JP2007291097A - Clay mineral-based composite material and method for producing the same - Google Patents

Clay mineral-based composite material and method for producing the same Download PDF

Info

Publication number
JP2007291097A
JP2007291097A JP2007096947A JP2007096947A JP2007291097A JP 2007291097 A JP2007291097 A JP 2007291097A JP 2007096947 A JP2007096947 A JP 2007096947A JP 2007096947 A JP2007096947 A JP 2007096947A JP 2007291097 A JP2007291097 A JP 2007291097A
Authority
JP
Japan
Prior art keywords
clay mineral
oil
layers
composite material
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007096947A
Other languages
Japanese (ja)
Other versions
JP5489030B2 (en
Inventor
Hisao Abe
久雄 阿部
Hiroyuki Takamatsu
宏行 高松
Kazumasa Kisu
一正 木須
Toshitsugu Taguri
利紹 田栗
Akira Yoshikawa
亮 吉川
Kazuo Inuzuka
和男 犬塚
Kazutoshi Matsuo
和敏 松尾
Takahiro Ogawa
恭弘 小川
Masaharu Eriguchi
正晴 江里口
Takashi Tanaka
隆 田中
Seiichi Ueda
成一 上田
Takaharu Urakawa
隆治 浦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIKEN TECHNOS KK
Nagasaki University NUC
Original Assignee
BIKEN TECHNOS KK
Nagasaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIKEN TECHNOS KK, Nagasaki University NUC filed Critical BIKEN TECHNOS KK
Priority to JP2007096947A priority Critical patent/JP5489030B2/en
Publication of JP2007291097A publication Critical patent/JP2007291097A/en
Application granted granted Critical
Publication of JP5489030B2 publication Critical patent/JP5489030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a clay mineral-based composite material, and to provide a method for producing the composite material. <P>SOLUTION: The clay mineral-based composite material is composed mainly of a clay mineral having anion-exchange ability between layers and is introduced, in the case where an alkali or alkaline-earth metal is combined with an organic compound having bioactive function, the organic compound between the layers on the stable or metastable state by exchanging with interlayer water between the layers. The method for producing the clay mineral-based composite material comprises introducing the organic compound between the layers of the clay mineral by removing the interlayer water by previously heat-treating the clay mineral and, before condensing between the layers of the clay mineral, immediately mixing the clay mineral with the organic compound or a solution thereof to introduce the organic compound between the layers of the clay mineral. The organic compound having bioactive functions is easily introduced between the layers within a short time to produce inorganic or organic composite materials with unnecessarily requiring complexing of interlayer anion with the organic compound. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生理活性機能を有する粘土鉱物系複合材料に関するものであり、更に詳しくは、防虫・昆虫忌避機能、抗微生物機能、鮮度維持機能、芳香機能等の生理活性機能を有する有機化合物を、無機物である粘土鉱物と複合一体化した、生理活性機能を有する粘土鉱物系複合材料及びその製造方法に関するものである。本発明は、業務用、産業用及び人の生活の場において、その徐放性故に人を含めた生態系にやさしく、かつ機能・効果の安定性、持続性にも優れた機能性物質とその製造方法を提供するものである。   The present invention relates to a clay mineral-based composite material having a physiologically active function, and more specifically, an organic compound having a physiologically active function such as an insect repellent / insect repellent function, an antimicrobial function, a freshness maintaining function, an aroma function, The present invention relates to a clay mineral composite material having a physiologically active function, which is composite-integrated with an inorganic clay mineral, and a method for producing the same. The present invention is a functional substance that is friendly to ecosystems including humans in business, industrial, and human life, and that is excellent in stability and sustainability of functions and effects. A manufacturing method is provided.

従来、防虫・昆虫忌避剤、抗菌・防カビ剤等の抗微生物剤、野菜、果物等の生鮮食料品の鮮度維持剤及び芳香剤等は、液体、固体の別を問わず、それぞれ実用上の適した形態に加工され用いられている。このような製品にあっては、その有効成分を保持し、効果を持続させ、ハンドリング上の利便性をもたらす目的で、無機物を担体として一体化して用いることが多く、例えば、タルク、粘土、蝋石、石灰石、珪藻土、パーライト、軽石などの無機粉体がしばしば用いられる。   Conventionally, antimicrobial agents such as insect repellents / insect repellents, antibacterial / antifungal agents, freshness maintaining agents and fragrances for fresh foods such as vegetables and fruits are practical for both liquids and solids. Processed and used in a suitable form. In such products, inorganic substances are often used as a carrier in order to retain the active ingredients, maintain the effects, and provide convenience in handling. For example, talc, clay, wax stone Inorganic powders such as limestone, diatomaceous earth, perlite, and pumice are often used.

例えば、防虫・昆虫忌避剤としては、有効成分である天然物精油や合成農薬を、天然・合成繊維やガラス繊維、ゼオライト、タルク、珪藻土、石灰、シリカゲル、活性炭等を担体として用いた例がある(特許文献1)。また、生鮮食料品の鮮度維持を目的とした例としては、ケイヒ酸及びその誘導体と酸化チタンを混合したもの(特許文献2)や、タルクを担体としてニンニク、唐辛子成分、ワサビ成分、シソ成分などを複合化した例(特許文献3)がある。また、抗菌・防カビ剤等の抗微生物剤にあっては、カテキン類、サポニン類、タンニン(酸)をバーミキュライトやベントナイトに担時した機能性材料が提案されている(特許文献4)。   For example, as an insect repellent / insect repellent, there are examples in which natural essential oils and synthetic pesticides, which are active ingredients, are used as a carrier of natural / synthetic fibers and glass fibers, zeolite, talc, diatomaceous earth, lime, silica gel, activated carbon, etc. (Patent Document 1). Examples of the purpose of maintaining the freshness of fresh food products include a mixture of cinnamic acid and its derivatives and titanium oxide (Patent Document 2), garlic, chili ingredients, wasabi ingredients, perilla ingredients using talc as a carrier. There is an example (Patent Document 3) in which these are combined. As antimicrobial agents such as antibacterial and antifungal agents, functional materials in which catechins, saponins, and tannin (acid) are supported on vermiculite and bentonite have been proposed (Patent Document 4).

担体として用いられる、タルク、カオリン、蝋石等担体の役割は、前記のように、その表面に有効成分を付着・吸着させ、業務用、産業用及び家庭用に用いられた際に、効果の及ぶ範囲を限定したり、有効成分の担体への親和性により残効性を付与し、あるいはハンドリング性を含めて、種々の形態に加工する際の利便性を確保することにある。しかしながら、こうした無機質担体への有効成分の親和性は、素材への付着、吸着現象に基づくものであるために、利用に際して何らかの洗浄操作を受けると、有効成分は、担体から比較的に容易に移動し、その残効性は乳剤等に比べると一般に劣っている。また、有効成分の保持力が強くないことで、有効成分の徐放性も達成できていなかった。   As described above, the role of carriers such as talc, kaolin, and wax used as a carrier is effective when adhering and adsorbing active ingredients on the surface and used for business, industrial and household purposes. The purpose is to limit the range, to give the residual effect by the affinity of the active ingredient to the carrier, or to ensure the convenience in processing into various forms including handling properties. However, since the affinity of the active ingredient to such an inorganic carrier is based on the adhesion and adsorption phenomenon to the material, the active ingredient moves relatively easily from the carrier when subjected to some washing operation during use. However, its residual effect is generally inferior to that of emulsions. In addition, since the retention of the active ingredient is not strong, the sustained release of the active ingredient has not been achieved.

また、こうした点を解決すべく、近年、スメクタイトやバーミキュライト等の層間にイオン交換能をもつ無機層状化合物を担体として、その層間に特定の化合物を導入した組成物が提案されている(特許文献5など)。層間に導入されるゲスト化合物として、銀、銅、亜鉛等の抗菌力を有する金属イオンと、防カビなどの機能を持つ有機化合物を錯体化して導入すると、抗菌と防カビの双方の機能を併せもつ無機・有機複合材料を作ることができる。   In order to solve these problems, in recent years, a composition in which a specific compound is introduced between layers using an inorganic layered compound having ion exchange ability between layers such as smectite and vermiculite has been proposed (Patent Document 5). Such). As a guest compound introduced between the layers, a metal ion having antibacterial activity such as silver, copper, zinc, etc. and an organic compound having a function such as mold prevention are combined to introduce both functions of antibacterial action and mold prevention. Inorganic / organic composite materials can be made.

また、アルミニウムやジルコニウム等の金属水酸化物カチオンを、前記の金属イオン−有機化合物錯体と併せて層間に導入すると、その耐熱性が大幅に高められることが分かっている(特許文献6)。更に、生理活性機能をもつ物質として、植物成長調節機能、病害虫防除機能、抗微生物機能等をもつ有機化合物を、適当な金属イオンとの組み合わせにおいて、無機層状化合物の層間に導入する方法が提案されている(特許文献7)。   Further, it has been found that when a metal hydroxide cation such as aluminum or zirconium is introduced between layers together with the metal ion-organic compound complex, the heat resistance is significantly improved (Patent Document 6). Furthermore, as a substance having a physiologically active function, a method has been proposed in which an organic compound having a plant growth regulating function, a pest control function, an antimicrobial function, etc. is introduced between layers of an inorganic layered compound in combination with an appropriate metal ion. (Patent Document 7).

このようなイオン交換能をもつ無機層状化合物への生理活性物質の導入は、解離していない有機化合物を金属イオンと組み合わせて、金属錯体イオン化することで達成される。有機化合物と陽イオンとが錯体を形成するためには、両者が錯体を形成するための条件、すなわち錯体としての安定度を具備する必要があり、そうした条件を備えていない有機化合物と金属イオンを組み合わせて、これらを無機層状化合物の層間へ導入することは通常は困難と考えられている。   Introduction of a physiologically active substance into such an inorganic layered compound having ion exchange ability is achieved by combining a non-dissociated organic compound with a metal ion to form a metal complex ion. In order for an organic compound and a cation to form a complex, it is necessary to have conditions for both to form a complex, i.e., stability as a complex. In combination, it is usually considered difficult to introduce them between layers of inorganic layered compounds.

また、金属イオンには、前記の銀、銅、亜鉛の他、鉄、ニッケル、コバルトなどの遷移金属イオンがしばしば選ばれるが、金属イオン種によっては安全性や衛生上の理由から、その用途が制限されることもある。アルカリ金属、アルカリ土類金属のなかで制約の少ないイオン種も存在するが、こうした金属イオン種が中心金属となって安定な有機金属錯体を形成することはあまり期待できない。このように、陽イオン交換型の無機層状化合物をホスト化合物とする場合、金属イオンと有機化合物の組み合わせには、錯体の安定性の他に、金属イオン種の安全・衛生上の制約という課題も存在する。   In addition to the above-mentioned silver, copper, and zinc, transition metal ions such as iron, nickel, and cobalt are often selected as the metal ion. However, depending on the metal ion species, its use can be considered for safety and hygiene reasons. It may be restricted. Among alkali metals and alkaline earth metals, there are ionic species with few restrictions, but it is not expected that such metal ionic species will form a stable organometallic complex with a central metal. Thus, when a cation exchange type inorganic layered compound is used as the host compound, the combination of metal ions and organic compounds has the problem of safety and hygiene constraints of metal ion species in addition to the stability of the complex. Exists.

特開2002−173407号公報Japanese Patent Laid-Open No. 2002-173407 特開平11−332460号公報JP 11-332460 A 特開平10−210958号公報Japanese Patent Laid-Open No. 10-210958 特開2000−271201号公報JP 2000-271201 A 特開2002−327090号公報JP 2002-327090 A 特開2002−20158号公報JP 2002-20158 A 特開2005−281263号公報JP 2005-281263 A

このため最近注目される防除技術として忌避剤の利用がある。コナジラミやアブラムシなどの主要種に対して、一定以上の忌避活性を有し、かつその効力を長期間持続させることができれば、前記防除法と組み合わせることによって、安全で効果的な防除が可能となる。しかしながら、農業分野における害虫忌避剤の開発は、環境衛生分野に比べ進んでいないのが現状である。その理由として、一つには害虫の主要種に対して忌避活性をもつ既知の成分が少ないこと、また既知の成分の忌避活性は強いものではないため、単独では防除効果が得られないこと、さらに忌避成分の多くは、その揮発性や不安定性などから野外では効果が持続しないことが挙げられる。   For this reason, the use of repellents has recently been attracting attention. If it has a certain level of repellent activity against major species such as whiteflies and aphids and can maintain its efficacy for a long period of time, safe and effective control is possible by combining with the above control method. . However, the present situation is that the development of pest repellents in the agricultural field is not progressing compared to the environmental health field. One reason is that there are few known ingredients that have repellent activity against the main species of pests, and that the repellent activity of known ingredients is not strong, so it is not possible to obtain a control effect alone, Furthermore, many of the repellent components are not effective in the field because of their volatility and instability.

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上述の課題を解決することが可能な新しい粘土鉱物系複合材料とその製造方法を開発することを目標として鋭意研究を積み重ねた結果、層間に陽イオン交換能をもつ粘土鉱物を主原料として、層間にある交換性の陽イオン及び層間水を、別種の陽イオンのアルカリ/アルカリ土類金属及び有機化合物でそれぞれ交換し、層間に、有機化合物をアルカリ、アルカリ土類金属との組み合わせにおいて導入することにより層間にこれらを安定ないし準安定な状態で導入することが可能となることを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive research with the goal of developing a new clay mineral-based composite material capable of solving the above-described problems and a method for producing the same, in view of the above-described conventional technology. As a result of stacking the layers, using clay minerals with cation exchange capacity between layers as the main raw material, exchangeable cations and interlayer water in the layers are exchanged with alkali / alkaline earth metals and organic compounds of different types of cations. In order to complete the present invention, it has been found that by introducing an organic compound between layers in combination with an alkali or alkaline earth metal, it is possible to introduce these between layers in a stable or metastable state. It came.

上記課題を解決するための本発明は、以下の技術的課題から構成される。
(1)層間に陽イオン交換能をもつ粘土鉱物を主原料として、層間にある層間水と交換して、アルカリもしくはアルカリ土類金属と生理活性機能をもつ有機化合物との組合せにおいて、層間に該有機化合物が安定ないし準安定な状態で導入されていることを特徴とする粘土鉱物系複合材料。
(2)アルカリもしくはアルカリ土類金属が、ナトリウム、カリウム、カルシウム及び/又はマグネシウムである、前記(1)に記載の粘土鉱物系複合材料。
(3)生理活性機能が、昆虫忌避、抗微生物、鮮度維持、又は芳香の機能である、前記(3)に記載の粘土鉱物系複合材料。
(4)機能性として、昆虫忌避、抗微生物、鮮度保持、又は芳香の機能が付与されている、前記(1)に記載の粘土鉱物系複合材料。
(5)層間に陽イオン交換能をもつ粘土鉱物を主原料とし、層間にある交換性の陽イオン及び層間水を、別種の陽イオン及び有機化合物でそれぞれ交換して、粘土鉱物系複合材料を製造する方法において、該粘土鉱物を予め熱処理することにより層間水を排除した後に、該粘土鉱物の層間が復水する前に、該粘土鉱物を有機化合物もしくはその溶液と直ちに混合することにより、該粘土鉱物の層間に有機化合物を導入することを特徴とする粘土鉱物系複合材料の製造方法。
(6)粘土鉱物の層間水を排除する熱処理を、加熱、マイクロ波照射、又は赤外線照射により行う、前記(5)に記載の粘土鉱物系複合材料の製造方法。
(7)粘土鉱物を有機化合物もしくはその溶液と直ちに混合する装置もしくは容器として、トロンミル、ボールミル、遊星型ボールミル、遠心ミル、振動ミル及び外気との接触を絶つことのできる構造をもった乳鉢を用いる、前記(5)に記載の粘土鉱物系複合材料の製造方法。
(8)粘土鉱物として、スメクタイト、バーミキュライト、又はカオリン族粘土鉱物を用いる、前記(5)に記載の粘土鉱物系複合材料の製造方法。
(9)熱処理後の粘土鉱物に導入する有機化合物として、昆虫忌避機能、抗微生物機能、鮮度維持機能、芳香機能を有する有機化合物を用いる、前記(5)に記載の粘土鉱物系複合材料の製造方法。
(10)昆虫忌避機能、抗微生物機能、鮮度維持機能及び芳香機能のいずれかを有する有機化合物が、桂皮油、タイム・ホワイト油、クローブ・バッド油、シナモン・リーフ油、ラベンダー・フレンチ油、レモングラス油、ペパーミント油、ベルガモット油、ティートゥリー油、ゼラニウム油、シトロネラ油、ローズ油、レモン油、ユーカリ油、オリガヌム油、シンナムアルデヒド、オイゲノール、サリチル酸メチル、シトラール、アリルイソチオシアネート、ベンジルイソチオシアネート、フェニルエチルイソチオシアネート、リナロール、メントール、ゲラニオール、チモール、テルピネオール、ヒノキチオール、ジエチルトルアミド、シアゾファミド、メタラキシル、エピガロカテキンガレート、ミリシトリン、カフェインの少なくとも1つ以上である、請求項9に記載の粘土鉱物系複合材料の製造方法。
(11)粘土鉱物の層間陽イオンが、ナトリウム、カリウム、カルシウム、又はマグネシウムである、前記(5)に記載の粘土鉱物系複合材料の製造方法。
(12)前記(1)から(4)のいずれかに記載の粘土鉱物系複合材料を機能性素材として使用したことを特徴とする機能性製品。
The present invention for solving the above problems is composed of the following technical problems.
(1) A clay mineral having a cation exchange capacity between layers is used as a main raw material, is exchanged with interlayer water between layers, and in a combination of an alkali or alkaline earth metal and an organic compound having a physiologically active function, A clay mineral composite material in which an organic compound is introduced in a stable or metastable state.
(2) The clay mineral composite material according to (1), wherein the alkali or alkaline earth metal is sodium, potassium, calcium and / or magnesium.
(3) The clay mineral composite material according to (3), wherein the physiologically active function is an insect repellent, antimicrobial, freshness maintenance, or aroma function.
(4) The clay mineral composite material according to (1), which is provided with functions of insect repellent, antimicrobial, freshness maintenance, or aroma as functionality.
(5) Clay minerals with cation exchange capacity between layers are used as the main raw materials, and exchangeable cations and interlayer water between layers are exchanged with different types of cations and organic compounds, respectively. In the manufacturing method, after intercalation water is excluded by pre-heat treatment of the clay mineral, and before the interlayer of the clay mineral is condensed, the clay mineral is immediately mixed with an organic compound or a solution thereof. A method for producing a clay mineral-based composite material, wherein an organic compound is introduced between layers of clay mineral.
(6) The method for producing a clay mineral composite material according to (5), wherein the heat treatment for removing the interlayer water of the clay mineral is performed by heating, microwave irradiation, or infrared irradiation.
(7) As a device or container for immediately mixing clay minerals with an organic compound or a solution thereof, use a tron mill, ball mill, planetary ball mill, centrifugal mill, vibration mill, and mortar with a structure capable of eliminating contact with outside air. The method for producing a clay mineral composite material according to (5) above.
(8) The method for producing a clay mineral composite material according to (5), wherein smectite, vermiculite, or kaolin clay mineral is used as the clay mineral.
(9) Production of a clay mineral composite material according to (5) above, wherein an organic compound having an insect repellent function, an antimicrobial function, a freshness maintaining function, and an aromatic function is used as the organic compound to be introduced into the clay mineral after the heat treatment Method.
(10) Organic compounds having any of insect repellent function, antimicrobial function, freshness maintaining function and fragrance function are cinnamon oil, thyme white oil, clove bud oil, cinnamon leaf oil, lavender french oil, lemon Glass oil, peppermint oil, bergamot oil, tea tree oil, geranium oil, citronella oil, rose oil, lemon oil, eucalyptus oil, origanum oil, cinnamaldehyde, eugenol, methyl salicylate, citral, allyl isothiocyanate, benzyl isothiocyanate, phenyl At least ethyl isothiocyanate, linalool, menthol, geraniol, thymol, terpineol, hinokitiol, diethyl toluamide, cyazofamide, metalaxyl, epigallocatechin gallate, myricitrin, caffeine At least one method for producing a clay mineral composite material according to claim 9.
(11) The method for producing a clay mineral composite material according to (5), wherein the interlayer cation of the clay mineral is sodium, potassium, calcium, or magnesium.
(12) A functional product using the clay mineral composite material according to any one of (1) to (4) as a functional material.

次に、本発明について更に詳細に説明する。
本発明は、層間に陽イオン交換能をもつ粘土鉱物を主原料として、層間にある層間水と交換して、アルカリもしくはアルカリ土類金属と生理活性機能をもつ有機化合物との組み合わせにおいて、層間に該有機化合物が安定ないし準安定な状態で導入されていることを特徴とする粘土鉱物系複合材料の点に特徴を有するものである。また、本発明は、層間に陽イオン交換能をもつ粘土鉱物を主原料とし、層間にある交換性の陽イオン及び層間水を、別種の陽イオン及び有機化合物でそれぞれ交換して、粘土鉱物系複合材料を製造する方法において、該粘土鉱物を予め熱処理することにより層間水を排除した後に、該粘土鉱物の層間が復水する前に、該粘土鉱物を有機化合物もしくはその溶液と直ちに混合することにより、該粘土鉱物の層間に有機化合物を導入することを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention uses a clay mineral having a cation exchange capacity between layers as a main raw material, exchanges it with interlayer water between layers, and in a combination of an alkali or alkaline earth metal and an organic compound having a physiological activity function, It is characterized by a clay mineral composite material characterized in that the organic compound is introduced in a stable or metastable state. The present invention also uses a clay mineral having a cation exchange capacity between layers as a main raw material, and exchanges exchangeable cations and interlayer water between layers with different types of cations and organic compounds, respectively. In the method for producing a composite material, after the intercalation water is eliminated by preheating the clay mineral, the clay mineral is immediately mixed with the organic compound or a solution thereof before the interlayer of the clay mineral is condensed. Thus, an organic compound is introduced between the layers of the clay mineral.

更に、本発明は、上記の粘土鉱物系複合材料を機能性素材として使用したことを特徴とする機能性製品の点に特徴を有するものである。本発明では、粘土鉱物の層間陽イオンは、ナトリウム、カリウム、カルシウム及びマグネシウムであることが好ましいが、鉄、コバルト、チタン、マンガン、ニッケル、亜鉛、金、銀、銅などの金属イオンが層間に入っている場合でも、有機化合物を容易に層間に導入することができるため、本発明は、そうした金属イオンと有機化合物の組み合わせを排除するものではない。   Furthermore, the present invention is characterized in that it is a functional product characterized by using the above clay mineral composite material as a functional material. In the present invention, the interlayer cation of the clay mineral is preferably sodium, potassium, calcium and magnesium, but metal ions such as iron, cobalt, titanium, manganese, nickel, zinc, gold, silver and copper are interposed between the layers. Even in such a case, since the organic compound can be easily introduced between the layers, the present invention does not exclude the combination of the metal ion and the organic compound.

以下、煩雑さを避けるために、ホスト化合物である粘土鉱物としてスメクタイトを、また、その中でも特にモンモリロナイトをとりあげて本発明を説明するが、本発明は、これに限定されるものではない。本発明において、主原料の粘土鉱物であるモンモリロナイトとは、SiO四面体シートがAlO(OH)八面体シートをサンドイッチ状に挟んだ、いわゆる2:1型といわれる結晶構造をもった粘土鉱物である。モンモリロナイト結晶の八面体シートのAlが一部2価のMgやFeで置換されることで、粘土層間はマイナス電荷を帯びている。このマイナス電荷を電気的に中和するために、その層間には層間カチオンと呼ばれる陽イオンが入っている。 Hereinafter, in order to avoid complications, the present invention will be described by taking smectite as a clay mineral as a host compound, and particularly montmorillonite among them, but the present invention is not limited thereto. In the present invention, montmorillonite, which is a main raw clay mineral, is a clay having a crystal structure called a so-called 2: 1 type in which an SiO 4 tetrahedral sheet sandwiches AlO 4 (OH) 2 octahedral sheets in a sandwich shape. It is a mineral. A part of Al in the octahedron sheet of montmorillonite crystal is replaced with divalent Mg or Fe, so that the clay layer is negatively charged. In order to electrically neutralize this negative charge, a cation called an interlayer cation is contained between the layers.

モンモリロナイトの場合、その層間カチオンは普通はナトリウムイオンであることが多いので、以下、元々の層間陽イオンをナトリウムイオンに固定して説明を行う。このナトリウムイオンは系外の有機あるいは無機の陽イオンと比較的容易に交換できるため、モンモリロナイトに適当な金属錯体カチオンを接触させることにより、その層間に元々存在したナトリウムイオンに代えて金属錯体カチオンを導入することができる。導入された金属錯体カチオンは、モンモリロナイト粒子が分散媒中にあっても、その層間内で比較的安定な状態に保たれるため、分散媒への金属錯体カチオンの溶出は徐々に起こる。すなわち徐放性を有している。   In the case of montmorillonite, the interlayer cation is usually a sodium ion in many cases, so the following description will be made with the original interlayer cation fixed to the sodium ion. Since this sodium ion can be exchanged with an organic or inorganic cation outside the system relatively easily, by contacting a suitable metal complex cation with montmorillonite, a metal complex cation can be substituted for the sodium ion originally present between the layers. Can be introduced. Since the introduced metal complex cation is kept in a relatively stable state between the layers even if the montmorillonite particles are in the dispersion medium, the elution of the metal complex cation into the dispersion medium gradually occurs. That is, it has sustained release properties.

上記のイオン交換反応において、金属錯体イオンがナトリウムイオンと交換した場合、層間にあった水分子もナトリウムイオンと同様に交換されて粘土層間から排除される。一方、水分子が粘土層間から排除されるのは、必ずしも層間カチオンの交換に伴ってのみ行われるのではない。層間水とグリセリンやエチレングリコールの交換反応は良く知られている現象である。しかし、この場合、粘土層間のナトリウムイオンに変化は起こらない。従って、先行文献(特開2005−281263号公報)でも、層間陽イオンと水分子の交換反応はそれぞれ独立に行うことができることが示されている。   In the above ion exchange reaction, when metal complex ions are exchanged with sodium ions, water molecules existing between layers are also exchanged in the same manner as sodium ions and excluded from the clay layer. On the other hand, the removal of water molecules from the clay layer is not necessarily only accompanied by the exchange of interlayer cations. The exchange reaction between interlayer water and glycerin or ethylene glycol is a well-known phenomenon. However, in this case, no change occurs in the sodium ions between the clay layers. Therefore, the prior document (Japanese Patent Laid-Open No. 2005-281263) also shows that the exchange reaction between interlayer cations and water molecules can be performed independently.

モンモリロナイトは15Å粘土鉱物と呼ばれているが、空気中では、水分子層は3枚まで層間に入ることが知られている。層間に含まれる水分子層の数によって対応する底面間隔はそれぞれ、10Å(0枚)、12〜13Å(1枚)、14〜16Å(2枚)、18〜19Å(3枚)となっている。繰り返しになるが、前記のように水分子層は層間の金属イオンに水和(配位)することで層間に取り込まれており、金属錯体が層間に入るためには、水分子と錯形成分子の交換が必要となる。水分子に代わり錯形成分子が層間に入った方が層間化合物としての安定性が高い場合でも、水分子と錯形成分子との交換には、ある程度の時間を必要とし、交換反応時の温度を上げて反応を促進するなどの処置もとられる。また、水分子と比較して層間での安定性が低い錯形成分子の場合は、これまでは交換反応は起こり難いと考えられていた。   Montmorillonite is called 15Å clay mineral, but it is known that up to three water molecule layers enter the layer in the air. Depending on the number of water molecule layers included between the layers, the corresponding bottom surface spacing is 10 mm (0 sheets), 12 to 13 mm (1 sheet), 14 to 16 mm (2 sheets), and 18 to 19 mm (3 sheets). . Again, as mentioned above, the water molecule layer is taken in between the layers by hydrating (coordinating) the metal ions between the layers. Need to be replaced. Even if the intermolecular compound is placed in the interlayer instead of the water molecule, the exchange of the water molecule and the complexing molecule requires a certain amount of time, and the temperature during the exchange reaction is increased. It is possible to take measures such as raising the reaction. In addition, in the case of complex-forming molecules that are less stable between layers than water molecules, it has been thought that the exchange reaction has hardly occurred so far.

本発明は、このような水分子と、錯形成分子である有機化合物の交換を起こりやすくするためになされたものであり、しかも通常では層間での安定性を欠くと考えられる有機化合物をも、層間内へ導入することを可能とした。すなわち、本発明では、例えば、モンモリロナイトを220℃以上に加熱して、粘土層間の水分子を速やかに排除し、粘土層間の復水(層間への水分子の再進入)が起こる前に、層間に導入すべき有機化合物を直ちに接触させることにより、錯形成分子を粘土層間に導入することを特徴としている。   The present invention was made to facilitate the exchange of such water molecules and organic compounds that are complex-forming molecules, and organic compounds that would normally lack stability between layers, It was possible to introduce it into the interlayer. That is, in the present invention, for example, montmorillonite is heated to 220 ° C. or more to quickly remove water molecules between clay layers, and before condensate between clay layers (re-entry of water molecules between layers) occurs, It is characterized in that the complex-forming molecule is introduced between the clay layers by immediately contacting an organic compound to be introduced into the clay.

モンモリロナイトの層間水と交換して安定であることが既に判明している、アルコール、アルデヒド、ケトンなどの極性有機化合物は、水及び適当な有機溶媒に溶解させ、モンモリロナイト懸濁液に添加することで、モンモリロナイトの層間水と交換することができるが、モンモリロナイト層間で安定な有機化合物であっても、層間水と有機化合物の交換には通常1日程度の時間を要していた。このような場合でも、本発明の方法を適用することにより、その導入に要する時間を大幅に短縮することができる。すなわち、モンモリロナイトの層間水を熱処理によって予め排除しておき、その層間が復水する前に、有機化合物もしくはその溶液に直ちに添加することにより、有機化合物の層間への導入は容易に達成される。   Polar organic compounds such as alcohols, aldehydes, and ketones that have already been found to be stable by exchanging with intercalated water of montmorillonite can be dissolved in water and an appropriate organic solvent and added to the montmorillonite suspension. Although it can be exchanged with intercalation water of montmorillonite, even if it is an organic compound that is stable between montmorillonite layers, the exchange of interlaminar water and organic compound usually takes about one day. Even in such a case, by applying the method of the present invention, the time required for the introduction can be greatly shortened. That is, the intercalation of the montmorillonite is removed in advance by heat treatment, and the organic compound is readily added to the organic compound or its solution before the interlayer is condensed, whereby the introduction of the organic compound into the interlayer is easily achieved.

また、分子内の極性があまり強くない極性有機化合物の場合は、層間水との交換は起こり難いが、本発明の方法を適用することにより、層間への準安定な導入が可能となる。すなわち、層間水を排除したモンモリロナイトを、その有機化合物もしくはその溶液に直ちに添加することにより、上記の層間で安定な極性有機化合物と同様に、モンモリロナイト層間への導入が行われる。ただし、このようにして層間に導入された有機化合物は、長時間の撹拌もしくは混合操作を継続すると、次第に水分子の交換(復水)が進行し、層間から移動して排除されていく。したがって、層間での安定性が充分ではない、このような極性有機化合物をモンモリロナイト層間に導入する際には、媒液を介した接触は必要充分な時間で停止することが望ましい。   Further, in the case of a polar organic compound having a very low intramolecular polarity, exchange with interlayer water hardly occurs, but by applying the method of the present invention, metastable introduction between layers can be achieved. That is, by immediately adding montmorillonite from which interlayer water has been removed to the organic compound or the solution thereof, introduction into the montmorillonite layer is performed in the same manner as the polar organic compound that is stable between the layers. However, when the organic compound introduced between the layers in this way continues to be stirred or mixed for a long time, the exchange of water molecules (condensation) gradually proceeds and moves away from the layers and is removed. Therefore, when introducing such a polar organic compound, which is not sufficiently stable between the layers, between the montmorillonite layers, it is desirable to stop the contact via the liquid medium in a necessary and sufficient time.

また、本発明では、アルカリ、アルカリ土類金属がその層間に入っているモンモリロナイトに、室温における蒸気圧が高い有機化合物を導入する方法をとるが、このような方法で導入された有機化合物はモンモリロナイト層間で充分に安定ではない。従って、粒子が液体中ではなく空気中にある場合でも、有機化合物蒸気が徐々に空気中に放出される。すなわち、気体の徐放性を有している。本発明者らは、生理活性機能をもつ天然物精油の中に、モンモリロナイトに対して、こうした性質をもたらす有機化合物を数多く見出している。具体例は実施例の中で説明する。なお、実施例では天然物精油を用いた例について説明するが、粘土鉱物の層間に導入されて同様の性質を示す有機化合物であれば、その種類に限定されることはない。   In the present invention, a method is adopted in which an organic compound having a high vapor pressure at room temperature is introduced into montmorillonite in which an alkali or alkaline earth metal is placed between the layers. The organic compound introduced by such a method is montmorillonite. Not stable enough between layers. Thus, even when the particles are in the air rather than in the liquid, the organic compound vapor is gradually released into the air. That is, it has a gas sustained release property. The present inventors have found many organic compounds that bring such properties to montmorillonite in natural product essential oils having physiologically active functions. Specific examples will be described in the examples. In addition, although an Example demonstrates the example using a natural-product essential oil, if it is an organic compound which is introduce | transduced between the layers of a clay mineral and shows the same property, it will not be limited to the kind.

以上のように、本発明では、層間に陽イオン交換能をもつ粘土鉱物の層間に、生理活性機能をもつ有機化合物を導入する際に、熱処理によって層間水を予め排除しておき、これと上記有機化合物を直ちに接触させることにより、(1)層間陽イオンと有機化合物との錯体の安定性を必ずしも必要とせずに、容易に短時間で層間に導入し、無機・有機複合材料を作製することを可能とする、(2)また、これまで、該粘土鉱物の層間での安定性が充分ではなく、層間への導入が困難とされてきた有機化合物にあっても、本発明の方法を適用することにより、準安定ながらも層間に導入することができる、また、(3)用途によっては、材料に含まれることが望ましくないとされる遷移金属や重金属等の金属イオン種との錯体形成が不要となることから、安全、衛生上の需要に応えることができる、更に、(4)層間にある層間水と交換して、アルカリもしくはアルカリ土類金属と生理活性機能をもつ有機化合物との組み合わせにおいて、層間に該有機化合物が安定ないし準安定な状態で導入されている無機・有機複合材料を作製し、提供することができる、という利点が得られる。   As described above, in the present invention, when an organic compound having a physiologically active function is introduced between layers of clay mineral having a cation exchange capacity between layers, interlayer water is previously removed by heat treatment, and the above-mentioned Immediate contact with an organic compound (1) An inorganic / organic composite material can be easily introduced in a short period of time without necessarily requiring the stability of a complex between an interlayer cation and an organic compound. (2) Further, the method of the present invention is applied even to an organic compound that has so far been insufficiently stable between the layers of the clay mineral and has been difficult to introduce between the layers. (3) Depending on the application, complex formation with metal ion species such as transition metals and heavy metals, which are undesirable to be included in the material, is possible. It becomes unnecessary Can meet the demands of safety and hygiene, and (4) in exchange between the interlayer water between the layers, in the combination of alkali or alkaline earth metal and organic compound having bioactive function, There is an advantage that an inorganic / organic composite material into which the organic compound is introduced in a stable or metastable state can be produced and provided.

本発明は、ナトリウム、カリウム、カルシウム、マグネシウムがその層間に存在する場合に、層間水を予め排除しておくことにより、安定な錯体を形成する可能性に乏しい金属イオンと有機化合物の組み合わせであっても、準安定ながら層間に導入することが可能となる。すなわち、通常、安定な有機金属錯体は、中心金属の電子配置である内殻や外殻の空軌道が混成して、非共有電子対を有する有機化合物と配位結合することによってなるものが一般的で、無機・有機複合材料は、これらによる安定な有機金属錯体カチオンを予め形成した後にモンモリロナイト層間に導入することによって作製される。   The present invention is a combination of a metal ion and an organic compound that is unlikely to form a stable complex by eliminating inter-layer water in advance when sodium, potassium, calcium, and magnesium are present between the layers. However, it can be introduced between the layers while being metastable. In other words, a stable organometallic complex is generally formed by coordinating bonds with an organic compound having an unshared electron pair by hybridizing the inner shell or outer shell orbitals that are the electron arrangement of the central metal. In general, an inorganic / organic composite material is prepared by previously forming a stable organometallic complex cation using these materials and then introducing it between montmorillonite layers.

一方、ナトリウムイオンやカルシウムイオンの場合は、その周囲には層間水としての水分子が配位しているが、その結合は弱く、加熱によって容易に失われる。また、グリセリンやエチレングリコールなどの極性分子が接近すると、水分子は容易に交換されて層間から排除される。しかし、この場合、層間のナトリウムイオン等に変化は起こらない。本発明では、極性が非常に小さく、通常の接触では水分子との交換が容易には起こらない生理活性機能を有する有機化合物を、層間水を熱処理によって予め除いておくことにより、アルカリもしくはアルカリ土類金属との組み合わせにおいて、準安定ながら導入することに成功した。ここで、準安定といっているのは、粘土鉱物の層間から水分子が一旦は排除されても、水との接触が再び行われると、次第に水分子との交換が起こることを意味している。   On the other hand, in the case of sodium ions and calcium ions, water molecules as interlayer water are coordinated around them, but their bonds are weak and easily lost by heating. Further, when polar molecules such as glycerin and ethylene glycol approach, water molecules are easily exchanged and excluded from the interlayer. However, in this case, there is no change in the sodium ions between layers. In the present invention, an organic compound having a physiologically active function that has a very small polarity and that does not easily exchange with water molecules under normal contact is removed by intercalation of the interlayer water in advance by heat treatment. In combination with other metals, we succeeded in introducing it in a metastable manner. Here, metastable means that even if water molecules are once removed from the clay mineral layer, when they come into contact with water again, exchange with water molecules occurs gradually. .

本発明による粘土鉱物系複合材料は、上記のような原理により、精油など生理活性機能をもつ有機化合物をその層間に導入し、有機化合物を徐々に層間から徐放することが特徴であるが、更なる特徴は、これらの有機化合物を、ナトリウム、カリウム、カルシウム及びマグネシウムなどの、通常、その単独では毒性、有害性がほとんど知られていないアルカリ、アルカリ土類金属との組み合わせ(複合体の形成)において導入できることにある。もし、粘土鉱物の層間における安定性を、重金属イオンを中心原子とした、有機配位子による錯体によって保持しようとすれば、しかも、抗菌などの生理活性の一端を重金属イオンによってもたらそうとすれば、近年、世界的にも潮流となっている各種の消費財の安全性に少なからぬ影響が及ぶことは必至である。本発明によれば、そうした懸念にほとんど及ばない安定な典型元素である上記金属イオンによる粘土鉱物系複合材料を提供することができる。また、本発明の更なる特徴は、既述のように、常温における蒸気圧が高く、原体のままでは容易に揮散する天然物精油やその主要成分を、上述のアルカリ金属等との複合体の形成により、粘土鉱物の層間に導入できるため、天然物精油やその主要成分を長期にわたり比較的安定に保存できることである。本発明者らによる調査では、その徐放期間は大気の気流中に開放した状態で、数ヶ月にも及んでいる。   The clay mineral-based composite material according to the present invention is characterized in that an organic compound having a physiologically active function such as essential oil is introduced between the layers according to the principle as described above, and the organic compound is gradually released from the layers. A further feature is that these organic compounds are combined with alkali, alkaline earth metals, such as sodium, potassium, calcium and magnesium, which usually have little known toxicity or toxicity by themselves (formation of complexes). ) Can be introduced. If the stability between clay mineral layers is to be retained by a complex of organic ligands with heavy metal ions as the central atom, heavy metal ions are expected to bring about one end of physiological activity such as antibacterial activity. For example, in recent years, it is inevitable that there will be a considerable impact on the safety of various consumer goods that have become a global trend. According to the present invention, it is possible to provide a clay-mineral composite material composed of the above metal ions, which is a stable typical element that hardly meets such concerns. Further, as described above, as described above, the natural product essential oil that has a high vapor pressure at normal temperature and easily volatilizes as it is as it is or a main component thereof is a complex with the above-mentioned alkali metal or the like. Since it can be introduced between layers of clay minerals, the natural product essential oil and its main components can be stored relatively stably over a long period of time. According to the investigation by the present inventors, the sustained release period extends for several months in a state of being released into the airflow.

本発明は、上記粘土鉱物系複合材料を、例えば、天然物精油等を用いた昆虫忌避剤として利用するものであり、農作物を栽培する圃場に設置することで、コナジラミやアブラムシなどの微小害虫が飛来、侵入及び農作物へ寄生することを防ぐ昆虫忌避作用を有し、その徐放性故に人を含めた生態系にやさしく、かつ機能・効果の安定性、持続性に優れた害虫防除資材とそれを利用した害虫防除法を提供するものである。   The present invention uses the above clay mineral composite material as an insect repellent using, for example, a natural product essential oil, and by installing it in a field where crops are cultivated, fine pests such as whiteflies and aphids are removed. Insect repellent material that has an insect repellent effect to prevent flying, invasion and parasitic on crops, and it is gentle on ecosystems including humans due to its slow release, and it has excellent function and stability and sustainability. It provides a method for controlling pests.

農業害虫のうち、コナジラミやアブラムシなどの微小害虫は、野菜類(キュウリ、トマト、ナス、ピーマン、イチゴ等)、花卉類(バラ、キク、ガーベラ等)、果実類(ミカン、モモ、ナシ等)の重要害虫であり、本種が作物に寄生することによる吸汁害や、排泄物に雑菌が繁殖して作物の光合成を阻害する、すす病の被害、を引き起こす。微小害虫は、これら直接的な加害にとどまらず、植物病原ウイルスの媒介者として大きな被害を及ぼす。   Among agricultural pests, the fine pests such as whiteflies and aphids are vegetables (cucumbers, tomatoes, eggplants, peppers, strawberries, etc.), flowers (roses, chrysanthemum, gerberas, etc.), fruits (mandarin oranges, peaches, pears, etc.) This is an important pest of this species, and causes damage caused by sucking of this species infesting crops and damage of soot disease, in which miscellaneous bacteria propagate in excreta and inhibit crop photosynthesis. The micro pests are not only direct damages, but also cause great damage as mediators of phytopathogenic viruses.

微小害虫に対する従来の防除技術としては、殺虫剤を用いた方法が主であり、殺虫剤の有効成分としては、例えば、有機リン剤、合成ピレスロイド剤、IGR剤(昆虫成長制御剤)、ネオニコチノイド系剤等の薬剤が使用されてきた。しかしながら、コナジラミやアブラムシなど微小害虫の主要種は、多くの殺虫剤に対して抵抗性が発達し、これらを散布しても防除効果が得られにくく、発生が多い時期には、4〜5日間隔で散布しなければ防除できないのが実情である。しかし、一方で、昨今、環境や食品に対する安全性への関心は、かつてない高まりをみせており、農薬残留のリスクを招く殺虫剤の多用は、農業者や消費者のニーズに反することとなる。   As a conventional control technique for micro pests, a method using an insecticide is mainly used, and as an active ingredient of the insecticide, for example, an organic phosphorus agent, a synthetic pyrethroid agent, an IGR agent (insect growth regulator), Neonicochi Drugs such as noid agents have been used. However, the main species of micro pests such as whiteflies and aphids develop resistance to many insecticides, and it is difficult to obtain a control effect even if they are sprayed. The fact is that it cannot be controlled without spraying at intervals. On the other hand, however, there has been an ever-increasing interest in environmental and food safety, and the heavy use of pesticides that pose a risk of residual pesticides goes against the needs of farmers and consumers. .

そのため、他の防除技術として、例えば、施設内への侵入を阻止するため、開口部に防虫ネットを張る方法や、近紫外線カットフィルムを被覆して害虫の侵入を抑制する方法、微小害虫が誘引される青色や黄色の粘着テープや粘着板を設置、捕獲して害虫密度を低下させる方法が利用されている。また、最近では、害虫の天敵類を施設内に導入し、防除する方法の開発も進められている。しかしながら、微小害虫は、体サイズが1〜2mm程度と小さく、また繁殖能力が極めて高いため、前記のいずれの防除方法でも十分な効果が上がっていないのが実情である。   For this reason, other control techniques include, for example, a method of applying an insect net to the opening to prevent intrusion into the facility, a method of suppressing the invasion of pests by covering with a near ultraviolet cut film, and attracting micro pests. Blue and yellow adhesive tapes and adhesive plates are installed and captured to reduce the pest density. Recently, the development of a method for introducing and controlling pest natural enemies in a facility has been promoted. However, micro pests have a small body size of about 1 to 2 mm and extremely high breeding ability, so that in fact, any of the above-described control methods has not been sufficiently effective.

このため、最近注目される防除技術として忌避剤の利用があり、コナジラミやアブラムシなどの主要種に対して、一定以上の忌避活性を有し、かつその効力を長期間持続させることができれば、前記防除法と組み合わせることによって、安全で効果的な防除が可能となる。しかしながら、農業分野における害虫忌避剤の開発は、環境衛生分野に比べ進んでいないのが現状である。その理由として、一つには害虫の主要種に対して忌避活性をもつ既知の成分が少ないこと、また既知の成分の忌避活性は強いものではないため、単独では防除効果が得られないこと、更に忌避成分の多くは、その揮発性や不安定性などから野外では効果が持続しないこと、が挙げられる。   For this reason, there is the use of repellents as a control technique that has recently attracted attention, and it has a repellent activity of a certain level or more against major species such as whiteflies and aphids, and if its efficacy can be sustained for a long period of time, Combining with the control method enables safe and effective control. However, the present situation is that the development of pest repellents in the agricultural field is not progressing compared to the environmental health field. One reason is that there are few known ingredients that have repellent activity against the main species of pests, and that the repellent activity of known ingredients is not strong, so it is not possible to obtain a control effect alone, Furthermore, many of the repellent components are not effective in the field because of their volatility and instability.

本発明は、例えば、コナジラミやアブラムシなどの主要な害虫種に対し、一定以上の忌避機能を有し、かつその効力を長期間持続させることができるよう、忌避成分の徐放性と安定性に優れた昆虫忌避剤を提供するものである。   The present invention provides, for example, a sustained release property and stability of a repellent component so that it has a certain repellent function and can maintain its efficacy for a long period of time against major pest species such as whiteflies and aphids. It provides an excellent insect repellent.

そのために、本発明では、粘土鉱物を主原料として、昆虫忌避機能をもつシナモンリーフ、ゼラニウム、シトロネラ、ローズ油等の植物精油、及びシトラール、ベンジルイソチオシアネート、ゲラニオール、チモール、シトロネラール、ヒノキチオール、ジエチルトルアミド等の有機化合物から選ばれる1種以上を有効成分として含有する昆虫忌避効果について検討し、徐方性と安定性に優れた昆虫忌避剤を構築した。   Therefore, in the present invention, plant mineral oil such as cinnamon leaf, geranium, citronella and rose oil having an insect repellent function, and citral, benzylisothiocyanate, geraniol, thymol, citronellal, hinokitiol, diethyltoluene, and the like, with clay mineral as the main raw material. The insect repellent effect containing one or more selected from organic compounds such as amides as an active ingredient was examined, and an insect repellent excellent in slowness and stability was constructed.

また、本発明は、上記粘土鉱物系複合材料を、例えば、天然物由来灰色カビ抑制剤として利用し、イチゴなどのカビ汚染を抑制する、特に蒸気処理による抗微生物剤を提供するものである。現在、食の安全・安心が求められている中で、農産物の劣化においては、エチレンによる老化、褐変、微生物による腐敗等がある。これまで、様々な抗微生物剤が検討されており、これらは、抗微生物を目的とする物質に直接、液相又は固相で接触することが必要であった。最近、蒸気接触することにより抗微生物活性を有する物質が注目されている。また、抗微生物剤は、これまで、化学合成物質が中心であったが、安全性等から天然物由来成分物質が求められている。   The present invention also provides an antimicrobial agent that suppresses mold contamination of strawberries and the like, particularly by steam treatment, using the clay mineral-based composite material as, for example, a natural product-derived gray mold inhibitor. Currently, food safety and security are demanded, and degradation of agricultural products includes aging by ethylene, browning, and decay by microorganisms. Until now, various antimicrobial agents have been studied, and these have been required to contact directly or in a liquid phase or a solid phase with a substance intended for antimicrobial. Recently, substances having antimicrobial activity due to vapor contact have attracted attention. In addition, antimicrobial agents have so far been centered on chemically synthesized substances, but natural product-derived component substances are required for safety and the like.

また、カット野菜は、簡便性など多様化する消費者ニーズに合致しており、近年では、業務用にとどまらず、家庭用としても需要が増加している。しかし、切断されているために、通常の野菜に比べ品質低下が速く、中でも外観上の褐変の発生は、消費者の購買意欲を最も低下させる。特に、カットレタスは、カット野菜の中でも微生物の増殖よりも褐変がより早く発生するため、消費期限が極めて短期間に限定されている。   In addition, cut vegetables meet the diversifying consumer needs such as convenience, and in recent years, the demand has been increasing not only for business use but also for home use. However, since it is cut, the quality deterioration is faster than that of normal vegetables, and the occurrence of browning on the appearance most reduces the consumer's willingness to purchase. In particular, cut lettuce has a limited consumption period in a very short time because browning occurs earlier than the growth of microorganisms among cut vegetables.

天然物質においては、耐熱性、安定性に問題があるものがある。天然物質でも必ずしも安全性が保証されているのではないが、食品分野では食品添加物としていくつのかの天然成分、多くの植物抽出物が登録されており、これらは、一定の安全性が保証されている。食品のカビ汚染は、保存状態にもよるが、保存期間が長くなるにつれて、そのリスクは高まる。農産物の栽培管理状況や流通時の温度管理などによって、輸送時にカビが発生し、商品化率の低下の一要因となっている。   Some natural substances have problems with heat resistance and stability. Although the safety of natural substances is not necessarily guaranteed, there are several natural ingredients and many plant extracts registered as food additives in the food field, and these are guaranteed to have a certain level of safety. ing. The risk of mold contamination of food depends on the storage conditions, but the risk increases as the storage period increases. Molds are generated during transportation due to the cultivation management status of agricultural products and the temperature management during distribution, which is a factor in lowering the commercialization rate.

従来の抗微生物技術としては、ワサビやキャベツなどに含まれるイソチオシアン酸アリルを用い、これと直接に接触させる抗微生物技術が報告されている。しかし、この物質の揮発性が極めて高く長期的な抗菌効果は期待できない。また、この揮発性のため、包装資材として加工しようとすると、その工程で大半が失われ、資材に残った場合でも抗微生物活性の寿命は短い。   As a conventional antimicrobial technique, an antimicrobial technique in which allyl isothiocyanate contained in horseradish, cabbage or the like is brought into direct contact with it has been reported. However, the volatility of this substance is extremely high and long-term antibacterial effects cannot be expected. Also, due to this volatility, when trying to process as a packaging material, most of it is lost in the process, and even if it remains in the material, the lifetime of antimicrobial activity is short.

このようなことから、本発明では、カビ、細菌等を抑制し、消費期限を延長することができ、低コストで環境に配慮した、蒸気徐放性のある農産物の抗微生物抑制技術を構築した。本発明は、例えば、野菜の鮮度保持効果に関する技術で、レタスなどのカット野菜の褐変を抑制する技術、特に蒸気によるカット野菜の褐変抑制生理活性複合体を提供する。   For this reason, in the present invention, an antimicrobial control technology for agricultural products that can suppress mold, bacteria, etc., can extend the expiration date, and is environmentally friendly with low cost and a slow-release of agricultural products has been constructed. . The present invention provides, for example, a technique for suppressing the browning of cut vegetables such as lettuce, particularly a technique for suppressing the browning of cut vegetables caused by steam.

本発明により、次のような効果が奏される。
(1)本発明では、層間に陽イオン交換能をもつ粘土鉱物の層間に、生理活性機能をもつ有機化合物を導入する際に、熱処理によって層間水を予め排除しておき、これと上記有機化合物を直ちに接触させることにより、層間陽イオンと有機化合物との錯体の安定性を必ずしも必要とせずに、容易に短時間で層間に導入し、無機・有機複合材料を作製することを可能とする。
(2)また、これまで、該粘土鉱物の層間での安定性が充分ではなく、層間への導入が困難とされてきた有機化合物にあっても、本発明の方法を適用することにより準安定ながらも層間に導入することができる。
(3)用途によっては、材料に含まれることが望ましくないとされる遷移金属や重金属等の金属イオン種との錯体形成が不要となることから、安全、衛生上の需要に応えることができる。
(4)天然物精油など、これまで粘土鉱物との複合化が難しいと考えられていた、室温における蒸気圧の高い有機化合物を、容易に、短時間に粘土鉱物と複合化することができる。
The following effects are exhibited by the present invention.
(1) In the present invention, when introducing an organic compound having a physiologically active function between layers of clay mineral having a cation exchange capacity between layers, the interlayer water is previously removed by heat treatment, and the above organic compound Is immediately brought into contact with each other, so that the stability of the complex between the interlayer cation and the organic compound is not necessarily required, and it can be easily introduced between the layers in a short time to produce an inorganic / organic composite material.
(2) Further, even in the case of an organic compound that has so far been insufficiently stable between the layers of the clay mineral and has been difficult to introduce between the layers, it is metastable by applying the method of the present invention. However, it can be introduced between the layers.
(3) Depending on the use, complex formation with metal ion species such as transition metals and heavy metals, which are undesirable to be included in the material, is not necessary, so that it is possible to meet safety and hygiene demands.
(4) Organic compounds having a high vapor pressure at room temperature, which have been considered difficult to complex with clay minerals such as natural product essential oils, can be easily complexed with clay minerals in a short time.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、下記の実施例により何ら限定されるものではない。以下に、生理活性有機物質もしくはその溶液を熱処理粘土と直ちに接触させて行った実施例について説明する。なお、本発明の方法を説明の便宜上、以下「熱処理・接触法」と呼称する。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Example. In the following, an example will be described in which a physiologically active organic substance or a solution thereof was immediately brought into contact with heat-treated clay. For convenience of explanation, the method of the present invention is hereinafter referred to as “heat treatment / contact method”.

モンモリロナイト(クニピアF、クニミネ工業製)4gを電気炉中230℃で3h加熱し、この熱処理モンモリロナイト試料を、いずれもモンモリロナイトの層間CECの1モル当量に対して1モルに当たるエピガロカテキンガレート(C221811)又はミリシトリン(ヤマモモ抽出物、C212012)を含む水溶液100mlに、電気炉から取り出して直ちに投入した。いずれの試料も、その後に、超音波浴中で試料を水溶液中に分散した後、純水を加えて全量を200mlとし、マグネットスターラーで撹拌を続けた。撹拌開始より24h及び48h後に試料を採取して固液分離後、その試料中の炭素、窒素含有量をCHN分析により求めた。 4 g of montmorillonite (Kunipia F, manufactured by Kunimine Kogyo) was heated in an electric furnace at 230 ° C. for 3 h, and this heat-treated montmorillonite sample was epigallocatechin gallate (C 22) equivalent to 1 mol per 1 mol equivalent of intercalated CEC of montmorillonite. The solution was taken out from an electric furnace and immediately charged into 100 ml of an aqueous solution containing H 18 O 11 ) or myricitrin (extract of bayberry, C 21 H 20 O 12 ). In any sample, after the sample was dispersed in an aqueous solution in an ultrasonic bath, pure water was added to make the total volume 200 ml, and stirring was continued with a magnetic stirrer. Samples were collected 24 h and 48 h after the start of stirring, and after solid-liquid separation, the carbon and nitrogen contents in the sample were determined by CHN analysis.

得られた試料の作製条件と分析値を表1に示す。これによると、エピガロカテキンガレートは接触24h後に炭素を12.3mass%含んでいるが、48h後にはそれが5.9mass%に減少している。予備実験において、懸濁液中での通常の撹拌・接触で得られる試料の炭素含有量は、5.3mass%(20日後)、4.0mass%(40℃−24h)であったことから、上記の24h後の炭素含有量はその値を大幅に上回る値である。一方、接触48h後にはその値が半減しており、一旦はモンモリロナイトの層間に取り込まれたエピガロカテキンガレートが、接触時間を長くすると分散媒中に溶出したものと考えられる。   The production conditions and analysis values of the obtained samples are shown in Table 1. According to this, epigallocatechin gallate contains 12.3 mass% of carbon after 24 hours of contact, but it decreases to 5.9 mass% after 48 hours. In the preliminary experiment, the carbon content of the sample obtained by normal stirring and contact in the suspension was 5.3 mass% (after 20 days) and 4.0 mass% (40 ° C.-24 h). The carbon content after 24 hours is much higher than that value. On the other hand, the value is reduced by half after 48 hours of contact, and it is considered that epigallocatechin gallate once taken in between the layers of montmorillonite eluted into the dispersion medium when the contact time was increased.

エピガロカテキンガレートと同様にミリシトリンを接触させた試料では、その炭素含有量は23.4mass%(24h)、32.7mass%(48h)であり、接触時間を長くしてもその値が減少することはなかった。   As with epigallocatechin gallate, in the sample contacted with myristitrin, the carbon content was 23.4 mass% (24 h) and 32.7 mass% (48 h), and the value decreased even when the contact time was increased. I never did.

天然物精油であるユーカリ油、オリガヌム油、ローズ油、レモン油及びケイヒ油のいずれも4mlをエタノール50mlにそれぞれ溶かし、更に、純水を加えて、全量を200mlとした。これらを超音波浴中にて乳化させ、マグネティックスターラーにより40℃で撹拌した。別にモンモリロナイト(クニピアF、クニミネ工業製)4gを230℃で3h加熱し、これを上記の懸濁液に炉から取り出して直ちに投入し、なおも撹拌を続けた。24h、48h後に試料の一部を採取し、CHNコーダーにより、炭素、窒素量を測定した。   All of the natural product eucalyptus oil, origanum oil, rose oil, lemon oil and cinnamon oil were dissolved in 50 ml of ethanol, and pure water was added to make the total amount 200 ml. These were emulsified in an ultrasonic bath and stirred at 40 ° C. with a magnetic stirrer. Separately, 4 g of montmorillonite (Kunipia F, manufactured by Kunimine Kogyo Co., Ltd.) was heated at 230 ° C. for 3 hours, and this was taken out from the furnace and immediately charged, and stirring was continued. A part of the sample was collected after 24 h and 48 h, and the amounts of carbon and nitrogen were measured with a CHN coder.

天然物精油を熱処理・接触法で導入した試料の炭素、窒素含有量を表2に示す。これによると、ケイヒ油複合試料の炭素含有量が42.1mass%、オリガヌム油複合試料の炭素含有量が11.0mass%と高い値を示した他、その他の試料でも炭素含有量は3〜6mass%の値を示している。薄膜X線回折による各試料の底面反射から、各試料の層間距離は、ユーカリ油複合試料:2.45nm、オリガヌム油複合試料:1.44nm、ローズ油複合試料:1.77nm、レモン油複合試料:1.76nm、ケイヒ油複合試料:2.70nmであった。いずれの試料の層間距離も一様に拡がっており、それぞれの精油成分がモンモリロナイトの層間に導入されたことが分かる(図1)。   Table 2 shows the carbon and nitrogen contents of samples in which the natural product essential oil was introduced by the heat treatment / contact method. According to this, the carbon content of the cinnamon oil composite sample was 42.1 mass%, the carbon content of the origanum oil composite sample was as high as 11.0 mass%, and the carbon content of other samples was 3 to 6 mass%. % Value is shown. From the bottom surface reflection of each sample by thin film X-ray diffraction, the interlayer distance of each sample is as follows: Eucalyptus oil composite sample: 2.45 nm, Origanum oil composite sample: 1.44 nm, Rose oil composite sample: 1.77 nm, Lemon oil composite sample 1.76 nm, cinnamon oil composite sample: 2.70 nm. It can be seen that the interlayer distance of any sample is uniformly extended, and each essential oil component is introduced between the layers of montmorillonite (FIG. 1).

合成農薬のシアゾファミド水和剤(C1313ClNS、商品名:ランマンフロアブル)4g、メタラキシル水和剤(C1521NO、商品名:リドミル水和剤)2gを、それぞれモンモリロナイト4gを含む純水懸濁液200mlに加え、マグネティックスターラーにより40℃で撹拌、接触させた。接触を始めてから24h後、48h後に試料の一部を採取し凍結乾燥後、CHNコーダーにより、炭素、窒素含有量を測定した。
上記により得られた試料の作製条件と分析値を表3に示す。
Synthetic pesticide cyazofamide wettable powder (C 13 H 13 ClN 4 O 2 S, trade name: Lanman Flowable) 4 g, metalaxyl wettable powder (C 15 H 21 NO 4 , trade name: Ridomil wettable powder) 2 g, respectively In addition to 200 ml of pure water suspension containing 4 g of montmorillonite, the mixture was stirred and brought into contact with a magnetic stirrer at 40 ° C. A part of the sample was collected 24 hours and 48 hours after the start of contact, freeze-dried, and then the carbon and nitrogen contents were measured with a CHN coder.
Table 3 shows the preparation conditions and analysis values of the sample obtained as described above.

これによると、シアゾファミド水和剤複合試料では、炭素が9.3mass%、窒素が2.8mass%含まれていた。シアゾファミドの化学式からN/C比を計算すると0.36であるが、分析値から求めたN/C値は0.3とこれに近いことも、モンモリロナイト層間におけるシアゾファミドの存在を裏付けている。また、メタラキシル水和物(リドミル)から得られた試料は炭素2.7mass%、窒素0.3mass%を含んでいた。面間隔は1.54nmへと拡がっている(図2)。リドミル2gは同様にメタラキシル0.5g(25mass%)を含み、加えたメタラキシル水和剤の33.5%がモンモリロナイトと複合化されたことが分かる。   According to this, the cyazofamid wettable powder composite sample contained 9.3 mass% carbon and 2.8 mass% nitrogen. The N / C ratio calculated from the chemical formula of siazofamide is 0.36, but the N / C value obtained from the analytical value is 0.3, which is close to this, confirming the presence of siazofamide between montmorillonite layers. Further, a sample obtained from metalaxyl hydrate (Lidomil) contained 2.7 mass% carbon and 0.3 mass% nitrogen. The interplanar spacing has expanded to 1.54 nm (FIG. 2). It can be seen that 2 g of Lidomil similarly contained 0.5 g (25 mass%) of metalaxyl, and 33.5% of the added metalaxyl wettable powder was complexed with montmorillonite.

所定量のカフェイン(C10)を純水に加えて200mlとし、1時間撹拌した後、別にモンモリロナイト4gを230℃で3h加熱しておき、これを前記のカフェイン水溶液中に炉から取り出して直ちに投入した。試料懸濁液をマグネットスターラーで撹拌し、4h、24h後に試料を採取して凍結乾燥を行った。試料の炭素・窒素含有量をCHN分析により求めるとともに、層間導入に伴う層面間隔の変化を薄膜X線回折により調べた。その結果を表4に示す。 A predetermined amount of caffeine (C 8 H 10 N 4 O 2 ) was added to pure water to 200 ml, stirred for 1 hour, and then 4 g of montmorillonite was heated at 230 ° C. for 3 hours, and this was added to the above-mentioned caffeine aqueous solution. The battery was taken out of the furnace and immediately charged. The sample suspension was stirred with a magnetic stirrer, and samples were collected after 4h and 24h and freeze-dried. The carbon / nitrogen content of the sample was determined by CHN analysis, and the change in the layer spacing due to the introduction of the layer was examined by thin film X-ray diffraction. The results are shown in Table 4.

モンモリロナイトの層間CECの1モル当量に対して1モルの比でカフェインを加えると、得られた試料の炭素含有量は凍結乾燥後に5.9mass%であった。また、層間CECの1モル当量に対して4モルのカフェインを加えると、炭素含有量は6.8mass%であった。更に、同じ量比で加えた後、超音波浴中で接触を行うと炭素含有量は7.5mass%と若干増加を見せた。いずれの試料でも炭素と窒素の比は概ねカフェインのそれに近く、層面間隔値が脱水状態の0.95nmから1.47〜1.61nmへと増加を見せたことから(図3)、モンモリロナイト層間へカフェイン分子が進入したものと考えられる。このように、熱処理し復水前のモンモリロナイトをカフェイン水溶液に投入することにより、モンモリロナイト層間へのカフェインの導入を容易に行うことができる。   When caffeine was added at a ratio of 1 mole to 1 mole equivalent of intercalation CEC of montmorillonite, the carbon content of the resulting sample was 5.9 mass% after lyophilization. Moreover, when 4 mol caffeine was added with respect to 1 mol equivalent of interlayer CEC, carbon content was 6.8 mass%. Furthermore, when added in the same amount ratio and then contacted in an ultrasonic bath, the carbon content slightly increased to 7.5 mass%. In all samples, the ratio of carbon to nitrogen was almost similar to that of caffeine, and the layer spacing value increased from 0.95 nm in the dehydrated state to 1.47 to 1.61 nm (FIG. 3). It is thought that the caffeine molecule entered. Thus, by introducing the montmorillonite before heat treatment and before the condensate into the caffeine aqueous solution, caffeine can be easily introduced between the montmorillonite layers.

シトラール(C1016O)、チモール(C1014O)、カルバクロール(C1014O)の各4mlをいずれもエタノール50mlに溶かし、更に、純水で200mlとした。別にモンモリロナイト(クニピアF、クニミネ工業製)4gを230℃で3h加熱し、この熱処理モンモリロナイト試料を前記各溶液中に、炉から取り出して直ちに投入した。いずれの試料も、その後に超音波を30min間照射した後、マグネットスターラーで撹拌し、24h後に試料を採取して固液分離後、40℃で風乾した。試料の炭素・窒素成分をCHN分析により求めるとともに、層間導入に伴う層面間隔の変化を薄膜X線回折により調べた。 All 4 ml of citral (C 10 H 16 O), thymol (C 10 H 14 O), and carvacrol (C 10 H 14 O) were dissolved in 50 ml of ethanol, and further made up to 200 ml with pure water. Separately, 4 g of montmorillonite (Kunipia F, manufactured by Kunimine Kogyo Co., Ltd.) was heated at 230 ° C. for 3 hours, and this heat-treated montmorillonite sample was taken out from the furnace and immediately charged. Each sample was then irradiated with ultrasonic waves for 30 min, stirred with a magnetic stirrer, sampled after 24 hours, solid-liquid separation, and air-dried at 40 ° C. The carbon / nitrogen component of the sample was determined by CHN analysis, and the change in the layer spacing due to interlayer introduction was examined by thin film X-ray diffraction.

カルバクロール、チモール及びシトラールを熱処理・接触法によって導入した試料の作製条件と分析値を表5に示す。カルバクロール複合試料では、底面間隔値は1.86nmへと拡がり、試料洗浄後、炭素を2.5mass%含んでいた。チモール複合試料では炭素含有量は0.2mass%とわずかであり、モンモリロナイトの底面間隔値は1.11nmと脱水時の0.95nmから約0.16nm拡がった。また、シトラール複合試料においては、面間隔値は1.69nmを示しており層間化合物が生じたことが示唆されるものの(図4)、炭素含有量値は0.2mass%と小さい。   Table 5 shows the preparation conditions and analytical values of the samples in which carvacrol, thymol and citral were introduced by the heat treatment / contact method. In the carvacrol composite sample, the bottom surface spacing value increased to 1.86 nm and contained 2.5 mass% of carbon after sample cleaning. In the thymol composite sample, the carbon content was as low as 0.2 mass%, and the bottom spacing value of montmorillonite was 1.11 nm, which was expanded by about 0.16 nm from 0.95 nm during dehydration. Further, in the citral composite sample, the interplanar spacing value is 1.69 nm, suggesting that an intercalation compound was formed (FIG. 4), but the carbon content value is as small as 0.2 mass%.

このように、モンモリロナイトの主な分散媒として水を用い、熱処理・接触法によりカルバクロール、チモール、シトラールを接触させても、モンモリロナイト層間への導入はあまり進まないようであった。水の代わりにメタノールのみを用い、熱処理・接触法で接触を試みたが、水を用いたときと同様に効果は見られなかった。このように、熱処理を施したモンモリロナイトに対して、大量の分散媒を介して接触を行っても、有機化合物の種類によっては、期待したような結果が必ずしも得られない場合がある。明確な原因は今後の研究に待たれるところであるが、本発明者らは分散媒をほとんど用いずに、熱処理モンモリロナイトと有機化合物を接触させることで、両者の複合化が可能なことを見出した。このことについて実施例6で説明する。   As described above, even when water was used as the main dispersion medium of montmorillonite and carvacrol, thymol, or citral were brought into contact with each other by a heat treatment / contact method, the introduction into the montmorillonite layer did not seem to proceed much. Although only methanol was used instead of water and contact was attempted by a heat treatment / contact method, no effect was seen as in the case of using water. Thus, even if contact is made with a large amount of dispersion medium on the heat-treated montmorillonite, the expected result may not always be obtained depending on the type of organic compound. The clear cause is awaiting future research, but the present inventors have found that the heat-treated montmorillonite and the organic compound can be brought into contact with each other by using almost no dispersion medium. This will be described in Example 6.

実施例4で述べたように、モンモリロナイトの主な分散媒として水を用い、シトラール、カルバクロール、チモールに対し熱処理・接触法での層間導入を試みたところ、導入はあまり進まなかったので、次に述べるように、分散媒を用いない方法として乾式による熱処理・接触法を試みた。シトラール、カルバクロール、チモールのそれぞれ所定量(供試モンモリロナイトの層間CECの1モル当量に対し有機物1モルを対応させて計算した量)を、遊星ボールミルのメノウ製容器にとり、その上に、予め230℃で3h加熱したモンモリロナイト試料を加え、メノウボールを投入し、500rpmで10分間混合した。得られた試料をボールミル容器から取り出した後、ドラフトチャンバー内にて室温で3h風乾した後、薄膜X線回折により面間隔を、また有機物含有量をCHNコーダーにより測定した。   As described in Example 4, when water was used as a main dispersion medium of montmorillonite and an attempt was made to introduce an interlayer between citral, carvacrol and thymol by a heat treatment / contact method, the introduction was not so advanced. As described above, a dry heat treatment / contact method was tried as a method not using a dispersion medium. Predetermined amounts of citral, carvacrol, and thymol (amount calculated by associating 1 mol of organic matter with 1 mol equivalent of interlayer CEC of test montmorillonite) in an agate vessel of planetary ball mill, A montmorillonite sample heated at 3 ° C. for 3 hours was added, agate balls were added, and mixed at 500 rpm for 10 minutes. The obtained sample was taken out from the ball mill container, and then air-dried in a draft chamber at room temperature for 3 h, and then the surface spacing and the organic content were measured by thin film X-ray diffraction using a CHN coder.

得られた試料の炭素、窒素含有量を表6に示す。これによると、各試料とも炭素含有量は概ね17mass%以上となっており、実施例4に比べて大幅に増加している。試料の層面間隔値は、水分子が層間に入らないときの1.0nm付近の他に、シトラール複合試料では1.70nm、3.33nmが、また、カルバクロール複合試料では2.20nmの値が示されており(図5)、これはモンモリロナイトに接触させた上記の有機物が、層間に導入された結果と考えられる。このように、遊星ボールミル内で、熱処理を施したモンモリロナイトを有機化合物に接触させる方法は、これまでに試みられた大量の分散媒を用いる熱処理・接触方法と比較し、得られた試料中の炭素含有量が多い。これは、プロセスが閉鎖されたミル容器内で行われるために、混合中に原材料が系外に消失するのを押さえることができるためとも考えられる。   Table 6 shows the carbon and nitrogen contents of the obtained sample. According to this, the carbon content of each sample is approximately 17 mass% or more, which is significantly increased as compared with Example 4. In addition to the vicinity of 1.0 nm when water molecules do not enter between the layers, the sample layer spacing value is 1.70 nm and 3.33 nm for the citral composite sample, and 2.20 nm for the carvacrol composite sample. It is shown (FIG. 5), and this is considered to be a result of the above-mentioned organic substance brought into contact with montmorillonite being introduced between the layers. Thus, in the planetary ball mill, the method of bringing the heat-treated montmorillonite into contact with the organic compound is compared with the heat treatment / contact method using a large amount of dispersion medium tried so far, and the carbon in the obtained sample is obtained. High content. This is also because the process is performed in a closed mill vessel, so that the disappearance of raw materials can be suppressed during mixing.

モンモリロナイトの層間CECの1モル当量に対し2モルのサリチル酸メチル(C)を遊星ボールミルの容器にとり、これに230℃で3h熱処理したモンモリロナイトを炉から取り出して直ちに加え、ボールを加えた後、500rpmで15分間内容物の撹拌・接触を行った。また、上記と同様に準備したサリチル酸メチルを、同様に熱処理を施した後にデシケーター中で放冷したモンモリロナイトに加え、同様の条件で撹拌・接触を行った。試料を容器から取り出して、室温で3h風乾した後、炭素含有量を求めると、熱処理直後のモンモリロナイトを添加した試料では11.0mass%、デシケーターで放冷後のモンモリロナイトを添加した試料では12.6mass%であった。 Take 2 moles of methyl salicylate (C 8 H 8 O 3 ) for 1 mole equivalent of intercalation CEC of montmorillonite into a planetary ball mill container, add montmorillonite heat-treated at 230 ° C. for 3 h from the furnace, add the balls immediately After that, the contents were stirred and contacted at 500 rpm for 15 minutes. Further, methyl salicylate prepared in the same manner as described above was added to montmorillonite that had been heat-treated in the same manner and then allowed to cool in a desiccator, and stirred and contacted under the same conditions. After removing the sample from the container and air-drying at room temperature for 3 hours, the carbon content was determined. The sample added with montmorillonite immediately after the heat treatment was 11.0 mass%, and the sample added with montmorillonite after being cooled in a desiccator was 12.6 mass. %Met.

得られたモンモリロナイト試料の層面間隔値は、熱処理直後に混合した試料では1.84nm、熱処理・放冷後に接触させた試料では1.68nmと、いずれも脱水状態の0.95nmより0.7〜0.9nmの増加を示した(図6)。なお、予備実験において、サリチル酸メチルを50mlのエタノールに溶解させた後、純水で全量を200mlとして、これに230℃で熱処理を行ったモンモリロナイトを、炉から直ちに投入し接触させた試料では炭素含有量は0.5mass%に満たなかった。このように懸濁液状態で接触させてもモンモリロナイト層間への導入が容易ではない有機化合物であっても、遊星ボールミルのような密閉構造の混合装置を用いて接触させると、容易に層間導入できることが分かる。また、熱処理を施したモンモリロナイトは炉から直ちに有機化合物と接触させなくても、復水していなければ、層間導入への影響はないことが分かる。   The layer spacing value of the obtained montmorillonite sample was 1.84 nm for the sample mixed immediately after the heat treatment and 1.68 nm for the sample contacted after the heat treatment / cooling, both from 0.75 from 0.95 nm in the dehydrated state. An increase of 0.9 nm was shown (FIG. 6). In a preliminary experiment, after the methyl salicylate was dissolved in 50 ml of ethanol, the total volume was made up to 200 ml with pure water, and the sample containing carbon contained in montmorillonite that had been heat-treated at 230 ° C. was immediately put into contact with the furnace. The amount was less than 0.5 mass%. Even if it is an organic compound that is not easy to be introduced between montmorillonite layers even if it is brought into contact in a suspension state as described above, it can be easily introduced between the layers when brought into contact with a mixing device having a closed structure such as a planetary ball mill. I understand. Further, it can be seen that the heat-treated montmorillonite is not immediately brought into contact with the organic compound from the furnace, and if it is not condensed, there is no influence on intercalation.

桂皮油、シトロネラ油、ペパーミント油、ローズ油、レモン油、オリガヌム油をそのままあるいは少量のエタノールにそれぞれ溶かした後、全量を純水で200mlとした。モンモリロナイト4gを230℃で3h加熱して、前記溶液中に炉から取り出して直ちに投入した。いずれの試料も、その後に超音波を30min間照射して分散させた後、マグネットスターラーで撹拌し、24h及び48h後に試料を採取して固液分離後、40℃で風乾した。試料の炭素・窒素成分をCHN分析により求めるとともに、層間導入に伴う層面間隔の変化を薄膜X線回折により調べた。   Cinnamon oil, citronella oil, peppermint oil, rose oil, lemon oil and origanum oil were dissolved as they were or in a small amount of ethanol, respectively, and the total amount was made up to 200 ml with pure water. 4 g of montmorillonite was heated at 230 ° C. for 3 hours, taken out of the furnace into the solution and immediately charged. All samples were then dispersed by irradiating with ultrasonic waves for 30 minutes, and then stirred with a magnetic stirrer. Samples were collected after 24 and 48 hours, separated into solid and liquid, and air-dried at 40 ° C. The carbon / nitrogen component of the sample was determined by CHN analysis, and the change in the layer spacing due to interlayer introduction was examined by thin film X-ray diffraction.

表7に、得られた各試料の炭素、窒素含有量を示す。モンモリロナイト接触後はいずれの試料でも炭素含有量が増加している。各試料の層面間隔値を加えた天然物精油に対して示すと、桂皮油:1.53nm、シトロネラ油:1.43nm、ペパーミント油:1.30nm、ローズ油:1.77nm、レモン油:1.76nm、オリガヌム油:1.41nmと、いずれも層面間隔がモンモリロナイト単独のときよりも拡がっていることが分かる(図7−8)。炭素含有量が増加したことと併せ、天然物精油の成分が層間に進入し両者が複合化されたものと考えられる。以上のように、モンモリロナイト層間への有機物質の進入は、両者の接触時に超音波処理を併せて行うことで促進される。   Table 7 shows the carbon and nitrogen contents of the obtained samples. After contact with montmorillonite, the carbon content increased in any sample. When it shows with respect to the natural product essential oil which added the layer surface interval value of each sample, cinnamon oil: 1.53 nm, citronella oil: 1.43 nm, peppermint oil: 1.30 nm, rose oil: 1.77 nm, lemon oil: 1 .76 nm, origanum oil: 1.41 nm, both of which indicate that the layer spacing is wider than when montmorillonite is used alone (FIGS. 7-8). Along with the increase in the carbon content, it is considered that the components of the natural product essential oil have entered the layers and have been combined. As described above, the intrusion of the organic substance between the montmorillonite layers is promoted by performing ultrasonic treatment together when both are in contact.

天然物精油の成分である、ゲラニオール(C1018O)、テルピネオール(C1018O)、リナロール(C1018O)、オイゲノール(C1012)、シンナムアルデヒド(CO)をそのまま、また、ヒノキチオール(C1012)にあってはエタノール2mlを加え、これらをそれぞれ遊星ボールミル容器にとり、別に230℃で熱処理を施したモンモリロナイトを、炉から取り出して直ちに加え、蓋をして500rpmで15分間混合した。遊星ボールミルから取り出した試料は25℃で3h風乾した後、炭素・窒素成分をCHN分析により求めるとともに、層間導入に伴う層面間隔の変化を薄膜X線回折により調べた。表8に、各試料の炭素含有量を示す。 Components of natural product essential oil, geraniol (C 10 H 18 O), terpineol (C 10 H 18 O), linalool (C 10 H 18 O), eugenol (C 10 H 12 O 2 ), cinnamaldehyde (C 9) H 8 O) as it is, or in the case of hinokitiol (C 10 H 12 O 2 ), add 2 ml of ethanol, put them in a planetary ball mill container, and remove montmorillonite that has been heat-treated at 230 ° C. from the furnace. Immediately added, capped and mixed at 500 rpm for 15 minutes. The sample taken out from the planetary ball mill was air-dried at 25 ° C. for 3 hours, and then the carbon / nitrogen components were determined by CHN analysis, and the change in the interlaminar spacing due to interlayer introduction was examined by thin film X-ray diffraction. Table 8 shows the carbon content of each sample.

いずれの試料でも炭素含有量が一様に増加した(いずれの試料も窒素分は定量されなかった。)。層面間隔を加えた天然物成分に対応させて示すと、ゲラニオール:2.4nm、オイゲノール:2.86nm、ヒノキチオール:1.89nm、シンナムアルデヒド:1.71nm、テルピネオール:1.32nm、リナロール:1.31nmであった。いずれも接触前の層面間隔値である0.95nmよりも拡がっており、天然物精油成分がモンモリロナイトと複合化されたことが分かる(図9−10)。   In all the samples, the carbon content increased uniformly (no nitrogen content was quantified in any sample). When it shows corresponding to the natural product component to which the layer spacing is added, geraniol: 2.4 nm, eugenol: 2.86 nm, hinokitiol: 1.89 nm, cinnamaldehyde: 1.71 nm, terpineol: 1.32 nm, linalool: 1. It was 31 nm. In both cases, the width was larger than 0.95 nm, which is the value of the layer spacing before contact, indicating that the natural product essential oil component was complexed with montmorillonite (FIGS. 9-10).

香辛料等天然物から抽出されたアリルイソチオシアネート(CNS)、フェニルエチルイソチオシアネート(CNS)及びベンジルイソチオシアネート(CNS)の所定量をそれぞれ遊星ボールミルにとり、これらに、別に230℃で熱処理を施したモンモリロナイトを、炉から取り出して直ちに加え、蓋をして500rpmで15分間混合した。遊星ボールミルから取り出した試料は25℃で3h風乾した後、炭素・窒素成分をCHN分析により求めるとともに、層間導入に伴う層面間隔の変化を薄膜X線回折により調べた。その結果を表9に示す。 Take a predetermined amount of allyl isothiocyanate (C 4 H 5 NS), phenylethyl isothiocyanate (C 9 H 9 NS) and benzyl isothiocyanate (C 8 H 7 NS) extracted from natural products such as spices, To these, montmorillonite, which had been heat-treated at 230 ° C., was taken out of the furnace and immediately added, covered, and mixed at 500 rpm for 15 minutes. The sample taken out from the planetary ball mill was air-dried at 25 ° C. for 3 hours, and then the carbon / nitrogen components were determined by CHN analysis, and the change in the interlaminar spacing due to interlayer introduction was examined by thin film X-ray diffraction. The results are shown in Table 9.

いずれの試料も炭素含有量のみならず窒素含有量が増加しており、イソチオシアン酸化合物とモンモリロナイトの複合体が生成したことが窺える。アリルイソチオシアネート複合試料では、数時間後に炭素含有量は1mass%まで減少し、複合体の安定性は高くなかった。X線回折では、アリルイソチオシアネート:1.16nm、フェニルエチルイソチオシアネート:1.30nm、ベンジルイソチオシアネート:1.13nm、がそれぞれ観察され、不安定ながら層間化合物が形成されていることが分かる(図11)。   In any sample, not only the carbon content but also the nitrogen content increased, indicating that a complex of an isothiocyanate compound and montmorillonite was formed. In the allyl isothiocyanate composite sample, the carbon content decreased to 1 mass% after several hours, and the stability of the composite was not high. In X-ray diffraction, allyl isothiocyanate: 1.16 nm, phenylethyl isothiocyanate: 1.30 nm, and benzyl isothiocyanate: 1.13 nm were observed, indicating that an intercalation compound was formed while being unstable (see FIG. 11).

(天然物精油の複合化)
桂皮油、シトロネラ油、クローブ・バッド油、タイム・ホワイト油、ゼラニウム油、ティートゥリー油、ラベンダー・フレンチ油、ベルガモット油、ペパーミント油、レモングラス油(いずれも市販のエッセンシャルオイル)を、そのままあるいは2mlのエタノールに溶かした後、純水を加えて200mlとした。別にモンモリロナイト(クニピアF、クニミネ工業製)4gを電気炉中230℃で3h加熱した後、上記の各種有機化合物溶液中に電気炉から取り出して直ちに投入した。
(Combining natural product essential oils)
Cinnamon oil, citronella oil, clove bad oil, thyme white oil, geranium oil, tea tree oil, lavender french oil, bergamot oil, peppermint oil, lemongrass oil (all commercially available essential oils), or 2 ml After dissolving in ethanol, pure water was added to make 200 ml. Separately, 4 g of montmorillonite (Kunipia F, manufactured by Kunimine Kogyo Co., Ltd.) was heated in an electric furnace at 230 ° C. for 3 hours, and then taken out from the electric furnace into the various organic compound solutions and immediately charged.

各試料をマグネットスターラーで撹拌し、24h後に試料を固液分離後、風乾もしくは凍結乾燥し、試料の炭素・窒素成分をCHN分析により求めた。また、有機化合物のモンモリロナイト層間への進入に伴う層面間隔の変化を薄膜X線回折により調べた。上記の方法によって得られた試料の炭素含有量及び層面間隔は、表10のとおりである。   Each sample was stirred with a magnetic stirrer, and after 24 hours, the sample was solid-liquid separated and then air-dried or freeze-dried, and the carbon and nitrogen components of the sample were determined by CHN analysis. Moreover, the change of the layer surface interval accompanying the penetration | invasion of the organic compound between montmorillonite layers was investigated by the thin film X-ray diffraction. Table 10 shows the carbon content and layer spacing of the sample obtained by the above method.

表によれば、いずれの天然物精油複合試料も炭素を含有していることが分かる。こうした天然物精油の主成分は、以下に示すように、既に例示してきた有機化合物から構成されたものも多く、天然物精油複合試料中の炭素成分もそうした主成分によるものと考えられる。   According to the table, it can be seen that any natural product essential oil composite sample contains carbon. As shown below, many of the main components of such natural product essential oils are composed of the organic compounds already exemplified, and the carbon component in the natural product essential oil composite sample is considered to be due to such main components.

<天然物精油名>:<主成分名>
桂皮油:シンナムアルデヒド
シトロネラ油:シトロネラール、ゲラニオール
クローブ・バッド油:オイゲノール
タイム・ホワイト油:チモール
ゼラニウム油:シトロネロール、ゲラニオール
ティートゥリー油:テルペネン−4−オール
ラベンダー・フレンチ油:酢酸リナリル
ベルガモット油:酢酸リナリル
レモングラス油:シトラール
シナモン・リーフ油:オイゲノール
<Natural product essential oil name>: <Main component name>
Cinnamon oil: cinnamaldehyde citronella oil: citronellal, geraniol clove bad oil: eugenol thyme white oil: thymol geranium oil: citronellol, geraniol tea tree oil: terpenene-4-ol lavender French oil: linalyl bergamot acetate: linalyl acetate Lemongrass oil: citral cinnamon leaf oil: eugenol

次に、本願発明の粘土鉱物系複合材料による生理活性評価について行われた実施例を示す。   Next, the Example performed about the physiological activity evaluation by the clay mineral type composite material of this invention is shown.

(昆虫忌避機能をもつ粘土鉱物系複合材料の実施例)
実験は、片端をコルク栓で、もう一方をゴース布で閉じたガラス管(直径2.5cm、長さ15cm)に、シルバーリーフコナジラミ成虫10頭を閉じこめ、コルク栓を上にして垂直に立てて行った。コルク栓下面には、原体をエタノールで10,000ppmに希釈して調製した供試試料20μlを含ませ、約15分間風乾させた1.5cm四方のろ紙を貼り付けた。ガラス管の上方、約20cmの位置に光源(100w白熱灯)を設置し、コナジラミが止まった位置を、上(コルク栓下面の位置)から0cm、0〜2cm、2cm以上の3つに区分して、その個体数を調査した。調査は15分毎に、60分後まで4回行った。その結果を図12に示す。
(Example of clay mineral composite material with insect repellent function)
In the experiment, ten silver leaf whitefly adults were confined in a glass tube (diameter 2.5 cm, length 15 cm) closed with a cork stopper on one end and a goose cloth on the other, and the cork stopper was placed upright. went. On the lower surface of the cork stopper, 20 μl of a test sample prepared by diluting the drug substance to 10,000 ppm with ethanol was contained, and 1.5 cm square filter paper which was air-dried for about 15 minutes was attached. A light source (100w incandescent lamp) is installed above the glass tube at a position of about 20cm, and the position where the whitefly stops is divided into three parts: 0cm, 0-2cm, 2cm or more from the top (position on the bottom of the cork stopper). The number of individuals was investigated. The survey was conducted 4 times every 15 minutes until 60 minutes later. The result is shown in FIG.

コナジラミは走光性があり、Cont区に見られるように、多くの個体は0cm付近に集まる。これに対し、ジエチルトルアミド区では、0cm付近の個体が減少し、2cm超の個体が増加したことから、試料を保持したろ紙を忌避したものと見なすことができる。ヒノキチオール区では、ジエチルトルアミド区には劣るが、0cm付近の個体が減少して他の区分で増加したことから、コナジラミに対し忌避活性を有することが分かる。   Whitefly is phototaxis, and many individuals gather around 0 cm as seen in the Cont ward. On the other hand, in the diethyltoluamide section, the number of individuals near 0 cm decreased and the number of individuals above 2 cm increased, so that it can be considered that the filter paper holding the sample was avoided. The hinokitiol group is inferior to the diethyltoluamide group, but the number of individuals near 0 cm decreased and increased in other sections, indicating that it has repellent activity against whiteflies.

内径25mm×高さ25mmのガラス管の片方をラップでシールし、約3mlの1%寒天溶液を入れた。固まった寒天の表面に、直径25mmのインゲン葉リーフディスクを貼り付け、保持した。植物精油等については、試料原体をエタノールで所定の濃度に調整し、ガラス管内壁に貼り付けた定性ろ紙(10mm×60mm)に含浸させて、20分風乾した後に、供試虫成虫10〜15頭を放飼したフラスコの口に設置した。上記の各有機化合物をモンモリロナイトに接触させ層間に導入した試料(以下、原体名の後に「複合試料」を付して表す。)については、ガラス管下方の縁に、固着剤を塗布して付着させた。試験開始3時間後に、コナジラミの葉面への寄生率を調査し、次式により補正忌避虫率を算出した。その結果を表11、表12に示す。
補正忌避虫率 =(処理区の忌避虫率−Contの忌避虫率)/(100−Contの忌避虫率)×100
One side of a glass tube having an inner diameter of 25 mm and a height of 25 mm was sealed with a wrap, and about 3 ml of 1% agar solution was added. A kidney leaf leaf disk having a diameter of 25 mm was pasted and held on the surface of the hardened agar. For plant essential oils, etc., the sample base is adjusted to a predetermined concentration with ethanol, impregnated in a qualitative filter paper (10 mm × 60 mm) affixed to the inner wall of the glass tube, and air-dried for 20 minutes. Fifteen were placed in the mouths of the flasks released. For the sample (hereinafter referred to as “composite sample” after the name of the active ingredient) brought into contact with montmorillonite by contacting each organic compound described above, a sticking agent is applied to the lower edge of the glass tube. Attached. Three hours after the start of the test, the parasitic rate on the leaf surface of whitefly was investigated, and the corrected repellent rate was calculated by the following formula. The results are shown in Tables 11 and 12.
Corrected repellent rate = (Repellent rate of treated area−Cont repellent rate) / (100−Cont repellent rate) × 100

試料原体では、ジエチルトルアミドの忌避活性が最も高く、続いてゼラニウム、シナモン・リーフ、シトロネラ、ヒノキチオール、ローズ油の順に忌避活性が高かった。有機化合物−モンモリロナイト複合試料では、ジエチルトルアミド複合試料、ゲラニオール複合試料の活性が最も高く、次いで活性が高いグループは、シナモン・リーフ、シトロネラール、シトロネラ油、ヒノキチオール、ゼラニウムの各有機化合物複合試料5種であった。ベンジルイソチオシアネート複合試料については、供試虫のすべてが苦悶後死亡した。こうした現象は、殺虫効果を含む忌避活性をもつものと考えられる。   In the sample raw material, diethyltoluamide had the highest repellent activity, followed by geranium, cinnamon leaf, citronella, hinokitiol, and rose oil in this order. Among organic compound-montmorillonite composite samples, diethyl toluamide composite sample and geraniol composite sample have the highest activity, and the next most active group is cinnamon leaf, citronellal, citronella oil, hinokitiol, and geranium organic compound composite samples. Met. For the benzyl isothiocyanate composite sample, all of the test insects died after agonizing. Such a phenomenon is considered to have repellent activity including an insecticidal effect.

ポリビニルアルコール(PVA)の0.2%水溶液5mlにジエチルトルアミド−モンモリロナイト複合試料0.5gを懸濁させ、極力ムラの無いようピペットでろ紙へ含浸させ、風乾した。高さ40cm、一辺が15cmの直方形の枠の周囲に、有機化合物複合試料を付着させたろ紙(長さ60cm、幅1cm)を1本、もしくは3本、5本を等間隔になるよう取り付けた。この枠内にインゲン苗(初生葉のみ着生)を納めて、昆虫飼育箱内に静置した後、シルバーリーフコナジラミ約300頭を放した。試験開始後、経時的にインゲン苗への寄生虫数を調査した。その結果を表13に示す。この結果から、ジエチルトルアミド複合試料は、ろ紙5本処理で忌避効果があると判定される。   0.5 g of a diethyl toluamide-montmorillonite composite sample was suspended in 5 ml of a 0.2% aqueous solution of polyvinyl alcohol (PVA), impregnated into a filter paper with a pipette as much as possible, and air-dried. A filter paper (length 60 cm, width 1 cm) with an organic compound composite sample attached around a rectangular frame with a height of 40 cm and a side of 15 cm is attached so that one or three or five papers are evenly spaced. It was. In this frame, green seedlings (only the primary leaves settled) were placed and allowed to stand in an insect breeding box, and then about 300 silver leaf whitefly were released. After the start of the test, the number of parasites on the kidney seedling was examined over time. The results are shown in Table 13. From this result, it is determined that the diethyltoluamide composite sample has a repellent effect by the treatment with five filter papers.

以上のように、昆虫忌避活性をもつ有機化合物と粘土鉱物との接触により作製した、有機化合物複合試料は、有機化合物を試料の外界に徐々に放出する性質を有しており、長期にわたってその機能を維持することが可能であることが分かる。   As described above, organic compound composite samples prepared by contacting organic compounds with insect repellent activity with clay minerals have the property of gradually releasing organic compounds to the outside of the sample, and their functions over a long period of time. It can be seen that it is possible to maintain

次に、ダニ忌避に関する実施例を示す。   Next, the Example regarding tick avoidance is shown.

(精油配合ナノシート防ダニ材料の持続性確認試験法による防ダニ試験)
防ダニ試験のための供試料として、ヒノキチオール、ベンジルイソチオシアネート、オイゲノール、シンナムアルデヒドを各々配合した有機化合物−モンモリロナイト複合試料を用いた。また、防ダニ試験のための供試ダニとして、コナヒョウヒダニ(Dermatophagoides farinae)の雌を用いた。培地は、MF粉末に乾燥酵母エビオスを5:1の割合で混合したものを使用し、恒温恒湿器で25℃、相対湿度75〜80%で培養した。
(Mite prevention test by the durability confirmation test method of nanosheets mite prevention material containing essential oil)
An organic compound-montmorillonite composite sample containing hinokitiol, benzylisothiocyanate, eugenol, and cinnamaldehyde was used as a sample for the mite prevention test. In addition, females of Dermatophagoides farinae were used as test ticks for the mite prevention test. The medium used was a mixture of MF powder and dry yeast shrimp at a ratio of 5: 1, and was cultured at 25 ° C. and a relative humidity of 75-80% in a constant temperature and humidity chamber.

供試試料は、プラスチック容器(φ約13mm、高さ約9mm)に各々100mg量り入れ、室内環境に1日間暴露させた。φ45mmガラスシャーレに供試試料を容器ごと入れ、更にシャーレ内の湿度を80%に保つため、プラスチック容器(φ約13mm、高さ約9mm)にKBr飽和水溶液500μlを入れたものを入れた。メッシュ袋に緩衝材として綿を入れたものに、木綿針を用いてダニを10匹入れ、ポリシーラーで封をした後、シャーレに入れた。パラフィルムで封をし、恒温器で25℃、24時間飼育した後、実体顕微鏡を用いてダニの生死を観察し、死亡率を求めた。試験後は、シャーレの蓋を開けて室内環境に暴露させ、試験時には、再びKBr飽和水溶液500μlを入れ実施した。その結果を表14に示す。   Each test sample was weighed 100 mg in a plastic container (φ: about 13 mm, height: about 9 mm) and exposed to the indoor environment for 1 day. A test sample was put in a φ45 mm glass petri dish together with the container, and in order to keep the humidity in the petri dish at 80%, a plastic container (φ about 13 mm, height about 9 mm) containing 500 μl of KBr saturated aqueous solution was put. Ten ticks were placed in a mesh bag containing cotton as a cushioning material using a cotton needle, sealed with a policyler, and placed in a petri dish. After sealing with parafilm and rearing in an incubator at 25 ° C. for 24 hours, the life and death of ticks were observed using a stereomicroscope to determine the mortality rate. After the test, the petri dish lid was opened and exposed to the indoor environment, and at the time of the test, 500 μl of a saturated aqueous KBr solution was put in again. The results are shown in Table 14.

表14より、オイゲノール、ヒノキチオール、シンナムアルデヒドのモンモリロナイト複合試料は、室内環境暴露19日後にいずれも防ダニ効果が認められた。ベンジルイソチオシアネート配合ナノシート試料は、13日後まで防カビ効果が認められた。   From Table 14, the montmorillonite composite samples of eugenol, hinokitiol, and cinnamaldehyde were all found to have an anti-mite effect 19 days after exposure to the indoor environment. The benzyl isothiocyanate-containing nanosheet sample was found to have an antifungal effect until after 13 days.

(有機化合物−モンモリロナイト複合試料の抗菌活性選抜試験に関する実施例)
各種精油をモンモリロナイトへ接触させて得た試料の抗菌活性選抜試験を行った。各試料は、100.0mgを秤量し、10mlの滅菌蒸留水に分散させて試験原液とした。1mlの試験原液を、予め9mlのカチオン調整済みミューラーヒントンブイヨン(CSMHB:Cation−Supplemented Mueller Hinton Broth)入りL字型試験管に挿入して最終濃度1000mg/lの試験液とし、試験原液の代わりに1ml滅菌蒸留水を入れたものを対照として用いた。CSMHBとは、ミューラー・ヒントン・ブイヨン培地(DIFCO)に塩化カルシウムと塩化マグネシウム (最終濃度それぞれ50mg/lと25mg/l)を添加したものである。
(Examples concerning selection test of antibacterial activity of organic compound-montmorillonite composite sample)
An antibacterial activity selection test was performed on samples obtained by bringing various essential oils into contact with montmorillonite. Each sample was weighed 100.0 mg and dispersed in 10 ml of sterilized distilled water to prepare a test stock solution. 1 ml of the test stock solution is inserted into an L-shaped test tube containing 9 ml of cation-adjusted Mueller Hinton Broth (CSMHB: Cation-Supplemented Mueller Broth) in advance to make a test solution with a final concentration of 1000 mg / l. A solution containing 1 ml of sterilized distilled water was used as a control. CSMHB is obtained by adding calcium chloride and magnesium chloride (final concentrations of 50 mg / l and 25 mg / l, respectively) to Mueller-Hinton bouillon medium (DIFCO).

2回継代培養したStaphylococcus aureus NBRC12732(黄色ブドウ球菌)及びEscherichia coli NBRC3972(大腸菌)を試験に供した。ミューラーヒントンブイヨン(MHB)により、約10−4CFU/mlに調整し、その0.1mlを菌種毎に前述の試験液に接種した。35℃、18〜24時間で、100rpm振盪培養した後、普通寒天培地(栄研化学)に各試験液の10μlを移植して乾燥後、35℃、18〜24時間培養した後に、対照と比較して明らかに菌の発育を阻止又は抑制しているものを抗菌活性選抜試験陽性とした。その結果を表15に示す。表より明らかなように、ヒノキチオール、シンナムアルデヒド、ベンジルイソチオシアネートをモンモリロナイトへ接触させて得た試料において抗菌活性を認めた。 Staphylococcus aureus NBRC12732 (Staphylococcus aureus) and Escherichia coli NBRC3982 (Escherichia coli) subcultured twice were used for the test. It adjusted to about 10 < -4 > CFU / ml with Mueller Hinton bouillon (MHB), and 0.1 ml of it was inoculated into the above-mentioned test solution for every microbial species. After shaking culture at 100 ° C. for 18-24 hours at 35 ° C., 10 μl of each test solution was transplanted to a normal agar medium (Eiken Chemical), dried, cultured at 35 ° C. for 18-24 hours, and then compared with the control Thus, those that clearly inhibited or suppressed the growth of bacteria were regarded as positive for antibacterial activity selection test. The results are shown in Table 15. As is clear from the table, antibacterial activity was observed in samples obtained by contacting hinokitiol, cinnamaldehyde, and benzylisothiocyanate with montmorillonite.

(有機化合物を複合化した材料の抗菌活性値の評価に関する実施例)
実施例16における抗菌活性試験で陽性を示した有機化合物複合試料の最小発育阻止濃度試験を行った。試験方法は、抗菌製品評価協議会の方法(1998版)を準用した。すなわち、各試料の160.0mgを秤量し、10mlの滅菌蒸留水に分散させて試験原液とした。試験原液を用いて6段階2倍希釈列(必要に応じて15段階まで)を作製し、各々の1mlを、予め9mlCSMHB入りL字型試験管に挿入し、充分に撹拌した。試験原液の代わりに滅菌蒸留水を入れたものを対照として用いた。
(Examples related to the evaluation of antibacterial activity value of materials compounded with organic compounds)
The minimum growth inhibitory concentration test of the organic compound composite sample that showed positive in the antibacterial activity test in Example 16 was performed. As a test method, an antibacterial product evaluation council method (1998 version) was applied. That is, 160.0 mg of each sample was weighed and dispersed in 10 ml of sterilized distilled water to obtain a test stock solution. Using the test stock solution, a 6-stage 2-fold dilution series (up to 15 stages as required) was prepared, and 1 ml of each was inserted in advance into an L-shaped test tube containing 9 ml CSMMHB and stirred sufficiently. A solution containing sterilized distilled water instead of the test stock solution was used as a control.

2回継代培養したStaphylococcus aureus NBRC12732(黄色ブドウ球菌)及びEscherichia coli NBRC3972(大腸菌)を試験に供した。MHBを用いてそれぞれを約10−4CFU/mlに調整し、その0.1mlを菌種毎に前述のL字型試験管希釈系列に接種した。35℃で18〜24時間、100rpm振盪培養した後、目視にて対照と比較して、明らかに菌の発育を阻止又は抑制しているものを発育阻止と判定し、発育を阻止した最小濃度を最小発育阻止濃度とした。その結果を表16に示す。 Staphylococcus aureus NBRC12732 (Staphylococcus aureus) and Escherichia coli NBRC3982 (Escherichia coli) subcultured twice were used for the test. Each was adjusted to about 10 −4 CFU / ml using MHB, and 0.1 ml thereof was inoculated into the aforementioned L-shaped test tube dilution series for each bacterial species. After shaking culture at 35 ° C. for 18-24 hours and 100 rpm, visually, compared to the control, the one that clearly inhibited or suppressed the growth of bacteria was determined as growth inhibition, and the minimum concentration at which growth was inhibited was determined. The minimum growth inhibitory concentration was used. The results are shown in Table 16.

表より明らかなように、ヒノキチオール複合試料は、大腸菌に対して200mg/l、黄色ブドウ球菌に対して100mg/lの濃度で発育阻止作用を示し、ベンジルイソチオシネート複合試料は、黄色ブドウ球菌に対していずれも400mg/lで発育阻止作用を示した。シンナムアルデヒド複合試料の供試菌に対する発育阻止作用は、MICで1600mg/lであった。   As is clear from the table, the hinokitiol complex sample showed growth inhibitory action at a concentration of 200 mg / l against E. coli and 100 mg / l against Staphylococcus aureus, and the benzylisothiocinate complex sample against Staphylococcus aureus. On the other hand, all showed growth inhibitory action at 400 mg / l. The growth inhibitory effect of the cinnamaldehyde composite sample on the test bacteria was 1600 mg / l in MIC.

次に、粘土鉱物系複合材料の防カビ特性に関する実施例として、粘土鉱物系複合材料のイチゴ灰色カビに対する防カビ活性試験を示す。   Next, an antifungal activity test for the strawberry gray mold of the clay mineral composite material will be shown as an example relating to the mold prevention characteristics of the clay mineral composite material.

(精油成分による抗微生物効果:灰色カビ)
本実施例においては、市販のベンジルイソチオシアネートを生理活性物質として用いた。この成分を、胞子濃度10cells/mlの灰色カビ50μlを90mmシャーレ(PDA培地)に塗布し、シャーレの培地の中心にペーパーディスク(8mm)を置き、DMSOで希釈したベンジルイソチオシアネートを50μl滴下し、パラフィルムでシールし、25℃で7日間培養した。培養期間終了後、ペーパーディスクの生育抑制状況によってその成分の抑制効果を評価した。すなわち、生育状況は、シャーレに完全に生育する場合、阻止円を形成する場合、完全に生育が抑制する場合がある。更に阻止円を形成する場合は、その程度により抑制状況が異なっていた。本実施例の成分は、0.155μl/50μlの濃度まで完全に灰色カビの生育を抑制した。
(Antimicrobial effect of essential oil components: gray mold)
In this example, commercially available benzyl isothiocyanate was used as the physiologically active substance. Apply 50 μl of gray mold with a spore concentration of 10 5 cells / ml to a 90 mm petri dish (PDA medium), place a paper disk (8 mm) at the center of the petri dish, and drop 50 μl of benzylisothiocyanate diluted with DMSO. And sealed with parafilm and cultured at 25 ° C. for 7 days. After the incubation period, the inhibitory effect of the components was evaluated according to the growth inhibition status of the paper disk. That is, the growth may be completely suppressed when growing completely in the petri dish or when forming a blocking circle. In addition, when the inhibition circle was formed, the suppression situation differed depending on the degree. The components of this example completely inhibited the growth of gray mold up to a concentration of 0.155 μl / 50 μl.

一方、実施例10に記載した方法で作製したベンジルイソチオシアネート複合試料を用いた試験は、次のように行われた。胞子濃度10cells/mlの灰色カビ50μlを90mmシャーレ(PDA培地)に塗布し、シャーレの蓋の中心に、ベンジルイソチオシアネート複合試料0.5gを充填したストローを貼り付け、ストローの開口部から気化成分がシャーレ内へ移動できるようにした。シャーレをパラフィルムでシールし、25℃で7日間培養した結果、明らかに灰色カビ抑制効果が認められた。 On the other hand, the test using the benzyl isothiocyanate composite sample produced by the method described in Example 10 was performed as follows. 50 μl of gray mold with a spore concentration of 10 5 cells / ml was applied to a 90 mm petri dish (PDA medium), and a straw filled with 0.5 g of a benzylisothiocyanate composite sample was attached to the center of the petri dish lid, from the opening of the straw The vaporized component was able to move into the petri dish. The petri dish was sealed with parafilm and cultured at 25 ° C. for 7 days. As a result, a gray mold inhibitory effect was clearly observed.

(イチゴ炭疽病菌に対する各種天然物質等の培地内菌糸最低生育阻止濃度試験)
植物からの抽出物、精油など7種を供試した。各種物質を20、50、100、200、400及び1000ppmの濃度になるように添加したPDA培地に、28℃で5〜10日間培養したイチゴ炭疽病菌(Glomerella cingulata、96C−1)の菌そうを直径5mmのコルクボーラーで打ち抜き、1濃度1シャーレを用い、3菌そうずつ切片を置床した。その後、28℃で5日間培養し、菌糸の生育・伸長の有無により、最低生育阻止濃度(MIC)を求めた。その結果を表17に示す。表に示すように、供試料は、いずれも炭疽病菌の生育を抑制した。すなわち、ヒノキチオールのMIC値は50ppmと最も低く、次いでアリルイソチオシアネート、ベンジルイソチオシアネート、フェニルエチルイソチオシアネートが100ppm、カルバクロールとチモールが200ppm、オリガヌム油が400ppmの値を示した。
(Minimum growth inhibition test of hypha in culture medium for various natural substances against strawberry anthracnose)
Seven types of plant extracts and essential oils were used. A fungus of strawberry anthracnose fungus (Glomerella singulata, 96C-1) cultured at 28 ° C. for 5 to 10 days in a PDA medium supplemented with various substances at concentrations of 20, 50, 100, 200, 400 and 1000 ppm. Punched with a cork borer with a diameter of 5 mm, using a petri dish with 1 concentration, placed sections of 3 bacteria each. Then, it culture | cultivated at 28 degreeC for 5 days, and calculated | required minimum growth inhibitory concentration (MIC) by the presence or absence of the growth and extension of a mycelium. The results are shown in Table 17. As shown in the table, all the samples suppressed the growth of anthrax. That is, the MIC value of hinokitiol was the lowest at 50 ppm, followed by allyl isothiocyanate, benzyl isothiocyanate, phenylethyl isothiocyanate at 100 ppm, carvacrol and thymol at 200 ppm, and origanum oil at 400 ppm.

(各種天然物質等を配合したナノシートの培地内におけるイチゴ炭疽病菌菌糸伸長抑制試験)
実施例19における供試料がいずれもイチゴ炭疽病菌生育抑制効果を示したので、次に、これらの有機化合物をモンモリロナイトへ接触させて作製した試料9種を供試した。各試料を100及び1000ppmの濃度になるように添加したPDA培地に、28℃で5〜10日間培養したイチゴ炭疽病菌(Glomerella cingulata、96C−1)の菌そうを直径5mmのコルクボーラーで打ち抜き、1濃度3シャーレを用い、1菌そうずつ切片を置床した。その後、28℃で3〜4日間培養し、菌糸の生育の有無及び菌糸の伸長を測定して菌糸伸長抑制率を求めた。その結果を表18に示す。
(Inhibition test of strawberry anthracnose mycelium growth in nanosheet medium containing various natural substances)
Since all the samples in Example 19 showed the effect of suppressing the growth of strawberry anthracnose fungi, 9 types of samples prepared by bringing these organic compounds into contact with montmorillonite were used. A fungus of strawberry anthracnose fungus (Glomerella singulata, 96C-1) cultured at 28 ° C. for 5 to 10 days was punched into a PDA medium added with each sample to a concentration of 100 and 1000 ppm with a cork borer having a diameter of 5 mm. Using a petri dish with 1 concentration, sections were placed one by one. Then, it culture | cultivated at 28 degreeC for 3 to 4 days, the presence or absence of the growth of a mycelium and the elongation of a mycelium were measured, and the hyphal elongation suppression rate was calculated | required. The results are shown in Table 18.

培地への1000ppm添加における菌糸伸長抑制率が最も高かったのは、表に示すように、ヒノキチオール/モンモリロナイトNSとフェニルエチルイソチオシアネート/モンモリロナイトNSの100%であり、以下90%を越えたのは、銅・ヒノキチオール/モンモリロナイトNSの92.8%であった。また、ヒノキチオール/モンモリロナイトNSは、100ppm添加においても菌糸伸長抑制率が89.7%と極めて高かった。   As shown in the table, the hyphal elongation / montmorillonite NS and the phenylethylisothiocyanate / montmorillonite NS were 100%, and the following exceeded 90%. 92.8% of copper / hinokitiol / montmorillonite NS. Moreover, hinokitiol / montmorillonite NS had an extremely high hyphal elongation suppression rate of 89.7% even when added at 100 ppm.

(イチゴ疫病菌に対する各種天然物質等の培地内菌糸最低生育阻止濃度試験)
植物からの抽出物や精油など16種と対照として化学合成農薬のメタラキシル水和剤を供試した。各種物質を20、50、100、200、400、800及び1000ppmの濃度になるように添加したV−8ジュース寒天培地に、23℃で5〜10日間培養したイチゴ疫病菌(Phytophthora nicotianae var. parasitica、PY2102)の菌そうを直径5mmのコルクボーラーで打ち抜き、1濃度1シャーレを用い、3菌そうずつ切片を置床した。その後、23℃で4〜5日間培養し、菌糸の生育・伸長の有無により、最低生育阻止濃度(MIC)を求めた。その結果を表19に示す。
(Minimum growth inhibition test of mycelia in medium for various natural substances against strawberry plague)
In contrast to 16 types of extracts such as plant extracts and essential oils, a chemically synthesized pesticide metalaxyl wettable powder was used as a control. Strawberry plague (Phytophthora nicotianae var. Parasitica) cultured for 5-10 days at 23 ° C. in V-8 juice agar medium with various substances added to concentrations of 20, 50, 100, 200, 400, 800 and 1000 ppm. , PY2102) was punched out with a cork borer having a diameter of 5 mm, and sections were placed on each of the three strains using a 1 dish of 1 concentration. Then, it culture | cultivated at 23 degreeC for 4 to 5 days, and calculated | required minimum growth inhibitory concentration (MIC) by the presence or absence of the growth and extension of a mycelium. The results are shown in Table 19.

MIC値が最も低かったのは、表に示すように、アリルイソチオシアネートとベンジルイソチオシアネートで50ppm、次いでフェニルエチルイソチオシアネート、ヒノキチオール、カルバクロールで100ppm、その次にはチモールとオリガヌム油で200ppmであった。桂皮油(シナモン油)、trans−シンナムアルデヒド、シトロネロール、丁子油(クローブ・バッド油)、オイゲノール、ゲラニオールは400ppm、シトラール、ローズ油は800ppmであった。なお、対照の化学合成農薬のメタラキシル水和剤のMIC値は、50ppmであった。   As shown in the table, the lowest MIC value was 50 ppm for allyl isothiocyanate and benzyl isothiocyanate, followed by 100 ppm for phenylethyl isothiocyanate, hinokitiol, carvacrol, and then 200 ppm for thymol and origanum oil. It was. Cinnamon oil (cinnamon oil), trans-cinnamaldehyde, citronellol, clove oil (clove-bad oil), eugenol and geraniol were 400 ppm, and citral and rose oil were 800 ppm. The MIC value of the metalloxil wettable powder of the control chemically synthesized pesticide was 50 ppm.

(各種天然物質/モンモリロナイト複合試料の培地内におけるイチゴ疫病菌菌糸伸長抑制試験)
植物からの抽出物や精油等及び対照として化学合成農薬のメタラキシル水和剤をモンモリロナイトに接触させて得られた複合試料34種を供試した。各種物質を100及び1000ppmの濃度になるように添加したV−8ジュース寒天培地に、23℃で5〜10日間培養したイチゴ疫病菌(Phytophthora nicotianae var. parasitica、PY2102)の菌そうを直径5mmのコルクボーラーで打ち抜き、1濃度3シャーレを用い、1菌そうずつ切片を置床した。その後、23℃で5日間培養し、菌糸の生育の有無及び菌糸の伸長を測定して菌糸伸長抑制率を求めた。その結果を表20に示す。
(Test for inhibiting the growth of strawberry plague mycelium in various medium / montmorillonite composite samples)
Extracts from plants, essential oils, and the like, and 34 composite samples obtained by contacting a chemically synthesized pesticide metalaxyl wettable powder with montmorillonite as a control were used. A fungus of Phytophthora nicotiana var. Parasitica (PY2102) cultured at 23 ° C. for 5 to 10 days on a V-8 juice agar medium to which various substances are added at a concentration of 100 and 1000 ppm has a diameter of 5 mm. Punched with a cork borer, using a petri dish with 1 concentration, and placed the sections one by one. Then, it culture | cultivated at 23 degreeC for 5 days, the presence or absence of the growth of a mycelium and the growth of a mycelium were measured, and the hyphal elongation suppression rate was calculated | required. The results are shown in Table 20.

培地への1000ppm添加における菌糸伸長抑制率が最も高かったのは、表に示すように、ヒノキチオール/モンモリロナイト複合試料とフェニルエチルイソチオシアネート/モンモリロナイト複合試料の100%であり、以下90%を越えた試料は、桂皮油/モンモリロナイト複合試料の95.3%、チモール/モンモリロナイト複合試料の92.0%であった。なお、対照の化学合成農薬をナノシート化したメタラキシル複合試料は91.4%であった。   As shown in the table, 100% of the hinokitiol / montmorillonite composite sample and the phenylethylisothiocyanate / montmorillonite composite sample had the highest mycelial elongation inhibition rate when 1000 ppm was added to the medium. Was 95.3% of the cinnamon oil / montmorillonite composite sample and 92.0% of the thymol / montmorillonite composite sample. In addition, the metalaxyl composite sample in which the control chemically synthesized pesticide was made into a nanosheet was 91.4%.

(有機化合物複合試料のイチゴに対する効果)
タッパーウェア(密閉可能なもの、容積5.2リットル)にイチゴ15個(品種:さちのか)及びベンジルイソチオシアネート(BITC)複合試料をシャーレ(直径90mm)に広げ、設置し、密閉した。このタッパーウェアを10℃にて1週間処理した。1週間後、硬度、イチゴの外観(カビ)を調査した。その結果を表21に示す。表に示すように、0.01g添加した場合でも良好な結果が得られた。
(Effect of organic compound composite sample on strawberry)
In tupperware (capable of sealing, volume 5.2 liters), 15 strawberries (variety: Sachinoka) and benzyl isothiocyanate (BITC) composite sample were spread on a petri dish (diameter 90 mm), placed and sealed. This tupperware was treated at 10 ° C. for 1 week. One week later, the hardness and the appearance (mold) of the strawberry were investigated. The results are shown in Table 21. As shown in the table, good results were obtained even when 0.01 g was added.

本発明が適用され、同様の効果が得られる農産物としては、イチゴ以外の他に、カビの発生が多いビワ、ミカンなどが挙げられる。   Agricultural products to which the present invention is applied and which can achieve the same effects include loquat and mandarin oranges that are frequently prone to mold, in addition to strawberries.

(精油を配合した粘土鉱物系複合材料の防カビ試験)
防カビ試験のための供試料として、ヒノキチオール、ベンジルイソチオシアネート、オイゲノール、シンナムアルデヒドをそれぞれ接触させて得られた試料を用いた。供試菌には、Aspergillus niger(NBRC6341、クロカビ)、Penicillium citrinum(NBRC6352、アオカビ)、Aureobasidium pullulans(NBRC6353、クロコウボ)、Rhizopus oryzae(NBRC31005、乳酸生成糸状菌)の4菌種を使用し、培地は、RPMI1640を蒸留水に溶解し、MOPSを34.5g/lの割合で加えた後、1M−NaOHを用いてpH7.0に調製後、メンブランフィルター(ポアーサイズ0.2μm)でろ過滅菌して用いた。
(Anti-fungal test of clay mineral composite material containing essential oil)
Samples obtained by bringing hinokitiol, benzylisothiocyanate, eugenol, and cinnamaldehyde into contact with each other were used as samples for the mold prevention test. As test bacteria, Aspergillus niger (NBRC6341, black mold), Penicillium citrinum (NBRC6352, blue mold), Aureobasidium pullulans (NBRC6353, blackberry), Rhizopus oryzae medium B , RPMI1640 was dissolved in distilled water, MOPS was added at a rate of 34.5 g / l, adjusted to pH 7.0 with 1M NaOH, and then sterilized by filtration with a membrane filter (pore size 0.2 μm). It was.

供試料は、滅菌蒸留水を用いて20,000〜313μg/mlあるいは2,000〜31.3μg/mlに調製後、培地を用いて10倍希釈し、2,000〜31.3μg/mlあるいは200〜3.13μg/mlに調製し、供試液とした。これらの供試液を96ウェルマイクロプレートに各々0.1ml分注し試験液とした。供試菌は0.005%AerosolOTを加えた生理食塩水を用いて胞子濃度を10cells/mlに調製した後、3000rpm、10分遠心後上清を除き、同量の培地で置換し、充分懸濁させた後、予め試料の入れてあるマイクロプレートのウェルに0.1mlずつ接種した(供試料の終濃度は1,000〜15.6μg/mlあるいは100〜1.56μg/mlとなる)。恒温器で25℃、4日間培養後、肉眼的に菌糸の発育の有無を確認し、MIC(最小発育阻止濃度)を求めた。その結果を表22に示す。 The sample was prepared to 20,000 to 313 μg / ml or 2,000 to 31.3 μg / ml using sterile distilled water, diluted 10-fold using a medium, and then 2,000 to 31.3 μg / ml or It adjusted to 200-3.13 microgram / ml, and was set as the test liquid. 0.1 ml of each of these test solutions was dispensed into 96-well microplates to prepare test solutions. The test bacterium was prepared using a physiological saline supplemented with 0.005% Aerosol OT to a spore concentration of 10 5 cells / ml, centrifuged at 3000 rpm for 10 minutes, the supernatant was removed, and the medium was replaced with the same amount of medium. After sufficiently suspending, 0.1 ml each was inoculated into the well of the microplate in which the sample was placed (the final concentration of the sample was 1,000 to 15.6 μg / ml or 100 to 1.56 μg / ml) ). After culturing at 25 ° C. for 4 days in a thermostat, the presence or absence of mycelial growth was confirmed macroscopically, and the MIC (minimum growth inhibitory concentration) was determined. The results are shown in Table 22.

表より、ヒノキチオール配合ナノシート試料は、4菌種に対して防カビ効果が明らかに認められた。ベンジルイソチオシアネート、オイゲノール、及びシンナムアルデヒド複合試料は、R.oryzaeを除く3菌種に防カビ効果が認められた。   From the table, the antifungal effect of the hinokitiol-containing nanosheet sample was clearly recognized against 4 bacterial species. Benzyl isothiocyanate, eugenol, and cinnamaldehyde complex samples are available from R.I. Antifungal effect was observed in 3 bacterial species except for oryzae.

(精油成分によるカットレタスの褐変抑制効果に及ぼす影響)
精油を密閉できるプラスティック容器の中にジメチルスルホキシド20mlで希釈した2.4mlの精油原体をガラスシャーレに入れた。別のガラスシャーレに入れたカットレタス20gを3−4個とともに密閉し、2日間10℃で保存した。レタス可食部と色調の変化を明確に判断するため、カットレタスは、外葉の特に緑色の濃い部分は取り除いた。試験の保存期間終了後、分光測色計(CM−2500d、コニカミノルタ社製)でカットレタスの色調を測定した。色調の変化は、既に報告されている褐変評価測定に用いられるハンターLabで表示した。更に、測定値のLabのうち褐変を評価するためには、最も色調変化が著しいa値が高い場合を褐変の指標とした。
(Effects of essential oil ingredients on browning suppression effect of cut lettuce)
2.4 ml of an essential oil base diluted with 20 ml of dimethyl sulfoxide was placed in a glass petri dish in a plastic container capable of sealing the essential oil. 20 g of cut lettuce in another glass petri dish was sealed together with 3-4 pieces and stored at 10 ° C. for 2 days. In order to clearly determine the change in color tone of the lettuce edible portion, the cut lettuce was removed from the outer leaf, particularly the dark green part. After the test storage period, the color tone of the cut lettuce was measured with a spectrocolorimeter (CM-2500d, manufactured by Konica Minolta). The change of the color tone was displayed by Hunter Lab used for the browning evaluation measurement already reported. Furthermore, in order to evaluate browning among Lab of measured value, the case where a value with the most remarkable color tone change was high was made into the parameter | index of browning.

レタスは、個々の品質によりa値にバラツキが生じるため、対照区を設置し、その相対値で個々の比較を行った。a値のみでは精油成分により褐変以外の変色をした場合は、判定不能になるため、品質を含め達観でもその補助的な評価を行った。その結果を表23に示す。このうち、a値、相対値及び達観の順に褐変抑制効果の可能性を検討した。すなわち、a値が1.00以下、更に相対値が60以下、達観では、褐変の状況及び変色のないものについて、褐変抑制効果有りと判定した。これから明らかなように、供試料のうち原体の6成分が、レタスを2日間保存すると良好な褐変抑制効果を示すことが分かった。   In the case of lettuce, since the a value varies depending on the individual quality, a control plot was set up, and individual comparisons were made using the relative values. If the a value alone is used for discoloration other than browning due to the essential oil component, the determination becomes impossible. The results are shown in Table 23. Among these, the possibility of the browning inhibitory effect was examined in order of a value, relative value, and objective. That is, the a value was 1.00 or less, the relative value was 60 or less, and in the objective, the browning situation and the thing without discoloration were determined to have a browning inhibiting effect. As is apparent from the results, it was found that the 6 components of the raw material in the sample showed a good browning inhibitory effect when lettuce was stored for 2 days.

(精油/モンモリロナイト複合試料のカットレタスの褐変抑制効果)
実施例9の方法で作製した精油/モンモリロナイト複合材料を0.5gガラスシャーレに入れ、別にガラスシャーレに入れたカットレタス20gを3−4個準備し、これらをともに密閉し、2日間10℃で保存した。精油/モンモリロナイト複合材料によるレタスの褐変抑制効果の評価は、実施例25の方法で行った。その結果を表24に示す。オイゲノール/粘土複合試料を除き、他の精油/粘土複合試料は、いずれもレタスに対して褐変抑制効果を示すことが分かった。
(Effect of browning of cut lettuce of essential oil / montmorillonite composite sample)
The essential oil / montmorillonite composite material produced by the method of Example 9 was put in a 0.5 g glass petri dish, and 3-4 pieces of cut lettuce 20 g put in another glass petri dish were prepared, and these were sealed together at 10 ° C. for 2 days. saved. Evaluation of the browning inhibition effect of lettuce by the essential oil / montmorillonite composite material was performed by the method of Example 25. The results are shown in Table 24. With the exception of the eugenol / clay composite sample, all other essential oil / clay composite samples were found to exhibit browning-inhibiting effects on lettuce.

(精油のカットレタスにおける褐変酵素に対する抑制効果)
野菜の褐変に関連する代表的な酵素としてポリフェノールオキシダーゼ(PPO)、フェニルアラニンアンモニアリアーゼ(PAL)があり、褐変抑制に効果がある物質は、この酵素の活性に影響を与えている。従って、実施例25及び26において評価した精油について、これらの酵素活性に対する抑制効果が考えられたため、上記実施例における処理の後、PPO及びPAL酵素活性を測定したところ、その活性が抑制されていることが分かった。このように、実施例26で褐変抑制が認められた精油は、レタスの褐変時に作用する酵素の働きを抑制していることが明らかとなった。
(Inhibiting effect on browning enzyme in cut lettuce of essential oil)
Typical enzymes related to vegetable browning include polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL), and substances effective in inhibiting browning affect the activity of this enzyme. Therefore, since the essential oil evaluated in Examples 25 and 26 was considered to have an inhibitory effect on these enzyme activities, the activity was suppressed when PPO and PAL enzyme activities were measured after the treatment in the above Examples. I understood that. Thus, it became clear that the essential oil in which browning suppression was recognized in Example 26 has suppressed the function of the enzyme which acts at the time of browning of lettuce.

(精油/粘土複合試料からの精油の放出)
ゲラニオール/粘土複合試料20mlをバイアルに0.5mg加え、その気相のゲラニオール濃度をガスクロマトグラフ質量分析計(GC/MS)で、以下の条件において測定した。
(Essential oil release from essential oil / clay composite sample)
0.5 mg of a geraniol / clay composite sample (20 ml) was added to a vial, and the gas phase geraniol concentration was measured with a gas chromatograph mass spectrometer (GC / MS) under the following conditions.

(GC/MS条件)
SPME:DVD/carboxen/PDMS(ファイバーの膜厚:50/30μm、結合タイプ:高架橋型)
Extraction:20 min headspace sampling 95℃
Desorption:3.0 min 250℃
Colum:Stabil−WAX ,60m×0.25mm,0.25μm
キャリアガス:He(120kPa)
oven:70℃(3min)to250℃at10℃/min,hold 10min
Inj:250℃
(GC / MS conditions)
SPME: DVD / carboxen / PDMS (Fibre film thickness: 50/30 μm, Bonding type: Viaduct type)
Extraction: 20 min headspace sampling 95 ° C
Desorption: 3.0 min 250 ° C
Column: Stabil-WAX, 60 m × 0.25 mm, 0.25 μm
Carrier gas: He (120 kPa)
Even: 70 ° C. (3 min) to 250 ° C. at 10 ° C./min, hold 10 min
Inj: 250 ° C

この測定の結果、バイアルの気相中には、1500ppm相当量のゲラニオール蒸気が存在することが分かり、ゲラニオール/粘土複合試料から放出される気体は原体であるゲラニオールであることが明らかとなった。すなわち、粘土と複合化された精油は、放出される際にも、複合化前と同じ精油蒸気として存在するものと考えられる。   As a result of the measurement, it was found that geraniol vapor corresponding to 1500 ppm was present in the gas phase of the vial, and the gas released from the geraniol / clay composite sample was the original geraniol. . That is, it is considered that the essential oil complexed with clay exists as the same essential oil vapor as before complexing when released.

精油/粘土複合試料による同様の褐変抑制効果が期待される褐変性カット野菜としては、レタスの他に、特に、レンコン、ジャガイモ、サツマイモ、ゴボウ、キャベツなどが挙げられる。   Examples of brown-denatured cut vegetables that are expected to have the same browning-suppressing effect by the essential oil / clay composite sample include lotus root, potato, sweet potato, burdock, cabbage and the like in addition to lettuce.

実施例6で作製したシトラール複合試料、実施例8で作製したローズ油複合試料、実施例9で作製したシンナムアルデヒド、オイゲノール、リナロール、ゲラニオール、テルピネオール、ヒノキチオールの各複合試料、及び実施例10で作製したベンジルイソチオシアネート接触試料をそれぞれガラス製シャーレにとり、これらをドラフトチャンバー内で25℃に温度調節したシリコンラバーヒーター上に置いて、ドラフトチャンバー内に流入する空気流と接触させた。各試料と空気流との接触開始から所定時間毎に試料を少量採取し、その炭素含有量をCHNコーダーにより分析することにより、各試料から揮発する有機化合物量を調べた。各試料の炭素含有量の変化を図13−14に示す。   Citral composite sample prepared in Example 6, rose oil composite sample prepared in Example 8, cinnamaldehyde, eugenol, linalool, geraniol, terpineol, hinokitiol composite samples prepared in Example 9, and prepared in Example 10 Each of the benzyl isothiocyanate contact samples taken was placed in a glass petri dish and placed on a silicon rubber heater whose temperature was adjusted to 25 ° C. in a draft chamber and brought into contact with the air flow flowing into the draft chamber. A small amount of a sample was collected every predetermined time from the start of contact between each sample and the air flow, and the carbon content was analyzed by a CHN coder to examine the amount of organic compounds volatilized from each sample. Changes in the carbon content of each sample are shown in FIGS. 13-14.

各試料中の有機化合物が徐放・揮発によって完全に失われるには相当の時間を要するため、初期炭素含有量が概ね1/2になるまでの時間を、図から炭素半減期として求め、各試料の徐放性を評価した。なお、測定期間中に半減期に到達しない試料の場合は、測定結果から回帰式を求め、計算によって炭素半減期を求めた。各複合試料の炭素半減期を、その対応する有機化合物名と併記して示すと、シトラール:1600h、シンナムアルデヒド:650h、オイゲノール:750h、リナロール:350h、ゲラニオール:340h、テルピネオール:130h、ヒノキチオール:3400h、ベンジルイソチオシアネート:150hであった。このように、本発明により作製した有機化合物/モンモリロナイト複合試料の徐放性を炭素半減期で表現すると、その長短の違いはあっても、いずれも徐放性をもっていることが分かる。   Since a considerable amount of time is required for the organic compounds in each sample to be completely lost by sustained release and volatilization, the time until the initial carbon content is approximately halved is determined from the figure as the carbon half-life. The sustained release properties of the samples were evaluated. In the case of a sample that does not reach the half-life during the measurement period, a regression equation was obtained from the measurement result, and the carbon half-life was obtained by calculation. The carbon half-life of each composite sample is shown together with its corresponding organic compound name: citral: 1600 h, cinnamaldehyde: 650 h, eugenol: 750 h, linalool: 350 h, geraniol: 340 h, terpineol: 130 h, hinokitiol: 3400 h , Benzyl isothiocyanate: 150 h. Thus, when the sustained release property of the organic compound / montmorillonite composite sample prepared according to the present invention is expressed in terms of carbon half-life, it can be seen that both have a sustained release property, regardless of the difference in length.

既に記載した方法で作製した、生理活性機能をもつ有機化合物/モンモリロナイト複合材料を、実施例29と同様にして25℃で空気流と接触させ徐放性を調べた。各試料の初期炭素含有量と炭素半減期を、実施例29記載分も含めて表25に一覧表にして示す。実施例29の結果と同様に、本発明により作製した有機化合物/モンモリロナイト複合試料の徐放性は、その長短の違いはあるが、いずれも徐放性を有していることが分かる。   The organic compound / montmorillonite composite material having a physiologically active function, prepared by the method described above, was contacted with an air stream at 25 ° C. in the same manner as in Example 29, and the sustained release property was examined. The initial carbon content and carbon half-life of each sample are listed in Table 25 including those described in Example 29. Similar to the results of Example 29, it can be seen that the sustained release properties of the organic compound / montmorillonite composite sample produced according to the present invention have sustained release properties, although there are differences in length.

以上詳述したように、本発明は、粘土鉱物系複合材料とその製造方法に係るものであり、本発明により、昆虫忌避機能、抗微生物機能、鮮度維持機能等を有する有機化合物を、熱処理によって層間水を排除した粘土鉱物と直ちに接触させることにより、極めて短時間に、効率よく粘土鉱物と複合化することができる。このようにして得られた有機化合物―粘土鉱物複合体は、空気中では酸化や揮発などのために不安定な有機化合物を、固体として扱うことが可能となることから、紙、樹脂、造粒体のように種々の形態に加工することができる。更に、粘土鉱物との複合化によって粘土鉱物に拘束された有機化合物は、試料の外界に徐々に放出される、いわゆる徐放性を有しており、長期にわたってその機能を維持することが可能となる。本発明によって提供される、粘土鉱物系複合材料は、各種産業分野や生活の場において、昆虫忌避、抗菌・防カビ、植物体や果実の鮮度維持、防ダニなど、様々な機能を有する有用な素材として好適に活用可能である。   As described above in detail, the present invention relates to a clay mineral composite material and a method for producing the same, and according to the present invention, an organic compound having an insect repellent function, an antimicrobial function, a freshness maintaining function, and the like is obtained by heat treatment. Immediate contact with the clay mineral from which interlaminar water has been removed enables efficient complexation with the clay mineral in an extremely short time. The organic compound-clay mineral complex obtained in this way can handle organic compounds that are unstable due to oxidation or volatilization in the air as solids. It can be processed into various forms like the body. Furthermore, organic compounds constrained by clay minerals by complexing with clay minerals have a so-called sustained release property that is gradually released to the outside of the sample, and can maintain their functions over a long period of time. Become. The clay mineral composite material provided by the present invention has various functions such as insect repellent, antibacterial and antifungal, maintenance of freshness of plants and fruits, and mite prevention in various industrial fields and daily life. It can be suitably used as a material.

天然物精油をモンモリロナイトの熱処理後に直ちに接触させて得られた試料の薄膜X線回折図形である。It is a thin film X-ray diffraction pattern of the sample obtained by making natural product essential oil contact immediately after heat processing of a montmorillonite. シアゾファミド水和剤及びメタラキシル水和剤を、モンモリロナイトの熱処理後に直ちに接触させて得られた試料の薄膜X線回折図形である。It is a thin-film X-ray-diffraction pattern of the sample obtained by making a siazofamide wettable powder and a metalaxyl wettable powder contact immediately after the heat processing of a montmorillonite. カフェインを、モンモリロナイトの熱処理後に直ちに接触させて得られた試料の薄膜X線回折図形の一例である。It is an example of the thin film X-ray diffraction pattern of the sample obtained by making caffeine contact immediately after heat processing of a montmorillonite. カルバクロール、チモール、シトラールを、モンモリロナイトの熱処理後に、液相から直ちに接触させて得られた試料の薄膜X線回折図形である。It is the thin film X-ray diffraction pattern of the sample obtained by making carvacrol, thymol, and citral contact immediately from a liquid phase after heat processing of montmorillonite. カルバクロール、チモール、シトラールを、モンモリロナイトの熱処理後に、遊星ボールミル内において直ちに接触させて得られた試料の薄膜X線回折図形である。It is the thin film X-ray diffraction pattern of the sample obtained by making carvacrol, thymol, and citral contact immediately in a planetary ball mill after heat processing of montmorillonite. サリチル酸メチルを、モンモリロナイトの熱処理直後(上)及び熱処理後に放冷後に、遊星ボールミル内において接触させて得られた試料の薄膜X線回折図形である。It is the thin film X-ray diffraction pattern of the sample obtained by contacting methyl salicylate in the planetary ball mill immediately after the heat treatment of montmorillonite (top) and after cooling after heat treatment. 桂皮油、シトロネラ油、ペパーミント油を、モンモリロナイトの熱処理直後に、遊星ボールミル内において接触させて得られた試料の薄膜X線回折図形である。It is the thin film X-ray diffraction pattern of the sample obtained by making cinnamon oil, citronella oil, and peppermint oil contact in a planetary ball mill immediately after heat processing of montmorillonite. ローズ油、レモン油、オリガヌム油を、モンモリロナイトの熱処理直後に、遊星ボールミル内において接触させて得られた試料の薄膜X線回折図形である。It is the thin film X-ray diffraction pattern of the sample obtained by making rose oil, lemon oil, origanum oil contact in a planetary ball mill immediately after heat processing of montmorillonite. ゲラニオール、オイゲノール、ヒノキチオールをモンモリロナイトの熱処理直後に、遊星ボールミル内において接触させて得られた試料の薄膜X線回折図形である。It is a thin film X-ray diffraction pattern of a sample obtained by bringing geraniol, eugenol, and hinokitiol into contact with each other in a planetary ball mill immediately after heat treatment of montmorillonite. テルピネオール、リナロール、シンナムアルデヒドを、モンモリロナイトの熱処理直後に、遊星ボールミル内において接触させて得られた試料の薄膜X線回折図形である。It is a thin film X-ray diffraction pattern of a sample obtained by bringing terpineol, linalool and cinnamaldehyde into contact in a planetary ball mill immediately after heat treatment of montmorillonite. アリルイソチオシアネート、ベンジルイソチオシアネート、フェニルエチルイソチオシアネートを、モンモリロナイトの熱処理直後に、遊星ボールミル内において接触させて得られた試料の薄膜X線回折図形である。It is a thin film X-ray diffraction pattern of a sample obtained by contacting allyl isothiocyanate, benzyl isothiocyanate and phenylethyl isothiocyanate in a planetary ball mill immediately after heat treatment of montmorillonite. ジエチルトルアミド及びヒノキチオールの接触により作製した粘土鉱物系複合材料による昆虫忌避効果を示す図である。It is a figure which shows the insect repellent effect by the clay mineral type composite material produced by the contact of diethyl toluamide and hinokitiol. シンナムアルデヒド、オイゲノール、シトラール、ベンジルイソチオシアネート複合試料を、それぞれガラス製シャーレにとり、25℃で空気流を強制的に接触させたときの各試料の炭素含有量変化である。図中の半減期は炭素含有量の半減期を示す。The cinnamaldehyde, eugenol, citral, and benzyl isothiocyanate composite samples are each taken in a glass petri dish, and the carbon content change of each sample when the air flow is forcibly contacted at 25 ° C. The half-life in the figure indicates the half-life of the carbon content. リナロール、ゲラニオール、テルピネオール、ヒノキチオール複合試料を、それぞれガラス製シャーレにとり、25℃で空気流を強制的に接触させたときの各試料の炭素含有量変化である。図中の半減期は炭素含有量の半減期を示す。This is a change in the carbon content of each sample when a linalool, geraniol, terpineol, and hinokitiol composite sample are each placed in a glass petri dish and forcedly contacted with an air stream at 25 ° C. The half-life in the figure indicates the half-life of the carbon content.

Claims (12)

層間に陽イオン交換能をもつ粘土鉱物を主原料として、層間にある層間水と交換して、アルカリもしくはアルカリ土類金属と生理活性機能をもつ有機化合物との組合せにおいて、層間に該有機化合物が安定ないし準安定な状態で導入されていることを特徴とする粘土鉱物系複合材料。   Using a clay mineral having a cation exchange capacity between layers as a main raw material, it is exchanged with interlayer water between layers, and in a combination of an alkali or alkaline earth metal and an organic compound having a physiologically active function, A clay mineral composite material characterized by being introduced in a stable or metastable state. アルカリもしくはアルカリ土類金属が、ナトリウム、カリウム、カルシウム及び/又はマグネシウムである、請求項1に記載の粘土鉱物系複合材料。   The clay mineral composite material according to claim 1, wherein the alkali or alkaline earth metal is sodium, potassium, calcium and / or magnesium. 生理活性機能が、昆虫忌避、抗微生物、鮮度維持、又は芳香の機能である、請求項1に記載の粘土鉱物系複合材料。   The clay mineral composite material according to claim 1, wherein the physiologically active function is an insect repellent function, an antimicrobial function, a freshness maintenance function, or an aroma function. 機能性として、昆虫忌避、抗微生物、鮮度保持、又は芳香の機能が付与されている、請求項1に記載の粘土鉱物系複合材料。   The clay mineral composite material according to claim 1, which is provided with functions of insect repellent, antimicrobial, freshness maintenance, or aroma as functionality. 層間に陽イオン交換能をもつ粘土鉱物を主原料とし、層間にある交換性の陽イオン及び層間水を、別種の陽イオン及び有機化合物でそれぞれ交換して、粘土鉱物系複合材料を製造する方法において、該粘土鉱物を予め熱処理することにより層間水を排除した後に、該粘土鉱物の層間が復水する前に、該粘土鉱物を有機化合物もしくはその溶液と直ちに混合することにより、該粘土鉱物の層間に有機化合物を導入することを特徴とする粘土鉱物系複合材料の製造方法。   A method of producing clay mineral composites by using clay minerals with cation exchange capacity between layers as the main raw material, and exchanging exchangeable cations and interlayer water between layers with different types of cations and organic compounds. In this method, after removing the interlayer water by heat-treating the clay mineral in advance, and before condensing the interlayer of the clay mineral, the clay mineral is immediately mixed with an organic compound or a solution thereof to thereby remove the clay mineral. A method for producing a clay mineral composite material, wherein an organic compound is introduced between layers. 粘土鉱物の層間水を排除する熱処理を、加熱、マイクロ波照射、又は赤外線照射により行う、請求項5に記載の粘土鉱物系複合材料の製造方法。   The method for producing a clay mineral-based composite material according to claim 5, wherein the heat treatment for removing interlayer water of the clay mineral is performed by heating, microwave irradiation, or infrared irradiation. 粘土鉱物を有機化合物もしくはその溶液と直ちに混合する装置もしくは容器として、トロンミル、ボールミル、遊星型ボールミル、遠心ミル、振動ミル及び外気との接触を絶つことのできる構造をもった乳鉢を用いる、請求項5に記載の粘土鉱物系複合材料の製造方法。   A device or container for immediately mixing clay minerals with an organic compound or a solution thereof is a tron mill, a ball mill, a planetary ball mill, a centrifugal mill, a vibration mill, or a mortar having a structure capable of breaking contact with outside air. 5. A method for producing a clay mineral composite material according to 5. 粘土鉱物として、スメクタイト、バーミキュライト、又はカオリン族粘土鉱物を用いる、請求項5に記載の粘土鉱物系複合材料の製造方法。   The method for producing a clay mineral composite material according to claim 5, wherein smectite, vermiculite, or kaolin group clay mineral is used as the clay mineral. 熱処理後の粘土鉱物に導入する有機化合物として、昆虫忌避機能、抗微生物機能、鮮度維持機能、芳香機能を有する有機化合物を用いる、請求項5に記載の粘土鉱物系複合材料の製造方法。   The method for producing a clay mineral composite material according to claim 5, wherein an organic compound having an insect repellent function, an antimicrobial function, a freshness maintaining function, and an aroma function is used as the organic compound to be introduced into the clay mineral after the heat treatment. 昆虫忌避機能、抗微生物機能、鮮度維持機能及び芳香機能のいずれかを有する有機化合物が、桂皮油、タイム・ホワイト油、クローブ・バッド油、シナモン・リーフ油、ラベンダー・フレンチ油、レモングラス油、ペパーミント油、ベルガモット油、ティートゥリー油、ゼラニウム油、シトロネラ油、ローズ油、レモン油、ユーカリ油、オリガヌム油、シンナムアルデヒド、オイゲノール、サリチル酸メチル、シトラール、アリルイソチオシアネート、ベンジルイソチオシアネート、フェニルエチルイソチオシアネート、リナロール、メントール、ゲラニオール、チモール、テルピネオール、ヒノキチオール、ジエチルトルアミド、シアゾファミド、メタラキシル、エピガロカテキンガレート、ミリシトリン、カフェインの少なくとも1つ以上である、請求項9に記載の粘土鉱物系複合材料の製造方法。   Organic compounds having any one of insect repellent function, antimicrobial function, freshness maintenance function and fragrance function are cinnamon oil, thyme white oil, clove bud oil, cinnamon leaf oil, lavender french oil, lemongrass oil, Peppermint oil, bergamot oil, tea tree oil, geranium oil, citronella oil, rose oil, lemon oil, eucalyptus oil, origanum oil, cinnamaldehyde, eugenol, methyl salicylate, citral, allyl isothiocyanate, benzyl isothiocyanate, phenyl ethyl isothiocyanate , Linalool, menthol, geraniol, thymol, terpineol, hinokitiol, diethyl toluamide, cyazofamide, metalaxyl, epigallocatechin gallate, myricitrin, caffeine In a method for producing a clay mineral composite material according to claim 9. 粘土鉱物の層間陽イオンが、ナトリウム、カリウム、カルシウム、又はマグネシウムである、請求項5に記載の粘土鉱物系複合材料の製造方法。   The method for producing a clay mineral composite material according to claim 5, wherein the interlayer cation of the clay mineral is sodium, potassium, calcium, or magnesium. 請求項1から4のいずれかに記載の粘土鉱物系複合材料を機能性素材として使用したことを特徴とする機能性製品。   A functional product, wherein the clay mineral composite material according to any one of claims 1 to 4 is used as a functional material.
JP2007096947A 2006-03-31 2007-04-02 Clay mineral-based composite material and production method thereof Active JP5489030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007096947A JP5489030B2 (en) 2006-03-31 2007-04-02 Clay mineral-based composite material and production method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006101267 2006-03-31
JP2006101267 2006-03-31
JP2007096947A JP5489030B2 (en) 2006-03-31 2007-04-02 Clay mineral-based composite material and production method thereof

Publications (2)

Publication Number Publication Date
JP2007291097A true JP2007291097A (en) 2007-11-08
JP5489030B2 JP5489030B2 (en) 2014-05-14

Family

ID=38762083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007096947A Active JP5489030B2 (en) 2006-03-31 2007-04-02 Clay mineral-based composite material and production method thereof

Country Status (1)

Country Link
JP (1) JP5489030B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195709A (en) * 2007-01-17 2008-08-28 National Institute Of Advanced Industrial & Technology Antibacterial and mildewproof material having metal-tropolone complex carried between inorganic layers
JP2009242279A (en) * 2008-03-31 2009-10-22 Nagasaki Prefecture Clay mineral-based composite material and method for controlling sustainedly releasing property thereof
JP2009242337A (en) * 2008-03-31 2009-10-22 Nagasaki Prefecture Clay mineral-based antimicrobial material
WO2011040252A1 (en) * 2009-09-30 2011-04-07 東亞合成株式会社 Durable pest repellent and pest-repellent resin composition
JP2020050636A (en) * 2018-09-28 2020-04-02 エステー株式会社 Acarid repellent and method for repelling acarid using the same
WO2020104660A1 (en) * 2018-11-23 2020-05-28 Hilaire Alain Bactericidal, fungicidal and virucidal decontaminating composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292410A (en) * 1991-03-20 1992-10-16 Toyo Dorai Le-Bu Kk Antibacterial antimycotic silicate having excellent durability
JPH10130015A (en) * 1996-10-29 1998-05-19 Toagosei Co Ltd Mildew-proof lamellar silicate
JP2000143412A (en) * 1998-11-04 2000-05-23 Toagosei Co Ltd Fungicidal laminar silicate
JP2004262700A (en) * 2003-02-28 2004-09-24 Toagosei Co Ltd Antibacterial sheet silicate
JP2005089261A (en) * 2003-09-18 2005-04-07 Hojun:Kk Organic clay and its manufacturing method
JP2005281263A (en) * 2004-03-30 2005-10-13 National Institute Of Advanced Industrial & Technology Method for producing clay mineral-based complex material having physiologically active function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292410A (en) * 1991-03-20 1992-10-16 Toyo Dorai Le-Bu Kk Antibacterial antimycotic silicate having excellent durability
JPH10130015A (en) * 1996-10-29 1998-05-19 Toagosei Co Ltd Mildew-proof lamellar silicate
JP2000143412A (en) * 1998-11-04 2000-05-23 Toagosei Co Ltd Fungicidal laminar silicate
JP2004262700A (en) * 2003-02-28 2004-09-24 Toagosei Co Ltd Antibacterial sheet silicate
JP2005089261A (en) * 2003-09-18 2005-04-07 Hojun:Kk Organic clay and its manufacturing method
JP2005281263A (en) * 2004-03-30 2005-10-13 National Institute Of Advanced Industrial & Technology Method for producing clay mineral-based complex material having physiologically active function

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195709A (en) * 2007-01-17 2008-08-28 National Institute Of Advanced Industrial & Technology Antibacterial and mildewproof material having metal-tropolone complex carried between inorganic layers
JP2009242279A (en) * 2008-03-31 2009-10-22 Nagasaki Prefecture Clay mineral-based composite material and method for controlling sustainedly releasing property thereof
JP2009242337A (en) * 2008-03-31 2009-10-22 Nagasaki Prefecture Clay mineral-based antimicrobial material
WO2011040252A1 (en) * 2009-09-30 2011-04-07 東亞合成株式会社 Durable pest repellent and pest-repellent resin composition
CN102665404A (en) * 2009-09-30 2012-09-12 东亚合成株式会社 Durable pest repellent and pest-repellent resin composition
CN102665404B (en) * 2009-09-30 2013-10-16 东亚合成株式会社 Durable pest repellent and pest-repellent resin composition
JP5403062B2 (en) * 2009-09-30 2014-01-29 東亞合成株式会社 Durable pest repellent and pest repellent resin composition
US8728506B2 (en) 2009-09-30 2014-05-20 Toagosei Co., Ltd. Durable pest repellent and pest repellent resin composition
JP2020050636A (en) * 2018-09-28 2020-04-02 エステー株式会社 Acarid repellent and method for repelling acarid using the same
WO2020104660A1 (en) * 2018-11-23 2020-05-28 Hilaire Alain Bactericidal, fungicidal and virucidal decontaminating composition
FR3088805A1 (en) * 2018-11-23 2020-05-29 Alain HILAIRE Decontaminating, bactericidal, fungicidal and virucidal composition

Also Published As

Publication number Publication date
JP5489030B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
Aguilar-Méndez et al. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides
JP6151513B2 (en) Antibacterial composition and related methods of use
EP2367552B1 (en) Silica-based antibacterial and antifungal nanoformulation
JP5489030B2 (en) Clay mineral-based composite material and production method thereof
JPH02142709A (en) Controller against harmful organism
RU2614063C1 (en) Package for antimicrobial treatment
JP2014534967A (en) Antimicrobial formulation containing pelargonic acid
CA2824455C (en) Synergistic disinfecting compositions with essential oils
KR102304233B1 (en) Antimicrobial compositions and related methods of use
Moore et al. Types of antimicrobial agents
Collina et al. Greenhouse assays on the control of the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae)
JPH02142703A (en) Controller against harmful organism
EP3592147A1 (en) Self-assembled active agents
Bhattacharya et al. Microbially synthesized nanoparticles: aspect in plant disease management
Hashem et al. Bioactive jute fabrics for packaging and storage of grains and legumes applications
Lekshmi et al. Bio-mediated synthesis of silver nanoparticles using Cotinus coggygria extract and their multifaceted applications
Abdel-Halim et al. Antifungal potent of some metallic nanoparticles against Sclerotinia sclerotiorum on common bean plants: An emphasis for biochemical alterations and metal accumulation
CN102503939B (en) Industrial production process for cis-form propiconazole crude medicament
WO2011049201A1 (en) Antibacterial agent and antibacterial product
KR102414509B1 (en) Manufacturing method for colloidal silver ion composition comprising phytoncide oil and colloidal silver ion composition manufactured using the same
JPH02115107A (en) Antibiotic agent
JP5299750B2 (en) Clay mineral antimicrobial material, production method and use thereof
da Silva et al. Evaluation of toxicity of Bordeaux Mixture in Aedes aegypti larvae (L. 1672)(Diptera: Culicidae) and Gram-negative and Gram-positive bacteria
KR101740000B1 (en) Seed disinfectant comprising chitosan implicated essential oils and method thereof
KR100448926B1 (en) The composition of liquid disinfectant including the stabilized wood vinegar treated with ascorbic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120420

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120618

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121122

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140214

R150 Certificate of patent or registration of utility model

Ref document number: 5489030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250