JPH01313445A - Method for catalytic asymmetric and amplifying synthesis of secondary alcohol having high level of optical purity - Google Patents

Method for catalytic asymmetric and amplifying synthesis of secondary alcohol having high level of optical purity

Info

Publication number
JPH01313445A
JPH01313445A JP63143781A JP14378188A JPH01313445A JP H01313445 A JPH01313445 A JP H01313445A JP 63143781 A JP63143781 A JP 63143781A JP 14378188 A JP14378188 A JP 14378188A JP H01313445 A JPH01313445 A JP H01313445A
Authority
JP
Japan
Prior art keywords
optically active
aliphatic
optical purity
alicyclic
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63143781A
Other languages
Japanese (ja)
Other versions
JPH0525864B2 (en
Inventor
Nobuki Kokuni
小国 信樹
Yasuhiro Matsuda
松田 康洋
Toshiyuki Kaneko
俊幸 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Original Assignee
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp filed Critical Tosoh Finechem Corp
Priority to JP63143781A priority Critical patent/JPH01313445A/en
Publication of JPH01313445A publication Critical patent/JPH01313445A/en
Publication of JPH0525864B2 publication Critical patent/JPH0525864B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the subject compound which is an important constituent member of medicines and agricultural chemicals in high optical purity and yield by subjecting aldehydes and a dialkylzinc to catalytic and asymmetric amplifying reaction in the presence of a catalyst of an optically active beta-amino- alcohols. CONSTITUTION:Aldehydes expressed by the formula R<1>CHO (R<1> is aliphatic, alicyclic or aromatic group) are reacted with a dialkylzinc expressed by the formula R Zn (R<2> is aliphatic or alicyclic alkyl) in the presence of a small amount of optically active beta-amino-alcohols, preferably a compound expressed by formula I (R<3> is substituent group having bulkiness; R<4> is aliphatic, alicyclic or aromatic group or, together with N, may form heterocyclic ring) to advantageously obtain an optically active secondary alcohol expressed by formula II by a catalytic and asymmetric amplifying synthetic method. The objective compound of high optical purity is obtained in high yield by the above-mentioned method even at a relatively high temperature, such as 0-30 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高度の光学純度を有する光学活性第2級アルコ
ールの触媒的不斉増巾合成による製造に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to the production of optically active secondary alcohols having a high degree of optical purity by catalytic asymmetric broadening synthesis.

触媒的不斉増巾合成法とは、触媒に用いた光学活性化合
物の光学純度の数倍の光学純度を有する反応生成物を与
える反応を呼び、本発明者により発見されたものである
The catalytic asymmetric broadening synthesis method refers to a reaction that provides a reaction product having an optical purity several times higher than that of the optically active compound used as a catalyst, and was discovered by the present inventor.

〔従来の技術〕[Conventional technology]

高度の光学純度を有する第2級アルコールは従来は特殊
なケトン化合物の不斉還元反応によって合成出来ること
が数多く報告されている。
There have been many reports that secondary alcohols with high optical purity can be synthesized by asymmetric reduction reactions of special ketone compounds.

それらの方法の殆どすべては、光学活性化合物と還元剤
と基質とを化学量論的に用いる方法であり企業的にも採
算のとれる方法ではなく、採用されていない。アルデヒ
ド化合物と光学活性配位子を有する典型有機金属の一7
8℃のような低温での反応によっても光学活性第2級ア
ルコールが合成されることが報告されているが、実用的
ではなかった。
Almost all of these methods use an optically active compound, a reducing agent, and a substrate in a stoichiometric manner, and are not commercially profitable and have not been adopted. A typical organic metal containing an aldehyde compound and an optically active ligand (7)
Although it has been reported that an optically active secondary alcohol can be synthesized by a reaction at a low temperature such as 8°C, it has not been practical.

(発明が解決しようとする課題) 少量の光学活性な触媒を用いて大量の光学純度の高い光
学活性化合物を製造する不斉触媒反応は人類の夢であり
、過去有機化学者により精力的に研究が行われてきたが
、成功例は大変少ない。本発明は、アルデヒド化合物の
高度な触媒的不斉増巾アルキル化反応の最初の例である
(Problem to be solved by the invention) Asymmetric catalytic reactions that produce large amounts of optically active compounds with high optical purity using small amounts of optically active catalysts are a dream of humankind, and organic chemists have actively researched them in the past. have been tried, but there are very few success stories. The present invention is the first example of a highly catalytic asymmetrically enriched alkylation reaction of aldehyde compounds.

〔課題を解決するための手段〕[Means to solve the problem]

多くの典型有機金属化合物が知られているが、殆どの物
はアルデヒド化合物と反応するが、ジアルキル亜鉛は非
極性溶媒の中で反応しないこと、およびアミンなどのル
イス塩基が触媒となり両者の反応が起ることを本発明者
は発見した。
Many typical organometallic compounds are known, and most of them react with aldehyde compounds, but dialkylzincs do not react in nonpolar solvents, and Lewis bases such as amines act as catalysts to prevent the reaction between the two. The inventor has discovered that this happens.

このジアルキル亜鉛特有の反応を利用して広範な研究を
行った結果、光学活性β−アミノアルコールを触媒に用
いた場合に触媒的不斉反応により光学活性第2級アルコ
ールが合成できることを発見し、学術雑誌に発表した(
Tet rahed ronLetters 25.2
823 (1984)) 。しかしこの当時得られる光
学活性アルコールの光学純度はせいぜい48%であり、
実用的な応用は乏しかった。
As a result of extensive research utilizing this reaction unique to dialkylzinc, we discovered that optically active secondary alcohols can be synthesized through catalytic asymmetric reactions when optically active β-amino alcohols are used as catalysts. Published in an academic journal (
Tet rahedron Letters 25.2
823 (1984)). However, the optical purity of the optically active alcohol obtained at that time was at most 48%.
Practical applications were scarce.

本発明者のその後の研究により触媒のβ−アミノアルコ
ールのアミノ基をピペリジル基等の複素環を含むジアル
キル化することにより不斉収率が飛躍的に向上すること
、および炭素についたアルキル基を第3級ブチル基のよ
うにその高さを大きくすることにより、光学純度の高い
光学活性第2級アルコールが合成出来るという発明に導
いた。
Subsequent research by the present inventors revealed that the asymmetric yield can be dramatically improved by dialkylating the amino group of the β-amino alcohol catalyst containing a heterocycle such as a piperidyl group, and that the asymmetric yield can be dramatically improved by dialkylating the amino group of the β-amino alcohol catalyst. This led to the invention that an optically active secondary alcohol with high optical purity can be synthesized by increasing the height of the tertiary butyl group.

本発明の特徴は2点ある。第1点は触媒的不斉増巾反応
により光学純度の高い第2級アルコールが高収率で製造
できることであり、第2点は反応はO℃〜30°Cの比
較的高い温度でさえも光学純度の高い第2級アルコール
が得られることの2点でおる。
The present invention has two features. The first point is that secondary alcohols with high optical purity can be produced in high yields by catalytic asymmetric broadening reactions, and the second point is that the reaction can be carried out even at relatively high temperatures of 0°C to 30°C. The two points are that a secondary alcohol with high optical purity can be obtained.

〔実施例〕〔Example〕

以下に実施例を示して、更に本発明を説明するが、本発
明はこれによって何等制限を受けるものではない。なお
実施例(2)以下は操作は実施例(1)と同様でおり、
使用する原料および製造物が異なるのみであるので一覧
表で示す。
The present invention will be further explained below with reference to Examples, but the present invention is not limited in any way by these examples. Note that in Example (2) and subsequent operations, the operations are the same as in Example (1).
The only difference is the raw materials and products used, so they are shown in a list.

実施例1 窒素気流下、反応容器に光学純度98%の光学活性(−
)1−ピペリジル−3,3−ジメチルブタノール−2(
18mmol )のヘキサン溶液(1,51)を入れ、
ジエチル亜鉛(0,91mol)を加えて30℃で1時
間反応させた。この溶液を0℃に冷却してベンズアルデ
ヒド(0,9mol >をゆっくり加えた。18時間後
、反応液を希塩酸水溶液(11)にゆっくり加えて掻き
混ぜた。ヘキサン層を分離して蒸留によってヘキサンを
留去すると光学純度99%の1−フェニルプロパツール
([α」25−39.9°エタノール中)が収率95%
で得られた。
Example 1 Optical activity (-
) 1-piperidyl-3,3-dimethylbutanol-2(
Add 18 mmol) of hexane solution (1,51),
Diethylzinc (0.91 mol) was added and reacted at 30°C for 1 hour. The solution was cooled to 0°C and benzaldehyde (0.9 mol >) was slowly added. After 18 hours, the reaction solution was slowly added to dilute aqueous hydrochloric acid solution (11) and stirred. The hexane layer was separated and the hexane was removed by distillation. When distilled off, 1-phenylpropanol ([α] 25-39.9° in ethanol) with optical purity of 99% is obtained in 95% yield.
Obtained with.

**この化合物は下記の化学反応式によりラセミ体が合
成され、ジベンゾイル酒石酸(光学活性)との塩の再結
晶により光学分割された。
**This compound was synthesized as a racemate according to the chemical reaction formula below, and optically resolved by recrystallization of the salt with dibenzoyltartaric acid (optically active).

[α]22−71.5° (エタノール)r2 t−B u COCH3+ t−B LI C0CH2
B rビナコロン       ブロムビナコロン光学
分割 光学活性化合物 全収率は75%であった。
[α]22-71.5° (ethanol) r2 t-B u COCH3+ t-B LI C0CH2
B r Binacolone Brombinacolone optical resolution The total yield of optically active compound was 75%.

実施例2〜5 実施例1と同一の反応条件で不斉増巾反応を行い、その
結果を下記の表1にまとめた。
Examples 2 to 5 Asymmetric broadening reactions were carried out under the same reaction conditions as in Example 1, and the results are summarized in Table 1 below.

実施例6〜14 他のアルデヒドとジエチル亜鉛との不斉増巾反応の実施
例は下記の表2にまとめた。
Examples 6-14 Examples of asymmetric broadening reactions between other aldehydes and diethylzinc are summarized in Table 2 below.

〔発明の効果〕〔Effect of the invention〕

本発明は医薬品、農薬その他のファインケミカルの製造
に大変有効な反応であると同時に、本発明によって製造
される光学活性第2級アルコールは医薬品、農薬などの
重要な構成物質である。
The present invention is a very effective reaction for producing pharmaceuticals, agricultural chemicals, and other fine chemicals, and at the same time, the optically active secondary alcohol produced by the present invention is an important constituent of pharmaceuticals, agricultural chemicals, and the like.

Claims (1)

【特許請求の範囲】 (1)アルデヒド類とジアルキル亜鉛とを光学活性β−
アミノアルコール類の触媒の存在下に反応せしめること
を特徴とする光学活性第2級アルコールの触媒的不斉増
巾合成法。(2)下記一般式( I ) R^1CHO( I ) (但しR^1CHOは脂肪族アルデヒド、脂環式アルデ
ヒドおよび芳香族アルデヒドを表わす)で示されるアル
デヒド類と下記一般式(II)R^2_2Zn(II) (但しR^2は脂肪族および脂環式アルキル基を含む) で示されるジアルキル亜鉛とを少量の光学活性β−アミ
ノアルコール類と反応せしめ、加水分解することを特徴
とする下記一般式(III) ▲数式、化学式、表等があります▼(III) (但しR^1、R^2は前記に同じ) で示される光学活性第2級アルコールの触媒的不斉増巾
合成法。 (3)触媒として使用される光学活性β−アミノアルコ
ールが下記一般式(IV) ▲数式、化学式、表等があります▼(IV) (但しR^3は嵩さを有する置換基を表わし、R^4は
脂肪族、脂環式、芳香族基を含みNと共に複素環を形成
してもよい) で示されることを特徴とする請求項1又は2記載の光学
活性第2級アルコールの触媒的不斉増巾合成法。
[Scope of Claims] (1) Aldehydes and dialkylzinc are optically active β-
A method for catalytic asymmetric broadening synthesis of optically active secondary alcohols, characterized by carrying out the reaction in the presence of an amino alcohol catalyst. (2) Aldehydes represented by the following general formula (I) R^1CHO (I) (where R^1CHO represents an aliphatic aldehyde, an alicyclic aldehyde, and an aromatic aldehyde) and the following general formula (II) R^ 2_2Zn(II) (However, R^2 includes an aliphatic and alicyclic alkyl group) The following method is characterized by reacting dialkyl zinc represented by 2_2Zn(II) with a small amount of optically active β-amino alcohol and hydrolyzing it. General formula (III) ▲Mathematical formulas, chemical formulas, tables, etc.▼(III) (However, R^1 and R^2 are the same as above) Catalytic asymmetric broadening synthesis method for optically active secondary alcohols . (3) The optically active β-amino alcohol used as a catalyst has the following general formula (IV) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (IV) (However, R^3 represents a bulky substituent, and R The catalytic method of optically active secondary alcohol according to claim 1 or 2, wherein ^4 includes an aliphatic, alicyclic, or aromatic group and may form a heterocycle with N. Asymmetric broadening synthesis method.
JP63143781A 1988-06-13 1988-06-13 Method for catalytic asymmetric and amplifying synthesis of secondary alcohol having high level of optical purity Granted JPH01313445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63143781A JPH01313445A (en) 1988-06-13 1988-06-13 Method for catalytic asymmetric and amplifying synthesis of secondary alcohol having high level of optical purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63143781A JPH01313445A (en) 1988-06-13 1988-06-13 Method for catalytic asymmetric and amplifying synthesis of secondary alcohol having high level of optical purity

Publications (2)

Publication Number Publication Date
JPH01313445A true JPH01313445A (en) 1989-12-18
JPH0525864B2 JPH0525864B2 (en) 1993-04-14

Family

ID=15346859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63143781A Granted JPH01313445A (en) 1988-06-13 1988-06-13 Method for catalytic asymmetric and amplifying synthesis of secondary alcohol having high level of optical purity

Country Status (1)

Country Link
JP (1) JPH01313445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297285A (en) * 2006-04-27 2007-11-15 Kobe Univ Method for preparing optically active hydroxy compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468A (en) * 1987-02-27 1989-01-05 Ajinomoto Co Inc Tertiary amino-alcohol compound and production of optically active secondary alcohol using said compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468A (en) * 1987-02-27 1989-01-05 Ajinomoto Co Inc Tertiary amino-alcohol compound and production of optically active secondary alcohol using said compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297285A (en) * 2006-04-27 2007-11-15 Kobe Univ Method for preparing optically active hydroxy compound

Also Published As

Publication number Publication date
JPH0525864B2 (en) 1993-04-14

Similar Documents

Publication Publication Date Title
HU198437B (en) Process for producing mono- or bis-carbonyl-compounds
CA2161969C (en) Enantioselective oxazaborolidine catalysts
US20210261517A1 (en) Method for simultaneously preparing 2-ethoxyphenol and 1,3-benzodioxolane-2-one
Ahn et al. Asymmetric aldol reactions employing a camphor-derived chiral oxazinone auxiliary.
CN110128257B (en) 1-phenyl-4-pentene-1-one derivative and synthesis method and application thereof
JPS5934170B2 (en) Production method of diphenyl carbonate ester
US5227538A (en) Catalytic asymmetric reduction of ketones using metal catalysts
CN109809967B (en) Method for synthesizing chiral alcohol
JPH01313445A (en) Method for catalytic asymmetric and amplifying synthesis of secondary alcohol having high level of optical purity
CN116082111A (en) Method for synthesizing 1, 2-triarylethane
EP0047622B1 (en) Preparation of dichlorobenzyl alcohol
JPH02180854A (en) Production of n,n-diisopropylethylamine
JP3691235B2 (en) Process for producing optically active piperidines
CN106966877B (en) 1, 4-dicarbonyl compound and preparation method thereof
JP3825497B2 (en) Optically active quinolylalkyl alcohol and process for producing the same
EP0431955B1 (en) 3-Amino-2-hydroxybornane derivatives, asymmetric Michael reaction using the same, and process for preparing optically active muscone utilizing Michael reaction
US5286878A (en) Catalytic reduction of organic carbonyls
JP3569428B2 (en) Method for producing homoallylamines
US5292945A (en) Process for preparing α-chloro-α-oximino-4-hydroxyacetophenone
JPH06345788A (en) Asymmetric catalyst and production of optically active secondary alcohol using the same
JPH0925269A (en) Optically active pyrimidylalkyl alcohol and its production
JP5750667B2 (en) Method for producing optically active alcohol
RU2183613C1 (en) Method of synthesis of (z)-1,2-alkyl-1,2-diethyl-ethylenes
JPS6335613B2 (en)
KR930003757B1 (en) The producing method of substituted beta phenyl acrylic acid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees