is acid hydrolysis and can be performed by stirring in an aqueous solution in the presence of an acid.
  • the oxidation can be performed by using a general oxidizing agent.
  • acids that can be used for acid hydrolysis include acetic acid, sulfuric acid, hydrochloric acid, p-toluenesulfonic acid, TFA, and the like.
  • the amount of the acid used is preferably 100 to 500 mL with respect to 1 mol of the quarterpyridine derivative A.
  • the amount of water is preferably 100 to 500 mL with respect to 1 mol of quarterpyridine derivative A.
  • Adding an aldehyde compound such as pyridinecarboxaldehyde during the reaction is preferable because the yield of the reaction increases.
  • the amount of the aldehyde compound added is preferably 1 to 10 moles per mole of quarterpyridine derivative A.
  • the reaction temperature is preferably 0 to 100 ° C.
  • the reaction time is preferably 0.5 to 24 hours. Examples of the oxidizing agent that can be used for the oxidation of aldehydes include chromates, permanganates, silver oxide, and chlorites.
  • the amount of oxidizing agent used is preferably 0.5 to 5 moles per mole of quarterpyridine derivative A.
  • the reaction temperature is preferably 0 to 50 ° C.
  • the reaction time is preferably! ⁇ 12 hours. By this reaction, the target compound can be obtained in a yield of 50 to 80 mol%.
  • the alkyl group may be linear or branched, preferably having 1 to 20 carbon atoms.
  • methyl group, ethyl group, propyl group, i-propyl group, butyl group examples include i-butyl group, S-butyl group, and t-butyl group.
  • aryl group a phenyl group, a naphthyl group, and the like are specifically mentioned which preferably have 120 carbon atoms.
  • the substituted alkyl group may be a straight chain or a branched chain which preferably has 120 carbon atoms. Specific examples include a benzyl group and a methoxymethyl group.
  • R 1 and R 2 hydrogen, methyl group, pentyl group, nonyl group, and heptadecyl group are preferable.
  • the biviridine derivative A represented by the above formula (1) and the organometallic intermediate 1 represented by the above formula (2) can be easily synthesized, as described above.
  • the quarterpyridine derivative A represented by the above formula (3) can be easily synthesized from the bibilidine derivative A and the organometallic intermediate 1, and the quarterpyridine represented by the above formula (4) can be synthesized from the quarterpyridine derivative A.
  • Derivative B can be easily synthesized. Therefore, according to the present invention, the quarterpyridine derivative A represented by the above formula (3) and the quarterpyridine derivative B represented by the above formula (4) can be easily produced in high yield. By using these production methods, it is possible to produce industrially and stably.
  • bipyrrolidine derivative of the present invention which is an intermediate in the production method of the quarterpyridine derivative of the present invention, is a biviridine derivative (biviridine derivative A) represented by the above formula (1).
  • examples of the monovalent organic group (Z) include an alkyl group and an aryl group.
  • examples of the alkyl group include an ethyl group and a propyl group, and examples of the perfluoroalkylsulfonyl group include “CF SO —” and “C F SO—”.
  • R 3 and R 4 examples include an alkyl group.
  • the alkyl group those having 14 carbon atoms are preferred.
  • R 3 and R 4 are bonded to each other to form a cyclic structure, “one CH 2 C (CH 2) 2 CH—” or the like is preferable.
  • the biviridine derivative A of the present invention is a synthetic equivalent of the above-mentioned biviridine derivative 3A, and is an intermediate of the quarterpyridine derivative of the present invention.
  • biviridine derivative A which is an intermediate in the production of quarterpyridine derivatives, can be easily synthesized in a high yield by a simple operation using only a less toxic reactant.
  • a pyridine compound having a chlorine group or a bromine group there are many examples of using a pyridine compound having a chlorine group or a bromine group.
  • POC1 or POBr is used.
  • a pyridine derivative 2 represented by the following formula (6) in which a formyl group is protected by reacting a pyridine derivative represented by the following formula (5) with an alcohol is generated.
  • the reaction is carried out in an organic solvent in the presence of an acid while stirring an alcohol and a pyridine derivative represented by the following formula (5).
  • the alcohol diol is preferable, and 2,2-dimethyl-1,3-propanediol is particularly preferable.
  • the reaction temperature is preferably 0 to 120 ° C, and the reaction time is preferably 1 to 72 hours.
  • the organic solvent dichloromethane, toluene and the like are preferable.
  • acids examples include p-toluenesulfonic acid, sulfuric acid, phosphoric acid, and the like.
  • the addition amount of 2,2-dimethylpropanediol is preferably from! To 5 mol, and more preferably from 2 to 2 mol, based on 1 mol of the pyridine derivative represented by the following formula (5).
  • the addition amount of the acid is preferably 0... To 3 moles, more preferably 2 to 2 moles, with respect to 1 mole of the pyridine derivative represented by the following formula (5).
  • the target pyridine derivative 2 can be obtained in a yield of 80 to 95 mol%.
  • M is a metal
  • L is a ligand
  • n is an integer from !! to 3
  • R 3 and R 4 are each independently a monovalent organic group And may be bonded to each other to form a cyclic structure.
  • R 3 and R 4 include alkyl groups and aryl groups. wear.
  • the alkyl group is preferably an alkyl group having 1 to 4 carbon atoms.
  • — and R 4 are bonded to each other to form a cyclic structure, “—CH 2 C (CH 2) 2 CH 1” or the like is preferable.
  • Examples of the ligand L include an alkyl group, aryl group, alkoxyl group, chlorine, bromine and iodine.
  • As the metal (M), tin, zinc, boron and the like are preferable.
  • the pyridine derivative 2 and the metal compound are reacted to produce the organometallic intermediate 2 represented by the above formula (7).
  • the reaction is carried out by adding and stirring the pyridine derivative 2, strong base and activator in an organic solvent under an inert gas atmosphere, and then adding and stirring the metal compound. Nitrogen or argon is preferable as the inert gas.
  • the organic solvent those which are stable to a strong base are preferred, and hydrocarbon solvents or ether solvents are particularly preferred. Hexane and toluene are particularly preferred as the hydrocarbon solvent.
  • Particularly preferred ether solvents are jetyl ether, THF, and t-butyl methyl ether.
  • the amount of the organic solvent is preferably 2 to 4 L, more preferably!
  • the strong base n-butyl lithium, s-butynole lithium, t-butyl lithium, lithium tetramethylpiperidine and the like are preferable.
  • the addition amount of the strong base is preferably 0 ⁇ !! to 5 mol; more preferably! To 3 mol with respect to 1 mol of the pyridine derivative represented by the above formula (6).
  • the activator lithium dimethylamino ethoxide (Me N (CH 3) OLi, Me represents a methyl group) and boron trifluoride are preferable.
  • the addition amount of the agent is preferably 0. !!-5 mol, more preferably! -3 mol, per 1 mol of the pyridine derivative represented by the above formula (6).
  • the stirring before the addition of the metal compound is preferably performed at a temperature of ⁇ 100 to 30 ° C., more preferably 80 to ⁇ 40 ° C.
  • the stirring time is preferably 0.;! To 10 hours; more preferably! To 3 hours.
  • an organic tin compound, an organic boron compound, or a zinc compound is preferable.
  • the organotin compound is preferably a trialkyltin halide, particularly tributyltin chloride.
  • the addition amount of the organometallic compound is preferably 0... To 10 mol, more preferably 1 to 4 mol, relative to 1 mol of the pyridine derivative represented by the above formula (6). Stirring after the addition of the metal compound is preferably performed at a temperature of 100 ° C to 100 ° C, more preferably 80 ° C to 30 ° C. Stirring time is 0.;! ⁇ 24 hours 2 to 4 hours is more preferable. If the temperature is too high, side reactions may occur, and if the temperature is too low, the reaction may be slow. By this reaction, the organometallic intermediate 2 can be obtained with a yield of 40 to 90 mol%.
  • the organometallic intermediate 2 and the pyridine derivative A represented by the following formula (8) are reacted with each other using a transition metal catalyst, and the biviridine derivative of the present invention represented by the above formula (1) is used.
  • the transition metal catalyst include an organic palladium catalyst and an organic nickel catalyst.
  • an organic palladium catalyst having a phosphine, dibenzylideneacetone, acetyl group or halogen group as a ligand is preferable. Specific examples include Pd (PPh), Pd (dba), Pd (OAc), Pd (PPh) CI, etc.
  • the transition metal catalyst is preferably used in an amount of 0.01 to 0.20 mono to 1 mole of the organometallic intermediate 2 represented by the above formula (7), and 0.02 to 0.05. More preferably, it is mono.
  • the reaction is preferably performed between the organometallic intermediate 2 and the pyridine derivative A in the presence of the transition metal catalyst in an organic solvent under an inert gas atmosphere.
  • the organic solvent a hydrocarbon solvent, an ether solvent, or an amide solvent is preferable.
  • toluene, xylene, THF, DMF, DMAc, or the like is preferably used.
  • the amount of the organic solvent used is preferably 0.;! To 5 L with respect to 1 mol of the organometallic intermediate 2 represented by the above formula (7); Further preferred.
  • the reaction temperature is preferably 15 to 200 ° C, and more preferably 50 to 180 ° C. If the temperature is too high, side reactions may occur, and if the temperature is too low, the reaction may be slow.
  • the reaction time is preferably:! -72 hours.
  • adding a salt such as LiCl, CsF, Cul, AsPh during the reaction may increase the reaction yield.
  • the addition amount of the salt such as LiCl is preferably 1 to 5 mol per mol of the organometallic intermediate 2 represented by the above formula (7); Is more preferable.
  • the biviridine derivative A of the present invention can be obtained in a yield of 5 to 30 mol%.
  • the pyridine derivative which is an intermediate in the production method of the biviridine derivative A and is an intermediate in the production method of the quarterpyridin derivative of the present invention, is represented by the following formula (8).
  • This is a pyridine derivative (pyridine derivative A).
  • is a monovalent organic group
  • is a perfluoroalkylsulfonyl group.
  • the monovalent organic group ( ⁇ ) is preferably an alkyl group having 1 to 10 carbon atoms or an aryl group. Specific examples include an ethyl group, a propyl group, an i propyl group, a butyl group, an i butyl group, a cyclohexyl group, and a phenyl group.
  • CF The ability to list “SO—”, “CF SO—”, etc.
  • the method for producing the pyridine derivative A comprises esterifying the carboxyl group of the pyridine derivative represented by the following formula (9), substituting the hydrogen of each of the two hydroxyl groups with a perfluoroalkylsulfonyl group, and then formula (8) This produces a pyridine derivative represented by the formula (pyridine derivative A).
  • the esterification of the carboxyl group of the pyridine derivative represented by the above formula (9) can be performed by reacting the carboxyl group with an alcohol while refluxing at 70 to 150 ° C in the presence of an acid.
  • acids used include sulfuric acid and p-toluenesulfonic acid.
  • the amount of acid added is preferably 0 ⁇ ;! to 2 mol force S, more preferably 0.5 ⁇ 1 mol to 1 mol of the pyridine derivative represented by the above formula (9).
  • examples of alcohols include ethanol, 2-propanol, and cyclohexanol.
  • the amount of alcohol added is preferably 0...
  • a method of stirring in an organic solvent to which a group is added at 40 to 30 ° C. for 1 to 12 hours is preferable.
  • the organic solvent include dichloromethane, black mouth form, pyridine and the like.
  • the amount of the perfluoroalkylsulfonic anhydride added is preferably 1 to 4 moles, more preferably 2 to 3 moles per mole of the pyridine derivative represented by the above formula (9).
  • the base include triethylamine, pyridine and the like.
  • the addition amount of the base is preferably 2 to 3 moles, more preferably! To 4 moles per mole of the pyridine derivative represented by the above formula (9).
  • the amount of the organic solvent used is preferably 0.;!
  • R 1 and R 2 are each independently hydrogen, alkyl group, aryl group or
  • the alkyl group is a substituted alkyl group, and the alkyl group may be a straight chain or a branched chain, preferably having carbon atoms of !!-20.
  • Specific examples include methyl, ethyl, propyl, open-ended pill, butyl, i-butyl, s-butyl, and t-butyl.
  • Specific examples of the aryl group include phenyl and naphthyl which preferably have 1 to 20 carbon atoms.
  • the substituted alkyl group may be a straight chain or branched chain, preferably having 1 to 20 carbon atoms. Specific examples include benzyl and methoxymethyl. Among these, as R 2 , hydrogen, methyl group, pentyl group, Noel group, and heptadecyl group are particularly preferable.
  • M is a metal, and examples of the metal include tin, zinc, and boron.
  • L is a ligand, and examples of the ligand include an alkyl group, an alkoxyl group, chlorine and bromine.
  • the organometallic intermediate 1 represented by the above formula (2) is produced by reacting the biviridine derivative B represented by the following formula (10) with a metal compound.
  • the organometallic intermediate 1 can be obtained by reacting a biviridine derivative B represented by the following formula (10), metal magnesium, and a metal compound in an organic solvent under an inert gas atmosphere.
  • the timing for adding the metal compound is not limited. That is, the power that can be obtained by synthesizing a Grignard reagent of biviridine derivative B first, and then adding a metal compound and conducting a metal exchange reaction.
  • the strength S is preferable, and it is more preferably 0 ⁇ 3 to 0.5 ⁇ L monolayer.
  • the magnesium metal used in the reaction is 0.5 to 5 mol per 1 mol of bibilidine derivative ⁇ represented by the following formula (10). It is preferably 5 mol ;! to 3 mol is more preferable, and the reaction temperature is preferably 0 to 40 ° C. 15
  • the metal compound used for the metal exchange reaction is preferably an organotin compound, an organoboron compound, or a zinc compound, and the organotin compound is preferably a trialkyltin halide, particularly tributyltin chloride.
  • the organoboron compound is preferably trialkoxyborane, particularly preferably triisopropoxyborane, and the zinc compound is preferably zinc halide, particularly preferably zinc chloride.
  • the biviridine derivative B represented by (10) is 0.5 to 5 mol per mol, more preferably! To 3 mol, and the solvent used for the metal exchange reaction is , THF, diethyl ether, DMF, etc.
  • the amount of solvent used is 0. 1 mol of bipyridine derivative B represented by the following formula (10).
  • the power is preferably from 1 to 1 L, more preferably from 0.4 to 0.6 L.
  • the reaction temperature is preferably from 0 to 140 ° C. [0052] (Bibiridin derivative B)
  • biviridine derivative B which is an intermediate in the production method of the organometallic intermediate 1 and an intermediate in the production method of the quarterpyridin derivative of the present invention, is a biviridine derivative (biviridine derivative B) represented by the following formula (10). It is.
  • R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group.
  • the alkyl group may be a straight chain or branched chain, preferably having 1 to 20 carbon atoms. Specific examples include methyl, ethyl, propyl, i-propyl, butyl, i-butyl, s-butyl, and t-butyl.
  • aryl groups include phenyl and naphthyl, which preferably have 1 to 20 carbon atoms.
  • the substituted alkyl group may be a straight chain or branched chain, preferably having 1 to 20 carbon atoms. Specific examples include benzyl and methoxymethyl.
  • R 1 or R 2 hydrogen, methyl group, pentyl group, nonyl group, and heptadecyl group are particularly preferable.
  • the bipyridine derivative B which is an intermediate in the production of the quarterpyridine derivative, can be easily synthesized, so that the quarterpyridine derivative can be easily produced. This makes it possible to produce industrially and stably.
  • a pyridine derivative represented by the following formula (11) is reacted with a metal compound to produce an organometallic intermediate 3 represented by the following formula (12).
  • the reaction is performed by adding a pyridine derivative represented by the following formula (11), a strong base, and an activator to an organic solvent under an inert gas atmosphere and stirring, and then adding a metal compound and stirring.
  • Nitrogen or argon is preferable as the inert gas.
  • the organic solvent those which are stable to strong bases are preferred, and hydrocarbon solvents or ether solvents are particularly preferred. Hexane and toluene are particularly preferred as the hydrocarbon solvent.
  • jetyl ether, THF, or t-butyl methyl ether is particularly preferable.
  • the amount of the organic solvent is preferably 2 to 4 L (liter), more preferably 1 to 5 L (liter) with respect to 1 mol of the pyridine derivative represented by the following formula (11).
  • Strong bases include n-butyllithium, s-butynolethium, tert-butylenolithium,
  • the addition amount of the strong base is preferably from 0.;! To 5 mol, more preferably from 3 to 3 mol, based on 1 mol of the pyridine derivative represented by the following formula (11).
  • Activating agents include lithium dimethylamino ethoxide (Me N (CH 2) OLi, Me represents methyl group), boron trifluoride
  • the addition amount of the activator is preferably 0 .;! To 5 mol, more preferably! To 3 mol, per 1 mol of the pyridine derivative represented by the following formula (11).
  • the stirring prior to the addition of the metal compound is preferably performed at a temperature of 100 to 30 ° C, more preferably 80 to 40 ° C.
  • the stirring time is preferably 0.;! ⁇ 10 hours; more preferably! ⁇ 3 hours.
  • an organic tin compound, an organic boron compound, or a zinc compound is preferable.
  • the organic tin compound trialkyltin halide is preferred, and tributyltin chloride is particularly preferred.
  • organoboron compound trialkoxyborane is preferred, and triisopropoxyborane is particularly preferred! /.
  • zinc compound zinc halide is preferred, and zinc chloride is particularly preferred.
  • the addition amount of the organometallic compound is preferably 0.;! To 10 mol, more preferably! To 4 mol, per 1 mol of the pyridine derivative represented by the following formula (11).
  • the stirring after the addition of the metal compound is preferably 100 to; preferably 100 to 100 ° C, more preferably 80 to 30 ° C.
  • the agitation time is 0.;!-24 hours is preferred, and 2-4 hours is more preferred. If the temperature is too high, side reactions may occur, and if the temperature is too low, the reaction may be slow. By this reaction, organometallic intermediate 3 represented by the following formula (12) can be obtained in a yield of 60 to 90 mol%.
  • Biviridine derivative B has a force S that is required to have a halogen group for the subsequent reaction, a halogen group force S, and if it is a bromine group or an iodine group, If a strong base is used for this, the halogen group such as bromine reacts, and the biviridine derivative B cannot be easily produced. On the other hand, if it is a chlorine group, it does not react even when a strong base is used, and the biviridine derivative B can be easily synthesized by the reaction step shown in the production method of the biviridine derivative B. In addition, pyridine derivatives having a chlorine group are cheaper and easier to obtain than pyridine derivatives having a bromine group or an iodine group.
  • the organometallic intermediate 3 represented by the above formula (12) and the pyridine derivative 1 represented by the above formula (13) are reacted using a transition metal catalyst.
  • a transition metal catalyst include an organic palladium catalyst and an organic nickel catalyst.
  • an organic palladium catalyst having phosphine, dibenzylideneacetone, a acetyl group or a halogen group as a ligand is preferable.
  • the amount of the catalyst used is preferably 0.;! To 20 mol%, more preferably 2 to 5 mol%, relative to the pyridine derivative 1 represented by the above formula (13).
  • the organometallic intermediate 3 is preferably 0.5 to 2 monoreca S, more preferably 0.8 to 1.2 moles per mole of the pyridin derivative 1.
  • the reaction is preferably performed between the organometallic intermediate 3 and the pyridine derivative 1 in an organic solvent in an inert gas atmosphere, in the presence of the transition metal catalyst, and under reflux conditions.
  • the inert gas nitrogen or argon is preferable.
  • the organic solvent hydrocarbon solvents, ether solvents, or amide solvents are preferable.
  • toluene, xylene, THF, DMF, DMAc and the like are preferably used.
  • the amount of the organic solvent is preferably 0.1 to 5 L (liter), more preferably 1 to 3 L (liter) with respect to 1 mole of pyridine derivative 1.
  • the reaction temperature is preferably 15 to 200 ° C., 50 to; more preferably 180 ° C. If the temperature is too high, side reactions may occur, and if the temperature is too low, the reaction may be slow.
  • the reaction time is preferably;!-72 hours. During the reaction, LiCl CsF Cul AsPh etc.
  • Addition of the salt 3 is preferable because the reaction yield may be increased.
  • the addition amount of a salt such as LiCl is preferably 15 mol per mol of pyridine derivative 1; more preferably 3 to 3 mol.
  • R 1 and R 2 are CH and biviridine derivatives and halogenated alkyls.
  • Bibilidine derivative B represented by the above formula (10) can be produced by reacting with kill. This reaction is preferably carried out by the method described in “: Langmuir 2002 18 952-954”. The reaction is carried out by adding a biviridine derivative and lithium diisopropylamide (LDA) in an organic solvent under an inert gas atmosphere and stirring at a temperature of ⁇ 80 to 40 ° C .; Is preferably added and stirred at ⁇ 400 ° C. for 26 hours. By this reaction, the hydrogen atom of the methyl group of the biviridine derivative can be replaced with the alkyl group contained in the alkyl halide to obtain the biviridine derivative B of the above formula (10).
  • LDA lithium diisopropylamide
  • the addition amount of LDA is preferably ⁇ 3 mol, more preferably 2.0 2.5 mol, with 1 mol of the biviridine derivative.
  • the organic solvent it is preferable to use tetrahydrofuran (THF), jetyl ether or the like.
  • the amount of the organic solvent is preferably 15 L, more preferably 24 L, relative to 1 mol of the pyridine derivative.
  • the halogenated alkyl preferably has 120 carbon atoms. Specific examples include butane bromide, octane bromide, and hexadecane bromide.
  • the addition amount of the alkyl halide is more preferably 23 to 3 mol, preferably from! To 5 mol, when the bibilidine derivative is 1 mol.
  • R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group or a substituted alkyl group, M is a metal, and L is a coordination group.
  • N is an integer from! To 3;
  • X 1 is bromine, iodine or trifluoromethanesulfonate (“one OSO CF
  • the alkyl group may be a straight chain or a branched chain, preferably having 120 carbon atoms. Specifically, methyl group, ethyl group, propylene Group, i-propyl group, butyl group, i-butyl group, S-butyl group, t-butyl group, etc.
  • Specific examples of the aryl group include a phenyl group and a naphthyl group, which preferably have 1 to 20 carbon atoms.
  • the substituted alkyl group preferably has 1 to 20 carbon atoms and may be linear or branched. Specific examples include benzyl and methoxymethyl. Among these, as R 1 or R 2 , hydrogen, methyl group, pentyl group, nonyl group, and heptadecyl group are particularly preferable.
  • the metal (M) is preferably tin, zinc, boron or the like. Examples of the ligand L include an alkyl group, an alkoxyl group, chlorine, bromine and the like.
  • Another method for producing quarterpyridine derivative C represented by the following formula (16) is to react bibilidine derivative B represented by the above formula (10) with an organic metal to produce the above formula (2). ), An organometallic intermediate 1 represented by the following formula (15) is reacted with a biviridine derivative represented by the following formula (15) using a transition metal catalyst: This produces the quarterpyridine derivative C. Since the production method of the quarterpyridine derivative C is thus produced using the biviridine derivative represented by the above formula (10), it is necessary to use a difficult-to-produce biviridine derivative represented by the above formula (1A). Therefore, the quarterpyridine derivative C can be easily produced.
  • the quarter pyridine derivative C is produced using a biviridine derivative B represented by the above formula (10) and a biviridine derivative represented by the following formula (15) which is a biviridine derivative having a more general structure.
  • a biviridine derivative represented by the following formula (15) when a quarterpyridine derivative is produced using the biviridine derivative A represented by the above formula (1), it is represented by the above formula (3). This is a method for producing quarterpyridine derivative A.
  • R 1 and R 2 are each independently hydrogen, alkyl group, a ⁇ aryl group or a substituted alkyl group, a monovalent organic group each R is independently J is an integer from 1 to 3, k is an integer from 1 to 4, and X 1 is bromine, iodine, or “one OSO CF”.
  • Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an i propyl group, a butyl group, an i butyl group, an S butyl group, and a t butyl group.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • Examples of the substituted alkyl group include a benzyl group and a methoxymethyl group.
  • R 1 and R 2 hydrogen, a methyl group, a pentyl group, a Noel group, and a heptadecyl group are preferable.
  • the metal (M) is preferably tin, zinc, boron or the like.
  • Examples of the ligand L include an alkyl group, aryl group, alkoxy group, chlorine, bromine and iodine.
  • biviridine derivative B represented by the above formula (10) is reacted with an organometallic to produce organometallic intermediate 1 represented by the above formula (2).
  • the method is preferably the same as in the above-mentioned “Method for producing quarterpyridine derivative A”.
  • the biviridine derivative represented by the above formula (15) can be obtained by the method described in “J. Org. Chem., 2002, 67, 8269-8272”, for example.
  • the biviridine derivative A represented by the above formula (1) when used as the biviridine derivative represented by the above formula (15), it can be obtained by the method for producing the biviridine derivative A described above.
  • Specific examples of the biviridine derivative represented by the formula (15) include 6 bromo-4,4 ′ dimethyl-2,2 ′ biviridine and the like.
  • the above-described quarterpyridine is used as a method of reacting the organometallic intermediate 1 represented by the above formula (2) and the biviridine derivative represented by the above formula (15) using a transition metal catalyst.
  • the organometallic intermediate 1 is reacted with the biviridine derivative A represented by the above formula (1) using a transition metal catalyst to produce the quarterpyridine having the above formula (3). It is preferred to use a method similar to the method of forming derivative A! /.
  • each R is independently a monovalent organic group
  • j is an integer of 1 to 3
  • k is an integer of 1 to 4
  • M is a metal
  • L is a ligand
  • n is an integer from;!
  • Z is a monovalent organic group
  • R 3 and R 4 are Each is independently a monovalent organic group and may be bonded to each other to form a cyclic structure.
  • the metal (M) tin, zinc, boron and the like are preferable.
  • the ligand L include an alkyl group, an aryl group, an alkoxy group, chlorine, bromine and iodine.
  • Examples of the monovalent organic group (R) include an alkyl group, a carboxyl group and a derivative thereof, a formyl group and a derivative thereof.
  • Examples of the monovalent organic group (Z) include an alkyl group and an aryl group.
  • R 3 and R 4 it is possible to enumerate alkyl groups, aryl groups, and the like.
  • the alkyl group is preferably an alkyl group having 1 to 4 carbon atoms.
  • the biviridine derivative represented by the above formula (17) can be obtained by the method described in “J. Org. Chem., 2002, 67, 8269-8272”, for example.
  • represented by the above formula (17) When the biviridine derivative B represented by the above formula (10) is used as the biviridine derivative, it can be obtained by the “production method of the biviridine derivative B” described above.
  • specific examples of the biviridine derivative represented by the formula (17) include 6-bromo-4,4′dimethyl-2,2′-biviridine.
  • a biviridine derivative represented by the above formula (17) is reacted with an organic metal to obtain an organometallic intermediate 4 represented by the above formula (18).
  • the method of formation is preferably the same as in the case of the above-mentioned “Method for producing quarterpyridine derivative A”.
  • a quarterpyridine derivative represented by the above formula (3) is prepared by reacting the organometallic intermediate 1 with the biviridine derivative A represented by the above formula (1) using a transition metal catalyst. It is preferable to use a method similar to the method of generating A! /.
  • a production method (1) of a terpyridine derivative represented by the following formula (21) is obtained by reacting a bipyridine derivative B represented by the above formula (10) with an organic metal to produce an organometallic represented by the above formula (2).
  • Intermediate 1 is produced, and terpyridine derivative A represented by the following formula (21) is produced by reacting organometallic intermediate 1 with a pyridine derivative represented by the following formula (20) using a transition metal catalyst. It is something to be made.
  • R is each independently a monovalent organic group
  • j is an integer of 1 to 4
  • X 1 is bromine, iodine or “one OSO CF”
  • R 1 And R 2 are German In particular, it is hydrogen, an alkyl group, an aryl group or a substituted alkyl group.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, an i propyl group, a butyl group, an i butyl group, an s-butyl group, and a t butyl group.
  • the aryl group include a phenyl group and a naphthyl group.
  • Examples of the substituted alkyl group include a benzyl group and a methoxymethyl group.
  • R 1 and R 2 hydrogen, a methyl group, pentyl group, nonyl group, heptadecyl group.
  • Examples of the monovalent organic group (R) include an alkyl group, a carboxyl group and derivatives thereof, a formyl group and derivatives thereof, and the like.
  • an organometallic intermediate 1 represented by the above formula (2) is obtained by reacting the bibilidine derivative B represented by the above formula (10) with an organometallic.
  • the method for producing is preferably the same as in the above-mentioned “method for producing quarterpyridine derivative A”.
  • the pyridine derivative represented by the above formula (20) can be obtained, for example, by the method described in “Eur. J. Org. Chem., 2003, 19, 3855-3860”. Specific examples of the pyridine derivative represented by the formula (20) include 2 bromo-4-methylpyridine.
  • the above-mentioned quarter pyridine derivative is used as a method of reacting the organometallic intermediate 1 represented by the above formula (2) with the pyridine derivative represented by the above formula (20) using a transition metal catalyst.
  • a quarterpyridine derivative represented by the above formula (3) is prepared by reacting the organometallic intermediate 1 with the biviridine derivative A represented by the above formula (1) using a transition metal catalyst. It is preferable to use a method similar to the method of generating A! /.
  • the terpyridine derivative B represented by the following formula (24) is produced by reacting a pyridine derivative represented by the following formula (22) with an organic metal to produce an organometallic intermediate 5 represented by the following formula (23).
  • the terpyridine derivative B represented by the following formula (24) is produced by reacting the biviridine derivative represented by the above formula (1) with the organometallic intermediate 5 using a transition metal catalyst. is there.
  • R is each independently a monovalent organic group
  • j is an integer of 1 to 4
  • X 2 is a halogen atom
  • L is a ligand.
  • N is an integer from;!
  • Z is a monovalent organic group
  • R 3 and R 4 are each independently a monovalent organic group, and are bonded to each other to form a cyclic structure. It may be a group.
  • M tin, zinc, boron and the like are preferable.
  • the ligand L include an alkyl group, aryl group, alkoxyl group, chlorine, bromine and iodine.
  • Examples of the monovalent organic group (R) include an alkyl group, a carboxyl group and a derivative thereof, a formyl group and a derivative thereof.
  • Examples of the monovalent organic group (Z) include an alkyl group and an aryl group.
  • Examples of R 3 and include an alkyl group and an aryl group.
  • the alkyl group is preferably an alkyl group having 1 to 4 carbon atoms.
  • the pyridine derivative represented by the above formula (20) can be obtained by the method described in "Eur. J. Org. Chem., 2003, 19, 3855-3860", for example.
  • Specific examples of the pyridine derivative represented by the formula (20) include 2 bromo-4-methylpyridine.
  • an organometallic intermediate 5 represented by the above formula (23) is obtained by reacting a pyridine derivative represented by the above formula (22) with an organometallic.
  • the method for producing the organic metal intermediate 3 represented by the formula (12) is obtained by reacting the pyridine derivative represented by the formula (11) with an organic metal in the above-mentioned “production method of the biviridine derivative B”. It is preferable to use a method similar to the method of generating.
  • a quarterpyridine derivative represented by the above formula (3) is prepared by reacting the organometallic intermediate 1 with the biviridine derivative A represented by the above formula (1) using a transition metal catalyst. It is preferable to use a method similar to the method of generating A! /.
  • Citrazic acid (71 g, 460 mmol) and 2 propanol (about 1 L) were taken in a 2 L flask equipped with a magnetic stirrer, oil bath and Dimroth condenser. Concentrated sulfuric acid (about 50 mU was added to this suspension and then refluxed for about 60 hours. Water (about 1 L) was placed in a 2 L beaker equipped with a magnetic stirrer, and the above solution (refluxed for 60 hours). The latter solution was added dropwise to obtain a solid, which was collected by filtration using a Kiriyama funnel, and the obtained solid was washed with ethanol, and the solid was dried under heat ( ⁇ 10 torr, about 50 torr). This gave a white solid of isopropyl citrate shown in the following formula (31) (74 g, 380 mmol, yield 82%).
  • Tributylstannyl-4 1 (4,4 1-dimethyl-2,6 dioxanyl) pyridine synthesized above and 2, 6 bis (trifluoromethanesulfodioxy) 4 isopropoxycarbonylpyridine (11.7 g, 25 mmol) and toluene (75 mU were added and then degassed three times using a vacuum apparatus. Tetrakis (triphenylphosphine) para-dioxide was added to a 300 mL flask equipped with a magnetic stirrer, oil bath, three-way cock, and Jim mouth condenser.
  • magnesium metal (96 mg, 4 mmol) was taken, dried by heating under reduced pressure, and then anhydrous THF (0.5 mL) and I ( A small piece) and stir at room temperature for about 10 minutes.
  • the method for producing a quarterpyridine derivative of the present invention and its intermediate can be used for the production of a quarterpyridine derivative which is a dye raw material used in a dye-sensitized solar cell.
  • the quarter pyridine derivative can be easily produced by the method for producing the derivative and its intermediate.

Abstract

Disclosed is a method for producing a quarter-pyridine derivative wherein a bipyridine derivative represented by the formula (1) below is reacted with an organic metal intermediate represented by the formula (2) below by using a transition metal catalyst, thereby producing a quarter-pyridine derivative represented by the formula (3) below. This method enables to produce a quarter-pyridine derivative easily.

Description

明 細 書  Specification
クォータピリジン誘導体の製造方法及びその中間体  Method for producing quarterpyridine derivative and its intermediate
技術分野  Technical field
[0001] 本発明は、クォータピリジン誘導体の製造方法及びその中間体に関し、更に詳しく は、容易にクォータピリジン誘導体を製造することが可能な、クォータピリジン誘導体 の製造方法及びその中間体に関する。  TECHNICAL FIELD [0001] The present invention relates to a production method of a quarterpyridine derivative and an intermediate thereof, and more particularly to a production method of a quarterpyridine derivative and an intermediate thereof capable of easily producing a quarterpyridine derivative.
背景技術  Background art
[0002] 色素 ·半導体電極 ·電解液および金属電極で構成される色素増感型太陽電池はグ レッツエルセルと呼ばれ、従来のシリコン製太陽電池と比較するとコストの点で有利で あるとされる。そして、それだけにとどまらず、他にもフレキシビリティやデザイン性とい つた点においても優れており、幅広い分野での応用が期待されている。しかし、光電 変換効率はいまだ十分であるとはいえず、実用化に向けて高性能な色素の開発が 求められているのが現状である。色素としては各種金属錯体ゃ有機色素(金属不含 有)などが検討されている力 性能の点ではルテニウム錯体が有望視されており、既 に多くのルテニウム錯体が検討、開発されている。大別するとビビリジン (bipyridine) 錯体 (例えば、非特許文献 1 , 2及び 3参照)、ターピリジン (terpyridine)錯体 (例え ば、非特許文献 4参照)、クォータピリジン (quaterpyridine)錯体 (例えば、非特許 文献 5, 6、及び特許文献 1参照)に分類することができる。ビビリジン錯体とターピリジ ン錯体では一般的に 2つの NCS配位子がシス(cis)型をとる力 クォータピリジン錯 体ではトランス(trans)型をとるという点で特異的であり、この結果として吸収スぺタト ルがブロード化し、長波長側の吸収が強くなる。  [0002] A dye-sensitized solar cell including a dye, a semiconductor electrode, an electrolyte, and a metal electrode is called a Gretzell cell, and is considered to be advantageous in terms of cost as compared with a conventional silicon solar cell. Not only that, it is also excellent in terms of flexibility and design, and is expected to be applied in a wide range of fields. However, the photoelectric conversion efficiency is still not sufficient, and the current situation is that development of high-performance dyes is required for practical use. Various metal complexes and organic dyes (metal-free) are being considered as dyes. Ruthenium complexes are promising in terms of power and performance, and many ruthenium complexes have already been studied and developed. Broadly speaking, bipyridine complexes (for example, see Non-Patent Documents 1, 2 and 3), terpyridine complexes (for example, see Non-Patent Document 4), quaterpyridine complexes (for example, Non-Patent Documents) 5, 6 and Patent Document 1). The bipyridine and terpyridin complexes are generally specific in that the two NCS ligands are in the cis form, and the quarterpyridine complex is in the trans form. The petals become broader and the absorption on the longer wavelength side becomes stronger.
[0003] クォータピリジン系のルテニウム錯体としては、下記式(1B)で表されるクォータピリ ジン誘導体のルテニウム錯体が開示されてレ、る(例えば、特許文献 1参照)。  [0003] As the quarterpyridine ruthenium complex, a ruthenium complex of a quarterpyridine derivative represented by the following formula (1B) is disclosed (for example, see Patent Document 1).
[0004] [化 1] [0004] [Chemical 1]
Figure imgf000002_0001
[0005] 上記クォータピリジン誘導体の「COOEt」基は Ru錯体(色素)に変換された後、加 水分解により「COOH」基になる。その「COOH」基は色素増感太陽電池の TiO電
Figure imgf000002_0001
[0005] The "COOEt" group of the quarterpyridine derivative is converted to a Ru complex (dye) and then converted to a "COOH" group by hydrolysis. The COOH group is a TiO battery for dye-sensitized solar cells.
2 極に色素を吸着させるために必要な置換基である。また、 Rのアルキル基は色素増 感太陽電池の耐候性に重要である。上記クォータピリジン誘導体は下記式(1A)で 表されるビビリジン誘導体から下記式 (2A)で表されるビビリジン誘導体 (有機金属) を合成し、次いで、下記式(3A)で表されるビビリジン誘導体と、下記式(2A)で表さ れるビピリジン誘導体とを反応させることにより合成するものであった。  2 Substituent necessary for adsorbing the dye to the electrode. The alkyl group of R is important for the weather resistance of dye-sensitized solar cells. The quarterpyridine derivative is obtained by synthesizing a biviridine derivative (organic metal) represented by the following formula (2A) from a biviridine derivative represented by the following formula (1A), and then a biviridine derivative represented by the following formula (3A): The compound was synthesized by reacting with a bipyridine derivative represented by the following formula (2A).
[0006] [化 2] [0006] [Chemical 2]
Figure imgf000003_0001
Figure imgf000003_0001
( 1 A) ( 2 A) ( 3 A)  (1 A) (2 A) (3 A)
[0007] しかし、上記クォータピリジン誘導体の製造方法では、必ずしも容易に所望のクオ一 タピリジン誘導体を製造することはできなかった。 [0007] However, the above-described method for producing quarterpyridine derivatives has not always produced the desired quarterpyridine derivative easily.
非特許文献 1 :J. Phys. Chem. B、 2003、 107、 8981 - 8987  Non-Patent Document 1: J. Phys. Chem. B, 2003, 107, 8981-8987
非特許文献 2 : Langmuir、 2002、 18、 952- 954  Non-Patent Document 2: Langmuir, 2002, 18, 952-954
非特許文献 3: Langmuir、 2001、 17、 5992- 5999  Non-Patent Document 3: Langmuir, 2001, 17, 5992- 5999
非特許文献 4 :J. Am. Chem. Soc.、 2001、 123、 1613- 1624  Non-Patent Document 4: J. Am. Chem. Soc., 2001, 123, 1613-1624
非特許文献 5 : Inorg. Chem.、 2002、 41、 367- 378  Non-Patent Document 5: Inorg. Chem., 2002, 41, 367-378
非特許文献 6 : Inorg. Chem.、 2006、 45、 4642-4653  Non-Patent Document 6: Inorg. Chem., 2006, 45, 4642-4653
特許文献 1 :特開 2005— 190875号公報  Patent Document 1: JP-A-2005-190875
発明の開示  Disclosure of the invention
[0008] 上記クォータピリジン誘導体の製造方法において、中間体として生成されるべき 1A 及び 3Aは、その合成が極めて困難なものであった。そのため、上記製造方法では、 容易にはクォータピリジン誘導体を製造することができなかった。そして、更に、工業 的な利用を想定した場合には、更に、製造困難なものと考えられた。  [0008] In the production method of the quarterpyridine derivative, 1A and 3A to be produced as intermediates are extremely difficult to synthesize. Therefore, the quarterpyridine derivative cannot be easily produced by the above production method. Furthermore, when it was assumed that it would be used industrially, it was considered that it was more difficult to manufacture.
[0009] 本発明は、上述の問題に鑑みてなされたものであり、容易にクォータピリジン誘導 体を製造することが可能な、クォータピリジン誘導体の製造方法及びその中間体を提 供することを特徴とする。 [0009] The present invention has been made in view of the above-mentioned problems, and can be easily derived from quarterpyridine. It is characterized by providing a production method of a quarterpyridine derivative and an intermediate thereof capable of producing a product.
[0010] 上記課題を解決する本発明のクォータピリジン誘導体の製造方法及びその中間体 は、以下に示す通りである。 [0010] The production method of the quarterpyridine derivative of the present invention and the intermediate thereof for solving the above-mentioned problems are as follows.
[0011] [1] 下記式(1)で表されるビビリジン誘導体と、下記式 (2)で表される有機金属中間 体とを、遷移金属触媒を用いて反応させて下記式 (3)で表されるクォータピリジン誘 導体を生成させるクォータピリジン誘導体の製造方法。  [0011] [1] A biviridine derivative represented by the following formula (1) and an organometallic intermediate represented by the following formula (2) are reacted with each other using a transition metal catalyst. A method for producing a quarterpyridine derivative, wherein the quarterpyridine derivative is represented.
[0012] [化 3]  [0012] [Chemical 3]
Figure imgf000004_0001
Figure imgf000004_0001
(式(1)において、 Zは 1価の有機基、 Yはパーフルォロアルキルスルホニル基、 R3及 び R4は、それぞれ独立に 1価の有機基であり、互いに結合して環状構造を形成して あよレヽ基である。) (In Formula (1), Z is a monovalent organic group, Y is a perfluoroalkylsulfonyl group, R 3 and R 4 are each independently a monovalent organic group, and are bonded to each other to form a cyclic structure. To form an ayo lei group.)
[0013] [化 4]  [0013] [Chemical 4]
Figure imgf000004_0002
Figure imgf000004_0002
(式(2)において、 Mは金属であり、 R1及び R2はそれぞれ独立に、水素、アルキル基 、ァリール基又は置換アルキル基であり、 Lは配位子であり、 nは;!〜 3の整数である。 ) (In Formula (2), M is a metal, R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group, L is a ligand, and n is; It is an integer of 3.)
[0014] [化 5]  [0014] [Chemical 5]
Figure imgf000004_0003
(式(3)において、 Zは 1価の有機基であり、 R1及び はそれぞれ独立に、水素、ァ ルキル基、ァリール基又は置換アルキル基であり、 R3及び R4は、それぞれ独立に 1 価の有機基であり、互いに結合して環状構造を形成してもよい基である。 )
Figure imgf000004_0003
(In Formula (3), Z is a monovalent organic group, R 1 and are each independently hydrogen, an alkyl group, an aryl group or a substituted alkyl group, and R 3 and R 4 are each independently A monovalent organic group that may be bonded to each other to form a cyclic structure.
[0015] [2] 下記式(3)で表されるクォータピリジン誘導体のァセタールおよびエステルを加 水分解してそれぞれホルミル基およびカルボキシル基とし、得られたホルミル基を酸 化してカルボキシル基として下記式 (4)で表されるクォータピリジン誘導体を生成させ るクォータピリジン誘導体の製造方法。  [2] The acetal and ester of the quarterpyridine derivative represented by the following formula (3) are hydrolyzed to formyl group and carboxyl group, respectively, and the resulting formyl group is oxidized to form a carboxyl group by the following formula A method for producing a quarterpyridine derivative, wherein the quarterpyridine derivative represented by (4) is produced.
[0016] [化 6]  [0016] [Chemical 6]
Figure imgf000005_0001
Figure imgf000005_0001
(式(3)において、 Zは 1価の有機基であり、 R1及び R2はそれぞれ独立に、水素、ァ ルキル基、ァリール基又は置換アルキル基であり、 R3及び R4は、それぞれ独立に 1 価の有機基であり、互いに結合して環状構造を形成してもよい基である。 ) (In Formula (3), Z is a monovalent organic group, R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group, and R 3 and R 4 are each Independently a monovalent organic group, which may be bonded to each other to form a cyclic structure.
[0017] [化 7]  [0017] [Chemical 7]
Figure imgf000005_0002
Figure imgf000005_0002
(式 (4)において、 R1及び ITはそれぞれ独立に、水素、アルキル基、ァリール基又は 置換アルキル基である。 ) (In Formula (4), R 1 and IT are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group.)
[0018] [3] 下記式(1)で表されるビビリジン誘導体。 [0018] [3] A biviridine derivative represented by the following formula (1):
[0019] [化 8]
Figure imgf000006_0001
[0019] [Chemical 8]
Figure imgf000006_0001
(式(1)において、 Zは 1価の有機基、 Yはパーフルォロアルキルスルホニル基、 R3及 び R4は、それぞれ独立に 1価の有機基であり、互いに結合して環状構造を形成して あよレヽ基である。 ) (In Formula (1), Z is a monovalent organic group, Y is a perfluoroalkylsulfonyl group, R 3 and R 4 are each independently a monovalent organic group, and are bonded to each other to form a cyclic structure. To form Ayorayo.)
[0020] [4] 下記式 (2)で表される有機金属中間体。  [0020] [4] An organometallic intermediate represented by the following formula (2):
[0021] [化 9] [0021] [Chemical 9]
Figure imgf000006_0002
Figure imgf000006_0002
(式(2)において、 Μは金属であり、 R1及び R2はそれぞれ独立に、水素、アルキル基 、ァリール基又は置換アルキル基であり、 Lは配位子であり、 ηは;!〜 3の整数である。(In Formula (2), Μ is a metal, R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group or a substituted alkyl group, L is a ligand, and η is; It is an integer of 3.
) )
[0022] [5] 下記式(3)で表されるクオ一 誘導体。  [0022] [5] A kuoi derivative represented by the following formula (3):
[0023] [化 10] [0023] [Chemical 10]
Figure imgf000006_0003
Figure imgf000006_0003
(式(3)において、 Ζは 1価の有機基であり、 R1及び R2はそれぞれ独立に、水素、ァ ルキル基、ァリール基又は置換アルキル基であり、 R3及び R4は、それぞれ独立に 1 価の有機基であり、互いに結合して環状構造を形成してもよい基である。 ) (In Formula (3), Ζ is a monovalent organic group, R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group, and R 3 and R 4 are each Independently a monovalent organic group, which may be bonded to each other to form a cyclic structure.
[0024] 本発明のクォータピリジン誘導体の製造方法は、その製造過程において、所定の 中間体を容易に生成させ、それらを用いて最終的にクォータピリジン誘導体を製造 するため、全体として容易にクォータピリジン誘導体を製造することが可能となり、ェ 業的にも安定して生産することが可能である。 [0024] The method for producing a quarterpyridine derivative of the present invention easily produces a predetermined intermediate in the production process, and finally produces a quarterpyridine derivative using them. It becomes possible to produce derivatives. It is possible to produce it stably industrially.
[0025] また、本発明のクォータピリジン誘導体の中間体は、容易に合成することが可能で あるので、これらをクォータピリジン誘導体の製造に用いることにより、全体として容易 にクォータピリジン誘導体を製造することが可能となり、工業的にも安定して生産する ことが可能である。 [0025] In addition, since the intermediate of the quarterpyridine derivative of the present invention can be easily synthesized, the quarterpyridine derivative can be easily produced as a whole by using these for the production of the quarterpyridine derivative. Therefore, it is possible to produce industrially stably.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 次に、本発明を実施するための最良の形態を詳細に説明するが、本発明は以下の 実施形態に限定されるものではなぐ本発明の趣旨を逸脱しない範囲で、当業者の 通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべ きである。 [0026] Next, the best mode for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and is within the scope of the present invention. It should be understood that design changes and improvements can be made as appropriate based on normal knowledge.
[0027] (クォータピリジン誘導体 Aの製造方法)  [0027] (Method for producing quarterpyridine derivative A)
本発明のクォータピリジン誘導体(クォータピリジン誘導体 A)の製造方法は、上記 式(1)で表される本発明のビビリジン誘導体(ビビリジン誘導体 A)と、上記式(2)で表 される本発明の有機金属中間体 (有機金属中間体 1)とを、遷移金属触媒を用いて 反応させて上記式(3)で表される本発明のクォータピリジン誘導体(クォータピリジン 誘導体 A)を生成させるものである。反応は、不活性ガス雰囲気下の有機溶媒中に 有機金属中間体 1、ビビリジン誘導体 A及び遷移金属触媒を添加し、行うことが好ま しい。反応温度は、 20〜; 180°Cが好ましぐ反応時間は;!〜 72時間が好ましい。遷 移金属触媒としては、有機パラジウム触媒、有機ニッケル触媒等を挙げることができ る。これらの中でも配位子としてホスフィン、ジベンジリデンアセトン、ァセチル基また はハロゲン基を有する有機パラジウム触媒が好ましい。具体的には Pd (PPh ) 、 Pd  The production method of the quarterpyridine derivative (quarterpyridine derivative A) of the present invention includes the biviridine derivative (biviridine derivative A) of the present invention represented by the above formula (1) and the present invention represented by the above formula (2). An organometallic intermediate (organometallic intermediate 1) is reacted with a transition metal catalyst to produce the quarterpyridine derivative (quarterpyridine derivative A) of the present invention represented by the above formula (3). . The reaction is preferably carried out by adding organometallic intermediate 1, biviridine derivative A and a transition metal catalyst to an organic solvent in an inert gas atmosphere. The reaction temperature is preferably 20 to; 180 ° C is preferred for the reaction time;! To 72 hours is preferred. Examples of transition metal catalysts include organic palladium catalysts and organic nickel catalysts. Among these, phosphine, dibenzylideneacetone, an organopalladium catalyst having a acetyl group or a halogen group is preferable as a ligand. Specifically, Pd (PPh), Pd
3 4 2 3 4 2
(dba) 、 Pd (〇Ac) ゝ Pd (PPh ) CI等が挙げられる(Phはフエニル基、 dbaはジべ(dba), Pd (〇Ac) ゝ Pd (PPh) CI, etc. (Ph is a phenyl group, dba is
3 2 3 2 2 3 2 3 2 2
ンジリデンアセトン、 Acはァセチル基を示す)。遷移金属触媒の使用量は、上記式(1 )で表されるビビリジン誘導体 Aに対して、;!〜 20モル0 /0であることが好ましぐ 2〜5 モル0 /0であることが更に好ましい。反応中に、 LiCl、 CsF、 Cul、 AsPh等の塩を添 Nylideneacetone, Ac represents a acetyl group). The amount of transition metal catalyst with respect Bibirijin derivative A represented by the above formula (1);! That it ~ 20 mole 0/0 is preferred instrument 2-5 mole 0/0 Further preferred. During the reaction, salts such as LiCl, CsF, Cul, AsPh are added.
3  Three
加すると反応の収率が上がることがあるため好ましい。 LiCl等の塩の添加量は、ビピ リジン誘導体 Aを 1モルに対して、;!〜 5モルであることが好ましぐ;!〜 3モルであるこ とが更に好ましい。有機溶媒としては、炭化水素系溶媒またはアミド系溶媒が好ましく 、例えば、トルエン、キシレン、 DMF等を挙げること力 Sできる。有機溶媒の添加量は、 ビビリジン誘導体 Aを 1モルに対して、 0. 1〜5Lであることが好ましぐ;!〜 3Lである ことが更に好ましい。 Addition is preferable because the yield of the reaction may increase. The addition amount of a salt such as LiCl is preferably from! To 5 mol, and more preferably from! To 3 mol, per 1 mol of bipyridine derivative A. The organic solvent is preferably a hydrocarbon solvent or an amide solvent. For example, mention can be made of toluene, xylene, DMF and the like. The addition amount of the organic solvent is preferably 0.1 to 5 L with respect to 1 mol of the biviridine derivative A; more preferably! To 3 L.
[0028] 上記式(2)において、アルキル基としては、メチル基、ェチル基、プロピル基、 iープ 口ピル基、ブチル基、 i ブチル基、 s ブチル基、 t ブチル基等を挙げることができ る。ァリール基としては、フエニル基、ナフチル基等を挙げることができる。置換アルキ ル基としては、ベンジル基、メトキシメチル基等を挙げることができる。これらのなかで も、 R1および R2としては、水素、メチル基、ペンチル基、ノニル基、ヘプタデシル基が 好ましい。金属(M)としてはスズ、亜鉛、ホウ素等が好ましい。配位子 Lとしては、ァ ルキル基、ァリール基、アルコキシル基、塩素、臭素、ヨウ素等を挙げること力 Sできる。 In the above formula (2), examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, an i-butyl group, an s-butyl group, and a t-butyl group. it can. Examples of the aryl group include a phenyl group and a naphthyl group. Examples of the substituted alkyl group include a benzyl group and a methoxymethyl group. Among these, as R 1 and R 2 , hydrogen, methyl group, pentyl group, nonyl group, and heptadecyl group are preferable. As the metal (M), tin, zinc, boron and the like are preferable. Examples of the ligand L include an alkyl group, an aryl group, an alkoxyl group, chlorine, bromine and iodine.
[0029] (クォータピリジン誘導体 A)  [0029] (Quotapyridine derivative A)
上記本発明のクォータピリジン誘導体 Aの製造方法により得られる、本発明のクオ ータピリジン誘導体の一実施形態は、上記式 (3)で表されるクォータピリジン誘導体( クォータピリジン誘導体 A)である。  One embodiment of the quarter pyridine derivative of the present invention obtained by the method for producing quarter pyridine derivative A of the present invention is a quarter pyridine derivative (quarter pyridine derivative A) represented by the above formula (3).
[0030] 上記式(3)において、 Zは 1価の有機基であり、 R1及び R2はそれぞれ独立に、水素 、アルキル基、ァリール基又は置換アルキル基であり、 R3及び R4は、それぞれ独立 に 1価の有機基であり、互いに結合して環状構造を形成してもよい基である。 R1及び R2のアルキル基としては、メチル基、ェチル基、プロピル基、 i プロピル基、ブチル 基、 i ブチル基、 s ブチル基、 t ブチル基等を挙げることができる。ァリール基と しては、フエニル基、ナフチル基等が挙げることができる。置換アルキル基としては、 ベンジル基、メトキシメチル基等を挙げることができる。これらのなかでも、 R1および R2 としては、水素、メチル基、ペンチル基、ノエル基、ヘプタデシル基が好ましい。 1価 の有機基である Zとしては、アルキル基、ァリール基等を挙げることができる。アルキ ル基としては、ェチル基、プロピル基、 i プロピル基、ブチル基、 i ブチル基、シク 口へキシル基等を挙げることができる。 Zとしては i プロピル基が好ましい。 R3及び R 4としては、アルキル基、ァリール基等をあげることができる。アルキル基としては炭素 数;!〜 4のものが好ましい。また、 R3と R4とが互いに結合して環状構造を形成している 場合には、「一 CH C (CH ) CH一」等が好ましい。 [0031] 本発明のクォータピリジン誘導体 Aは、更に、上記式 (4)で示されるクォータピリジン 誘導体 Bの中間体となるものである。クォータピリジン誘導体 Aは、下記ビビリジン誘 導体 Bから合成される本発明の有機金属中間体 1と本発明のビビリジン誘導体 Aとか ら合成することができるため、容易に高収率で合成することができる。そのため、クオ ータピリジン誘導体 Bを容易に高収率で製造することが可能となり、それにより、工業 的にも安定して生産することが可能となる。 In the above formula (3), Z is a monovalent organic group, R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group or a substituted alkyl group, and R 3 and R 4 are Are each independently a monovalent organic group and may be bonded to each other to form a cyclic structure. Examples of the alkyl group for R 1 and R 2 include a methyl group, an ethyl group, a propyl group, an i propyl group, a butyl group, an i butyl group, an s butyl group, and a t butyl group. Examples of the aryl group include a phenyl group and a naphthyl group. Examples of the substituted alkyl group include a benzyl group and a methoxymethyl group. Among these, as R 1 and R 2 , hydrogen, a methyl group, a pentyl group, a Noel group, and a heptadecyl group are preferable. Examples of Z that is a monovalent organic group include an alkyl group and an aryl group. Examples of the alkyl group include an ethyl group, a propyl group, an i-propyl group, a butyl group, an i-butyl group, and a cyclohexyl group. Z is preferably an i propyl group. Examples of R 3 and R 4 include an alkyl group and an aryl group. The alkyl group is preferably an alkyl group having! Further, when R 3 and R 4 are bonded to each other to form a cyclic structure is "one CH C (CH) CH one" and the like are preferable. [0031] The quarterpyridine derivative A of the present invention further becomes an intermediate of the quarterpyridine derivative B represented by the above formula (4). The quarterpyridine derivative A can be synthesized from the organometallic intermediate 1 of the present invention synthesized from the following biviridine derivative B and the biviridine derivative A of the present invention, and therefore can be easily synthesized in high yield. . Therefore, it is possible to easily produce the quarterpyridine derivative B with a high yield, and thereby it is possible to produce it industrially and stably.
[0032] (クォータピリジン誘導体 Bの製造方法)  [0032] (Method for producing quarterpyridine derivative B)
上記式 (4)で示されるクォータピリジン誘導体(クォータピリジン誘導体 B)の製造方 法は、まず、上記式(3)で表されるクォータピリジン誘導体 Aのァセタールおよびエス テルを加水分解してそれぞれホルミル基およびカルボキシル基とし、つ!/、で得られた ホルミル基を酸化してカルボキシル基として、クォータピリジン誘導体 Bを生成させる。 加水分解は、酸加水分解であり、酸の存在下、水溶液中で攪拌することにより行うこ と力できる。酸化は、一般的な酸化剤を用いることにより行うことができる。酸加水分 解に用いることができる酸としては、酢酸、硫酸、塩酸、 p—トルエンスルホン酸、 TF A等が挙げられる。酸の使用量は、クォータピリジン誘導体 Aを 1モルに対して、 100 〜500mLであることが好ましい。水の量は、クォータピリジン誘導体 Aを 1モルに対し て 100〜500mLであることが好ましい。反応中にピリジンカルボキシアルデヒド等の アルデヒド化合物を添加すると反応の収率が上がるため好ましレ、。アルデヒド化合物 の添加量は、クォータピリジン誘導体 Aを 1モルに対して、 1〜; 10モルであることが好 ましい。反応温度は 0〜; 100°Cであることが好ましい。反応時間は 0. 5〜24時間とす ること力 S好ましい。また、アルデヒドの酸化に用いることができる酸化剤としては、クロ ム酸塩類、過マンガン酸塩類、酸化銀、亜塩素酸塩類などが挙げられる。酸化剤の 使用量は、クォータピリジン誘導体 Aを 1モルに対して、 0. 5〜5モルであることが好 ましい。反応温度は 0〜50°Cであることが好ましい。反応時間は;!〜 12時間であるこ とが好ましい。この反応により、 50〜80モル%の収率で目的化合物を得ることができ  In the production method of the quarterpyridine derivative (quarterpyridine derivative B) represented by the above formula (4), first, the acetal and ester of the quarterpyridine derivative A represented by the above formula (3) are hydrolyzed to formyl. The formyl group obtained in step 1 / is oxidized to form a carboxyl group, thereby producing quarterpyridine derivative B. Hydrolysis is acid hydrolysis and can be performed by stirring in an aqueous solution in the presence of an acid. The oxidation can be performed by using a general oxidizing agent. Examples of acids that can be used for acid hydrolysis include acetic acid, sulfuric acid, hydrochloric acid, p-toluenesulfonic acid, TFA, and the like. The amount of the acid used is preferably 100 to 500 mL with respect to 1 mol of the quarterpyridine derivative A. The amount of water is preferably 100 to 500 mL with respect to 1 mol of quarterpyridine derivative A. Adding an aldehyde compound such as pyridinecarboxaldehyde during the reaction is preferable because the yield of the reaction increases. The amount of the aldehyde compound added is preferably 1 to 10 moles per mole of quarterpyridine derivative A. The reaction temperature is preferably 0 to 100 ° C. The reaction time is preferably 0.5 to 24 hours. Examples of the oxidizing agent that can be used for the oxidation of aldehydes include chromates, permanganates, silver oxide, and chlorites. The amount of oxidizing agent used is preferably 0.5 to 5 moles per mole of quarterpyridine derivative A. The reaction temperature is preferably 0 to 50 ° C. The reaction time is preferably! ~ 12 hours. By this reaction, the target compound can be obtained in a yield of 50 to 80 mol%.
[0033] 上記式 (4)において、アルキル基としては、炭素数 1〜20が好ましぐ直鎖でも分岐 鎖でもよい。具体的にはメチル基、ェチル基、プロピル基、 i プロピル基、ブチル基 i ブチル基、 S ブチル基、 t ブチル基等を挙げることができる。ァリール基として は、炭素数 1 20が好ましぐ具体的にはフエニル基、ナフチル基等が挙げられる。 置換アルキル基としては、炭素数 1 20が好ましぐ直鎖でも分岐鎖でもよい。具体 的にはべンジル基、メトキシメチル基等を挙げることができる。これらのなかでも、 R1 及び R2としては、水素、メチル基、ペンチル基、ノニル基、ヘプタデシル基が好ましい [0033] In the above formula (4), the alkyl group may be linear or branched, preferably having 1 to 20 carbon atoms. Specifically, methyl group, ethyl group, propyl group, i-propyl group, butyl group Examples include i-butyl group, S-butyl group, and t-butyl group. As the aryl group, a phenyl group, a naphthyl group, and the like are specifically mentioned which preferably have 120 carbon atoms. The substituted alkyl group may be a straight chain or a branched chain which preferably has 120 carbon atoms. Specific examples include a benzyl group and a methoxymethyl group. Among these, as R 1 and R 2 , hydrogen, methyl group, pentyl group, nonyl group, and heptadecyl group are preferable.
[0034] 以下に示すように、上記式(1)で表されるビビリジン誘導体 A、及び上記式(2)で表 される有機金属中間体 1を容易に合成することができ、上述のように、これらビビリジ ン誘導体 A及び有機金属中間体 1から上記式 (3)で表されるクォータピリジン誘導体 Aを容易に合成することができ、クォータピリジン誘導体 Aから上記式 (4)で示される クォータピリジン誘導体 Bを容易に合成することができる。そのため、本発明によれば 、上記式(3)で表されるクォータピリジン誘導体 A及び上記式 (4)で示されるクォータ ピリジン誘導体 Bを容易に高収率で製造することが可能である。そして、これらの製造 方法を用いることにより、工業的にも安定して生産することが可能である。 [0034] As shown below, the biviridine derivative A represented by the above formula (1) and the organometallic intermediate 1 represented by the above formula (2) can be easily synthesized, as described above. The quarterpyridine derivative A represented by the above formula (3) can be easily synthesized from the bibilidine derivative A and the organometallic intermediate 1, and the quarterpyridine represented by the above formula (4) can be synthesized from the quarterpyridine derivative A. Derivative B can be easily synthesized. Therefore, according to the present invention, the quarterpyridine derivative A represented by the above formula (3) and the quarterpyridine derivative B represented by the above formula (4) can be easily produced in high yield. By using these production methods, it is possible to produce industrially and stably.
[0035] (ビビリジン誘導体 A)  [0035] (Bibiridin derivative A)
本発明のクォータピリジン誘導体の製造方法における中間体である、本発明のビピ リジン誘導体は、上記式(1)で表されるビビリジン誘導体(ビビリジン誘導体 A)である  The bipyrrolidine derivative of the present invention, which is an intermediate in the production method of the quarterpyridine derivative of the present invention, is a biviridine derivative (biviridine derivative A) represented by the above formula (1).
[0036] 式(1)において、 1価の有機基(Z)としては、アルキル基、ァリール基を挙げることが できる。アルキル基としては、ェチル基、プロピル基等を挙げることができ、パーフル ォロアルキルスルホニル基としては、「CF SO —」、「C F SO—」等を挙げることが [0036] In the formula (1), examples of the monovalent organic group (Z) include an alkyl group and an aryl group. Examples of the alkyl group include an ethyl group and a propyl group, and examples of the perfluoroalkylsulfonyl group include “CF SO —” and “C F SO—”.
3 2 4 9 2  3 2 4 9 2
できる。 R3及び R4としては、アルキル基等をあげることができる。アルキル基としては 炭素数 1 4のものが好ましい。また、 R3と R4とが互いに結合して環状構造を形成し ている場合には、「一 CH C (CH ) CH―」等が好ましい。 it can. Examples of R 3 and R 4 include an alkyl group. As the alkyl group, those having 14 carbon atoms are preferred. Further, when R 3 and R 4 are bonded to each other to form a cyclic structure, “one CH 2 C (CH 2) 2 CH—” or the like is preferable.
2 3 2 2  2 3 2 2
[0037] 本発明のビビリジン誘導体 Aは、上述したビビリジン誘導体 3Aの合成上の等価体 であり、本発明のクォータピリジン誘導体の中間体となるものである。本発明において は、クォータピリジン誘導体の製造における中間体であるビビリジン誘導体 Aを、毒性 の低い反応剤のみを用いた簡便な操作で容易に高収率で合成することができる。一 般的にクォータピリジン誘導体を合成する場合、塩素基や臭素基を有するピリジン化 合物を用いた例が多いが、塩素基や臭素基を導入する場合、 POC1や POBrとい [0037] The biviridine derivative A of the present invention is a synthetic equivalent of the above-mentioned biviridine derivative 3A, and is an intermediate of the quarterpyridine derivative of the present invention. In the present invention, biviridine derivative A, which is an intermediate in the production of quarterpyridine derivatives, can be easily synthesized in a high yield by a simple operation using only a less toxic reactant. one Generally, when synthesizing a quarterpyridine derivative, there are many examples of using a pyridine compound having a chlorine group or a bromine group. However, when introducing a chlorine group or a bromine group, POC1 or POBr is used.
3 3 つた毒性の高い反応剤が必要となり、同時に反応操作も煩雑になる。一方で塩素基 や臭素基の代わりにパーフルォロアルキルスルホナート基を導入する場合、汎用の 反応剤を用いた簡便な反応操作により高収率で合成できる。このため、クォータピリ ジン誘導体を容易に、効率的に且つ高収率で製造することが可能となる。  3 Three highly toxic reactants are required, and the reaction operation is complicated at the same time. On the other hand, when a perfluoroalkyl sulfonate group is introduced instead of a chlorine group or a bromine group, it can be synthesized in a high yield by a simple reaction operation using a general-purpose reagent. Therefore, it is possible to easily and efficiently produce quarterpyridine derivatives with high yield.
[0038] (ビビリジン誘導体 Aの製造方法)  [0038] (Method for producing biviridine derivative A)
本発明のビビリジン誘導体 Aの製造方法は、まず、下記式(5)で表されるピリジン誘 導体とアルコールとを反応させてホルミル基を保護した下記式(6)で示されるピリジン 誘導体 2を生成させる。反応は、有機溶媒中、酸の存在下、アルコールと下記式(5) で表されるピリジン誘導体とを撹拌しながら行う。アルコールとしては、ジオールが好 ましぐ特に 2, 2—ジメチルー 1 , 3—プロパンジオールが好ましい。反応温度は、 0 〜; 120°Cが好ましぐ反応時間は 1〜72時間が好ましい。有機溶媒としては、ジクロロ メタン、トルエン等が好ましい。酸としては、 p—トルエンスルホン酸、硫酸、リン酸等を 挙げること力 Sできる。 2, 2—ジメチルプロパンジオールの添加量は、下記式(5)で表 されるピリジン誘導体 1モルに対して、;!〜 5モルが好ましぐ;!〜 2モルが更に好まし い。酸の添加量は、下記式(5)で表されるピリジン誘導体 1モルに対して、 0· ;!〜 3モ ルが好ましぐ;!〜 2モルが更に好ましい。この反応により、 80〜95モル%の収率で 目的のピリジン誘導体 2を得ることができる。  In the production method of the biviridine derivative A of the present invention, first, a pyridine derivative 2 represented by the following formula (6) in which a formyl group is protected by reacting a pyridine derivative represented by the following formula (5) with an alcohol is generated. Let The reaction is carried out in an organic solvent in the presence of an acid while stirring an alcohol and a pyridine derivative represented by the following formula (5). As the alcohol, diol is preferable, and 2,2-dimethyl-1,3-propanediol is particularly preferable. The reaction temperature is preferably 0 to 120 ° C, and the reaction time is preferably 1 to 72 hours. As the organic solvent, dichloromethane, toluene and the like are preferable. Examples of acids include p-toluenesulfonic acid, sulfuric acid, phosphoric acid, and the like. The addition amount of 2,2-dimethylpropanediol is preferably from! To 5 mol, and more preferably from 2 to 2 mol, based on 1 mol of the pyridine derivative represented by the following formula (5). The addition amount of the acid is preferably 0... To 3 moles, more preferably 2 to 2 moles, with respect to 1 mole of the pyridine derivative represented by the following formula (5). By this reaction, the target pyridine derivative 2 can be obtained in a yield of 80 to 95 mol%.
[0039] [化 11]  [0039] [Chemical 11]
Figure imgf000011_0001
Figure imgf000011_0001
( 5 ) ( 6 ) ( 7 ) (5) (6) (7)
式(6)、(7)において、 Mは金属であり、 Lは配位子であり、 nは;!〜 3の整数であり、 R3及び R4は、それぞれ独立に 1価の有機基であり、互いに結合して環状構造を形成 してもよい基である。 R3及び R4としては、アルキル基、ァリール基等をあげることがで きる。アルキル基としては炭素数 1〜4のものが好ましい。また、 と R4とが互いに結 合して環状構造を形成している場合には、「― CH C (CH ) CH一」等が好ましい。 In formulas (6) and (7), M is a metal, L is a ligand, n is an integer from !! to 3, R 3 and R 4 are each independently a monovalent organic group And may be bonded to each other to form a cyclic structure. Examples of R 3 and R 4 include alkyl groups and aryl groups. wear. The alkyl group is preferably an alkyl group having 1 to 4 carbon atoms. In addition, when — and R 4 are bonded to each other to form a cyclic structure, “—CH 2 C (CH 2) 2 CH 1” or the like is preferable.
2 3 2 2  2 3 2 2
配位子 Lとしては、アルキル基、ァリール基、アルコキシル基、塩素、臭素、ヨウ素等 を挙げること力 Sできる。金属(M)としてはスズ、亜鉛、ホウ素等が好ましい。 Examples of the ligand L include an alkyl group, aryl group, alkoxyl group, chlorine, bromine and iodine. As the metal (M), tin, zinc, boron and the like are preferable.
次に、ピリジン誘導体 2と金属化合物とを反応させて、上記式(7)で表される有機金 属中間体 2を生成させる。反応は、不活性ガス雰囲気下で有機溶媒中に、ピリジン誘 導体 2、強塩基及び活性化剤を添加し攪拌し、次いで金属化合物を添加し攪拌する ことで行う。不活性ガスとしては窒素またはアルゴンが好ましい。有機溶媒としては、 強塩基に安定であるものが好ましぐ特に炭化水素系溶媒またはエーテル系溶媒が 好ましい。炭化水素系溶媒としてはへキサンおよびトルエンが特に好ましい。エーテ ル系溶媒としてはジェチルエーテル、 THF、 t—ブチルメチルエーテルが特に好まし い。有機溶媒の量は、上記式(6)で表されるピリジン誘導体 1モルに対して、;!〜 5L が好ましぐ 2〜4Lが更に好ましい。強塩基としては、 n—ブチルリチウム、 s—ブチノレ リチウム、 t—ブチルリチウム、リチウムテトラメチルピペリジン等が好ましい。強塩基の 添加量は、上記式(6)で表されるピリジン誘導体 1モルに対して、 0·;!〜 5モルが好 ましぐ;!〜 3モルが更に好ましい。活性化剤としては、リチウムジメチルアミノエトキシ ド(Me N (CH ) OLi、 Meはメチル基を示す)、三フッ化ホウ素が好ましい。活性化 Next, the pyridine derivative 2 and the metal compound are reacted to produce the organometallic intermediate 2 represented by the above formula (7). The reaction is carried out by adding and stirring the pyridine derivative 2, strong base and activator in an organic solvent under an inert gas atmosphere, and then adding and stirring the metal compound. Nitrogen or argon is preferable as the inert gas. As the organic solvent, those which are stable to a strong base are preferred, and hydrocarbon solvents or ether solvents are particularly preferred. Hexane and toluene are particularly preferred as the hydrocarbon solvent. Particularly preferred ether solvents are jetyl ether, THF, and t-butyl methyl ether. The amount of the organic solvent is preferably 2 to 4 L, more preferably! To 5 L with respect to 1 mol of the pyridine derivative represented by the above formula (6). As the strong base, n-butyl lithium, s-butynole lithium, t-butyl lithium, lithium tetramethylpiperidine and the like are preferable. The addition amount of the strong base is preferably 0 · !! to 5 mol; more preferably! To 3 mol with respect to 1 mol of the pyridine derivative represented by the above formula (6). As the activator, lithium dimethylamino ethoxide (Me N (CH 3) OLi, Me represents a methyl group) and boron trifluoride are preferable. activation
2 2 2 2 2 2
剤の添加量は、上記式(6)で表されるピリジン誘導体 1モルに対して、 0·;!〜 5モル が好ましぐ;!〜 3モルが更に好ましい。金属化合物添加前の攪拌は—100〜30°C の温度で行うことが好ましぐ— 80〜― 40°Cが更に好ましい。攪拌時間は 0.;!〜 10 時間が好ましぐ;!〜 3時間が更に好ましい。金属化合物としては、有機すず化合物、 有機ホウ素化合物、亜鉛化合物が好ましい。有機すず化合物としてはハロゲン化トリ アルキルすずが好ましぐ特に塩化トリブチルすずが好ましい。有機ホウ素化合物とし てはトリアルコキシボランが好ましぐ特にトリイソプロポキシボランが好ましい。亜鉛化 合物としてはハロゲン化亜鉛が好ましぐ特に塩化亜鉛が好ましい。有機金属化合物 の添加量は、上記式(6)で表されるピリジン誘導体 1モルに対して 0· ;!〜 10モルが 好ましく、 1〜4モルが更に好ましい。金属化合物添加後の攪拌は— 100〜; 100°Cの 温度で行うことが好ましぐ― 80〜30°Cが更に好ましい。攪拌時間は 0. ;!〜 24時間 が好ましぐ 2〜4時間が更に好ましい。温度が高すぎると、副反応が生じることがあり 、温度が低過ぎると反応が遅くなることがある。この反応により、 40〜90モル%の収 率で有機金属中間体 2を得ることができる。 The addition amount of the agent is preferably 0. !!-5 mol, more preferably! -3 mol, per 1 mol of the pyridine derivative represented by the above formula (6). The stirring before the addition of the metal compound is preferably performed at a temperature of −100 to 30 ° C., more preferably 80 to −40 ° C. The stirring time is preferably 0.;! To 10 hours; more preferably! To 3 hours. As the metal compound, an organic tin compound, an organic boron compound, or a zinc compound is preferable. The organotin compound is preferably a trialkyltin halide, particularly tributyltin chloride. As the organoboron compound, trialkoxyborane is preferred, and triisopropoxyborane is particularly preferred. As the zinc compound, zinc halide is preferred, and zinc chloride is particularly preferred. The addition amount of the organometallic compound is preferably 0... To 10 mol, more preferably 1 to 4 mol, relative to 1 mol of the pyridine derivative represented by the above formula (6). Stirring after the addition of the metal compound is preferably performed at a temperature of 100 ° C to 100 ° C, more preferably 80 ° C to 30 ° C. Stirring time is 0.;! ~ 24 hours 2 to 4 hours is more preferable. If the temperature is too high, side reactions may occur, and if the temperature is too low, the reaction may be slow. By this reaction, the organometallic intermediate 2 can be obtained with a yield of 40 to 90 mol%.
[0042] 次に、有機金属中間体 2と下記式 (8)で表されるピリジン誘導体 Aとを遷移金属触 媒を用いて反応させて上記式(1)で表される本発明のビビリジン誘導体 (ビビリジン 誘導体 A)を生成させる。遷移金属触媒としては、有機パラジウム触媒、有機ニッケノレ 触媒等を挙げることができる。これらの中でも配位子としてホスフィン、ジベンジリデン アセトン、ァセチル基またはハロゲン基を有する有機パラジウム触媒が好ましい。具 体的には Pd (PPh ) 、Pd (dba) 、Pd (OAc) 、Pd (PPh ) CI等が挙げられる(Ph [0042] Next, the organometallic intermediate 2 and the pyridine derivative A represented by the following formula (8) are reacted with each other using a transition metal catalyst, and the biviridine derivative of the present invention represented by the above formula (1) is used. (Biviridine derivative A) is produced. Examples of the transition metal catalyst include an organic palladium catalyst and an organic nickel catalyst. Among these, an organic palladium catalyst having a phosphine, dibenzylideneacetone, acetyl group or halogen group as a ligand is preferable. Specific examples include Pd (PPh), Pd (dba), Pd (OAc), Pd (PPh) CI, etc. (Ph
3 4 2 3 2 3 2 2  3 4 2 3 2 3 2 2
はフエニル基、 dbaはジベンジリデンアセトン、 Acはァセチル基を示す)。遷移金属 触媒の使用量は、上記式(7)で表される有機金属中間体 2を 1モルに対して、 0. 01 〜0. 20モノレで ることカ好ましく、 0. 02〜0. 05モノレで ることカ更に好ましい。反 応は、不活性ガス雰囲気下で有機溶媒中、上記遷移金属触媒の存在下、有機金属 中間体 2とピリジン誘導体 Aとの間で行われることが好ましい。有機溶媒としては、炭 化水素系溶媒、エーテル系溶媒またはアミド系溶媒が好ましぐ例えば、トルエン、キ シレン、 THF、 DMF、 DMAc等を用いることが好ましい。有機溶媒の使用量は、上 記式(7)で表される有機金属中間体 2を 1モルに対して、 0. ;!〜 5Lであることが好ま しぐ;!〜 3Lであることが更に好ましい。反応温度は、 15〜200°C力 S好ましく、 50〜1 80°Cが更に好ましい。温度が高すぎると、副反応が生じることがあり、温度が低過ぎ ると反応が遅くなることがある。反応時間は、;!〜 72時間とすることが好ましい。また、 反応中に LiCl、 CsF、 Cul、 AsPh等の塩を添加すると、反応収率が上がることがあ  Is a phenyl group, dba is dibenzylideneacetone, and Ac is a acetyl group. The transition metal catalyst is preferably used in an amount of 0.01 to 0.20 mono to 1 mole of the organometallic intermediate 2 represented by the above formula (7), and 0.02 to 0.05. More preferably, it is mono. The reaction is preferably performed between the organometallic intermediate 2 and the pyridine derivative A in the presence of the transition metal catalyst in an organic solvent under an inert gas atmosphere. As the organic solvent, a hydrocarbon solvent, an ether solvent, or an amide solvent is preferable. For example, toluene, xylene, THF, DMF, DMAc, or the like is preferably used. The amount of the organic solvent used is preferably 0.;! To 5 L with respect to 1 mol of the organometallic intermediate 2 represented by the above formula (7); Further preferred. The reaction temperature is preferably 15 to 200 ° C, and more preferably 50 to 180 ° C. If the temperature is too high, side reactions may occur, and if the temperature is too low, the reaction may be slow. The reaction time is preferably:! -72 hours. In addition, adding a salt such as LiCl, CsF, Cul, AsPh during the reaction may increase the reaction yield.
3  Three
り好ましい。 LiCl等の塩の添加量は、上記式(7)で表される有機金属中間体 2を 1モ ルに対して、 1〜5モルであることが好ましぐ;!〜 3モルであることが更に好ましい。こ の反応により、 5〜30モル%の収率で本発明のビビリジン誘導体 Aを得ることができ  More preferable. The addition amount of the salt such as LiCl is preferably 1 to 5 mol per mol of the organometallic intermediate 2 represented by the above formula (7); Is more preferable. By this reaction, the biviridine derivative A of the present invention can be obtained in a yield of 5 to 30 mol%.
[0043] (ピリジン誘導体 A) [0043] (Pyridine derivative A)
上記ビビリジン誘導体 Aの製造方法における中間体であり、本発明のクォータピリジ ン誘導体の製造方法における中間体であるピリジン誘導体は、下記式 (8)で表され るピリジン誘導体 (ピリジン誘導体 A)である。 The pyridine derivative, which is an intermediate in the production method of the biviridine derivative A and is an intermediate in the production method of the quarterpyridin derivative of the present invention, is represented by the following formula (8). This is a pyridine derivative (pyridine derivative A).
[0044] [化 12]
Figure imgf000014_0001
[0044] [Chemical 12]
Figure imgf000014_0001
[0045] 上記式(8)において、 Ζは 1価の有機基、 Υはパーフルォロアルキルスルホニル基 である。 1価の有機基(Ζ)としては、炭素数 1〜; 10のアルキル基、ァリール基が好まし い。具体的にはェチル基、プロピル基、 i プロピル基、ブチル基、 i ブチル基、シク 口へキシル基、フエ二ル基等を挙げることができ、パーフルォロアルキルスルホニル 基としては、「CF SO—」、「C F SO—」等を挙げること力 Sできる。  In the above formula (8), Ζ is a monovalent organic group, and 、 is a perfluoroalkylsulfonyl group. The monovalent organic group (Ζ) is preferably an alkyl group having 1 to 10 carbon atoms or an aryl group. Specific examples include an ethyl group, a propyl group, an i propyl group, a butyl group, an i butyl group, a cyclohexyl group, and a phenyl group. As the perfluoroalkylsulfonyl group, “CF The ability to list “SO—”, “CF SO—”, etc.
3 2 4 9 2  3 2 4 9 2
[0046] (ピリジン誘導体 Aの製造方法)  [0046] (Production method of pyridine derivative A)
ピリジン誘導体 Aの製造方法は、下記式(9)で表されるピリジン誘導体のカルボキ シル基をエステル化し、 2つのヒドロキシル基のそれぞれの水素をパーフルォロアル キルスルホニル基で置換して、上記式(8)で表されるピリジン誘導体(ピリジン誘導体 A)を生成させるものである。  The method for producing the pyridine derivative A comprises esterifying the carboxyl group of the pyridine derivative represented by the following formula (9), substituting the hydrogen of each of the two hydroxyl groups with a perfluoroalkylsulfonyl group, and then formula (8) This produces a pyridine derivative represented by the formula (pyridine derivative A).
[0047] [化 13]  [0047] [Chemical 13]
((
Figure imgf000014_0002
、9 )ノ
Figure imgf000014_0002
9)
[0048] 上記式(9)で表されるピリジン誘導体のカルボキシル基のエステル化は、酸の存在 下、 70〜150°Cで還流させながら、カルボキシル基とアルコールとを反応させること により行うことが好ましい。使用する酸としては、硫酸、 p トルエンスルホン酸等を挙 げること力 Sできる。酸の添加量は、上記式(9)で表されるピリジン誘導体 1モルに対し て、 0· ;!〜 2モル力 S好ましく、 0· 5〜1モルが更に好ましい。アルコールとしては、エタ ノール、 2—プロパノール、シクロへキサノール等を挙げること力 Sできる。アルコールの 添加量は、上記式(9)で表されるピリジン誘導体 1モルに対して、 0· ;!〜 2モルが好 ましぐ 0. 5〜1モルが更に好ましい。この反応においては、アルコールは反応溶媒 でもある。この反応により、 40〜90モル0 /0の収率で目的のエステルを得ることができ[0048] The esterification of the carboxyl group of the pyridine derivative represented by the above formula (9) can be performed by reacting the carboxyl group with an alcohol while refluxing at 70 to 150 ° C in the presence of an acid. preferable. Examples of acids used include sulfuric acid and p-toluenesulfonic acid. The amount of acid added is preferably 0 · ;! to 2 mol force S, more preferably 0.5 · 1 mol to 1 mol of the pyridine derivative represented by the above formula (9). Examples of alcohols include ethanol, 2-propanol, and cyclohexanol. The amount of alcohol added is preferably 0... To 2 mol, more preferably 0.5 to 1 mol, per 1 mol of the pyridine derivative represented by the above formula (9). In this reaction, alcohol is also a reaction solvent. This reaction can be obtained the desired ester in 40 to 90 mole 0/0 yield
^ o [0049] 上記式(9)で表されるピリジン誘導体の 2つのヒドロキシル基のそれぞれの水素を、 パーフルォロアルキルスルホニル基で置換する方法としては、不活性ガス雰囲気下 、 (CF SO ) 0、(C F SO ) O等のパーフルォロアルキルスルホン酸無水物と、塩^ o [0049] As a method of substituting the hydrogen of each of the two hydroxyl groups of the pyridine derivative represented by the above formula (9) with a perfluoroalkylsulfonyl group, (CF 2 SO 4) 0 may be used in an inert gas atmosphere. , (CF 2 SO 4) O and other perfluoroalkylsulfonic anhydrides and salts
3 2 2 4 9 2 2 3 2 2 4 9 2 2
基とを添加した有機溶媒中、 40〜30°Cで 1〜; 12時間、撹拌する方法が好ましい。 有機溶媒としては、ジクロロメタン、クロ口ホルム、ピリジン等を挙げることができる。上 記パーフルォロアルキルスルホン酸無水物の添加量は、上記式(9)で表されるピリジ ン誘導体 1モルに対して、 1〜4モルが好ましぐ 2〜3モルが更に好ましい。塩基とし てはトリエチルァミン、ピリジン等をあげることができる。塩基の添加量は、上記式(9) で表されるピリジン誘導体 1モルに対して、;!〜 4モルが好ましぐ 2〜3モルが更に好 ましい。有機溶媒の使用量は、上記式(9)で表されるピリジン誘導体 1モルに対して、 0. ;!〜 10Lカ好ましく、 0. 5〜2Lカ更に好まし!/、。この反応により、 80〜95モノレ0 /0 の収率で目的のパーフルォロアルキルスルホニル基で置換したピリジン誘導体を得 ること力 Sできる。尚、この反応は、上記カルボキシル基のエステル化の後に行うことが 好ましい。 A method of stirring in an organic solvent to which a group is added at 40 to 30 ° C. for 1 to 12 hours is preferable. Examples of the organic solvent include dichloromethane, black mouth form, pyridine and the like. The amount of the perfluoroalkylsulfonic anhydride added is preferably 1 to 4 moles, more preferably 2 to 3 moles per mole of the pyridine derivative represented by the above formula (9). Examples of the base include triethylamine, pyridine and the like. The addition amount of the base is preferably 2 to 3 moles, more preferably! To 4 moles per mole of the pyridine derivative represented by the above formula (9). The amount of the organic solvent used is preferably 0.;! To 10 L, more preferably 0.5 to 2 L, more preferably /, relative to 1 mol of the pyridine derivative represented by the above formula (9). This reaction can Rukoto force S to obtain a pyridine derivative substituted with the purpose of per full O b alkylsulfonyl group 80-95 Monore 0/0 yield. This reaction is preferably performed after the esterification of the carboxyl group.
[0050] (有機金属中間体 1) [0050] (Organic metal intermediate 1)
上記本発明のクォータピリジン誘導体 Aの製造方法において用いられる上記式(2) で表される有機金属中間体 1において、 R1および R2は、それぞれ独立に、水素、ァ ルキル基、ァリール基又は置換アルキル基であり、アルキル基としては、炭素数;!〜 2 0が好ましぐ直鎖でも分岐鎖でもよい。具体的にはメチル、ェチル、プロピル、卜プ 口ピル、ブチル、 iーブチル、 s ブチル、 t ブチル等を挙げることができる。ァリール 基としては、炭素数 1〜20が好ましぐ具体的にはフエニル、ナフチル等が挙げられ る。置換アルキル基としては、炭素数 1〜20が好ましぐ直鎖でも分岐鎖でもよい。具 体的にはベンジル、メトキシメチル等を挙げることができる。これらのなかでも、 もし くは R2としては、水素、メチル基、ペンチル基、ノエル基、ヘプタデシル基が特に好ま しい。また、 Mは金属であり、金属としてはスズ、亜鉛、ホウ素等が挙げられる。また、 Lは配位子であり、配位子としてはアルキル基、アルコキシル基、塩素、臭素等が挙 げられる。 In the organometallic intermediate 1 represented by the above formula (2) used in the production method of the quarterpyridine derivative A of the present invention, R 1 and R 2 are each independently hydrogen, alkyl group, aryl group or The alkyl group is a substituted alkyl group, and the alkyl group may be a straight chain or a branched chain, preferably having carbon atoms of !!-20. Specific examples include methyl, ethyl, propyl, open-ended pill, butyl, i-butyl, s-butyl, and t-butyl. Specific examples of the aryl group include phenyl and naphthyl which preferably have 1 to 20 carbon atoms. The substituted alkyl group may be a straight chain or branched chain, preferably having 1 to 20 carbon atoms. Specific examples include benzyl and methoxymethyl. Among these, as R 2 , hydrogen, methyl group, pentyl group, Noel group, and heptadecyl group are particularly preferable. M is a metal, and examples of the metal include tin, zinc, and boron. L is a ligand, and examples of the ligand include an alkyl group, an alkoxyl group, chlorine and bromine.
[0051] (有機金属中間体 1の製造方法) 上記式(2)で表される有機金属中間体 1は、下記式(10)で表されるビビリジン誘導 体 Bと金属化合物とを反応させて生成させる。有機金属中間体 1は、不活性ガス雰囲 気下の有機溶媒中で、下記式(10)で表されるビビリジン誘導体 B、金属マグネシゥ ムおよび金属化合物を反応させることにより得ることができる。このとき、金属化合物 を添加するタイミングは限定されない。すなわち、先にビビリジン誘導体 Bのグリニャ ール (Grignard)試薬を合成しておき、その後、金属化合物を添加し金属交換反応 を行うことによつても得ることができる力 また一方で、金属化合物をはじめからビビリ ジン誘導体 Bおよびマグネシウムに対して添加しておき反応を行うという、いわゆるバ ルビエ (Barbier)タイプの手法によっても得ることができる。グリニャール試薬を生成 する方法 (ま特 ίこ限定されず、「J. Org. Chem. , 2004, 69, 1401— 1404」等 ίこ記 載された公知の方法を用いることができる。また、金属交換反応は特に限定されず、 j. Org. Chem. , 2004, 69, 1401— 1404」等 ίこ記載された公失口の方法を用レヽる こと力 Sできる。反応に用いる有機溶媒としては、 THF、ジェチルエーテル等のエーテ ル系溶媒が好ましい。有機溶媒の使用量は、下記式(10)で表されるビビリジン誘導 体 Bを 1モルに対して、 0. ;!〜 1Lであること力 S好ましく、 0· 3〜0· 5Lモノレであること が更に好ましい。反応に用いる金属マグネシウムは、下記式(10)で表されるビビリジ ン誘導体 Βを 1モルに対して、 0· 5〜5モルであることが好ましぐ;!〜 3モルであること が更に好ましい。反応温度は、 0〜40°Cが好ましぐ 15〜30°Cが更に好ましい。また 、金属交換反応に用いる金属化合物としては、有機すず化合物、有機ホウ素化合物 、亜鉛化合物が好ましい。有機すず化合物としてはハロゲン化トリアルキルすずが好 ましぐ特に塩化トリブチルすずが好ましい。有機ホウ素化合物としてはトリアルコキシ ボランが好ましぐ特にトリイソプロポキシボランが好ましい。亜鉛化合物としてはハロ ゲン化亜鉛が好ましぐ特に塩化亜鉛が好ましい。金属化合物の添加量は、下記式( 10)で表されるビビリジン誘導体 Bを 1モルに対して、 0· 5〜5モルであることが好まし ぐ;!〜 3モルであることが更に好ましい。金属交換反応に使用する溶媒は、 THF、ジ ェチルエーテル、 DMF等が好ましい。溶媒の使用量は、下記式(10)で表されるビ ピリジン誘導体 Bを 1モルに対して、 0. ;!〜 1Lであること力 S好ましく、 0. 4〜0. 6Lで あることが更に好ましい。反応温度は、 0〜; 140°Cが好ましい。 [0052] (ビビリジン誘導体 B) [0051] (Method for producing organometallic intermediate 1) The organometallic intermediate 1 represented by the above formula (2) is produced by reacting the biviridine derivative B represented by the following formula (10) with a metal compound. The organometallic intermediate 1 can be obtained by reacting a biviridine derivative B represented by the following formula (10), metal magnesium, and a metal compound in an organic solvent under an inert gas atmosphere. At this time, the timing for adding the metal compound is not limited. That is, the power that can be obtained by synthesizing a Grignard reagent of biviridine derivative B first, and then adding a metal compound and conducting a metal exchange reaction. It can also be obtained by the so-called Barbier type method in which the bibilidine derivative B and magnesium are added to the reaction from the beginning and the reaction is carried out. A method for producing a Grignard reagent (not limited to this, known methods such as “J. Org. Chem., 2004, 69, 1401—1404”) can be used. The exchange reaction is not particularly limited, and it is possible to use the publicity method described in “J. Org. Chem., 2004, 69, 1401—1404”, etc. As the organic solvent used in the reaction, Ether solvents such as THF, jetyl ether, etc. The amount of the organic solvent used is 0.;! To 1 L with respect to 1 mol of the biviridine derivative B represented by the following formula (10). The strength S is preferable, and it is more preferably 0 · 3 to 0.5 · L monolayer.The magnesium metal used in the reaction is 0.5 to 5 mol per 1 mol of bibilidine derivative 表 represented by the following formula (10). It is preferably 5 mol ;! to 3 mol is more preferable, and the reaction temperature is preferably 0 to 40 ° C. 15 Further, the metal compound used for the metal exchange reaction is preferably an organotin compound, an organoboron compound, or a zinc compound, and the organotin compound is preferably a trialkyltin halide, particularly tributyltin chloride. The organoboron compound is preferably trialkoxyborane, particularly preferably triisopropoxyborane, and the zinc compound is preferably zinc halide, particularly preferably zinc chloride. It is preferable that the biviridine derivative B represented by (10) is 0.5 to 5 mol per mol, more preferably! To 3 mol, and the solvent used for the metal exchange reaction is , THF, diethyl ether, DMF, etc. The amount of solvent used is 0. 1 mol of bipyridine derivative B represented by the following formula (10). The power is preferably from 1 to 1 L, more preferably from 0.4 to 0.6 L. The reaction temperature is preferably from 0 to 140 ° C. [0052] (Bibiridin derivative B)
上記有機金属中間体 1の製造方法における中間体であり、本発明のクォータピリジ ン誘導体の製造方法における中間体である、ビビリジン誘導体は、下記式(10)で表 されるビビリジン誘導体(ビビリジン誘導体 B)である。  The biviridine derivative, which is an intermediate in the production method of the organometallic intermediate 1 and an intermediate in the production method of the quarterpyridin derivative of the present invention, is a biviridine derivative (biviridine derivative B) represented by the following formula (10). It is.
[0053] [化 14] [0053] [Chemical 14]
Figure imgf000017_0001
Figure imgf000017_0001
[0054] 式(10)において、 R1および R2は、それぞれ独立に、水素、アルキル基、ァリール 基又は置換アルキル基である。アルキル基としては、炭素数 1〜20が好ましぐ直鎖 でも分岐鎖でもよい。具体的にはメチル、ェチル、プロピル、 i プロピル、ブチル、 i —ブチル、 s ブチル、 t ブチル等を挙げることができる。ァリール基としては、炭素 数 1〜20が好ましぐ具体的にはフエニル、ナフチル等が挙げられる。置換アルキル 基としては、炭素数 1〜20が好ましぐ直鎖でも分岐鎖でもよい。具体的にはべンジ ル、メトキシメチル等を挙げることができる。これらのなかでも、 R1もしくは R2としては、 水素、メチル基、ペンチル基、ノニル基、ヘプタデシル基が特に好ましい。 In formula (10), R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group. The alkyl group may be a straight chain or branched chain, preferably having 1 to 20 carbon atoms. Specific examples include methyl, ethyl, propyl, i-propyl, butyl, i-butyl, s-butyl, and t-butyl. Specific examples of aryl groups include phenyl and naphthyl, which preferably have 1 to 20 carbon atoms. The substituted alkyl group may be a straight chain or branched chain, preferably having 1 to 20 carbon atoms. Specific examples include benzyl and methoxymethyl. Among these, as R 1 or R 2 , hydrogen, methyl group, pentyl group, nonyl group, and heptadecyl group are particularly preferable.
[0055] 本発明のクォータピリジン誘導体の製造方法においては、クォータピリジン誘導体 の製造における中間体であるビビリジン誘導体 Bを、容易に合成することができるた め、クォータピリジン誘導体を容易に製造することが可能となり、工業的にも安定して 生産することが可能である。  [0055] In the method for producing a quarterpyridine derivative of the present invention, the bipyridine derivative B, which is an intermediate in the production of the quarterpyridine derivative, can be easily synthesized, so that the quarterpyridine derivative can be easily produced. This makes it possible to produce industrially and stably.
[0056] (ビビリジン誘導体 Bの製造方法)  [0056] (Production method of biviridine derivative B)
ビビリジン誘導体 Bの製造方法は、まず、下記式(11)で表されるピリジン誘導体と 金属化合物とを反応させて、下記式(12)で表される有機金属中間体 3を生成させる 。反応は、不活性ガス雰囲気下で有機溶媒中に、下記式(11)で表されるピリジン誘 導体、強塩基及び活性化剤を添加し攪拌し、次いで金属化合物を添加し攪拌するこ とで行う。不活性ガスとしては窒素またはアルゴンが好ましい。有機溶媒としては、強 塩基に安定であるものが好ましぐ特に炭化水素系溶媒またはエーテル系溶媒が好 ましい。炭化水素系溶媒としてはへキサンおよびトルエンが特に好ましい。エーテル 系溶媒としてはジェチルエーテル、 THF、 t—ブチルメチルエーテルが特に好ましい 。有機溶媒の量は、下記式(11)で表されるピリジン誘導体 1モルに対して、 1~5L ( リットル)が好ましぐ 2〜4L (リットル)が更に好ましい。強塩基としては、 n—ブチルリ チウム、 s—ブチノレリチウム、 tーブチノレリチウム、
Figure imgf000018_0001
In the production method of the biviridine derivative B, first, a pyridine derivative represented by the following formula (11) is reacted with a metal compound to produce an organometallic intermediate 3 represented by the following formula (12). The reaction is performed by adding a pyridine derivative represented by the following formula (11), a strong base, and an activator to an organic solvent under an inert gas atmosphere and stirring, and then adding a metal compound and stirring. Do. Nitrogen or argon is preferable as the inert gas. As the organic solvent, those which are stable to strong bases are preferred, and hydrocarbon solvents or ether solvents are particularly preferred. Hexane and toluene are particularly preferred as the hydrocarbon solvent. ether As the solvent, jetyl ether, THF, or t-butyl methyl ether is particularly preferable. The amount of the organic solvent is preferably 2 to 4 L (liter), more preferably 1 to 5 L (liter) with respect to 1 mol of the pyridine derivative represented by the following formula (11). Strong bases include n-butyllithium, s-butynolethium, tert-butylenolithium,
Figure imgf000018_0001
好ましい。強塩基の添加量は、下記式(11)で表されるピリジン誘導体 1モルに対して 、 0.;!〜 5モルが好ましぐ;!〜 3モルが更に好ましい。活性化剤としては、リチウムジ メチルアミノエトキシド(Me N (CH ) OLi、 Meはメチル基を示す)、三フッ化ホウ素 preferable. The addition amount of the strong base is preferably from 0.;! To 5 mol, more preferably from 3 to 3 mol, based on 1 mol of the pyridine derivative represented by the following formula (11). Activating agents include lithium dimethylamino ethoxide (Me N (CH 2) OLi, Me represents methyl group), boron trifluoride
2 2 2  2 2 2
が好ましい。活性化剤の添加量は、下記式(11)で表されるピリジン誘導体 1モルに 対して、 0.;!〜 5モルが好ましぐ;!〜 3モルが更に好ましい。金属化合物添加前の攪 拌は— 100〜30°Cの温度で行うことが好ましぐ— 80〜― 40°Cが更に好ましい。攪 拌時間は 0.;!〜 10時間が好ましぐ;!〜 3時間が更に好ましい。金属化合物としては 、有機すず化合物、有機ホウ素化合物、亜鉛化合物が好ましい。有機すず化合物と してはハロゲン化トリアルキルすずが好ましぐ特に塩化トリブチルすずが好ましい。 有機ホウ素化合物としてはトリアルコキシボランが好ましぐ特にトリイソプロポキシボラ ンが好まし!/、。亜鉛化合物としてはハロゲン化亜鉛が好ましぐ特に塩化亜鉛が好ま しい。有機金属化合物の添加量は、下記式(11)で表されるピリジン誘導体 1モルに 対して 0. ;!〜 10モルが好ましぐ;!〜 4モルが更に好ましい。金属化合物添加後の攪 拌は— 100〜; 100°Cの温度で行うことが好ましぐ— 80〜30°Cが更に好ましい。攪 拌時間は 0.;!〜 24時間が好ましぐ 2〜4時間が更に好ましい。温度が高過ぎると、 副反応が生じることがあり、温度が低過ぎると反応が遅くなることがある。この反応によ り、 60〜90モル%の収率で下記式(12)で表される有機金属中間体 3を得ることがで きる。 Is preferred. The addition amount of the activator is preferably 0 .;! To 5 mol, more preferably! To 3 mol, per 1 mol of the pyridine derivative represented by the following formula (11). The stirring prior to the addition of the metal compound is preferably performed at a temperature of 100 to 30 ° C, more preferably 80 to 40 ° C. The stirring time is preferably 0.;! ~ 10 hours; more preferably! ~ 3 hours. As the metal compound, an organic tin compound, an organic boron compound, or a zinc compound is preferable. As the organic tin compound, trialkyltin halide is preferred, and tributyltin chloride is particularly preferred. As the organoboron compound, trialkoxyborane is preferred, and triisopropoxyborane is particularly preferred! /. As the zinc compound, zinc halide is preferred, and zinc chloride is particularly preferred. The addition amount of the organometallic compound is preferably 0.;! To 10 mol, more preferably! To 4 mol, per 1 mol of the pyridine derivative represented by the following formula (11). The stirring after the addition of the metal compound is preferably 100 to; preferably 100 to 100 ° C, more preferably 80 to 30 ° C. The agitation time is 0.;!-24 hours is preferred, and 2-4 hours is more preferred. If the temperature is too high, side reactions may occur, and if the temperature is too low, the reaction may be slow. By this reaction, organometallic intermediate 3 represented by the following formula (12) can be obtained in a yield of 60 to 90 mol%.
[化 15][Chemical 15]
Figure imgf000018_0002
Figure imgf000018_0002
( 1 1 ) ( 1 2 ) ( 1 3 ) ( 1 4 ) [0058] ビビリジン誘導体 Bの製造方法において、生成物である上記式(10)で表されるビピ リジン誘導体 Bの塩素基は、上記式(11)で表されるピリジン誘導体の塩素基に由来 する。従って、上記式(11)で表されるピリジン誘導体の塩素基力 反応過程におい て、変化しないことが必要であり、ビビリジン誘導体 Bの製造方法は、この塩素基が変 化しないことに一つの特徴がある。ビビリジン誘導体 Bは、後の反応のためにハロゲン 基を有していることが必要である力 S、ハロゲン基力 S、仮に、臭素基やヨウ素基であると すると、反応過程で本発明のように強塩基を使用すると、この臭素等のハロゲン基が 反応し、容易にはビビリジン誘導体 Bを製造できないことになる。これに対し、塩素基 であれば、強塩基を使用しても反応せず、このビビリジン誘導体 Bの製造方法で示さ れる反応工程により、容易にビビリジン誘導体 Bを合成することが可能となる。また、 塩素基を有するピリジン誘導体は、臭素基あるいはヨウ素基を有するピリジン誘導体 と比較すると安価で、入手も容易である。 (1 1) (1 2) (1 3) (1 4) [0058] In the production method of biviridine derivative B, the chlorine group of the product bipyridine derivative B represented by the above formula (10) is derived from the chlorine group of the pyridine derivative represented by the above formula (11). To do. Therefore, it is necessary that the chlorine group reaction of the pyridine derivative represented by the above formula (11) does not change, and the production method of biviridine derivative B has one feature that this chlorine group does not change. There is. Biviridine derivative B has a force S that is required to have a halogen group for the subsequent reaction, a halogen group force S, and if it is a bromine group or an iodine group, If a strong base is used for this, the halogen group such as bromine reacts, and the biviridine derivative B cannot be easily produced. On the other hand, if it is a chlorine group, it does not react even when a strong base is used, and the biviridine derivative B can be easily synthesized by the reaction step shown in the production method of the biviridine derivative B. In addition, pyridine derivatives having a chlorine group are cheaper and easier to obtain than pyridine derivatives having a bromine group or an iodine group.
[0059] 次に、上記式(12)で表される有機金属中間体 3と上記式(13)で表されるピリジン 誘導体 1とを遷移金属触媒を用いて反応させて上記式(14)で表されるビビリジン誘 導体 (ビビリジン誘導体 B)を生成させる。遷移金属触媒としては、有機パラジウム触 媒、有機ニッケル触媒等を挙げることができる。これらの中でも配位子としてホスフィ ン、ジベンジリデンアセトン、ァセチル基またはハロゲン基を有する有機パラジウム触 媒が好ましい。具体的には Pd (PPh ) 、 Pd (dba) 、 Pd (OAc) 、 Pd (PPh ) CI等  [0059] Next, the organometallic intermediate 3 represented by the above formula (12) and the pyridine derivative 1 represented by the above formula (13) are reacted using a transition metal catalyst. To produce the biviridine derivative represented (biviridine derivative B). Examples of the transition metal catalyst include an organic palladium catalyst and an organic nickel catalyst. Among these, an organic palladium catalyst having phosphine, dibenzylideneacetone, a acetyl group or a halogen group as a ligand is preferable. Specifically, Pd (PPh), Pd (dba), Pd (OAc), Pd (PPh) CI, etc.
3 4 2 3 2 3 2 2 が挙げられる(Phはフエニル基、 dbaはジベンジリデンアセトン、 Acはァセチル基を 示す)。触媒の使用量は、上記式(13)で表されるピリジン誘導体 1に対して 0. ;!〜 2 0モル%が好ましぐ 2〜5モル%が更に好ましい。また、有機金属中間体 3は、ピリジ ン誘導体 1を 1モルに対して、 0. 5〜2モノレカ S好ましく、 0. 8〜; 1. 2モルが更に好まし い。反応は、不活性ガス雰囲気下で有機溶媒中、上記遷移金属触媒の存在下、還 流条件下で、有機金属中間体 3とピリジン誘導体 1との間で行われることが好ましい。 不活性ガスとしては、窒素またはアルゴンが好ましい。有機溶媒としては、炭化水素 系溶媒、エーテル系溶媒またはアミド系溶媒が好ましぐ例えば、トルエン、キシレン 、 THF、 DMF、 DMAc等を用いることが好ましい。有機溶媒の量は、ピリジン誘導体 1を 1モルに対して、 0. 1〜5L (リットル)が好ましく、 1〜3L (リットル)が更に好ましい 。反応温度は、 15 200°Cが好ましぐ 50〜; 180°Cが更に好ましい。温度が高すぎ ると、副反応が生じることがあり、温度が低過ぎると反応が遅くなることがある。反応時 間は、;!〜 72時間とすることが好ましい。また、反応中に LiCl CsF Cul AsPh等 3 4 2 3 2 3 2 2 (Ph represents a phenyl group, dba represents a dibenzylideneacetone, and Ac represents a acetyl group). The amount of the catalyst used is preferably 0.;! To 20 mol%, more preferably 2 to 5 mol%, relative to the pyridine derivative 1 represented by the above formula (13). Further, the organometallic intermediate 3 is preferably 0.5 to 2 monoreca S, more preferably 0.8 to 1.2 moles per mole of the pyridin derivative 1. The reaction is preferably performed between the organometallic intermediate 3 and the pyridine derivative 1 in an organic solvent in an inert gas atmosphere, in the presence of the transition metal catalyst, and under reflux conditions. As the inert gas, nitrogen or argon is preferable. As the organic solvent, hydrocarbon solvents, ether solvents, or amide solvents are preferable. For example, toluene, xylene, THF, DMF, DMAc and the like are preferably used. The amount of the organic solvent is preferably 0.1 to 5 L (liter), more preferably 1 to 3 L (liter) with respect to 1 mole of pyridine derivative 1. . The reaction temperature is preferably 15 to 200 ° C., 50 to; more preferably 180 ° C. If the temperature is too high, side reactions may occur, and if the temperature is too low, the reaction may be slow. The reaction time is preferably;!-72 hours. During the reaction, LiCl CsF Cul AsPh etc.
3 の塩を添加すると、反応収率が上がることがあり好ましい。 LiCl等の塩の添加量は、 ピリジン誘導体 1を 1モルに対して、 1 5モルが好ましぐ;!〜 3モルが更に好ましい。 この反応により、 50 80モル%の収率でビビリジン誘導体(ビビリジン誘導体 B)を得 ること力 Sでさる。  Addition of the salt 3 is preferable because the reaction yield may be increased. The addition amount of a salt such as LiCl is preferably 15 mol per mol of pyridine derivative 1; more preferably 3 to 3 mol. By this reaction, the force S can be obtained to obtain a biviridine derivative (biviridine derivative B) in a yield of 50 80 mol%.
[0060] 上記の方法とは別に、 R1及び R2が、 CHであるビビリジン誘導体とハロゲン化アル [0060] In addition to the above method, R 1 and R 2 are CH and biviridine derivatives and halogenated alkyls.
3  Three
キルとを反応させて上記式(10)で表されるビビリジン誘導体 Bを生成させることがで きる。この反応は、「: Langmuir 2002 18 952— 954」に記載の方法で fiうことカ 好ましい。反応は、不活性ガス雰囲気下で有機溶媒中に、ビビリジン誘導体とリチウ ムジイソプロピルアミド(LDA)とを添加し、—80 40°Cの温度で;!〜 3時間撹拌し 、その後、ハロゲン化アルキルを添加し、—40 0°Cで 2 6時間撹拌することにより 行われることが好ましい。この反応により、ビビリジン誘導体のメチル基の水素原子が 、ハロゲン化アルキルに含まれるアルキル基と置換されて、上記式(10)のビビリジン 誘導体 Bを得ること力 Sできる。 LDAの添加量は、ビビリジン誘導体を 1モルとしたとき に、 〜 3モルが好ましぐ 2. 0 2· 5モルが更に好ましい。有機溶媒としては、テトラ ヒドロフラン (THF)、ジェチルエーテル等を使用することが好ましい。有機溶媒の量 は、ピリジン誘導体 1モルに対して、 1 5Lが好ましぐ 2 4Lが更に好ましい。ハロ ゲン化アルキルとしては、炭素数 1 20が好ましい。具体的には臭化ブタン、臭化ォ クタン、臭化へキサデカン等が挙げられる。ハロゲン化アルキルの添加量は、ビビリジ ン誘導体を 1モルとしたときに、;!〜 5モルが好ましぐ 2 3モルが更に好ましい。  Bibilidine derivative B represented by the above formula (10) can be produced by reacting with kill. This reaction is preferably carried out by the method described in “: Langmuir 2002 18 952-954”. The reaction is carried out by adding a biviridine derivative and lithium diisopropylamide (LDA) in an organic solvent under an inert gas atmosphere and stirring at a temperature of −80 to 40 ° C .; Is preferably added and stirred at −400 ° C. for 26 hours. By this reaction, the hydrogen atom of the methyl group of the biviridine derivative can be replaced with the alkyl group contained in the alkyl halide to obtain the biviridine derivative B of the above formula (10). The addition amount of LDA is preferably ˜3 mol, more preferably 2.0 2.5 mol, with 1 mol of the biviridine derivative. As the organic solvent, it is preferable to use tetrahydrofuran (THF), jetyl ether or the like. The amount of the organic solvent is preferably 15 L, more preferably 24 L, relative to 1 mol of the pyridine derivative. The halogenated alkyl preferably has 120 carbon atoms. Specific examples include butane bromide, octane bromide, and hexadecane bromide. The addition amount of the alkyl halide is more preferably 23 to 3 mol, preferably from! To 5 mol, when the bibilidine derivative is 1 mol.
[0061] 上記式(11)〜(; 14)において、 R1及び R2は、それぞれ独立に、水素、アルキル基、 ァリール基又は置換アルキル基であり、 Mは金属であり、 Lは配位子であり、 nは;!〜 3の整数であり、 X1は臭素、ヨウ素又はトリフルォロメタンスルホナート(「一OSO CF [0061] In the above formulas (11) to (; 14), R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group or a substituted alkyl group, M is a metal, and L is a coordination group. N is an integer from! To 3; X 1 is bromine, iodine or trifluoromethanesulfonate (“one OSO CF
2 3 twenty three
」)である。 nは金属 Mによって異なり、例えば、 Mが Snの場合は n = 3であり、 Mが B の場合は n = 2であり、 Mが Znの場合は n= lである。アルキル基としては、炭素数 1 20が好ましぐ直鎖でも分岐鎖でもよい。具体的にはメチル基、ェチル基、プロピ ル基、 i プロピル基、ブチル基、 i ブチル基、 S ブチル基、 t ブチル基等を挙げ ること力 Sできる。ァリール基としては、炭素数 1〜20が好ましぐ具体的にはフエニル 基、ナフチル基等が挙げられる。置換アルキル基としては、炭素数 1〜20が好ましく 、直鎖でも分岐鎖でもよい。具体的にはベンジル、メトキシメチル等を挙げることがで きる。これらのなかでも、 R1もしくは R2としては、水素、メチル基、ペンチル基、ノニル 基、ヘプタデシル基が特に好ましい。金属(M)としてはスズ、亜鉛、ホウ素等が好ま しい。配位子 Lとしては、アルキル基、アルコキシル基、塩素、臭素等を挙げることが できる。 ]). n varies depending on the metal M. For example, when M is Sn, n = 3, when M is B, n = 2, and when M is Zn, n = 1. The alkyl group may be a straight chain or a branched chain, preferably having 120 carbon atoms. Specifically, methyl group, ethyl group, propylene Group, i-propyl group, butyl group, i-butyl group, S-butyl group, t-butyl group, etc. Specific examples of the aryl group include a phenyl group and a naphthyl group, which preferably have 1 to 20 carbon atoms. The substituted alkyl group preferably has 1 to 20 carbon atoms and may be linear or branched. Specific examples include benzyl and methoxymethyl. Among these, as R 1 or R 2 , hydrogen, methyl group, pentyl group, nonyl group, and heptadecyl group are particularly preferable. The metal (M) is preferably tin, zinc, boron or the like. Examples of the ligand L include an alkyl group, an alkoxyl group, chlorine, bromine and the like.
[0062] (クォータピリジン誘導体 Cの製造方法)  [0062] (Method for producing quarterpyridine derivative C)
他のクォータピリジン誘導体である、下記式(16)で示されるクォータピリジン誘導体 Cの製造方法は、上記式(10)で表されるビビリジン誘導体 Bと有機金属とを反応させ て、上記式 (2)で表される有機金属中間体 1を生成させ、有機金属中間体 1と下記式 (15)で表されるビビリジン誘導体とを遷移金属触媒を用いて反応させて下記式(16) で表されるクォータピリジン誘導体 Cを生成させるものである。クォータピリジン誘導体 Cの製造方法は、このように、上記式(10)で表されるビビリジン誘導体を用いて製造 するため、上記式(1A)で示されるような製造困難なビビリジン誘導体を用いる必要 がないため、容易にクォータピリジン誘導体 Cを製造することが可能である。また、クオ ータピリジン誘導体 Cの製造方法は、上記式(10)で表されるビビリジン誘導体 Bと、 より一般的な構造のビビリジン誘導体である下記式(15)で表されるビビリジン誘導体 を用いて製造するものである力 下記式(15)で表されるビビリジン誘導体として、上 記式(1)で表されるビビリジン誘導体 Aを用いてクォータピリジン誘導体を製造すると 、上記式(3)で表されるクォータピリジン誘導体 Aの製造方法となる。  Another method for producing quarterpyridine derivative C represented by the following formula (16) is to react bibilidine derivative B represented by the above formula (10) with an organic metal to produce the above formula (2). ), An organometallic intermediate 1 represented by the following formula (15) is reacted with a biviridine derivative represented by the following formula (15) using a transition metal catalyst: This produces the quarterpyridine derivative C. Since the production method of the quarterpyridine derivative C is thus produced using the biviridine derivative represented by the above formula (10), it is necessary to use a difficult-to-produce biviridine derivative represented by the above formula (1A). Therefore, the quarterpyridine derivative C can be easily produced. The quarter pyridine derivative C is produced using a biviridine derivative B represented by the above formula (10) and a biviridine derivative represented by the following formula (15) which is a biviridine derivative having a more general structure. As a biviridine derivative represented by the following formula (15), when a quarterpyridine derivative is produced using the biviridine derivative A represented by the above formula (1), it is represented by the above formula (3). This is a method for producing quarterpyridine derivative A.
[0063] [化 16]  [0063] [Chemical 16]
Figure imgf000021_0001
[0064] 上記式(15)、 (16)において、 R1及び R2はそれぞれ独立に、水素、アルキル基、ァ リール基又は置換アルキル基であり、 Rはそれぞれ独立に 1価の有機基であり、 jは 1 〜3の整数であり、 kは 1〜4の整数であり、 X1は臭素、ヨウ素、又は「一 OSO CF」で
Figure imgf000021_0001
[0064] The above formula (15), in (16), R 1 and R 2 are each independently hydrogen, alkyl group, a § aryl group or a substituted alkyl group, a monovalent organic group each R is independently J is an integer from 1 to 3, k is an integer from 1 to 4, and X 1 is bromine, iodine, or “one OSO CF”.
2 3 ある。アルキル基としては、メチル基、ェチル基、プロピル基、 i プロピル基、ブチル 基、 i ブチル基、 S ブチル基、 t ブチル基等を挙げることができる。ァリール基と しては、フエニル基、ナフチル基等を挙げることができる。置換アルキル基としては、 ベンジル基、メトキシメチル基等を挙げることができる。これらのなかでも、 R1および R2 としては、水素、メチル基、ペンチル基、ノエル基、ヘプタデシル基が好ましい。金属 (M)としてはスズ、亜鉛、ホウ素等が好ましい。配位子 Lとしては、アルキル基、ァリー ル基、アルコキシノレ基、塩素、臭素、ヨウ素等を挙げること力 Sできる。 1価の有機基 (RThere are 2 3. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an i propyl group, a butyl group, an i butyl group, an S butyl group, and a t butyl group. Examples of the aryl group include a phenyl group and a naphthyl group. Examples of the substituted alkyl group include a benzyl group and a methoxymethyl group. Among these, as R 1 and R 2 , hydrogen, a methyl group, a pentyl group, a Noel group, and a heptadecyl group are preferable. The metal (M) is preferably tin, zinc, boron or the like. Examples of the ligand L include an alkyl group, aryl group, alkoxy group, chlorine, bromine and iodine. Monovalent organic group (R
)としては、アルキル基、カルボキシル基及びその誘導体、ホルミル基及びその誘導 体等を挙げること力 Sできる。 ) Includes alkyl groups, carboxyl groups and derivatives thereof, formyl groups and derivatives thereof.
[0065] クォータピリジン誘導体 Cの製造方法において、上記式(10)で表されるビビリジン 誘導体 Bと有機金属とを反応させて、上記式 (2)で表される有機金属中間体 1を生成 させる方法は、上記「クォータピリジン誘導体 Aの製造方法」の場合と同様とすること が好ましい。  [0065] In the method for producing quarterpyridine derivative C, biviridine derivative B represented by the above formula (10) is reacted with an organometallic to produce organometallic intermediate 1 represented by the above formula (2). The method is preferably the same as in the above-mentioned “Method for producing quarterpyridine derivative A”.
[0066] 上記式(15)で表されるビビリジン誘導体は、たとえば「J. Org. Chem.、 2002、 6 7、 8269— 8272」記載の方法により得ること力 Sできる。特に、上記式(15)で表される ビビリジン誘導体として、上記式(1)で表されるビビリジン誘導体 Aを用いる場合には 、上述したビビリジン誘導体 Aの製造方法により得ることができる。また、式(15)で表 されるビビリジン誘導体としては、具体的には、 6 ブロモー 4, 4' ジメチルー 2, 2' ビビリジン等を挙げることができる。  The biviridine derivative represented by the above formula (15) can be obtained by the method described in “J. Org. Chem., 2002, 67, 8269-8272”, for example. In particular, when the biviridine derivative A represented by the above formula (1) is used as the biviridine derivative represented by the above formula (15), it can be obtained by the method for producing the biviridine derivative A described above. Specific examples of the biviridine derivative represented by the formula (15) include 6 bromo-4,4 ′ dimethyl-2,2 ′ biviridine and the like.
[0067] 上記式(2)で表される有機金属中間体 1と、上記式(15)で表されるビビリジン誘導 体とを遷移金属触媒を用いて反応させる方法としては、上述した、クォータピリジン誘 導体 Aの製造方法において、有機金属中間体 1と上記式(1)で表されるビビリジン誘 導体 Aとを、遷移金属触媒を用いて反応させて上記式(3)で表されるクォータピリジ ン誘導体 Aを生成させる方法と、同様の方法を用いることが好まし!/、。  [0067] As a method of reacting the organometallic intermediate 1 represented by the above formula (2) and the biviridine derivative represented by the above formula (15) using a transition metal catalyst, the above-described quarterpyridine is used. In the method for producing the derivative A, the organometallic intermediate 1 is reacted with the biviridine derivative A represented by the above formula (1) using a transition metal catalyst to produce the quarterpyridine having the above formula (3). It is preferred to use a method similar to the method of forming derivative A! /.
[0068] (クォータピリジン誘導体 Dの製造方法) 本発明のクォータピリジン誘導体 Dの製造方法は、下記式(17)で表されるビビリジ ン誘導体と有機金属とを反応させて下記式(18)で表される有機金属中間体 4を生 成させ、上記式(1)で表されるビビリジン誘導体と有機金属中間体 4とを遷移金属触 媒を用いて反応させて、下記式(19)で表されるクォータピリジン誘導体 Dを生成させ るものである。 [0068] (Method for producing quarterpyridine derivative D) In the method for producing quarterpyridine derivative D of the present invention, a bibilidine derivative represented by the following formula (17) is reacted with an organometallic to produce an organometallic intermediate 4 represented by the following formula (18). The quarterpyridine derivative D represented by the following formula (19) is produced by reacting the biviridine derivative represented by the above formula (1) with the organometallic intermediate 4 using a transition metal catalyst. is there.
[0069] [化 17]  [0069] [Chemical 17]
Figure imgf000023_0001
Figure imgf000023_0001
[0070] 上記式(17)〜(; 19)において、 Rはそれぞれ独立に 1価の有機基であり、 jは 1〜3 の整数であり、 kは 1〜4の整数であり、 X2はハロゲン原子であり、 Mは金属であり、 L は配位子であり、 nは;!〜 3の整数であり、 Zは 1価の有機基であり、 R3及び R4は、そ れぞれ独立に 1価の有機基であり、互いに結合して環状構造を形成してもよい基で ある。金属(M)としてはスズ、亜鉛、ホウ素等が好ましい。配位子 Lとしては、アルキ ル基、ァリール基、アルコキシノレ基、塩素、臭素、ヨウ素等を挙げること力 Sできる。 1価 の有機基 (R)としては、アルキル基、カルボキシル基及びその誘導体、ホルミル基及 びその誘導体等を挙げることができる。 1価の有機基 (Z)としては、アルキル基、ァリ 一ル基等を挙げることができる。 R3及び R4としては、アルキル基、ァリール基等を挙 げること力 Sできる。アルキル基としては炭素数 1〜4のものが好ましい。また、 R3と R4と が互いに結合して環状構造を形成している場合には、「一 CH C (CH ) CH 一」等 [0070] In the above formulas (17) to (; 19), each R is independently a monovalent organic group, j is an integer of 1 to 3, k is an integer of 1 to 4, X 2 Is a halogen atom, M is a metal, L is a ligand, n is an integer from;! To 3, Z is a monovalent organic group, R 3 and R 4 are Each is independently a monovalent organic group and may be bonded to each other to form a cyclic structure. As the metal (M), tin, zinc, boron and the like are preferable. Examples of the ligand L include an alkyl group, an aryl group, an alkoxy group, chlorine, bromine and iodine. Examples of the monovalent organic group (R) include an alkyl group, a carboxyl group and a derivative thereof, a formyl group and a derivative thereof. Examples of the monovalent organic group (Z) include an alkyl group and an aryl group. As R 3 and R 4, it is possible to enumerate alkyl groups, aryl groups, and the like. The alkyl group is preferably an alkyl group having 1 to 4 carbon atoms. When R 3 and R 4 are bonded to each other to form a cyclic structure, “one CH C (CH 2) CH one” or the like
2 3 2 2 が好ましい。  2 3 2 2 is preferred.
[0071] 上記式(17)で表されるビビリジン誘導体は、たとえば「J. Org. Chem. 、 2002、 6 7、 8269— 8272」記載の方法により得ること力 Sできる。特に、上記式(17)で表される ビビリジン誘導体として、上記式(10)で表されるビビリジン誘導体 Bを用いる場合に は、上述した「ビビリジン誘導体 Bの製造方法」により得ることができる。また、式(17) で表されるビビリジン誘導体としては、具体的には、 6—ブロモー 4, 4' ジメチルー 2, 2'—ビビリジン等を挙げることができる。 The biviridine derivative represented by the above formula (17) can be obtained by the method described in “J. Org. Chem., 2002, 67, 8269-8272”, for example. In particular, represented by the above formula (17) When the biviridine derivative B represented by the above formula (10) is used as the biviridine derivative, it can be obtained by the “production method of the biviridine derivative B” described above. In addition, specific examples of the biviridine derivative represented by the formula (17) include 6-bromo-4,4′dimethyl-2,2′-biviridine.
[0072] 本発明のクォータピリジン誘導体 Dの製造方法において、上記式(17)で表される ビビリジン誘導体と有機金属とを反応させて、上記式(18)で表される有機金属中間 体 4を生成させる方法は、上記「クォータピリジン誘導体 Aの製造方法」の場合と同様 とすることが好ましい。 [0072] In the method for producing quarterpyridine derivative D of the present invention, a biviridine derivative represented by the above formula (17) is reacted with an organic metal to obtain an organometallic intermediate 4 represented by the above formula (18). The method of formation is preferably the same as in the case of the above-mentioned “Method for producing quarterpyridine derivative A”.
[0073] 上記式(18)で表される有機金属中間体 4と、上記式(1)で表されるビビリジン誘導 体 Aとを遷移金属触媒を用いて反応させる方法としては、上述した、クォータピリジン 誘導体 Aの製造方法において、有機金属中間体 1と上記式(1)で表されるビビリジン 誘導体 Aとを、遷移金属触媒を用いて反応させて上記式(3)で表されるクォータピリ ジン誘導体 Aを生成させる方法と、同様の方法を用いることが好まし!/、。  [0073] As a method of reacting the organometallic intermediate 4 represented by the above formula (18) and the biviridine derivative A represented by the above formula (1) using a transition metal catalyst, the above-mentioned quarter In the method for producing pyridine derivative A, a quarterpyridine derivative represented by the above formula (3) is prepared by reacting the organometallic intermediate 1 with the biviridine derivative A represented by the above formula (1) using a transition metal catalyst. It is preferable to use a method similar to the method of generating A! /.
[0074] (ターピリジン誘導体 Aの製造方法)  [0074] (Method for producing terpyridine derivative A)
下記式(21)で示されるターピリジン誘導体の製造方法(1)は、上記式(10)で表さ れるビピリジン誘導体 Bと有機金属とを反応させて、上記式 (2)で表される有機金属 中間体 1を生成させ、有機金属中間体 1と下記式 (20)で表されるピリジン誘導体とを 遷移金属触媒を用いて反応させて下記式 (21)で表されるターピリジン誘導体 Aを生 成させるものである。  A production method (1) of a terpyridine derivative represented by the following formula (21) is obtained by reacting a bipyridine derivative B represented by the above formula (10) with an organic metal to produce an organometallic represented by the above formula (2). Intermediate 1 is produced, and terpyridine derivative A represented by the following formula (21) is produced by reacting organometallic intermediate 1 with a pyridine derivative represented by the following formula (20) using a transition metal catalyst. It is something to be made.
[0075] [化 18]  [0075] [Chemical 18]
Figure imgf000024_0001
Figure imgf000024_0001
式(20)及び(21)において、 Rはそれぞれ独立に 1価の有機基であり、 jは 1〜4の 整数であり、 X1は臭素、ヨウ素又は「一 OSO CF」であり、 R1及び R2はそれぞれ独 立に、水素、アルキル基、ァリール基又は置換アルキル基である。アルキル基として は、メチル基、ェチル基、プロピル基、 i プロピル基、ブチル基、 i ブチル基、 s— ブチル基、 t ブチル基等を挙げることができる。ァリール基としては、フエニル基、ナ フチル基等を挙げることができる。置換アルキル基としては、ベンジル基、メトキシメチ ル基等を挙げることができる。これらのなかでも、 R1および R2としては、水素、メチル 基、ペンチル基、ノニル基、ヘプタデシル基が好ましい。 1価の有機基(R)としては、 アルキル基、カルボキシル基及びその誘導体、ホルミル基及びその誘導体等を挙げ ること力 Sでさる。 In the formulas (20) and (21), R is each independently a monovalent organic group, j is an integer of 1 to 4, X 1 is bromine, iodine or “one OSO CF”, R 1 And R 2 are German In particular, it is hydrogen, an alkyl group, an aryl group or a substituted alkyl group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an i propyl group, a butyl group, an i butyl group, an s-butyl group, and a t butyl group. Examples of the aryl group include a phenyl group and a naphthyl group. Examples of the substituted alkyl group include a benzyl group and a methoxymethyl group. Among these, as R 1 and R 2, hydrogen, a methyl group, pentyl group, nonyl group, heptadecyl group. Examples of the monovalent organic group (R) include an alkyl group, a carboxyl group and derivatives thereof, a formyl group and derivatives thereof, and the like.
[0077] 本発明のターピリジン誘導体 Aの製造方法において、上記式(10)で表されるビビリ ジン誘導体 Bと有機金属とを反応させて、上記式 (2)で表される有機金属中間体 1を 生成させる方法は、上記「クォータピリジン誘導体 Aの製造方法」の場合と同様とする ことが好ましい。  [0077] In the method for producing terpyridine derivative A of the present invention, an organometallic intermediate 1 represented by the above formula (2) is obtained by reacting the bibilidine derivative B represented by the above formula (10) with an organometallic. The method for producing is preferably the same as in the above-mentioned “method for producing quarterpyridine derivative A”.
[0078] 上記式(20)で表されるピリジン誘導体は、たとえば「Eur. J. Org. Chem. 、 2003 、 19、 3855— 3860」記載の方法により得ることカできる。また、式(20)で表されるピ リジン誘導体としては、具体的には、 2 ブロモー 4 メチルピリジン等を挙げることが できる。  The pyridine derivative represented by the above formula (20) can be obtained, for example, by the method described in “Eur. J. Org. Chem., 2003, 19, 3855-3860”. Specific examples of the pyridine derivative represented by the formula (20) include 2 bromo-4-methylpyridine.
[0079] 上記式(2)で表される有機金属中間体 1と、上記式(20)で表されるピリジン誘導体 とを遷移金属触媒を用いて反応させる方法としては、上述した、クォータピリジン誘導 体 Aの製造方法において、有機金属中間体 1と上記式(1)で表されるビビリジン誘導 体 Aとを、遷移金属触媒を用いて反応させて上記式(3)で表されるクォータピリジン 誘導体 Aを生成させる方法と、同様の方法を用いることが好まし!/、。  [0079] As a method of reacting the organometallic intermediate 1 represented by the above formula (2) with the pyridine derivative represented by the above formula (20) using a transition metal catalyst, the above-mentioned quarter pyridine derivative is used. In the production method of Form A, a quarterpyridine derivative represented by the above formula (3) is prepared by reacting the organometallic intermediate 1 with the biviridine derivative A represented by the above formula (1) using a transition metal catalyst. It is preferable to use a method similar to the method of generating A! /.
[0080] (ターピリジン誘導体 Bの製造方法)  [0080] (Method for producing terpyridine derivative B)
下記式(24)で示されるターピリジン誘導体 Bの製造方法は、下記式(22)で表され るピリジン誘導体と有機金属とを反応させて下記式 (23)で表される有機金属中間体 5を生成させ、上記式(1)で表されるビビリジン誘導体と、有機金属中間体 5とを遷移 金属触媒を用いて反応させて、下記式 (24)で表されるターピリジン誘導体 Bを生成 させるものである。  The terpyridine derivative B represented by the following formula (24) is produced by reacting a pyridine derivative represented by the following formula (22) with an organic metal to produce an organometallic intermediate 5 represented by the following formula (23). The terpyridine derivative B represented by the following formula (24) is produced by reacting the biviridine derivative represented by the above formula (1) with the organometallic intermediate 5 using a transition metal catalyst. is there.
[0081] [化 19] [0081] [Chemical 19]
Figure imgf000026_0001
Figure imgf000026_0001
[0082] 式(22)〜(24)において、 Rはそれぞれ独立に 1価の有機基であり、 jは 1〜4の整 数であり、 X2はハロゲン原子であり、 Lは配位子であり、 nは;!〜 3の整数であり、 Zは 1 価の有機基であり、 R3及び R4は、それぞれ独立に 1価の有機基であり、互いに結合 して環状構造を形成してもよい基である。金属(M)としてはスズ、亜鉛、ホウ素等が 好ましい。配位子 Lとしては、アルキル基、ァリール基、アルコキシル基、塩素、臭素、 ヨウ素等を挙げること力できる。 1価の有機基 (R)としては、アルキル基、カルボキシ ル基及びその誘導体、ホルミル基及びその誘導体等を挙げることができる。 1価の有 機基(Z)としては、アルキル基、ァリール基等を挙げることができる。 R3及び として は、アルキル基、ァリール基等を挙げることができる。アルキル基としては炭素数 1〜 4のものが好ましい。また、 R3と R4とが互いに結合して環状構造を形成している場合 には、「一 CH C (CH ) CH―」等が好ましい。 [0082] In the formulas (22) to (24), R is each independently a monovalent organic group, j is an integer of 1 to 4, X 2 is a halogen atom, and L is a ligand. , N is an integer from;! To 3, Z is a monovalent organic group, R 3 and R 4 are each independently a monovalent organic group, and are bonded to each other to form a cyclic structure. It may be a group. As the metal (M), tin, zinc, boron and the like are preferable. Examples of the ligand L include an alkyl group, aryl group, alkoxyl group, chlorine, bromine and iodine. Examples of the monovalent organic group (R) include an alkyl group, a carboxyl group and a derivative thereof, a formyl group and a derivative thereof. Examples of the monovalent organic group (Z) include an alkyl group and an aryl group. Examples of R 3 and include an alkyl group and an aryl group. The alkyl group is preferably an alkyl group having 1 to 4 carbon atoms. When R 3 and R 4 are bonded to each other to form a cyclic structure, “one CH 2 C (CH 2) 2 CH—” or the like is preferable.
2 3 2 2  2 3 2 2
[0083] 上記式(20)で表されるピリジン誘導体は、たとえば「Eur. J. Org. Chem.、 2003 、 19、 3855— 3860」記載の方法により得ることカできる。また、式(20)で表されるピ リジン誘導体としては、具体的には、 2 ブロモー 4 メチルピリジン等を挙げることが できる。  [0083] The pyridine derivative represented by the above formula (20) can be obtained by the method described in "Eur. J. Org. Chem., 2003, 19, 3855-3860", for example. Specific examples of the pyridine derivative represented by the formula (20) include 2 bromo-4-methylpyridine.
[0084] 本発明のターピリジン誘導体 Bの製造方法において、上記式(22)で表されるピリジ ン誘導体と有機金属とを反応させて、上記式 (23)で表される有機金属中間体 5を生 成させる方法は、上記「ビビリジン誘導体 Bの製造方法」において、式(11)で表され るピリジン誘導体と有機金属とを反応させて、式(12)で表される有機金属中間体 3を 生成させる方法と同様の方法を用いることが好ましい。 [0084] In the method for producing terpyridine derivative B of the present invention, an organometallic intermediate 5 represented by the above formula (23) is obtained by reacting a pyridine derivative represented by the above formula (22) with an organometallic. The method for producing the organic metal intermediate 3 represented by the formula (12) is obtained by reacting the pyridine derivative represented by the formula (11) with an organic metal in the above-mentioned “production method of the biviridine derivative B”. It is preferable to use a method similar to the method of generating.
[0085] 上記式(23)で表される有機金属中間体 5と、上記式(1)で表されるビビリジン誘導 体 Aとを遷移金属触媒を用いて反応させる方法としては、上述した、クォータピリジン 誘導体 Aの製造方法において、有機金属中間体 1と上記式(1)で表されるビビリジン 誘導体 Aとを、遷移金属触媒を用いて反応させて上記式(3)で表されるクォータピリ ジン誘導体 Aを生成させる方法と、同様の方法を用いることが好まし!/、。 [0085] As a method for reacting the organometallic intermediate 5 represented by the above formula (23) with the biviridine derivative A represented by the above formula (1) using a transition metal catalyst, In the method for producing pyridine derivative A, a quarterpyridine derivative represented by the above formula (3) is prepared by reacting the organometallic intermediate 1 with the biviridine derivative A represented by the above formula (1) using a transition metal catalyst. It is preferable to use a method similar to the method of generating A! /.
実施例  Example
[0086] (合成例 1) [0086] (Synthesis Example 1)
マグネティックスターラおよび三方コックを備えた 1Lフラスコに、 2—ブロモー 4ーメ チルピリジン(10· Og、 58ミリモル)および無水 THF (400mL)を採り、窒素気流下で 攪拌しながら、ドライアイス浴を用いて— 78°Cに冷却した。その溶液に対し、 2mol/ Lのリチウムジイソプロピルアミドの THF/ヘプタン/ェチルベンゼン溶液(44mL、 88ミリモル)を、シリンジを用いて約 5分間かけて滴下し、 - 78°C1. 5時間攪拌した。 この溶液に対し、 1 ブロモへキサデカン(19· 5g、 64モル)の THF溶液(lOOmU を、シリンジを用いて一度に添加した。添加後、約 15分間かけて— 20°Cまで昇温さ せ、 20°Cで 2時間攪拌した。さらに約 15分間かけて室温まで昇温させ、 2時間攪 拌した。水(約 50mL)を加えた後、酢酸ェチルで 3回抽出した。 3回分の抽出液を合 わせた有機相を硫酸マグネシウムで乾燥させた後、ロータリーエバポレータを用いて 濃縮した。得られた粗製物を、シリカゲルカラムを用いて精製することで、下記式(25 )に示す、 2 ブロモー 4一へプタデシルビリジンの黄色オイルを得た(16· 7g、 42ミ リモル、収率 73%)。  In a 1 L flask equipped with a magnetic stirrer and a three-way cock, 2-bromo-4-methylpyridine (10 · Og, 58 mmol) and anhydrous THF (400 mL) were taken and stirred in a nitrogen stream using a dry ice bath. — Cooled to 78 ° C. To the solution, 2 mol / L lithium diisopropylamide in THF / heptane / ethylbenzene (44 mL, 88 mmol) was added dropwise over about 5 minutes using a syringe and stirred at −78 ° C. for 1.5 hours. To this solution, 1 bromohexadecane (19.5 g, 64 mol) in THF (lOOmU) was added at once using a syringe. After the addition, the temperature was raised to -20 ° C over about 15 minutes. The mixture was stirred for 2 hours at 20 ° C. The mixture was further warmed to room temperature over about 15 minutes and stirred for 2 hours.After adding water (about 50 mL), the mixture was extracted three times with ethyl acetate. The combined organic phase was dried over magnesium sulfate and concentrated using a rotary evaporator, and the resulting crude product was purified using a silica gel column to obtain the following formula (25). A yellow oil of bromo-4heptadecyl pyridine was obtained (16.7 g, 42 mmol, yield 73%).
[0087] 分析値は以下のとおりである。 [0087] The analysis values are as follows.
1H-NMR (270MHz, CDC1 ) δ : 8. 23ppm (d、J = 5. OHz、 1H)、 7. 31 (s、 1 1 H-NMR (270 MHz, CDC1) δ: 8. 23 ppm (d, J = 5. OHz, 1H), 7. 31 (s, 1
3  Three
H)、 7. 05 (d、 5. 2Hz、 1H)、 2. 57 (t、 7. 7Hz、 2H)、 1. 61 (m、 2H)、 1. 29 (m 、 28H)、 0. 88 (t、 6. 6Hz、 3H)  H), 7.05 (d, 5.2Hz, 1H), 2.57 (t, 7.7Hz, 2H), 1.61 (m, 2H), 1.29 (m, 28H), 0.88 (t, 6.6Hz, 3H)
LC/MS (API-ES) m/z : 396. 2 (100%、 [M + H] +)、 398. 2 (100%)、 39 7. 2 (25%)、 399. 2 (25%) LC / MS (API-ES) m / z: 396.2 (100%, [M + H] + ), 398.2 (100%), 397.2 (25%), 399.2 (25% )
[0088] [化 20]
Figure imgf000028_0001
[0088] [Chemical 20]
Figure imgf000028_0001
[0089] (合成例 2)  [0089] (Synthesis Example 2)
マグネティックスターラおよび三方コックを備えた 300mLフラスコに、 2—(N, N— ジメチノレアミノ)エタノーノレ(10mL、 100ミリモル)およびへキサン(50mUを採り、窒 素気流下で攪拌しながら、氷浴を用いて冷却した。この溶液に対して、 1. 6mol/L の n ブチルリチウムのへキサン溶液(125mL、 200ミリモル)を、シリンジを用いて約 10分間かけて滴下した。 0°Cで 15分間攪拌した後、ドライアイス浴を用いて一 78°C に冷却した。この溶液に対して、 2 クロ口ピリジン(5· 67g、 50ミリモル)のへキサン 溶液(50mL)を、シリンジを用いて約 5分間かけて滴下した。 78°Cで 2時間攪拌し た後、その溶液に対して、塩化トリブチルすず(29mL、 100ミリモル)をシリンジを用 いて一度に加えた。約 1時間かけて室温まで昇温させたのち、室温で 2時間攪拌した 。この溶液に水(約 lOOmL)を加えた後、酢酸ェチルを用いて 3回抽出した。 3回分 の抽出液を合わせた有機相を硫酸マグネシウムで乾燥させた後、ロータリーエバポレ ータを用いて濃縮した。得られた粗製物をシリカゲルカラムを用いて精製することで、 2 -トリブチルスタニルー 6 -クロ口ピリジンの黄色オイルを得た。  In a 300 mL flask equipped with a magnetic stirrer and a three-way cock, take 2- (N, N-Dimethylolamino) ethanolanol (10 mL, 100 mmol) and hexane (50 mU) and stir under a nitrogen stream using an ice bath. To this solution, 1.6 mol / L n-butyllithium hexane solution (125 mL, 200 mmol) was added dropwise over about 10 minutes using a syringe and stirred at 0 ° C. for 15 minutes. Then, using a dry ice bath, the solution was cooled to 78 ° C. To this solution, a 2-hexane pyridine (5 · 67 g, 50 mmol) in hexane (50 mL) was added using a syringe for about 5 minutes. After stirring at 78 ° C. for 2 hours, tributyltin chloride (29 mL, 100 mmol) was added to the solution at once using a syringe. And then stirred at room temperature for 2 hours To this solution was added water (about lOOmL), followed by extraction three times with ethyl acetate, and the organic phase combined with the three extracts was dried over magnesium sulfate and then used with a rotary evaporator. The resulting crude product was purified using a silica gel column to obtain a yellow oil of 2-tributylstannyl-6-chloropyridine.
[0090] 分析値は以下のとおりである。  [0090] The analysis values are as follows.
LC/MS (API-ES) m/z : 404. 1 (100%、 [M + H] +)、402. 1 (75%)、 403 . 1 (40%)、406. 1 (40%)、 400. 1 (35%)、401. 1 (30%)、405. 1 (25%)、 40 8. 1 (20%)、 407. 1 (10%) LC / MS (API-ES) m / z: 404.1 (100%, [M + H] + ), 402.1 (75%), 403.1 (40%), 406.1 (40%) , 400.1 (35%), 401.1 (30%), 405.1 (25%), 408.1 (20%), 407.1 (10%)
[0091] 上記で合成した 2 -トリブチルスタニル 6 -クロ口ピリジンに 2 -ブロモ一 4 メチ ルビリジン(7. 74g、 45ミリモル)および p キシレン(25mUを加えた後、真空装置 を用いて 3回脱気した。マグネティックスターラ、オイルバス、三方コックおよびジム口 ートコンデンサを備えた 500mLフラスコにテトラキス(トリフエニルホスフィン)パラジゥ ム(1. 45g、 1. 3ミリモル)を採り、窒素置換した後、前述の脱気した混合溶液をシリ ンジを用いて加えた。この混合溶液を窒素気流下、 150°Cで約 10時間還流した。室 温まで放冷した後、 1N塩酸を用いて溶液を酸性にし、この溶液を 1N塩酸で 3回抽 出した。 3回分の抽出液を合わせた水相を炭酸ナトリウムを用いて塩基性にした後、 この水相を酢酸ェチルで 5回抽出した。 5回分の抽出液を合わせた酢酸ェチル相を 硫酸マグネシウムで乾燥させた後、ロータリーエバポレータを用いて濃縮した。得ら れた粗製物を、シリカゲルカラムを用いて精製することで、下記式(26)に示す、 6— クロロー 4,ーメチノレー 2, 2, 一ビビリジンの白色結曰曰日を得た(7· 32g、 35ミリモノレ、収 率 71 % )。 [0091] 2-tributylstannyl 6-chloropyridine synthesized above was added 2-bromo-l-methylmethylidine (7.74 g, 45 mmol) and p-xylene (25 mU, then 3 times using a vacuum apparatus). Tetrakis (triphenylphosphine) palladium (1.45 g, 1.3 mmol) was placed in a 500 mL flask equipped with a magnetic stirrer, oil bath, three-way cock, and Jim mouth condenser, and purged with nitrogen as described above. The degassed mixed solution was added using a syringe, and the mixed solution was refluxed for about 10 hours under a nitrogen stream at 150 ° C. After cooling to room temperature, the solution was acidified with 1N hydrochloric acid, Extract this solution three times with 1N hydrochloric acid. I put it out. The aqueous phase combined with the three extracts was basified with sodium carbonate, and the aqueous phase was extracted 5 times with ethyl acetate. The ethyl acetate phase combined with the extract of 5 times was dried with magnesium sulfate and then concentrated using a rotary evaporator. The obtained crude product was purified using a silica gel column to obtain a white ligation day of 6-chloro-4, -methinole 2, 2, monobiviridine represented by the following formula (26) (7. 32g, 35mm monore, yield 71%).
[0092] 分析値は以下のとおりである。  [0092] The analysis values are as follows.
1H-NMR (270MHz, CDC1 ) δ : 8. 52ppm (d、J = 4. 9Hz、 1H)、 8. 34 (d、 8 1 H-NMR (270 MHz, CDC1) δ: 8.52 ppm (d, J = 4.9 Hz, 1H), 8.34 (d, 8
3  Three
. lHz、 1H)、 8. 24 (s、 1H)、 7. 76 (dd、 7. 8Hz、 7. 6Hz、 1H)、 7. 33 (d、 7. 8 Hz、 1H)、 7. 15 (d、 5. lHz、 1H)、 2. 44 (s、 3H)  lHz, 1H), 8.24 (s, 1H), 7.76 (dd, 7.8Hz, 7.6Hz, 1H), 7.33 (d, 7.8Hz, 1H), 7.15 ( d, 5. lHz, 1H), 2.44 (s, 3H)
LC/MS (API-ES) m/z : 205. 1 (100%、 [M + H] +)、 207. 1 (30%)、 206 . 1 (15%) LC / MS (API-ES) m / z: 205.1 (100%, [M + H] + ), 207.1 (30%), 206.1 (15%)
[0093] [化 21] [0093] [Chemical 21]
Figure imgf000029_0001
Figure imgf000029_0001
[0094] (合成例 3)  [0094] (Synthesis Example 3)
マグネティックスターラおよび三方コックを備えた 50mLフラスコに、 6 クロロー 4, —メチノレ一 2, 2,一ビビリジン(2· 05g、 10ミリモノレ)および無水 THF (20mL)を採り 、窒素気流下で攪拌しながら、ドライアイス浴を用いて一 78°Cに冷却した。この溶液 ゼン溶液(6mL、 12ミリモル)を、シリンジを用いて約 5分間かけて滴下し、 78°Cで 2時間攪拌した。この溶液に対し、 1—ブロモへキサデカン(3· 05g、 10ミリモル)の T HF溶液(20mUを、シリンジを用いて一度に加えた。添加後、約 1時間かけて 20 °Cまで昇温させ、 20°Cで 4時間攪拌した。水を加えた後、室温に昇温させ、酢酸 ェチルで 3回抽出した。 3回分の抽出液を合わせた有機相を硫酸マグネシウムで乾 燥させた後、ロータリーエバポレータを用いて濃縮した。得られた粗製物をシリカゲル カラムを用いて精製することで、下記式(27)に示す、 6 クロロー 4,一へプタデシノレ - 2, 2,—ビビリジンの黄白色粉末を得た(2· 96g、 6. 9ミリモル、収率 69%)。 In a 50 mL flask equipped with a magnetic stirrer and a three-way cock, take 6 chloro-4, -methinole-1,2,2, bibilysine (2.05 g, 10 millimonole) and anhydrous THF (20 mL) and stir under a nitrogen stream while stirring. Cooled to 78 ° C using a dry ice bath. This solution solution (6 mL, 12 mmol) was added dropwise over about 5 minutes using a syringe and stirred at 78 ° C. for 2 hours. To this solution, 1-bromohexadecane (3.05 g, 10 mmol) in THF (20 mU) was added at once using a syringe. After the addition, the temperature was raised to 20 ° C over about 1 hour. The mixture was stirred for 4 hours at 20 ° C. After adding water, the mixture was warmed to room temperature and extracted three times with ethyl acetate, and the combined organic phase was dried over magnesium sulfate. The resulting crude product was purified using a silica gel column, and 6 Chloro-4, 1-heptadecinole represented by the following formula (27) was then obtained. -A pale yellow powder of 2,2, -biviridine was obtained (2.96 g, 6.9 mmol, 69% yield).
[0095] 分析値は以下のとおりである。 [0095] The analysis values are as follows.
1H-NMR (270MHz, CDC1 ) δ : 8. 54ppm (d、J = 5. 1Ηζ、 1H)、 8. 34 (d、 7 1 H-NMR (270 MHz, CDC1) δ: 8.54 ppm (d, J = 5.1 Ηζ, 1H), 8.34 (d, 7
3  Three
. 6Hz、 1H)、 8. 23 (s、 1H)、 7. 76 (dd、 7. 8Hz、 7. 6Hz、 1H)、 7. 33 (d、 7. 6 Hz、 1H)、 7. 15 (d、 5. lHz、 1H)、 2. 69 (t、 7. 8 Hz, 2H)、 1. 68 (m、 2H)、 1. 40~1. 25 (m、 28H)、 0. 88 (t、 7. 0Hz、 3H)  6Hz, 1H), 8.23 (s, 1H), 7.76 (dd, 7.8Hz, 7.6Hz, 1H), 7.33 (d, 7.6Hz, 1H), 7.15 ( d, 5. lHz, 1H), 2.69 (t, 7.8 Hz, 2H), 1.68 (m, 2H), 1.40 to 1.25 (m, 28H), 0.88 (t , 7.0Hz, 3H)
LC/MS (API-ES) m/z : 429. 3 (100%、 [M + H] +)、431. 3 (45%)、 430 . 3 (40%)、 432. 3 (10%) LC / MS (API-ES) m / z: 439.3 (100%, [M + H] + ), 431.3 (45%), 430.3 (40%), 432.3 (10%)
[0096] [化 22] [0096] [Chemical 22]
Figure imgf000030_0001
Figure imgf000030_0001
[0097] (合成例 4)  [0097] (Synthesis Example 4)
マグネティックスターラおよび三方コックを備えた lOOmLフラスコに 2—(N, N ジ メチルァミノ)エタノール(4mL、 40ミリモル)およびへキサン(lOmL)を採り、窒素気 流下で攪拌しながら、氷浴を用いて冷却した。この溶液に対して 1. 6mol/Lの n— ブチルリチウムのへキサン溶液(50mL、 80ミリモル)を、シリンジを用いて約 10分間 力、けて滴下した。 0°Cで 15分間攪拌した後、ドライアイス浴を用いて一 78°Cに冷却し た。この溶液に対して、 2 クロ口ピリジン(2· 27g、 20ミリモル)のへキサン溶液(10 mL)を、シリンジを用いて約 5分間かけて滴下した。 78°Cで 2時間攪拌した後、そ の溶液に対して、塩化トリブチルすず(5· 5mL、 20ミリモル)をシリンジを用いて一度 に加えた。約 1時間かけて室温まで昇温させたのち、室温で 2時間攪拌した。この溶 液に水を加えた後、酢酸ェチルを用いて 3回抽出した。 3回分の抽出液を合わせた 有機相を硫酸マグネシウムで乾燥させた後、ロータリーエバポレータを用いて濃縮し た。得られた粗製物をシリカゲルカラムを用いて精製することで、 2—トリプチルスタニ ルー 6—クロ口ピリジンの黄色オイルを得た。  Take l- (N, N dimethylamino) ethanol (4 mL, 40 mmol) and hexane (lOmL) in a lOOmL flask equipped with a magnetic stirrer and three-way cock and cool with an ice bath while stirring under a nitrogen stream. did. A 1.6 mol / L n-butyllithium hexane solution (50 mL, 80 mmol) was added dropwise to the solution using a syringe for about 10 minutes. After stirring at 0 ° C for 15 minutes, the mixture was cooled to 78 ° C using a dry ice bath. To this solution, a hexane solution (10 mL) of 2-chloropyridine (2-27 g, 20 mmol) was added dropwise over about 5 minutes using a syringe. After stirring at 78 ° C for 2 hours, tributyltin chloride (5.5 mL, 20 mmol) was added to the solution all at once using a syringe. After raising the temperature to room temperature over about 1 hour, the mixture was stirred at room temperature for 2 hours. Water was added to this solution, followed by extraction three times with ethyl acetate. The organic phase combined with the three extracts was dried over magnesium sulfate and then concentrated using a rotary evaporator. The obtained crude product was purified using a silica gel column to obtain a yellow oil of 2-triptylustanil 6-clopyridine.
[0098] 上記で合成した 2 トリブチノレスタニノレー 6 クロ口ピリジンに 2 ブロモー 4 ヘプ タデシルビリジン(6· 90g、 17ミリモル)および p キシレン(40mUを加えた後、真 空装置を用いて 3回脱気した。マグネティックスターラ、オイルバス、三方コックおよび ジムロートコンデンサを備えた 50mLフラスコにテトラキス(トリフエニルホスフィン)パラ ジゥム(0. 69g、 0. 6ミリモル)を採り、窒素置換した後、前述の脱気した混合溶液を 、シリンジを用いて加えた。窒素気流下でこの混合溶液を 140°Cで約 8時間還流した 。室温まで放冷した後、水(約 40mL)を加え、酢酸ェチルで 3回抽出した。 3回分の 抽出液を合わせた有機相を硫酸マグネシウムで乾燥させた後、ロータリーエバポレ ータを用いて濃縮した。得られた粗製物をシリカゲルカラムを用いて精製することで、 上記式(27)に示す、 6 クロロー 4,一へプタデシルー 2, 2'—ビビリジンの白色結晶 を得た(2· 83g、 6. 6ミリモノレ、収率 33%)。 [0098] After adding 2 bromo-4-heptadecyl pyridine (6 · 90 g, 17 mmol) and p-xylene (40 mU) to 2 tributinorestaninole 6 Degassed three times using an empty device. A 50 mL flask equipped with a magnetic stirrer, oil bath, three-way cock, and Dimroth condenser was charged with tetrakis (triphenylphosphine) paradium (0.69 g, 0.6 mmol), purged with nitrogen, and then the above-mentioned degassed mixed solution Was added using a syringe. This mixed solution was refluxed at 140 ° C. for about 8 hours under a nitrogen stream. After allowing to cool to room temperature, water (about 40 mL) was added, and the mixture was extracted 3 times with ethyl acetate. The combined organic phase of the three extracts was dried over magnesium sulfate and then concentrated using a rotary evaporator. The obtained crude product was purified using a silica gel column to obtain white crystals of 6 chloro-4,1-heptadecyl-2,2′-biviridine represented by the above formula (27) (2.83 g, 6. 6 mm monore, yield 33%).
[0099] (合成例 5) [0099] (Synthesis Example 5)
マグネティックスターラおよび三方コックを備えた 50mLフラスコに、 6 クロロー 4, —メチノレ一 2, 2,一ビビリジン(2· 05g、 10ミリモノレ)および無水 THF (20mL)を採り 、窒素気流下で攪拌しながら、ドライアイス浴を用いて— 78°Cに冷却した。その溶液 ゼン溶液(6mL、 12ミリモル)を、シリンジを用いて約 5分間かけて滴下し、 78°Cで In a 50 mL flask equipped with a magnetic stirrer and a three-way cock, take 6 chloro-4, -methinole-1,2,2, bibilysine (2.05 g, 10 millimonole) and anhydrous THF (20 mL) and stir under a nitrogen stream while stirring. Cooled to -78 ° C using a dry ice bath. The solution Zen solution (6 mL, 12 mmol) was added dropwise using a syringe over a period of about 5 minutes at 78 ° C.
2時間攪拌した。この溶液に対し、 1—ブロモオクタン(2· 06g、 10ミリモル)の THF 溶液(20mL)を、シリンジを用いて滴下した。滴下後、約 1時間かけて— 20°Cまで昇 温させ、 20°Cで 4時間攪拌した。水を加えた後、室温に昇温させ、酢酸ェチルで 3 回抽出した。 3回分の抽出液を合わせた有機相を硫酸マグネシウムで乾燥させた後 、ロータリーエバポレータを用いて濃縮した。得られた粗製物をシリカゲルカラムを用 いて精製することで、下記式(28)で示す、 6 クロロー 4,ーノニルー 2, 2'—ビビリジ ンの黄色才ィノレを得た(2· 05g、 6. 5ミリモノレ、収率 650/0)。 Stir for 2 hours. To this solution, 1-bromooctane (2.06 g, 10 mmol) in THF (20 mL) was added dropwise using a syringe. After dropping, the temperature was raised to −20 ° C. over about 1 hour, and the mixture was stirred at 20 ° C. for 4 hours. After adding water, the mixture was warmed to room temperature and extracted three times with ethyl acetate. The combined organic phase of the three extracts was dried over magnesium sulfate and then concentrated using a rotary evaporator. The resulting crude product was purified using a silica gel column to obtain 6-chloro-4, nonyl-2,2′-bibilidine yellowish violet, represented by the following formula (28) (2.05 g, 6. 5 Mirimonore, yield 65 0/0).
[0100] 分析値は以下のとおりである。 [0100] The analysis values are as follows.
1H-NMR (270MHz, CDC1 ) δ : 8. 54ppm (d、J = 4. 9Hz、 1H)、 8. 34 (dd、 1 H-NMR (270 MHz, CDC1) δ: 8.54 ppm (d, J = 4.9 Hz, 1H), 8.34 (dd,
3  Three
7. 8Hz、 1. lHz、 1H)、 8. 23 (d、J= l . lHz、 1H)、 7. 76 (dd、 7. 8Hz、 7. 6Hz 、 1H)、 7. 33 (dd、 7. 6Hz、 1. lHz、 1H)、 7. 15 (dd、 4. 9Hz、 1. 9 Hz, 1H)、 2 . 69 (t、 8. 0Hz、 2H)、 1. 68 (m、 2H)、 1. 33~1. 23 (m、 12H)、 0. 88 (t、 6. 8 Hz、 3H) LC/MS (API - ES) m/z :317.2(100%、 [M + H]+)、 319.2(40%)、 318 .2(25%)、 320.2(10%) 7. 8Hz, 1. lHz, 1H), 8.23 (d, J = l. LHz, 1H), 7.76 (dd, 7.8Hz, 7.6Hz, 1H), 7.33 (dd, 7 6Hz, 1.lHz, 1H), 7.15 (dd, 4.9Hz, 1.9Hz, 1H), 2.69 (t, 8.0Hz, 2H), 1.68 (m, 2H), 1.33 ~ 1.23 (m, 12H), 0.88 (t, 6.8 Hz, 3H) LC / MS (API-ES) m / z: 317.2 (100%, [M + H] + ), 319.2 (40%), 318.2 (25%), 320.2 (10%)
[0101] [化 23] [0101] [Chemical 23]
Cg
Figure imgf000032_0001
Cg
Figure imgf000032_0001
[0102] (合成例 6)  [0102] (Synthesis Example 6)
マグネティックスターラおよび三方コックを備えた 1Lフラスコに 2— (N, N ジメチ ルァミノ)エタノール(20mL、 200ミリモル)およびへキサン(lOOmL)を採り、窒素気 流下で攪拌しながら、氷浴を用いて冷却した。この溶液に対して 1.6mol/Lの n— ブチルリチウムのへキサン溶液(250mL、 400ミリモル)を、シリンジを用いて約 5分 間かけて滴下した。 0°C 15分間攪拌した後、ドライアイス浴を用いて一 78°Cに冷却し た。この溶 ί夜に対して、 2 クロロー 4ーメチノレピリジン(12· 8g、 100ミリモノレ)とへキ サン(lOOmL)の混合液を、シリンジを用いて約 5分間かけて滴下した。 78°C2時 間攪拌した後、その溶液に対して、塩化トリブチルすず(57mL、 210ミリモル)をシリ ンジを用いて一度に加えた。約 1時間かけて室温まで昇温させたのち、室温で 2時間 攪拌した。この溶液に水(約 200mUを加えた後、酢酸ェチルを用いて 3回抽出した 。合わせた有機相を硫酸マグネシウムで乾燥させた後、ロータリーエバポレータを用 いて濃縮した。得られた粗製物をシリカゲルカラムを用いて精製することで、 2—トリブ チルスタニル 6—クロロー 4 メチルピリジンを得た。  Take a 2- (N, N dimethylamino) ethanol (20 mL, 200 mmol) and hexane (lOOmL) in a 1 L flask equipped with a magnetic stirrer and a three-way cock, and cool in an ice bath while stirring under a nitrogen stream. did. To this solution, 1.6 mol / L n-butyllithium hexane solution (250 mL, 400 mmol) was added dropwise over about 5 minutes using a syringe. After stirring at 0 ° C for 15 minutes, the mixture was cooled to 78 ° C using a dry ice bath. To this solution, a mixture of 2 chloro-4-methinorepyridine (12.8 g, 100 millimonole) and hexane (lOOmL) was added dropwise over about 5 minutes using a syringe. After stirring at 78 ° C. for 2 hours, tributyltin chloride (57 mL, 210 mmol) was added to the solution all at once using a syringe. After raising the temperature to room temperature over about 1 hour, the mixture was stirred at room temperature for 2 hours. To this solution was added water (about 200 mU, followed by extraction three times with ethyl acetate. The combined organic phases were dried over magnesium sulfate and then concentrated using a rotary evaporator. By purifying using a column, 2-tributylbutanyl 6-chloro-4-methylpyridine was obtained.
[0103] 分析値は以下のとおりである。 [0103] The analysis values are as follows.
1H-NMR(270MHz, CDC1 ) δ :7. llppm(s、 1H)、 6.97(s、 1H)、 2.28 (s 1 H-NMR (270 MHz, CDC1) δ: 7.llppm (s, 1H), 6.97 (s, 1H), 2.28 (s
3  Three
、 3H)、 1.54 (m、 6H)、 1.31 (m、 6H)、 1.12(t、J = 8. 1Ηζ、 6H)、 0.88 (t、 7 .3Hz、 9H)  3H), 1.54 (m, 6H), 1.31 (m, 6H), 1.12 (t, J = 8.1 = ζ, 6H), 0.88 (t, 7.3Hz, 9H)
LC/MS (API - ES) m/z :418.1(100%、 [M + H]+)、416.1(80%)、 417 . 1(40%)、420.1(40%)、414.1(35%)、415. 1(25%)、419.1(25%)、42 2. 1(20%)、 421.1(10%) LC / MS (API-ES) m / z: 418.1 (100%, [M + H] + ), 416.1 (80%), 417.1 (40%), 420.1 (40%), 414.1 (35%) , 415.1 (25%), 419.1 (25%), 42 2.1 (20%), 421.1 (10%)
[0104] 上記で合成した 2 トリブチルスタニル 6 クロ口一 4 メチルピリジンに 2 ブロ モー 4 メチルピリジン(14· 2g、 80ミリモル)および p キシレン(150mUを加えた 後、真空を用いて 3回脱気した。マグネティックスターラ、オイルバス、三方コックおよ びジムロートコンデンサを備えた 1Lフラスコにテトラキス(トリフエニルホスフィン)パラ ジゥム(2. 14g、 1. 9ミリモル)を採り、窒素置換した後、前述の脱気した混合溶液を 加えた。その溶液を窒素気流下、 150°Cで約 10時間還流した。室温まで放冷した後 、 1N塩酸を用いて溶液を酸性にし、この溶液を 1N塩酸で 3回抽出した。合わせた水 相を炭酸ナトリウムを用いて塩基性にした後、この水相を酢酸ェチルで 5回抽出した 。合わせた有機相を硫酸マグネシウムで乾燥させた後、ロータリーエバポレータを用 いて濃縮した。得られた粗製物をシリカゲルカラムを用いて精製することで、下記式( 29)に示す、 6 クロロー 4, 4' ジメチルー 2, 2'—ビビリジンの白色結晶を得た(1 3. 3g、 60ミリモル、収率 60%)。 [0104] 2-tributylstannyl synthesized above 4 Mo 4 Methylpyridine (14.2 g, 80 mmol) and p-xylene (150 mU were added and then degassed three times using vacuum. 1 L flask equipped with magnetic stirrer, oil bath, three-way cock and Dimroth condenser After taking tetrakis (triphenylphosphine) paradium (2.14 g, 1.9 mmol) and replacing with nitrogen, the above-mentioned degassed mixed solution was added. After cooling to room temperature, the solution was acidified with 1N hydrochloric acid, and the solution was extracted three times with 1N hydrochloric acid.The combined aqueous phase was basified with sodium carbonate, and The aqueous phase was extracted five times with ethyl acetate, the combined organic phases were dried over magnesium sulfate and concentrated using a rotary evaporator, and the resulting crude product was purified using a silica gel column. Thus, white crystals of 6chloro-4,4′dimethyl-2,2′-biviridine represented by the following formula (29) were obtained (13.3 g, 60 mmol, yield 60%).
[0105] 分析値は以下のとおりである。 [0105] The analysis values are as follows.
1H-NMR (270MHz, CDC1 ) δ : 8. 49ppm (d、J = 4. 9Hz、 1H)、 8. 20 (s、 1 1 H-NMR (270 MHz, CDC1) δ: 8. 49 ppm (d, J = 4.9 Hz, 1 H), 8. 20 (s, 1
3  Three
H)、 8. 14 (s、 1H)、 7. 13 (s、 1H)、 7. 11 (d、 4. 9Hz、 1H)、 2. 41 (s、 3H)、 2. H), 8.14 (s, 1H), 7.13 (s, 1H), 7.11 (d, 4.9Hz, 1H), 2.41 (s, 3H), 2.
39 (s、 3H) 39 (s, 3H)
LC/MS (API - ES) m/z : 219. 1 (100%、 [M + H] +)、221. 1 (40%)、 220 . 1 (20%) LC / MS (API-ES) m / z: 219.1 (100%, [M + H] + ), 221.1 (40%), 220.1 (20%)
[0106] [化 24] [0106] [Chemical 24]
Figure imgf000033_0001
Figure imgf000033_0001
(合成例 7)  (Synthesis Example 7)
マグネティックスターラおよび三方コックを備えた 50mLフラスコに、 6 クロロー 4, 4,一ジメチルー 2, 2,—ビビリジン(0. 66g、 3. 0ミリモル)および無水 THF (9mL) を採り、窒素気流下で攪拌しながら、ドライアイス浴を用いて一 78°Cに冷却した。そ の溶液に対し、 2mol/Lのリチウムジイソプロピルアミドの THF/ヘプタン/ェチル ベンゼン溶液(6mL、 12ミリモル)を、シリンジを用いて約 5分間かけて滴下し、—78 °Cで 2時間攪拌した。この溶液に対し、 1—ブロモブタン(0· 90g、 6. 6ミリモル)の T HF溶液(3mL)を、シリンジを用いて滴下した。滴下後、氷浴を用いて 0°Cにし、 3時 間攪拌した。 0°Cで水を加えた後、室温に昇温させ、酢酸ェチルで 3回抽出した。 3 回分の抽出液を合わせた有機相を硫酸マグネシウムで乾燥させた後、ロータリーェ バポレータを用いて濃縮した。得られた粗製物をシリカゲルカラムを用いて精製する ことで、下記式(30)に示す、 6 クロロー 4、 4'ージペンチルー 2, 2' ビビリジンの 黄色オイルを得た(0· 38g、 1. 1ミリモル、収率 38%)。 Into a 50 mL flask equipped with a magnetic stirrer and a three-way cock, take 6 chloro-4,4, monodimethyl-2,2, -biviridine (0.66 g, 3.0 mmol) and anhydrous THF (9 mL) and stir in a nitrogen stream While being cooled to 78 ° C. using a dry ice bath. To the solution, a 2 mol / L lithium diisopropylamide in THF / heptane / ethyl benzene solution (6 mL, 12 mmol) was added dropwise over about 5 minutes using a syringe and stirred at −78 ° C. for 2 hours. . To this solution, 1-bromobutane (0 · 90 g, 6.6 mmol) of T HF solution (3 mL) was added dropwise using a syringe. After the dropwise addition, the mixture was brought to 0 ° C using an ice bath and stirred for 3 hours. After adding water at 0 ° C, the mixture was warmed to room temperature and extracted three times with ethyl acetate. The combined organic phase of the three extracts was dried over magnesium sulfate and concentrated using a rotary evaporator. The obtained crude product was purified using a silica gel column to obtain a yellow oil of 6 chloro-4,4′-dipentyl-2,2 ′ biviridine represented by the following formula (30) (0 · 38 g, 1.1). Mmol, 38% yield).
[0108] 分析値は以下のとおりである。 [0108] The analysis values are as follows.
1H-NMR (270MHz, CDC1 ) δ : 8. 53ppm (d、 4. 9Hz、 1H)、 8. 22 (s、 1H) 1 H-NMR (270 MHz, CDC1) δ: 8.53 ppm (d, 4.9 Hz, 1H), 8.22 (s, 1H)
3  Three
、 8. 17 (s、 1H)、 7. 16 (s、 1H)、 7. 14 (dd、 5. lHz、 1. 6Hz、 1H)、 2. 69 (t、 7 . 8Hz、 2H)、 2. 67 (t、 7. 8Hz、 2H)、 1. 69 (m、 4H)、 1. 35 (m、 8H)、 0. 90 (t 、 6. 5Hz、 6H)  8.17 (s, 1H), 7.16 (s, 1H), 7.14 (dd, 5.lHz, 1.6Hz, 1H), 2.69 (t, 7.8Hz, 2H), 2 67 (t, 7.8Hz, 2H), 1.69 (m, 4H), 1.35 (m, 8H), 0.90 (t, 6.5Hz, 6H)
LC/MS (API-ES) m/z : 331. 2 (100%、 [M + H] +)、 333. 2 (40%)、 332 . 2 (30%)、 334. 2 (10%) LC / MS (API-ES) m / z: 331.2 (100%, [M + H] + ), 333.2 (40%), 333.2 (30%), 333.2 (10%)
[0109] [化 25] [0109] [Chemical 25]
Figure imgf000034_0001
Figure imgf000034_0001
[0110] (合成例 8)  [0110] (Synthesis Example 8)
マグネティックスターラ、オイルバスおよびジムロートコンデンサを備えた 2Lフラスコ にシトラジン酸(71g、 460ミリモル)および 2 プロパノール(約 1L)を採った。この懸 濁液に濃硫酸 (約 50mUを加えた後、約 60時間還流した。マグネティックスターラー を備えた 2Lビーカーに水(約 1L)を採り、この水に対して、先の溶液(60時間還流後 の溶液)を滴下することで固体を得た。この固体を桐山漏斗を用いて濾取し、得られ た固体をエタノールで洗浄した。この固体を真空下で加熱乾燥(< 10torr、約 50°C) することで、下記式(31)に示す、シトラジン酸イソプロピルの白色固体を得た(74g、 380ミリモル、収率 82%)。  Citrazic acid (71 g, 460 mmol) and 2 propanol (about 1 L) were taken in a 2 L flask equipped with a magnetic stirrer, oil bath and Dimroth condenser. Concentrated sulfuric acid (about 50 mU was added to this suspension and then refluxed for about 60 hours. Water (about 1 L) was placed in a 2 L beaker equipped with a magnetic stirrer, and the above solution (refluxed for 60 hours). The latter solution was added dropwise to obtain a solid, which was collected by filtration using a Kiriyama funnel, and the obtained solid was washed with ethanol, and the solid was dried under heat (<10 torr, about 50 torr). This gave a white solid of isopropyl citrate shown in the following formula (31) (74 g, 380 mmol, yield 82%).
[0111] 分析値は以下のとおりである。 [0111] The analysis values are as follows.
1H-NMR (270MHz, DMSO-d6) δ : 6. 29ppm (s、 2Η)、 5. 09 (qq、J = 6. 3Hz、 1H)、 1. 30 (d、 6. 3Hz、 6H) 1 H-NMR (270MHz, DMSO-d6) δ: 6.29ppm (s, 2Η), 5.09 (qq, J = 6. 3Hz, 1H), 1.30 (d, 6.3Hz, 6H)
LC/MS(API-ES)m/z:198. 1(100%、 [M + H]+)、 156. 1(40%)、 199LC / MS (API-ES) m / z: 198.1 (100%, [M + H] + ), 156.1 (40%), 199
. Kio%) Kio%)
[0112] [化 26]  [0112] [Chemical 26]
Figure imgf000035_0001
Figure imgf000035_0001
[0113] (合成例 9)  [0113] (Synthesis Example 9)
マグネティックスターラおよび三方コックを備えた 2Lフラスコにシトラジン酸イソプロ ピル(50g、 250ミリモル)およびジクロロメタン (約 1· 2L)を採り、窒素気流下で攪拌 した。ここへトリェチルァミン(104mL、 750ミリモル)を加えた後、ドライアイス浴を用 いて一 78°Cまで冷却した。その溶液にトリフルォロメタンスルホン酸無水物(126mL 、 750ミリモル)をシリンジを用いて約 5分間かけて滴下し、 78°Cで約 0. 5時間攪拌 した。約 0. 5時間かけて室温まで昇温させた後、さらに室温で 2時間攪拌した。反応 溶液を飽和炭酸水素ナトリウム水溶液で 2回水洗した後、硫酸マグネシウムで乾燥さ せ、ロータリーエバポレータを用いて濃縮した。得られた粗製物をシリカゲルカラムを 用いて精製することで、下記式(32)に示す、 2, 6 ビス(トリフルォロメタンスルホ二 ロキシ)ー4 イソプロポキシカルボニルピリジンの黄色結晶を得た(97. 3g、 211ミリ モル、収率 84%)。  Into a 2 L flask equipped with a magnetic stirrer and a three-way cock, isopropyl citrate (50 g, 250 mmol) and dichloromethane (about 1.2 L) were taken and stirred under a nitrogen stream. To this, triethylamine (104 mL, 750 mmol) was added, and then cooled to 78 ° C. using a dry ice bath. Trifluoromethanesulfonic anhydride (126 mL, 750 mmol) was added dropwise to the solution using a syringe over about 5 minutes, and the mixture was stirred at 78 ° C. for about 0.5 hours. After raising the temperature to room temperature over about 0.5 hour, the mixture was further stirred at room temperature for 2 hours. The reaction solution was washed twice with a saturated aqueous sodium hydrogen carbonate solution, dried over magnesium sulfate, and concentrated using a rotary evaporator. By purifying the obtained crude product using a silica gel column, yellow crystals of 2, 6 bis (trifluoromethanesulfonoxy) -4 isopropoxycarbonylpyridine represented by the following formula (32) were obtained (97 3 g, 211 mmol, 84% yield).
[0114] 分析値は以下のとおりである。 [0114] The analysis values are as follows.
— NMR(90MHz、 CDC1 ) δ :7. 81ppm(s、 2H)、 5. 33(qq, J = 6. 2Hz、 1  — NMR (90MHz, CDC1) δ: 7.81ppm (s, 2H), 5.33 (qq, J = 6.2Hz, 1
3  Three
H)、 1. 43(d、 6. 5Hz、 6H)  H), 1.43 (d, 6.5Hz, 6H)
[0115] [化 27] [0115] [Chemical 27]
Figure imgf000035_0002
Figure imgf000035_0002
[0116] (合成例 10)  [0116] (Synthesis Example 10)
'ーラを備えた 2Lフラスコに、 4- 0. 7g、 375ミリモノレ)、 2, 2 ジメチノレ一 1 , 3 プロノ ンジ才一ノレ(77· 7g、 750ミリ モル)、 P—トルエンスルホン酸一水和物(40. 7g、 750ミリモル)およびジクロロメタン (約 1L)を採った。空気中、室温で約 24時間攪拌した。反応溶液を飽和炭酸水素ナ トリウム水溶液で 4回水洗した後、硫酸マグネシウムで乾燥させ、ロータリーエバポレ ータを用いて濃縮することで、下記式(33)に示す、 4一(4, 4 ジメチルー 2, 6 ジ ォキサニル)ピリジンの白色結晶を得た(63. 5g、 329ミリモル、収率 88%)。 In a 2L flask equipped with 0.7 g, 375 millimonoles), 2,2 dimethinole 1,3 pronone monole (77.7 g, 750 mmol), P-toluenesulfonic acid monohydrate (40.7 g, 750 mmol) and dichloromethane (About 1L) was taken. Stir in air at room temperature for approximately 24 hours. The reaction solution was washed four times with a saturated aqueous sodium hydrogen carbonate solution, dried over magnesium sulfate, and concentrated using a rotary evaporator. White crystals of 2,6 dioxanyl) pyridine were obtained (63.5 g, 329 mmol, 88% yield).
[0117] 分析値は以下のとおりである。 [0117] The analysis values are as follows.
— NMR (90MHz、 CDC1 ) δ : 8. 63ppm (d、J = 6. 2Hz、 2H)、 7. 42 (d、 6  — NMR (90MHz, CDC1) δ: 8.63ppm (d, J = 6.2Hz, 2H), 7.42 (d, 6
3  Three
. 2Hz、 2H)、 5. 38 (s、 1H)、 3. 75 (d、 10. 7Hz、 2H)、 3. 70 (d、 10. 7Hz、 2H )、 1. 27 (s、 3H)、 0. 81 (s、 3H)  2Hz, 2H), 5.38 (s, 1H), 3.75 (d, 10.7Hz, 2H), 3.70 (d, 10.7Hz, 2H), 1.27 (s, 3H), 0.81 (s, 3H)
LC/MS (API - ES) m/z : 194. 1 (100%、 [M + H] +)、 195. 1 (15%) LC / MS (API-ES) m / z: 194.1 (100%, [M + H] + ), 195.1 (15%)
[0118] [化 28] [0118] [Chemical 28]
Figure imgf000036_0001
Figure imgf000036_0001
[0119] (実施例 1)  [Example 1]
マグネティックスターラおよび三方コックを備えた 300mLのフラスコに 2— (N, N— ジメチノレアミノ)エタノーノレ(5mL、 50ミリモル)と t ブチルメチルエーテル(30mL)を 採り、窒素気流下で攪拌しながら、氷浴を用いて冷却した。この溶液に対して 1. 6モ ノレ/ Lの n ブチルリチウムのへキサン溶液(63mL、 100ミリモノレ)を、シリンジを用 いて約 5分間かけて滴下した。 0°Cで 15分間攪拌した後、ドライアイス浴を用いて一 7 8°Cに冷却した。この溶液に対して、 4ー(4, 4 ジメチルー 2, 6 ジォキサニル)ピリ ジン(4· 83g、 25ミリモル)の t ブチルメチルエーテル溶液(30mL)を、シリンジを 用いて約 5分間かけて滴下した。 78°C2時間攪拌した後、その溶液に対して、塩化 トリブチルすず(14mL、 50ミリモル)をシリンジを用いて一度に加えた。約 1時間かけ て室温まで昇温させたのち、室温で 2時間攪拌した。この溶液に水(約 lOOmL)を加 えた後、酢酸ェチルを用いて 3回抽出した。 3回分の抽出液を合わせた有機相を硫 酸マグネシウムで乾燥させた後、ロータリーエバポレータを用いて濃縮した。このよう にして得た 2 トリブチルスタニルー 4 (4, 4 ジメチルー 2, 6 ジォキサニル)ピリ ジンは、これ以上精製することなく次のカップリング反応に用いた。 In a 300 mL flask equipped with a magnetic stirrer and a three-way cock, take 2- (N, N-dimethylinoamino) ethanolol (5 mL, 50 mmol) and t-butyl methyl ether (30 mL), and stir it in a nitrogen stream while stirring in an ice bath. Used to cool. To this solution, 1.6 mmol / L of n-butyllithium hexane solution (63 mL, 100 millimonoles) was added dropwise over about 5 minutes using a syringe. After stirring at 0 ° C for 15 minutes, the mixture was cooled to 78 ° C using a dry ice bath. To this solution, a solution of 4- (4,4 dimethyl-2,6 dioxanyl) pyridine (4 · 83 g, 25 mmol) in t-butyl methyl ether (30 mL) was added dropwise over about 5 minutes using a syringe. . After stirring at 78 ° C. for 2 hours, tributyltin chloride (14 mL, 50 mmol) was added to the solution all at once using a syringe. The mixture was allowed to warm to room temperature over about 1 hour and then stirred at room temperature for 2 hours. Add water (about lOOmL) to this solution. And extracted three times with ethyl acetate. The organic phase combined with the three extracts was dried over magnesium sulfate and then concentrated using a rotary evaporator. The 2 tributylstannyl-4 (4,4 dimethyl-2,6 dioxanyl) pyridine thus obtained was used in the next coupling reaction without further purification.
[0120] 分析値は以下のとおりである。 [0120] The analysis values are as follows.
LC/MS(API-ES)m/z:484.2(100%、 [M + H]+)、482.2(80%)、 480 .2 (40%)、483.2(40%)、 481.2(35%)、 485.2(25%)、 486.2(20%)、 48 8.2(20%) LC / MS (API-ES) m / z: 484.2 (100%, [M + H] + ), 482.2 (80%), 480.2 (40%), 483.2 (40%), 481.2 (35%) 485.2 (25%), 486.2 (20%), 48 8.2 (20%)
[0121] 上記で合成した 2 トリブチルスタニルー 4一(4, 4一ジメチルー 2, 6 ジォキサニ ル)ピリジンに 2, 6 ビス(トリフルォロメタンスルホ二口キシ) 4 イソプロポキシカル ボニルピリジン(11· 7g、 25ミリモル)およびトルエン(75mUを加えた後、真空装置 を用いて 3回脱気した。マグネティックスターラ、オイルバス、三方コックおよびジム口 ートコンデンサを備えた 300mLのフラスコにテトラキス(トリフエニルホスフィン)パラジ ゥム(0.87g、 0.75ミリモル)および塩化リチウム(3. 18g、 75ミリモノレ)を採り、窒素 置換した後、前述の脱気した混合溶液を加えた。窒素気流下、 110°Cで 8時間還流 した。室温まで放冷した後、ロータリーエバポレータを用いて濃縮した。得られた粗製 物をシリカゲルカラムを用いて精製することで、下記式(34)に示す、 4 イソプロポキ シカルボ二ルー 4'一(4, 4 ジメチルー 2, 6 ジォキサニル)ー6 (トリフルォロメタ ンスルホニロキシ) 2, 2,一ビビリジンの黄色固体を得た(3· 40g、収率 26%)。  [0121] 2 Tributylstannyl-4 1 (4,4 1-dimethyl-2,6 dioxanyl) pyridine synthesized above and 2, 6 bis (trifluoromethanesulfodioxy) 4 isopropoxycarbonylpyridine (11.7 g, 25 mmol) and toluene (75 mU were added and then degassed three times using a vacuum apparatus. Tetrakis (triphenylphosphine) para-dioxide was added to a 300 mL flask equipped with a magnetic stirrer, oil bath, three-way cock, and Jim mouth condenser. (0.87 g, 0.75 mmol) and lithium chloride (3.18 g, 75 millimonore) were replaced with nitrogen, and then the above-mentioned degassed mixed solution was added and refluxed at 110 ° C for 8 hours under a nitrogen stream. After cooling to room temperature, the mixture was concentrated using a rotary evaporator, and the resulting crude product was purified using a silica gel column. As shown in (34), a yellow solid of 4 isopropoxycarbonyl 4′-one (4,4 dimethyl-2,6 dioxanyl) -6 (trifluoromethanesulfonyloxy) 2,2,1 bibiridine was obtained (3 · 40 g, yield 26 %).
[0122] 分析値は以下のとおりである。  [0122] The analysis values are as follows.
1H-NMR(270MHz, CDC1 ) δ :9.02ppm(s、 1H)、 8.74(d、J = 4.9Hz、 1 1 H-NMR (270 MHz, CDC1) δ: 9.02 ppm (s, 1H), 8.74 (d, J = 4.9 Hz, 1
3  Three
H)、 8.45(s、 1H)、 7.72(s、 1H)、 7.55(dd、 4.9Hz、 1.6 Hz, 1H)、 5.48 (s 、 1H)、 5.33(qq、 6.2Hz、 1H)、 3.83(d、 11.3Hz、 2H)、 3.70(d、 10.8Hz 、 2H)、 1.43(d、 6.3Hz、 6H)、 1.30(s、 3H)、 0.84(s、 3H)  H), 8.45 (s, 1H), 7.72 (s, 1H), 7.55 (dd, 4.9Hz, 1.6 Hz, 1H), 5.48 (s, 1H), 5.33 (qq, 6.2Hz, 1H), 3.83 (d 11.3Hz, 2H), 3.70 (d, 10.8Hz, 2H), 1.43 (d, 6.3Hz, 6H), 1.30 (s, 3H), 0.84 (s, 3H)
LC/MS (API-ES)m/z: 505.1(100%、 [M + H]+)、 506.1(30%)、 507LC / MS (API-ES) m / z: 505.1 (100%, [M + H] + ), 506.1 (30%), 507
. Kio%) Kio%)
[0123] [化 29]
Figure imgf000038_0001
[0123] [Chemical 29]
Figure imgf000038_0001
[0124] (実施例 2)  [0124] (Example 2)
マグネティックスターラ、コンデンサおよび三方コックを備えた lOOmLフラスコに金 属マグネシウム(30mg、 1. 2ミリモル)を採り、減圧下で加熱することで乾燥させた後 、窒素気流下で無水 THF (0. 5mL)および I (小片)を加え、室温で約 10分間攪拌  Into an lOOmL flask equipped with a magnetic stirrer, condenser and three-way cock, take magnesium metal (30 mg, 1.2 mmol), dry by heating under reduced pressure, and then anhydrous THF (0.5 mL) under a nitrogen stream Add and I (small pieces) and stir at room temperature for about 10 minutes
2  2
した。そこへ、 6 ブロモー 2, 2,一ビビリジン(200mg、 0. 8ミリモル)の無水 THF溶 液(5mL)を、シリンジを用いて約 10分間かけて滴下した。滴下後、室温で約 4時間 攪拌した。この溶液に対し、無水 THF(10mUおよび 0· 5mol/Lの塩化亜鉛の T HF溶液(1 · 6mL、 0. 8ミリモル)を、シリンジを用いてそれぞれ一度に加え、室温で 約 3時間攪拌した。その後、 4 イソプロポキシカルボ二ルー 4'一(4, 4 ジメチルー 2, 6 ジォキサニル)ー6 (トリフルォロメタンスルホ二ロキシ) 2, 2'—ビビリジン( 390mg、 0. 8ミリモル)の THF溶液(10mUを加え、真空装置を用いて 3回脱気した 。マグネティックスターラ、オイルバス、三方コックおよびジムロートコンデンサを備え た lOOmLフラスコにテトラキス(トリフエニルホスフィン)パラジウム(92mg、 0. 08ミリ モル)を採り、窒素置換した後、前述の脱気した混合溶液を加えた。窒素気流下、 70 °Cで約 6時間還流した。室温まで放冷した後、水を加え、セライトを用いてろ過し、酢 酸ェチルを用いて 3回抽出した。 3回分の抽出液を合わせた有機相を硫酸マグネシ ゥムで乾燥させた後、ロータリーエバポレータを用いて濃縮した。得られた粗製物を シリカゲルカラムを用いて精製することで、下記式(35)に示す、 4' イソプロポキシ カルボ二ルー 4 (4, 4 ジメチルー 2, 6 ジォキサニル) 2, 2' : 6 \ 2" : 6 ' \ 2 , , , 一クォータピリジンの黄色固体を得た(12mg、収率 3%)。  did. Thereto was added dropwise an anhydrous THF solution (5 mL) of 6 bromo-2,2, monobipyridine (200 mg, 0.8 mmol) over about 10 minutes using a syringe. After dropping, the mixture was stirred at room temperature for about 4 hours. To this solution, anhydrous THF (10 mU and 0.5 mol / L of zinc chloride in THF (1.6 mL, 0.8 mmol)) was added at once using a syringe and stirred at room temperature for about 3 hours. Then, 4 isopropoxycarbonyl 4'one (4,4 dimethyl-2,6 dioxanyl) -6 (trifluoromethanesulfonyloxy) 2,2'-biviridine (390 mg, 0.8 mmol) in THF ( 10mU was added and degassed 3 times using a vacuum device.Tetrakis (triphenylphosphine) palladium (92mg, 0.08mmol) was taken into a lOOmL flask equipped with a magnetic stirrer, oil bath, three-way cock and Dimroth condenser. After purging with nitrogen, the above-mentioned degassed mixed solution was added, and the mixture was refluxed for about 6 hours under a nitrogen stream at 70 ° C. After standing to cool to room temperature, water was added, and the mixture was filtered through celite. Acid ethyl The combined organic phase was dried over magnesium sulfate and concentrated using a rotary evaporator, and the resulting crude product was purified using a silica gel column. 4 'isopropoxy carbolulu 4 (4, 4 dimethyl-2, 6 dioxanyl) 2, 2': 6 \ 2 ": 6 '\ 2,,,, quater pyridine yellow solid shown in the following formula (35) (12 mg, 3% yield) was obtained.
[0125] 分析値は以下のとおりである。 [0125] The analysis values are as follows.
1H-NMR (270MHz, CDC1 ) δ : 9. 18ppm (d, J= l . 4Hz, 1H) , 8. 96 (d, 1 1 H-NMR (270 MHz, CDC1) δ: 9.18 ppm (d, J = l. 4 Hz, 1H), 8. 96 (d, 1
3  Three
. 6Hz, 1H) , 8. 78 (d, 5. 1Hz, 1H) , 8. 72 (m, 3H) , 8. 70 (s、 1H)、 8. 52 (d d, 8. 1Ηζ、 0.9Hz, 1H), 8.03 (dd, 8. 1, 8.1Hz, 1H), 7.90(dd、 7.6Hz、 7.6Hz、 1H)、 7.56 (d, 4.9Hz, 1H), 7.35 (dd, 7.3Hz、 4.9Hz, 1H), 5.5 4(s, 1H), 5.38 (qq, 6.2Hz, 1H), 3.86 (d, 11.3Hz, 2H) , 3.73(d, 10.5 Hz, 2H), 1.47(d, 6.1Hz, 6H) , 1.33(s, 3H) , 0.85(s, 3H) 6Hz, 1H), 8.78 (d, 5.1Hz, 1H), 8.72 (m, 3H), 8.70 (s, 1H), 8.52 (d d, 8.1Ηζ, 0.9Hz, 1H), 8.03 (dd, 8.1, 8.1Hz, 1H), 7.90 (dd, 7.6Hz, 7.6Hz, 1H), 7.56 (d, 4.9Hz, 1H), 7.35 (dd, 7.3Hz, 4.9Hz, 1H), 5.5 4 (s, 1H), 5.38 (qq, 6.2Hz, 1H), 3.86 (d, 11.3Hz, 2H), 3.73 (d, 10.5 Hz, 2H), 1.47 (d, 6.1Hz, 6H), 1.33 (s, 3H), 0.85 (s, 3H)
[化 30]  [Chemical 30]
Figure imgf000039_0001
Figure imgf000039_0001
[0127] (実施例 3)  [0127] (Example 3)
マグネティックスターラ、コンデンサおよび三方コックを備えた lOOmLフラスコに金 属マグネシウム(96mg、 4ミリモル)を採り、減圧下で加熱することで乾燥させた後、 窒素気流下で無水 THF(0.5mL)および I (小片)を加え、室温で約 10分間攪拌し  Into an lOOmL flask equipped with a magnetic stirrer, condenser and three-way cock, magnesium metal (96 mg, 4 mmol) was taken, dried by heating under reduced pressure, and then anhydrous THF (0.5 mL) and I ( A small piece) and stir at room temperature for about 10 minutes.
2  2
た。そこへ、 6 ク口口 4, 一へプタデシノレ 2, 2,ーヒ、、ピリジン(5· 86g、 2ミリモノレ) と塩化トリブチルすず(lmL、 4ミリモル)の混合物の無水 THF溶液(4mUを、シリン ジを用いて一度に加えた。添加後、室温で 3時間攪拌した。この溶液に水を加えた後 、セライトを用いてろ過し、酢酸ェチルを用いて 3回抽出した。 3回分の抽出液を合わ せた有機相を硫酸マグネシウムで乾燥させた後、ロータリーエバポレータを用いて濃 縮した。このようにして得た 2 トリブチルスタニル 4'—ヘプタデシル一 2, 2 'ビビリ ジンは、これ以上精製することなく次のカップリング反応に用いた。  It was. There, 6 mouthpiece 4, 1-heptadesinore 2, 2,-, pyridine (5 · 86 g, 2 millimonole) and tributyltin chloride (1 mL, 4 mmol) in anhydrous THF solution (4 mU, syringe) After the addition, the mixture was stirred at room temperature for 3 hours, and water was added to the solution, followed by filtration through celite and extraction three times with ethyl acetate. The combined organic phase was dried over magnesium sulfate and concentrated using a rotary evaporator, and the 2 tributylstannyl 4'-heptadecyl-1,2 'bibilidine thus obtained was further purified. This was used for the next coupling reaction without.
[0128] 分析値は以下のとおりである。  [0128] The analysis values are as follows.
LC/MS(API-ES)m/z:685.4(100%、 [M + H]+)、 683.4(80%)、 684 .4(55%)、 681.4(40%)、 682.4(40%)、 686.4(40%)、 687.4(20%)、 68 9.4(15%)、 688.4(5%)、 690.4(5%) LC / MS (API-ES) m / z: 685.4 (100%, [M + H] + ), 683.4 (80%), 684.4 (55%), 681.4 (40%), 682.4 (40%) 686.4 (40%), 687.4 (20%), 68 9.4 (15%), 688.4 (5%), 690.4 (5%)
[0129] 上記で合成した 2—トリブチルスタニル—4'—ヘプタデシル— 2, 2 'ビビリジンに 4 一イソプロポキシカルボ二ルー 4'一 (4, 4一ジメチルー 2, 6 ジォキサニル)ー6—( トリフノレ才ロメタンスノレホニ口キシ)一 2, 2, 一ビビリジン(0· 50g、 1ミリモノレ)および p ーキシレン(3mL)を加えた後、真空装置を用いて 3回脱気した。マグネティックスタ ーラ、オイルバス、三方コックおよびジムロートコンデンサを備えた lOOmLフラスコに テトラキス(トリフエニルホスフィン)パラジウム(58mg、 0.05ミリモル)および塩化リチ ゥム(0.13g、 3ミリモル)を採り、窒素置換した後、前述の脱気した混合溶液を加え た。窒素気流下、 140°Cで約 5時間還流した。室温まで放冷した後、水を加え、セラ イトを用いてろ過し、酢酸ェチルを用いて 3回抽出した。 3回分の抽出液を合わせた 有機相を硫酸マグネシウムで乾燥させた後、ロータリーエバポレータを用いて濃縮し た。得られた粗製物をシリカゲルカラムを用いて精製することで、下記式(36)に示す 、 4'一イソプロポキシカルボ二ルー 4一 (4, 4一ジメチルー 2, 6 ジォキサニル) -4 , ' ' 一へプタデシルー 2, 2' :6 2'' :6''、 2'' ' —クォータピリジンの黄色固体を得 た(368mg、収率 24%)。 [0129] 2-tributylstannyl-4'-heptadecyl-2,2'biviridine synthesized above and 4 1-isopropoxycarbonyl 4 '1 (4,4 1-dimethyl-2,6 dioxanyl) -6- (trifnore After adding 1,2,2, bibilysine (0 · 50 g, 1 millimonole) and p-xylene (3 mL), the mixture was deaerated three times using a vacuum apparatus. Magnetic star Into an lOOmL flask equipped with an oil bath, oil bath, three-way cock, and Dimroth condenser, tetrakis (triphenylphosphine) palladium (58 mg, 0.05 mmol) and lithium chloride (0.13 g, 3 mmol) were taken. The above degassed mixed solution was added. The mixture was refluxed at 140 ° C for about 5 hours under a nitrogen stream. After allowing to cool to room temperature, water was added, the mixture was filtered using celite, and extracted three times using ethyl acetate. The organic phase combined with the three extracts was dried over magnesium sulfate and then concentrated using a rotary evaporator. By purifying the obtained crude product using a silica gel column, 4′-isopropoxycarbonyl 4-l (4,4-dimethyl-2,6-dioxanyl) −4, “” represented by the following formula (36) Heptadecyl-2,2 ': 6 2'':6'',2''' — Quotapyridine yellow solid was obtained (368 mg, 24% yield).
[0130] 分析値は以下のとおりである。 [0130] The analysis values are as follows.
1H-NMR(270MHz, CDC1 ) δ :9.19ppm(d, J=l.6Hz, 1H), 8.98 (d, 1 1 H-NMR (270 MHz, CDC1) δ: 9.19 ppm (d, J = l.6 Hz, 1H), 8.98 (d, 1
3  Three
.4Hz, 1H), 8.78 (d, 5.4Hz, 1H), 8.71 (s, 1H), 8.68 (d, 7.6Hz, 1H), 8.63(d, 5.1Hz, 1H), 8.52 (d, 7.8Hz, 1H), 8.51 (s, 1H), 8.02 (dd, 7. 8, 7.8Hz, 1H), 7.55(d, 4.9Hz, 1H), 7.18 (d, 4.9Hz, 1H), 5.54(s, 1 H), 5.36 (qq, 6.3Hz, 1H), 3.86 (d, 11.9Hz, 2H) , 3.77(d, 12.7Hz, 2 H), 2.77 (t, 7.8Hz, 2H) , 1.75 (m, 2H) , 1.47(d, 6.2Hz, 6H) , 1.33 (s, 3H), 1.3—1.2(m), 0.87 (t, 6.5Hz, 3H) , 0.85(s, 3H)  .4Hz, 1H), 8.78 (d, 5.4Hz, 1H), 8.71 (s, 1H), 8.68 (d, 7.6Hz, 1H), 8.63 (d, 5.1Hz, 1H), 8.52 (d, 7.8Hz, 1H), 8.51 (s, 1H), 8.02 (dd, 7. 8, 7.8Hz, 1H), 7.55 (d, 4.9Hz, 1H), 7.18 (d, 4.9Hz, 1H), 5.54 (s, 1 H ), 5.36 (qq, 6.3Hz, 1H), 3.86 (d, 11.9Hz, 2H), 3.77 (d, 12.7Hz, 2H), 2.77 (t, 7.8Hz, 2H), 1.75 (m, 2H), 1.47 (d, 6.2Hz, 6H), 1.33 (s, 3H), 1.3—1.2 (m), 0.87 (t, 6.5Hz, 3H), 0.85 (s, 3H)
LC/MS (API-ES)m/z: 749.4(60%、 [M + H]+)、 375.3(100%、 [M + 2H]2+)、 750.4(30%)、 751.4(10%) LC / MS (API-ES) m / z: 749.4 (60%, [M + H] + ), 375.3 (100%, [M + 2H] 2+ ), 750.4 (30%), 751.4 (10%)
[0131] [化 31] [0131] [Chemical 31]
Figure imgf000040_0001
Figure imgf000040_0001
[0132] (合成例 11)  [0132] (Synthesis Example 11)
マグネティックスターラを備えた 50mLフラスコに 4' イソプロポキシカルボ二ルー 4 一(4, 4 ジメチルー 2, 6 ジォキサニル)—4' ',一へプタデシルー 2, 2' :6\ 2' ' :6,,、 2,,,一クォータピリジン(0.76g、 1ミリモル)、 4 ピリジンカルボキシアルデヒ ド(1.4mL、 15ミリモル)および濃塩酸(1.5mUを採り、 60°Cで約 6時間攪拌した。 室温まで放冷した後、飽和食塩水を加え、 THFで 5回抽出した。 5回分の抽出液を 合わせた有機相はロータリ一エバポレータを用レ、て濃縮した。得られた粗製物 4 ホ ノレミノレー 4,一カルボキシ一 4,,,一ヘプタデシルー 2, 2,:6,、 2,,:6,,、 2,,,一クオ ータピリジンはこれ以上精製せずに次の反応に用いた。 In a 50 mL flask equipped with a magnetic stirrer 4 'Isopropoxy Carbonyl 4 One (4,4 dimethyl-2,6 dioxanyl) -4 '', one heptadecyl-2,2 ': 6 \ 2'': 6 ,, 2 ,, one quarterpyridine (0.76 g, 1 mmol), 4 Pyridinecarboxyaldehyde (1.4 mL, 15 mmol) and concentrated hydrochloric acid (1.5 mU were taken and stirred for about 6 hours at 60 ° C. After cooling to room temperature, saturated brine was added, and the mixture was extracted 5 times with THF. The combined organic phase of the five extracts was concentrated using a rotary evaporator, and the resulting crude product 4 honoreminolay 4, 1 carboxy 1, 4, 1, heptadecyl-2, 2, 6, 6, 2 ,,: 6, 2,,, 1 quaterpyridine was used in the next reaction without further purification.
[0133] 分析値は以下のとおりである。  [0133] The analysis values are as follows.
LC/MS (API - ES) m/z :621.3(100%、 [M + H]+)、 622.3(45%)、 623 .3(10%), 311.3(5%、 [M + 2H]2+) LC / MS (API - ES) m / z: 621.3 (100%, [M + H] +), 622.3 (45%), 623 .3 (10%), 311.3 (5%, [M + 2H] 2 + )
[0134] 上記で得た 4 ホルミル 4' カルボキシ—4',,一へプタデシルー 2, 2' :6', 2, ' :6", 2' ',一クォータピリジンおよびエタノール(20mUをマグネティックスターラを 備えた 50mLのフラスコに採り、空気中で攪拌した。硝酸銀(0· 34g、 2ミリモル)の水 溶液(2mUに水酸化ナトリウム(0· 40g、 10ミリモル)の水溶液(10mUを加えること で酸化銀を生成させ、この懸濁液を先のクォータピリジン懸濁液に添加した。こうして 得られた混合液を空気中、室温で約 2時間攪拌した。塩酸を加えて溶液を酸性にし た後、 THFと濃塩酸の 8 :2の混合液で 3回抽出した。 3回分の抽出液を合わせた有 機相をメンブランフィルタ(0. lO^m, PTFE)でろ過した後、ロータリーエバポレータ を用いて濃縮した。得られた固体を水および酢酸ェチルで洗浄し、真空乾燥すること で、下記式(37)に示す、 4, 4'ージカルボキシー 4',,一へプタデシルー 2, 2' :6', 2" :6", 2,,,一クォータピリジンを得た(0· 46g、収率 70%)。  [0134] 4-formyl 4 'carboxy-4', obtained from the above, 1-heptadecyl-2,2 ': 6', 2, ': 6 ", 2' ', 1-quarterpyridine and ethanol (20mU magnetic stirrer) Take in a 50 mL flask equipped and stir in air Aqueous solution of silver nitrate (0 · 34 g, 2 mmol) (2 mU in aqueous solution of sodium hydroxide (0 · 40 g, 10 mmol) (10 mU to add silver oxide) This suspension was added to the previous quarterpyridine suspension, and the resulting mixture was stirred in air at room temperature for about 2 hours, acidified with hydrochloric acid and then THF. The mixture was extracted three times with an 8: 2 mixture of concentrated hydrochloric acid and the organic phase combined with the three extracts, filtered through a membrane filter (0.1 lO ^ m, PTFE), and concentrated using a rotary evaporator. Wash the resulting solid with water and ethyl acetate and vacuum dry. Thus, 4, 4′-dicarboxy 4 ′, and one heptadecyl 2, 2 ′: 6 ′, 2 ″: 6 ”, 2, and one quarter pyridine represented by the following formula (37) were obtained (0 · 46 g Yield 70%).
[0135] 分析値は以下のとおりである。  [0135] The analysis values are as follows.
1H-NMR(270MHz, DMSO— d6) δ :9. 14ppm(s、 1H)、 9.02 (s、 1H)、 8 .97(d, J = 5.4Hz, 1H)、 8.96(s、 1H)、 8.73(m、 1H)、 8.70(d、 8.6Hz、 1 H)、 8.55(d、 7. OHz, 1H)、 8.54(s、 1H)、 8.32(dd、 8.2, 7.0Hz、 1H)、 7. 97 (d、 4.6Hz、 1H)、 7.59 (m、 1H)、 2.85 (t、 7. OHz, 2H)、 1.74 (m、 2H)、 1.23-1.05(m、 28H)、 0.82(t、 6.6Hz, 3H) 1 H-NMR (270 MHz, DMSO-d6) δ: 9.14 ppm (s, 1H), 9.02 (s, 1H), 8.97 (d, J = 5.4 Hz, 1H), 8.96 (s, 1H), 8.73 (m, 1H), 8.70 (d, 8.6Hz, 1H), 8.55 (d, 7.OHz, 1H), 8.54 (s, 1H), 8.32 (dd, 8.2, 7.0Hz, 1H), 7. 97 (d, 4.6Hz, 1H), 7.59 (m, 1H), 2.85 (t, 7. OHz, 2H), 1.74 (m, 2H), 1.23-1.05 (m, 28H), 0.82 (t, 6.6Hz , 3H)
LC/MS (API-ES)m/z: 637.3(100%、 [M + H]+)、 638.3(45%)、 319 . 3 (25%、 [M + 2H] 2+)、 639. 3 (10%) LC / MS (API-ES) m / z: 637.3 (100%, [M + H] + ), 638.3 (45%), 319 3 (25%, [M + 2H] 2+ ), 639. 3 (10%)
[0136] [化 32] [0136] [Chemical 32]
Figure imgf000042_0001
Figure imgf000042_0001
産業上の利用可能性  Industrial applicability
[0137] 本発明のクォータピリジン誘導体の製造方法及びその中間体は、色素増感型太陽 電池に使用される色素原料であるクォータピリジン誘導体の製造に利用することがで き、本発明のクォータピリジン誘導体の製造方法及びその中間体によって、クォータ ピリジン誘導体を容易に製造すること力できる。 [0137] The method for producing a quarterpyridine derivative of the present invention and its intermediate can be used for the production of a quarterpyridine derivative which is a dye raw material used in a dye-sensitized solar cell. The quarter pyridine derivative can be easily produced by the method for producing the derivative and its intermediate.

Claims

請求の範囲 下記式(1)で表されるビビリジン誘導体と、下記式 (2)で表される有機金属中間体 とを、遷移金属触媒を用いて反応させて下記式 (3)で表されるクォータピリジン誘導 体を生成させるクォータピリジン誘導体の製造方法。 [化 1] Claims A biviridine derivative represented by the following formula (1) and an organometallic intermediate represented by the following formula (2) are reacted using a transition metal catalyst and represented by the following formula (3) A method for producing a quarterpyridine derivative that produces a quarterpyridine derivative. [Chemical 1]
(式(1)において、 Zは 1価の有機基、 Yはパーフルォロアルキルスルホニル基、 R3及 び R4は、それぞれ独立に 1価の有機基であり、互いに結合して環状構造を形成して あよレヽ基である。 ) (In Formula (1), Z is a monovalent organic group, Y is a perfluoroalkylsulfonyl group, R 3 and R 4 are each independently a monovalent organic group, and are bonded to each other to form a cyclic structure. To form Ayorayo.)
[化 2] [Chemical 2]
Figure imgf000043_0002
Figure imgf000043_0002
(式(2)において、 Mは金属であり、 R1及び R2はそれぞれ独立に、水素、アルキル基 、ァリール基又は置換アルキル基であり、 Lは配位子であり、 nは;!〜 3の整数である。 ) (In Formula (2), M is a metal, R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group, L is a ligand, and n is; It is an integer of 3.)
[化 3]
Figure imgf000043_0003
[Chemical 3]
Figure imgf000043_0003
(式(3)において、 Zは 1価の有機基であり、 R1及び R2はそれぞれ独立に、水素、ァ ルキル基、ァリール基又は置換アルキル基であり、 R3及び R4は、それぞれ独立に 1 価の有機基であり、互いに結合して環状構造を形成してもよい基である。 ) 下記式(3)で表されるクォータピリジン誘導体のァセタールおよびエステルを加水 分解してそれぞれホルミル基およびカルボキシル基とし、得られたホルミル基を酸化 してカルボキシル基として下記式 (4)で表されるクォータピリジン誘導体を生成させる クォータピリジン誘導体の製造方法。 (In Formula (3), Z is a monovalent organic group, R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group, and R 3 and R 4 are each Independently a monovalent organic group, which may be bonded to each other to form a cyclic structure. The acetal and ester of the quarterpyridine derivative represented by the following formula (3) are hydrolyzed to formyl group and carboxyl group, respectively, and the resulting formyl group is oxidized to represent a carboxyl group represented by the following formula (4). A process for producing a quarterpyridine derivative.
[化 4] [Chemical 4]
Figure imgf000044_0001
Figure imgf000044_0001
(式(3)において、 Zは 1価の有機基であり、 R1及び R2はそれぞれ独立に、水素、ァ ルキル基、ァリール基又は置換アルキル基であり、 R3及び R4は、それぞれ独立に 1 価の有機基であり、互いに結合して環状構造を形成してもよい基である。 ) (In Formula (3), Z is a monovalent organic group, R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group, and R 3 and R 4 are each Independently a monovalent organic group, which may be bonded to each other to form a cyclic structure.
[化 5] [Chemical 5]
Figure imgf000044_0002
Figure imgf000044_0002
(式 (4)において、 R1及び R2はそれぞれ独立に、水素、アルキル基、ァリール基又は 置換アルキル基である。 ) (In Formula (4), R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group.)
下記式(1)で表されるビビリジン誘導体。  A biviridine derivative represented by the following formula (1).
[化 6] [Chemical 6]
Figure imgf000044_0003
Figure imgf000044_0003
(式(1)において、 Zは 1価の有機基、 Yはパーフルォロアルキルスルホニル基、 R3及 び R4は、それぞれ独立に 1価の有機基であり、互いに結合して環状構造を形成して あよレヽ基である。) (In Formula (1), Z is a monovalent organic group, Y is a perfluoroalkylsulfonyl group, R 3 and R 4 are each independently a monovalent organic group, and are bonded to each other to form a cyclic structure. Forming It ’s Ayore. )
下記式 (2)で表される有機金属中間体。  An organometallic intermediate represented by the following formula (2).
[化 7] [Chemical 7]
Figure imgf000045_0001
Figure imgf000045_0001
(式(2)において、 Mは金属であり、 R1及び R2はそれぞれ独立に、水素、アルキル基 、ァリール基又は置換アルキル基であり、 Lは配位子であり、 nは;!〜 3の整数である。 ) (In Formula (2), M is a metal, R 1 and R 2 are each independently hydrogen, an alkyl group, an aryl group, or a substituted alkyl group, L is a ligand, and n is; It is an integer of 3.)
下記式 (3)で表されるクォータピリジン誘導体。  A quarterpyridine derivative represented by the following formula (3).
[化 8] [Chemical 8]
Figure imgf000045_0002
Figure imgf000045_0002
(式(3)において、 Zは 1価の有機基であり、 R1及び R2はそれぞれ独立に、水素、ァ ルキル基、ァリール基又は置換アルキル基であり、 R3及び R4は、それぞれ独立に 1 価の有機基であり、互いに結合して環状構造を形成してもよい基である。 ) In (Equation (3), Z is a monovalent organic group, R 1 and R 2 each independently hydrogen, § alkyl group, an Ariru group or a substituted alkyl group, R 3 and R 4 are each Independently a monovalent organic group, which may be bonded to each other to form a cyclic structure.
PCT/JP2007/072287 2006-11-16 2007-11-16 Method for producing quarter-pyridine derivative and intermediate of quarter-pyridine derivative WO2008059960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008544208A JP5407332B2 (en) 2006-11-16 2007-11-16 Method for producing quarterpyridine derivative and its intermediate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-310794 2006-11-16
JP2006310794 2006-11-16

Publications (1)

Publication Number Publication Date
WO2008059960A1 true WO2008059960A1 (en) 2008-05-22

Family

ID=39401763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072287 WO2008059960A1 (en) 2006-11-16 2007-11-16 Method for producing quarter-pyridine derivative and intermediate of quarter-pyridine derivative

Country Status (2)

Country Link
JP (1) JP5407332B2 (en)
WO (1) WO2008059960A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017314A (en) * 2009-10-30 2012-01-26 Sumitomo Chemical Co Ltd Nitrogen-containing aromatic compound and metal complex
JP2017214306A (en) * 2016-05-30 2017-12-07 株式会社神鋼環境ソリューション Method for coupling halogenated pyridine compound and halogenated aromatic compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162718A (en) * 2003-12-05 2005-06-23 Sharp Corp Metal complex and dye sensitization solar cell using the same
JP2005190875A (en) * 2003-12-26 2005-07-14 Sharp Corp Metallic complex and dye-sensitized solar cell using it
JP2006213605A (en) * 2005-02-01 2006-08-17 Meiji Univ Plane asymmetric terpyridine compound, its manufacturing method and metal complex using the plane asymmetric terpyridine compound as ligand
JP2006298776A (en) * 2005-04-15 2006-11-02 Sharp Corp Quarter-pyridine derivative, complex containing the same, photoelectric converter and dye sensitization solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162718A (en) * 2003-12-05 2005-06-23 Sharp Corp Metal complex and dye sensitization solar cell using the same
JP2005190875A (en) * 2003-12-26 2005-07-14 Sharp Corp Metallic complex and dye-sensitized solar cell using it
JP2006213605A (en) * 2005-02-01 2006-08-17 Meiji Univ Plane asymmetric terpyridine compound, its manufacturing method and metal complex using the plane asymmetric terpyridine compound as ligand
JP2006298776A (en) * 2005-04-15 2006-11-02 Sharp Corp Quarter-pyridine derivative, complex containing the same, photoelectric converter and dye sensitization solar cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PARKS J.E. ET AL.: "Syntheses employing pyridyllithium reagents. New routes to 2,6-disubstituted pyridines and 6,6'disubstituted 2,2'-bipyridyls", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 56, 1973, pages 53 - 66, XP026619693, DOI: doi:10.1016/S0022-328X(00)89953-2 *
STANFORTH S.P.: "Catalytic Cross-coupling Reactions in Biaryl Synthesis", TETRAHEDRON, vol. 54, 1998, pages 263 - 303, XP004106623, DOI: doi:10.1016/S0040-4020(97)10233-2 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017314A (en) * 2009-10-30 2012-01-26 Sumitomo Chemical Co Ltd Nitrogen-containing aromatic compound and metal complex
US10392395B2 (en) 2009-10-30 2019-08-27 Sumitomo Chemical Company, Limited Nitrogen-containing aromatic compounds and metal complexes
JP2017214306A (en) * 2016-05-30 2017-12-07 株式会社神鋼環境ソリューション Method for coupling halogenated pyridine compound and halogenated aromatic compound
WO2017208970A1 (en) * 2016-05-30 2017-12-07 株式会社神鋼環境ソリューション Method for coupling of halogenated pyridine compound with halogenated aromatic compound

Also Published As

Publication number Publication date
JPWO2008059960A1 (en) 2010-03-04
JP5407332B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
TWI803692B (en) Process for the preparation of methyl 6-(2,4-dichlorophenyl)-5-[4-[(3s)-1-(3-fluoropropyl)pyrrolidin-3-yl]oxyphenyl]-8,9-dihydro-7h-benzo[7]annulene-2-carboxylate
Murakami et al. Syntheses and Interconversion of [Bis (silyl) alkene] palladium (0) and Bis (silyl) palladium (II) Complexes: A Mechanistic Model for Palladium-Catalyzed Bis-Silylation
WO2012102247A1 (en) Ruthenium complex-containing catalyst for hydrogen transfer reaction and method for producing hydrogen transfer reaction product
CN113549062B (en) Chiral quaternary ammonium salt phase transfer catalyst with high steric hindrance derived from cinchona alkaloid and synthesis method thereof
CN113713856B (en) Photosensitive COFs catalyst and method for catalytic synthesis of phosphorothioate derivatives
CN109824579B (en) Preparation method of (S) -phenyl (pyridine-2-yl) methanol derivative
CN101781222A (en) Method for preparing enamine ketone compound
CN114478362A (en) Preparation method of chiral pyridinol derivative
WO2008059960A1 (en) Method for producing quarter-pyridine derivative and intermediate of quarter-pyridine derivative
CN115181282B (en) Double-layer eight-element hollow annular metal organic supermolecule and synthesis method thereof
EP2571890B1 (en) Ruthenium based complexes
JPH029598B2 (en)
CN111039767B (en) Method for preparing deuterated aldehyde by using triazole carbene as catalyst
CN114773614A (en) Bimetal controllable distribution supramolecular material and preparation method thereof
CN108948055B (en) 8-methylquinoline gem-diboron compound and preparation method thereof
CN102627571B (en) Preparation and synthesis method for chiral ammonium salt
CN111018691A (en) Green synthesis method of aromatic acid
CN110628041A (en) Synthesis method of metal-organic supramolecular polymer based on chiral terpyridine [4+4] structure
CN106588983B (en) Carbazolyl phosphorus ligand, preparation method and application thereof
CN114213469B (en) Metal organic complex containing benzimidazole skeleton and preparation method and application thereof
JP2021502885A (en) Phosphine-free cobalt-based catalysts and methods and uses for their preparation
CN114890881B (en) Method for simply synthesizing allyl dicarbonyl compound
CN110240607B (en) 1, 3-diamantane-4, 5-dihydroimidazole dichloro cuprous salt and preparation method thereof
CN103012503B (en) Heteronuclear palladium iridium bicyclo metal compound as well as preparation method and application of compound
CN109665967B (en) Ligand for asymmetric epoxidation reaction of indene compounds and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008544208

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832017

Country of ref document: EP

Kind code of ref document: A1