JP2007294233A - 燃料電池装置 - Google Patents

燃料電池装置 Download PDF

Info

Publication number
JP2007294233A
JP2007294233A JP2006120765A JP2006120765A JP2007294233A JP 2007294233 A JP2007294233 A JP 2007294233A JP 2006120765 A JP2006120765 A JP 2006120765A JP 2006120765 A JP2006120765 A JP 2006120765A JP 2007294233 A JP2007294233 A JP 2007294233A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
amount
electrolyte membrane
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006120765A
Other languages
English (en)
Inventor
Shigetaka Hamada
成孝 濱田
Takashi Yamamoto
隆士 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006120765A priority Critical patent/JP2007294233A/ja
Publication of JP2007294233A publication Critical patent/JP2007294233A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】水素ガスを電解質膜上の電極で反応させて発電する燃料電池を備える燃料電池装置において、クロスリークした水素ガスのみを正確に推定することである。
【解決手段】燃料電池装置1は、両面に電極21,22が配置された電解質膜20を有し、一方の面の電極21に水素ガスが供給され、他方の面の電極22に酸化ガスが供給されて、水素ガスと酸化ガスの電気化学反応により発電する燃料電池2を備える。燃料電池装置1は、一方の面の電極21のみに水素ガスを供給し、電解質膜20を介して両電極21,22間に発生させた水素の濃度差に基づいて発電する際の電流を測定する電流検出器4と、他方の電極22側から排出されるオフガス中の水素を検出する水素検出器3と、前記電流検出器4の検出値と、前記水素検出器3の検出値とに基づいて、電解質膜20中を透過し、漏洩した水素量を推定する透過水素量推定手段5(6)とを備える。
【選択図】図1

Description

本発明は、水素ガスを電解質膜上の電極で反応させて発電する燃料電池を備える燃料電池装置に関し、特に、電解質膜を透過し、漏洩した水素量を推定する技術に関する。
プロトン伝導性の電解質膜の両面上に、一対の電極を対向して配置し、それらの電極で水素ガスおよび酸化ガスを反応(電気化学反応)させて発電する燃料電池が知られている。
水素ガスが反応する電極(アノード)では、以下の(1)式で示される化学反応が進行する。水素からプロトンおよび電子が生成する。
→ 2H+ 2e ・・・(1)
アノードで生成したプロトンは、電解質膜中を移動し、他の電極(カソード)へ到達する。また電子は、アノードとカソードとの間を連絡する所定の導体中を通り、カソードへ移動する。
これに対し、酸化ガス(通常は、空気中の酸素)が反応する電極(カソード)では、以下の(2)式で示される化学反応が進行する。酸素が電解質膜中を移動してきたプロトンと、電子と反応して水を生成する。
(1/2)O+ 2H+ 2e → HO ・・・(2)
上記(1)および(2)式の化学反応がアノードおよびカソードにおいて連続的に進行することによって、アノードおよびカソードの両電極間に、起電力が発生する。なお、発電時の燃料電池において、電解質膜を介してアノード側に存在する水素ガスと、カソード側に存在する酸化ガスとは、通常、相互に混ざり合わない。水素ガスおよび酸化ガスは、電解質膜によって分離された状態にある。
ところで、この種の燃料電池は、発電に伴い電解質膜が次第に劣化して、電解質膜に微細な孔が発生することが知られている。発生した孔の中には、電解質膜内を貫通するものもある。その為、孔が形成されると、アノード側の水素ガスが、電解質膜の孔を透過し、カソード側へ漏洩する場合がある。この際、水素は分子(水素分子)状態で電解質膜中を移動する。また、カソード側の酸化ガス(酸素)が、電解質膜の孔を透過し、アノード側へ漏洩する場合もある。所謂、ガスのクロスリークが発生する。クロスリークが発生すると、電解質膜を介して分離されていた水素ガスと酸化ガスとが混ざり合い、アノードおよびカソードで反応する水素ガスおよび酸化ガスの比率が変化し、燃料電池の出力が不安定になる等の問題が発生する。このような場合、劣化した電解質膜を、新たな電解質膜に交換する等の措置を行う必要がある。
例えば、特許文献1は、クロスリークしたガス量を、電解質膜の劣化の指標とする技術を開示する。この技術は、水素ガスおよび酸化ガスとを電解質膜上の電極(アノード、カソード)で反応させて発電する燃料電池において、カソードから排出されるオフガス中の水素ガスをガスセンサによって検出することにより、アノードからカソードへ電解質膜を透過し、漏洩した水素ガス(クロスリークした水素ガス)を把握し、電解質膜の劣化状況を判断するものである。
特開2005−150007号公報 特表2003−504807号公報
ところで、上記燃料電池において、条件によっては、上記(1)式および(2)式に基づかずに起電力を発生させることが出来る。電解質膜を介してアノード側とカソード側との間に生じたガスの濃度差(濃淡差、分圧差)に基づいて、起電力を発生させることが出来る。例えば、アノード側に供給された水素ガスと、アノード側から漏洩したカソード側の水素ガスとの間の濃度差に基づいて、起電力を発生させることが出来る。この起電力は、所謂、濃淡電池の原理に基づくものであり、一般的に、ネルンストの式に従って求められるものとして知られている。濃淡電池の原理に基づいて燃料電池が発電する際、高濃度側の水素ガスは、電極(アノード)で反応してプロトンとなり、プロトンの状態で電解質膜中を移動する。電解質膜中を移動したプロトンは、他方の電極(カソード)において、電子を受け取り、再び水素ガス(水素分子)となる。
上記燃料電池において、濃淡電池の原理に基づく起電力が生じ得る場合としては、例えば、以下に示す場合がある。特許文献2において示されるように、低温で始動した燃料電池を、発熱させて素早く温める為に、アノードへ供給する水素ガス量に対して、カソードへ供給する酸化ガス量を少なくし、低効率(過電圧)の状態で発電を行う場合がある。このような場合、アノードへ供給された水素ガスと、カソードへ漏洩した水素ガスとの間の濃淡差に基づいて、起電力が発生し得る。
ところで、上記燃料電池において、濃淡電池の原理に基づいて発電している場合においても、アノード側に存在する水素ガスが、電解質膜の孔を通って、カソード側へ水素ガスが漏洩し得る。この場合、カソードには起源の異なる水素が2種類存在することになる。一方は、アノード側から水素分子の状態で、電解質膜の孔を透過し、カソード側へ漏洩した水素である。他方は、濃淡電池の原理に基づいて、アノード側からカソード側へ電解質膜中をプロトンの状態で移動して来た水素である。したがって、この場合、カソードから排出されるオフガス中に含まれる水素には、電解質膜の劣化の指標とされるクロスリークした水素以外の水素が混ざった状態にある。
上記のように、燃料電池が、所定の条件の下、濃淡電池の原理に基づいて発電する際、上記特許文献1のように、オフガス中の水素を検出しても、クロスリークした水素のみを正確に把握することが出来ず、問題であった。
本発明の目的は、電解質膜を漏洩した水素ガス量のみを推定することである。
本発明に係る燃料電池装置は、両面に電極が配置された電解質膜を有し、一方の面の電極に水素ガスが供給され、他方の面の電極に酸化ガスが供給され、水素ガスと酸化ガスの電気化学反応により発電する燃料電池を備える燃料電池装置において、両電極間を移動した電荷量を推定する電荷量推定手段と、前記電荷量推定手段の推定結果に基づいて、電解質膜中を移動したプロトン量を推定するプロトン量推定手段と、前記プロトン量推定手段の推定結果に基づいて、一方の電極側から他方の電極側へ向けて、分子状態で電解質膜中を透過した水素量を推定する透過水素量推定手段と、を備えることを特徴とする。
また、本発明に係る燃料電池装置は、両面に電極が配置された電解質膜を有し、一方の面の電極に水素ガスが供給され、他方の面の電極に酸化ガスが供給され、水素ガスと酸化ガスの電気化学反応により発電する燃料電池を備える燃料電池装置において、前記他方の電極側に存在する水素の内、前記一方の電極側から他方の面の電極側へ、電解質膜中をプロトンの状態で移動した水素量を、両電極間を移動した電子の量に基づいて推定する電子量推定手段と、他方の電極側から排出されるオフガス中の水素を検出する水素検出器と、前記電子量推定手段の推定結果と、前記水素検出器の検出結果とに基づいて、一方の電極側から他方の電極側へ向けて、分子状態で電解質膜中を透過した水素量を推定する透過水素量推定手段と、を備えることを特徴とする。
また、本発明に係る燃料電池装置は、両面に電極が配置された電解質膜を有し、一方の面の電極に水素ガスが供給され、他方の面の電極に酸化ガスが供給され、水素ガスと酸化ガスの電気化学反応により発電する燃料電池を備える燃料電池装置において、一方の面の電極のみに水素ガスを供給し、電解質膜を介して両電極間に発生させた水素の濃度差に基づいて発電する際の電流を測定する電流検出器と、他方の電極側から排出されるオフガス中の水素を検出する水素検出器と、前記電流検出器の検出値と、前記水素検出器の検出値とに基づいて、一方の電極側から他方の電極側へ向けて電解質膜中を透過した水素量を推定する透過水素量推定手段と、を備えることを特徴とする。
上記燃料電池装置において、前記燃料電池は、例えば、酸化ガスの供給量を少なくした状態で発電することを特徴とする。
上記燃料電池装置において、更に、前記透過水素量推定手段の推定結果に基づいて、燃料電池の電解質膜の異常を報知する報知手段を備えることを特徴とする。
本発明に係る燃料電池装置によれば、電解質膜を漏洩した水素ガス量のみを推定することが出来る。
以下、本発明に係る実施の形態について、図面を用いて詳細に説明する。図1は、本実施形態に係る燃料電池装置1の概略構成図である。燃料電池装置1は、水素ガスおよび酸化ガスを燃料として発電する燃料電池2を備える。燃料電池2は、所謂、固体高分子電解質型燃料電池である。
燃料電池2は、イオン伝導性の電解質膜20の一方の面に水素ガスが反応するアノード21を有し、他方の面に酸化ガス(通常は、空気中の酸素)が反応するカソード22を有する膜−電極接合体(Membrane-Electrode Assembly、MEA)23を備える。
MEA23に用いられるイオン伝導性の電解質膜20は、側鎖にスルホン酸基やカルボキシル基等のイオン交換基を有する高分子膜からなる。電解質膜20は、特定のイオンと強固に結合し、選択的にイオンを透過する性質を有する。電解質膜20としては、例えば、パーフルオロスルホン酸重合体からなる膜のナフィオン(登録商標、デュポン社製)が用いられる。
MEA23の一方の面上に形成されるアノード21は、触媒層と、触媒層の上に形成される拡散層とを有する。触媒層は、白金、金、パラジウム、ルテニウム、イリジウム等の貴金属触媒をカーボンに担持させた触媒担持カーボンを、樹脂で結着して形成される。なおカーボンとしては、オイルファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック等が用いられる。結着樹脂としては、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等が用いられる。拡散層は、カーボン繊維等の多孔質導電性材料からなる。
燃料電池2は、MEA23の両面に、1組のセパレータを対向して配置した燃料電池セルを、複数個積層し、電気的に直列に接続した、燃料電池スタックの状態で用いられる。セパレータは、アルミ、ステンレス等の金属材料や、カーボン等からなる導電性部材であり、集電部として機能する。またセパレータには、MEAの表面に沿って水素ガスまたは酸化ガスを流すためのガス流路を備える。なお、説明の便宜上、図1には、1枚のMEA23を備える燃料電池2を示した。セパレータは省略した。
発電時、燃料電池2には、水素ガスおよび酸化ガスが供給される。水素ガスは、所定の水素ガス供給配管10を通って、燃料電池2のアノード21へ供給される。また酸化ガス(通常は、空気)は、所定の酸化ガス供給配管15を通って、燃料電池2のカソード22へ供給される。この際、水素ガスおよび酸化ガスは、燃料電池2の目標出力に応じて定められた、所定の供給比率で供給される。
発電時、供給された水素ガスは、アノード21において反応し、プロトンとなる(上記(1)式参照)。プロトンは電解質膜20中を移動し、カソード22側へ移動する。なお、プロトンは、水分子を伴って電解質膜20中を移動する。これに対して、酸化ガス(酸素)は、カソード22において、電解質膜20中を移動して来たプロトンと反応して水を生成する(上記(2)式参照)。これらの反応の際、電子が、所定の負荷(図示せず)を介して燃料電池2の端子と接続する導線30中を流れ、電流が生じる。なお、アノード21へ供給された水素は、反応後、水へと変化する(図1中の一点鎖線で囲まれた領域a内の式を参照)。
燃料電池2へ供給された水素ガスおよび酸化ガスは、すべてアノード21またはカソード22で消費される訳では無い。未消費のガスは、所定の配管を通って燃料電池2の外部へオフガスとして排出される。アノード21からは、未消費の水素ガスが、アノード側排出配管11を通って排出される。なおアノード21へ供給される水素ガスは、通常、加湿されている為、オフガス中にも水が含まれる。これに対し、カソード22からは、未消費の酸素(空気)や、カソード22で生成した水等を含んだオフガスがカソード側排出配管16を通って排出される。
発電を継続すると、燃料電池2のMEA23,特に、電解質膜20が次第に劣化する。電解質膜20が劣化すると、電解質膜20に孔が形成される。電解質膜20に孔が形成されると、発電中、アノード21へ供給された水素ガスが、電解質膜20の孔を通り、カソード22側へ漏洩する。漏洩した水素は、アノード21側からカソード22側へ水素分子の状態で移動する(図1中の一点鎖線で囲まれた領域c内の式を参照)。電解質膜20を透過し、漏洩した水素ガスは、オフガスとしてカソード側排出配管16を通って排出される。
本実施形態に係る燃料電池装置1は、カソード22から排出されるオフガス中の水素ガスを検出する水素検出器3を備える。水素検出器3は、カソード側排出配管16に設置される。水素検出器3は、例えば、所定時間内にカソード側排出配管16内を通過したオフガス中の水素ガス量(流量、濃度)を検出するものである。
また燃料電池装置1は、燃料電池2の出力電流を検出する電流検出器4を備える。電流検出器4は、導線30の途中に配置される。電流検出器4は、例えば、所定時間内における燃料電池2の出力電流を検出する。電流検出器4としては、一般的な、電流計を用いることができる。
また燃料電池装置1は、制御部5を備える。制御部5は、電子制御ユニット(Electronic Control Unit、ECU)からなり、CPUを中心としたワンチップマイクロプロセッサによって構成される。処理プログラムを記憶したROMや、一時的にデータを記憶するRAM等を有する。この制御部5には、水素検出器3から出力された検出結果(出力信号)が信号線13を通って入力される。また制御部5には、電流検出器4から出力された検出結果(出力信号)が信号線14を通って入力される。
制御部5は、水素検出器3の検出値と、電流検出器4の検出値とに基づいて、電解質膜20中を透過し、漏洩した水量を推定する透過水素量推定モジュール6(透過水素量推定手段)を有する。透過水素量推定モジュール6における推定結果は、例えば、所定の出力表示装置へ出力される。なお制御部5によって、水素ガスや酸化ガスの供給量の調節等の制御を行ってもよい。また、燃料電池装置1が車両に搭載される場合は、エンジンECUが制御部5の機能を担っても良い。
以下、燃料電池装置1において、アノード21側からカソード22側へ漏洩した水素ガス量(以下、単に、クロスリーク量と称する場合がある)を推定する方法を説明する。
クロスリーク量を測定する為には、燃料電池2において、濃淡電池の原理に基づいて起電力を生じさせる必要がある。この起電力を生じさせる為には、電解質膜20を介して、アノード21側とカソード22側との間に、水素ガスの濃度差(濃淡差)が形成される必要がある。本実施形態において、水素ガスの濃度差は、アノード21へ供給した水素ガスと、アノード21側からカソード22側へクロスリークした水素ガスとの間において形成される。この場合、水素ガスは、アノード21側において高濃度で存在し、カソード22側において低濃度で存在した状態にある。
また、クロスリーク量を測定する為には、燃料電池2において、上記(1)式および(2)式で示される化学反応に基づく起電力が生じないようにする(抑制する)必要がある。カソード22に酸素が存在すると、上記(2)式の反応が生じる為、極力、カソード22側の酸素を少なくする必要がある。理想的には、完全に酸素を無くすことが好ましい。酸素量を少なくする方法としては、例えば、酸化ガスの供給量を絞り、酸化ガスを通常の発電時よりも減らす方法がある。つまり、酸化ガスのストイキ比を1以下の状態で発電を行う。このストイキ比とは、発電に要する理論的な酸化ガス量(酸素量)(理論値)に対する、実際に供給する酸化ガス量(酸素量)の比である。通常は、理論値よりも実際に供給する酸化ガス量の方が多く、ストイキ比は1を超えた値となっている。このストイキ比が1以下である状態とは、理論値よりも少ない量の酸化ガス(酸素)が供給される状態である。また、他のカソード22側の酸素量を少なくする方法としては、カソード22側に、窒素、アルゴン等の反応に寄与しない不活性なガスを供給し、カソード22側を不活性なガスで略置換する方法がある。なお、アノード21側とカソード22側における圧力は、略等しい状態が好ましい。電解質膜20を介してアノード21側およびカソード22側との間に、極端な圧力差が生じると、ガスが電解質膜20を透過するのを助長し、正確なクロスリーク量を測定することができない。
クロスリーク量を測定する為に、電解質膜20を介してアノード21側およびカソード22側との間に水素ガスの濃度差を生じさせ、かつ、カソード22側の酸化ガス(酸素)量を少なくする為に、例えば、燃料電池2を低効率の状態で発電することを行う。
ここで、図2は、燃料電池2の出力電圧を示したグラフである。縦軸に電圧を示し、横軸に時間を示す。図2は、燃料電池2において、時間t〜tの間に、通常の発電(上記(1)式および(2)式で示される化学反応に基づく発電)を行い、かつ時間t〜tの間に、クロスリーク量の測定を行った場合の電圧を示す。通常発電時の燃料電池2の出力電圧がVで示され、クロスリーク量の測定時の出力電圧がVで示される。この種の燃料電池2においては、出力電圧Vは、例えば、略1.0Vである。これに対し、クロスリーク量の測定時の燃料電池2の出力電圧Vは、略0Vである。このような発電状態を、低効率の状態と称する。
以下、濃淡電池の原理に基づいて発電する燃料電池2を備える燃料電池装置1において、実際に、クロスリーク量を推定する方法を説明する。
〈工程1〉
工程1は、燃料電池2を、所定時間、濃淡電池の原理に基づいて発電させる工程である。ここで、所定時間をt(min)とする。この間、電流検出器4は、燃料電池2の電流I(A)を検出する。この間、電流検出器4によって検出される電流I(A)は、濃淡電池の原理に基づいて生じた電流のみである。つまり、電流検出器4は、高濃度の水素ガスが存在するアノード21側から、低濃度の水素ガスが存在するカソード22側へ、水素がプロトンとなって移動した際に生じる電子(電流)のみを検出する。したがって、電流検出器4の検出値は、アノード21側からカソード22側へ、プロトンの状態で移動してきた水素量に対応した値となる。(図1中の一点鎖線で囲まれた領域b内の式を参照)。電流検出器4の検出結果は、制御部5へ出力される。
また、この間、水素検出器3は、燃料電池2のカソード22から排出されるオフガス中の水素(ガス)を検出する。水素検出器3は、時間t(min)の間に、カソード側排出配管16内を流れる全オフガス量V(NL/min)を検出し、かつ、時間t(min)の間における水素ガス濃度C(%)を検出する。なお、水素検出器3が検出する水素ガスには、アノード21側からカソード22側へクロスリークした水素ガス(領域c内の式)と、濃淡電池の原理に伴って生成した水素ガス(領域b内の式)とが含まれている。水素検出器3の検出結果は、制御部5へ出力される。
〈工程2〉
工程2は、制御部5において、入力された電流検出器4の検出結果と、水素検出器3の検出結果とに基づいて、クロスリークした水素量(透過水素量)Hc(NL/min)を推定する工程である。この透過水素量Hc(NL/min)の推定は、制御部5の透過水素量推定モジュール6において行われる。
ここでは、電流検出器4の検出結果に基づいて、濃淡電池の原理に伴って生成した水素ガス(領域b内の式)の量Hm(NL/min)が求められる。電流I(A)を以下に示される(3)式に基づいて、Hm(NL/min)が求められる。なおファラデー定数Fを、96500(mol/C)とし、かつ、水素ガスを理想気体として推定した。
Hm(NL/min)=I(A)×(1/96500)(mol/C)×60×(1/2)×22.4(NL/mol) ・・・(3)
また、水素検出器3の検出結果に基づいて、オフガス中に含まれるすべての水素ガス量Hn(NL/min)が求められる。全オフガス量V(NL/min)および水素ガス濃度C(%)を以下に示される(4)式に基づいて、Hn(NL/min)が求められる。
Hn(NL/min)=V(NL/min)×C(%)×0.01 ・・・(4)
上記(3)式より得られたHm(NL/min)と、上記(4)式より得られたHn(NL/min)とを以下に示される(5)式に基づいて、クロスリークした水素量Hc(NL/min)を求めることが出来る。
Hc(NL/min)=Hn(NL/min)−Hm(NL/min) ・・・(5)
以上の工程により、燃料電池装置1において、クロスリークした水素量を求め、推定することが出来る。透過水素量推定手段6による推定結果を用いれば、電解質膜20の劣化状況を判断することができる。本実施形態に係る燃料電池装置1によれば、電解質膜20を透過し、漏洩した水素量のみを把握することができる。
本実施形態の燃料電池装置1は、例えば、車両等の移動体用燃料電池装置または家庭等で用いられる定置用燃料電池装置として利用される。
上記実施形態においては、燃料電池として、固体高分子電解質型燃料電池を例示したが、本発明は、この種の燃料電池以外の燃料電池を備える燃料電池装置においても適用することが出来る。他の燃料電池としては、例えば、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)、固体酸化物型燃料電池(SOFC)等がある。これらの燃料電池においても、濃淡電池の原理に基づいて発電させて、電解質膜を透過し、漏洩したガス量を推定することが出来る。
他の実施形態において、燃料電池装置は、更に、燃料電池の電解質膜の交換時期を報知する報知手段を備えてもよい。報知手段は、上記透過水素量推定手段6の出力信号に応じて、報知を行う。報知手段としては、例えば、推定結果に基づいて警告音を発するブザー等を用いることができる。
本実施形態に係る燃料電池装置の概略構成図である。 通常発電時およびクロスリーク量測定時の燃料電池の出力電圧を示すグラフである。
符号の説明
1 燃料電池装置、2 燃料電池、3 水素検出器、4 電流検出器、5 制御部、6 透過水素量推定手段(モジュール)、10 水素ガス供給配管、11 アノード側排出配管、13,14 信号線、15 酸化ガス供給配管、16 カソード側排出配管、20 電解質膜、21 アノード、22 カソード、23 MEA、30 導線。

Claims (4)

  1. 両面に電極が配置された電解質膜を有し、
    一方の面の電極に水素ガスが供給され、他方の面の電極に酸化ガスが供給され、水素ガスと酸化ガスの電気化学反応により発電する燃料電池を備える燃料電池装置において、
    両電極間を移動した電荷量を推定する電荷量推定手段と、
    前記電荷量推定手段の推定結果に基づいて、電解質膜中を移動したプロトン量を推定するプロトン量推定手段と、
    前記プロトン量推定手段の推定結果に基づいて、一方の電極側から他方の電極側へ向けて、分子状態で電解質膜中を透過した水素量を推定する透過水素量推定手段と、を備えることを特徴とする燃料電池装置。
  2. 両面に電極が配置された電解質膜を有し、
    一方の面の電極に水素ガスが供給され、他方の面の電極に酸化ガスが供給され、水素ガスと酸化ガスの電気化学反応により発電する燃料電池を備える燃料電池装置において、
    前記他方の電極側に存在する水素の内、前記一方の電極側から他方の面の電極側へ、電解質膜中をプロトンの状態で移動した水素量を、両電極間を移動した電子の量に基づいて推定する電子量推定手段と、
    他方の電極側から排出されるオフガス中の水素を検出する水素検出器と、
    前記電子量推定手段の推定結果と、前記水素検出器の検出結果とに基づいて、一方の電極側から他方の電極側へ向けて、分子状態で電解質膜中を透過した水素量を推定する透過水素量推定手段と、を備えることを特徴とする燃料電池装置。
  3. 両面に電極が配置された電解質膜を有し、
    一方の面の電極に水素ガスが供給され、他方の面の電極に酸化ガスが供給され、水素ガスと酸化ガスの電気化学反応により発電する燃料電池を備える燃料電池装置において、
    一方の面の電極のみに水素ガスを供給し、電解質膜を介して両電極間に発生させた水素の濃度差に基づいて発電する際の電流を測定する電流検出器と、
    他方の電極側から排出されるオフガス中の水素を検出する水素検出器と、
    前記電流検出器の検出値と、前記水素検出器の検出値とに基づいて、一方の電極側から他方の電極側へ向けて電解質膜中を透過した水素量を推定する透過水素量推定手段と、を備えることを特徴とする燃料電池装置。
  4. 請求項1〜請求項3の何れか1項に記載の燃料電池装置において、
    前記燃料電池は、酸化ガスの供給量を少なくした状態で発電することを特徴とする燃料電池装置。
JP2006120765A 2006-04-25 2006-04-25 燃料電池装置 Pending JP2007294233A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006120765A JP2007294233A (ja) 2006-04-25 2006-04-25 燃料電池装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006120765A JP2007294233A (ja) 2006-04-25 2006-04-25 燃料電池装置

Publications (1)

Publication Number Publication Date
JP2007294233A true JP2007294233A (ja) 2007-11-08

Family

ID=38764645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120765A Pending JP2007294233A (ja) 2006-04-25 2006-04-25 燃料電池装置

Country Status (1)

Country Link
JP (1) JP2007294233A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763392A (zh) * 2020-12-30 2021-05-07 新源动力股份有限公司 一种加速评估燃料电池用质子交换膜耐久性的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763392A (zh) * 2020-12-30 2021-05-07 新源动力股份有限公司 一种加速评估燃料电池用质子交换膜耐久性的方法

Similar Documents

Publication Publication Date Title
Yousfi-Steiner et al. A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation
Wang et al. Real‐time mass spectrometric study of the methanol crossover in a direct methanol fuel cell
US7749623B2 (en) Method of controlling fuel cell system
JP5343509B2 (ja) 燃料電池システムおよび燃料電池の状態検知方法
WO2008108451A1 (ja) 燃料電池システム、電極触媒の劣化判定方法、および移動体
US10020525B2 (en) Method and system for diagnosing state of fuel cell stack
KR20040021651A (ko) 직접 메탄올 연료 전지의 메탄올 농도를 조절하기 위한 방법
US20090246570A1 (en) Method and apparatus for measuring crossover loss of fuel cell
JP2006228553A (ja) 燃料電池の運転方法
JPWO2007083616A1 (ja) 燃料電池システム及び燃料電池システムの運転方法
CN109638321B (zh) 燃料电池的输出检测方法
JP4336182B2 (ja) 燃料電池システムの運転方法および燃料電池システム
Yoshimi et al. Temperature and humidity dependence of the electrode polarization in intermediate-temperature fuel cells employing CsH2PO4/SiP2O7-based composite electrolytes
JP2005251434A (ja) 燃料電池システム、燃料電池の制御方法
JP2008243430A (ja) 燃料電池の保護方法及び保護システム
JP2003331895A (ja) 燃料ガスの供給不足検出方法および燃料電池の制御方法
US20110053024A1 (en) Fuel cell using organic fuel
KR101105364B1 (ko) 연료 농도 센서 및 센싱 방법, 이를 이용한 연료전지의 연료 재순환 시스템 장치 및 방법, 이를 이용한 연료전지 이용 장치
US20070141406A1 (en) Technique and apparatus to detect carbon monoxide poisoning of a fuel cell stack
JP2007294233A (ja) 燃料電池装置
CN109599579B (zh) 燃料电池的输出检测方法
JP3833560B2 (ja) 水素検出装置
JP2012009182A (ja) 燃料電池システム、燃料電池の発電方法およびフラッディング判断方法
JP2011058917A (ja) 電気化学式coセンサ
JP2014049266A (ja) 燃料電池の電解質膜の抵抗測定方法および測定装置