JP2007288978A - Power supply apparatus and electrodeless discharge lamp lighting device, lighting fixture - Google Patents

Power supply apparatus and electrodeless discharge lamp lighting device, lighting fixture Download PDF

Info

Publication number
JP2007288978A
JP2007288978A JP2006116051A JP2006116051A JP2007288978A JP 2007288978 A JP2007288978 A JP 2007288978A JP 2006116051 A JP2006116051 A JP 2006116051A JP 2006116051 A JP2006116051 A JP 2006116051A JP 2007288978 A JP2007288978 A JP 2007288978A
Authority
JP
Japan
Prior art keywords
life
circuit
power supply
voltage
disconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006116051A
Other languages
Japanese (ja)
Inventor
Akira Nakashiro
明 中城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006116051A priority Critical patent/JP2007288978A/en
Publication of JP2007288978A publication Critical patent/JP2007288978A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply apparatus and electrodeless discharge lamp lighting device, lighting fixture that prevents malfunctions due to usage beyond the end of service life. <P>SOLUTION: A series circuit for two voltage dividing resistances R11, R12 is connected between output ends of a main circuit E, and a wire break portion 30 at the end of service life is inserted between the one voltage dividing resistance R11 and the terminal end on the high-voltage side of the main circuit E. A detection voltage Vm, obtained by dividing an output voltage Vdc of the main circuit E by voltage-dividing resistances R11, R12, is input to a controller 100. The purpose of the controller 100 is to perform a feedback control (PWM control), to adjust on-duty ratio of a drive signal output from a drive circuit 2 so that the detection voltage Vm becomes a desired value. The controller 100 causes the output of the drive signal generated by the drive circuit 2 to be stopped, when the wire break portion 30 at the end of service life is broken and a detection voltage Vm becomes zero, and at the same time, causes the operations of both the main circuit E and a power conversion circuit 9 to be stopped, by causing the output of the drive signal generated by the drive circuit 16 to be stopped. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電源装置並びに無電極放電灯点灯装置、照明器具に関するものである。   The present invention relates to a power supply device, an electrodeless discharge lamp lighting device, and a lighting fixture.

従来、直流又は交流の入力を所望の直流若しくは交流の出力に変換する主回路部と、主回路部を構成する複数の回路部品が実装されるとともに各回路部品間の電気配線となる導体パターンが表面に形成されたプリント配線板と、箱状に形成され内部にプリント配線板を収納し且つウレタン樹脂が充填されたケースとを備えた電源装置が提供されている(例えば、特許文献1参照)。
特開平9−46072号公報
Conventionally, a main circuit part that converts a direct current or alternating current input into a desired direct current or alternating current output, and a plurality of circuit parts constituting the main circuit part are mounted, and a conductor pattern serving as an electrical wiring between the circuit parts is provided. There is provided a power supply device including a printed wiring board formed on the surface and a case formed in a box shape and containing the printed wiring board therein and filled with urethane resin (see, for example, Patent Document 1). .
Japanese Patent Laid-Open No. 9-46072

ところで、電源装置が回路部品の寿命を超えて使用された場合、性能が低下するだけでなく、回路部品が異常に発熱したり、負荷に悪影響を与えるというような不具合の生じる可能性があった。   By the way, when the power supply device is used beyond the life of the circuit parts, not only the performance deteriorates, but there is a possibility that the circuit parts may abnormally generate heat or cause problems such as adversely affecting the load. .

本発明は上記事情に鑑みて為されたものであり、その目的は、寿命を超えた使用による不具合の発生が防止できる電源装置並びに無電極放電灯点灯装置、照明器具を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the power supply device which can prevent generation | occurrence | production of the malfunction by use beyond the lifetime, an electrodeless discharge lamp lighting device, and a lighting fixture.

請求項1の発明は、上記目的を達成するために、直流又は交流の入力を所望の直流若しくは交流の出力に変換する主回路部と、主回路部を構成する複数の回路部品が実装されるとともに各回路部品間の電気配線となる導体パターンが表面に形成されたプリント配線板と、箱状に形成され内部にプリント配線板を収納し且つウレタン樹脂が充填されたケースとを備えた電源装置であって、前記導体パターンにおける直流電圧が印加される1乃至複数箇所に、経時的な劣化が相対的に進行し易く且つ寿命末期には劣化によって断線する寿命時断線部が設けられたことを特徴とする。   In order to achieve the above object, the invention according to claim 1 is provided with a main circuit part for converting a DC or AC input into a desired DC or AC output and a plurality of circuit components constituting the main circuit part. And a printed wiring board having a conductor pattern formed on the surface as electrical wiring between each circuit component, and a case formed in a box shape and containing the printed wiring board therein and filled with urethane resin In one or a plurality of places where a DC voltage is applied in the conductor pattern, a life-time disconnection portion is provided in which deterioration with time is relatively easy to proceed and disconnection due to deterioration at the end of the life is provided. Features.

請求項2の発明は、請求項1の発明において、前記導体パターンのうちで直流電圧が印加される箇所が絶縁性を有する保護膜で覆われ、前記導体パターンを幅方向に横切り且つ前記保護膜が存在しないスリットで前記寿命時断線部が形成されたことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, a portion of the conductor pattern to which a DC voltage is applied is covered with an insulating protective film, the conductor pattern is crossed in the width direction, and the protective film The disconnection portion at the end of the lifetime is formed by a slit that does not exist.

請求項3の発明は、請求項1の発明において、前記導体パターンの幅寸法を相対的に細くすることで前記寿命時断線部が形成されたことを特徴とする。   According to a third aspect of the present invention, in the first aspect of the invention, the disconnection portion at the time of life is formed by relatively narrowing a width dimension of the conductor pattern.

請求項4の発明は、請求項1〜3の何れかの発明において、前記主回路部の動作を制御するとともに前記寿命時断線部が断線した場合に主回路部の動作を停止させる制御部を備えたことを特徴とする。   According to a fourth aspect of the present invention, there is provided a control unit according to any one of the first to third aspects, wherein the control unit controls the operation of the main circuit unit and stops the operation of the main circuit unit when the disconnection unit at the end of life is disconnected. It is characterized by having.

請求項5の発明は、請求項1〜4の何れかの発明において、前記主回路部若しくは制御部を構成する回路部品のうちで相対的に発熱量の多い回路部品の近傍に前記寿命時断線部が設けられたことを特徴とする。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the disconnection at the time of the lifetime in the vicinity of a circuit component having a relatively large calorific value among circuit components constituting the main circuit unit or the control unit. A part is provided.

請求項6の発明は、請求項1〜5の何れかの発明において、前記寿命時断線部は、前記プリント配線板における回路部品の実装面側に設けられたことを特徴とする。   According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the disconnection portion at the time of life is provided on a circuit component mounting surface side of the printed wiring board.

請求項7の発明は、請求項3の発明において、周囲の温度又は湿度を検出する検出手段と、検出手段の検出値が所定のしきい値以下のときに前記寿命時断線部における導体パターンの幅寸法を見かけ上細くする手段とを備えたことを特徴とする。   According to a seventh aspect of the present invention, in the third aspect of the invention, the detection means for detecting the ambient temperature or humidity, and the conductor pattern in the disconnection portion at the time of the lifetime when the detection value of the detection means is less than or equal to a predetermined threshold value And a means for apparently narrowing the width dimension.

請求項8の発明は、請求項1〜6の何れかの発明において、周囲の温度又は湿度を検出する検出手段と、検出手段の検出値が所定のしきい値以下のときに前記寿命時断線部に印加される直流電圧を高くする手段とを備えたことを特徴とする。   According to an eighth aspect of the present invention, in the invention according to any one of the first to sixth aspects, the lifetime disconnection occurs when the detection means for detecting the ambient temperature or humidity and the detection value of the detection means are below a predetermined threshold value. And means for increasing the DC voltage applied to the unit.

請求項9の発明は、請求項1〜6の何れかの発明において、周囲の温度又は湿度を検出する検出手段と、前記寿命時断線部を幅方向に挟んで対向配置された一対の電極と、検出手段の検出値が所定のしきい値以下のときに前記電極間に印加する電圧を高くする手段とを備えたことを特徴とする。   The invention of claim 9 is the invention according to any one of claims 1 to 6, wherein the detecting means for detecting the ambient temperature or humidity, and a pair of electrodes arranged opposite to each other with the disconnection portion at the time of life in the width direction And a means for increasing the voltage applied between the electrodes when the detection value of the detection means is below a predetermined threshold value.

請求項10の発明は、請求項5の発明において、周囲の温度を検出する温度検出手段と、温度検出手段の検出値が所定のしきい値以下のときに前記発熱部品の発熱量を増大させる手段とを備えたことを特徴とする。   According to a tenth aspect of the present invention, in the fifth aspect of the invention, the temperature detecting means for detecting the ambient temperature and the amount of heat generated by the heat generating component when the detected value of the temperature detecting means is equal to or lower than a predetermined threshold value. Means.

請求項11の発明は、請求項1〜10の何れかの発明において、温度又は湿度によって劣化の進行度合いが異なる複数の前記寿命時断線部が設けられたことを特徴とする。   According to an eleventh aspect of the present invention, in any one of the first to tenth aspects, a plurality of the disconnection portions at the time of life differing in the degree of progress of deterioration depending on temperature or humidity are provided.

請求項12の発明は、上記目的を達成するために、請求項1〜11の何れか1項に記載された電源装置と、該電源装置から供給される直流電力を高周波電力に変換する高周波電源部と、無電極放電灯の近傍に設けられ前記高周波電源部の出力端に接続された誘導コイルとを備えたことを特徴とする。   In order to achieve the above object, a power supply device according to any one of claims 1 to 11 and a high frequency power supply for converting DC power supplied from the power supply device into high frequency power. And an induction coil provided in the vicinity of the electrodeless discharge lamp and connected to the output terminal of the high-frequency power supply unit.

請求項13の発明は、上記目的を達成するために、請求項12記載の無電極放電灯点灯装置と、無電極放電灯を保持するランプソケットとを備えたことを特徴とする。   In order to achieve the above object, the invention of claim 13 comprises the electrodeless discharge lamp lighting device according to claim 12 and a lamp socket for holding the electrodeless discharge lamp.

請求項1,12,13の各発明によれば、寿命時断線部が断線すると電源装置、無電極放電灯点灯装置、照明器具が正常に動作しないために寿命を超えて使用されることがないから、寿命を超えた使用による不具合の発生が防止できる電源装置並びに無電極放電灯点灯装置、照明器具が提供できる。   According to the inventions of claims 1, 12 and 13, when the disconnection part at the time of life is disconnected, the power supply device, the electrodeless discharge lamp lighting device, and the lighting fixture do not operate normally, so that they are not used beyond the life. Thus, it is possible to provide a power supply device, an electrodeless discharge lamp lighting device, and a lighting fixture that can prevent the occurrence of problems due to use beyond the lifetime.

請求項2の発明によれば、ウレタン樹脂が加水分解して生じる酸によって、保護膜で保護されていない寿命時断線部が相対的に早く劣化することになるから、寿命に達した場合により確実に断線させることができ、且つ回路部品の追加無しに寿命時断線部を容易に形成することができる。   According to the second aspect of the present invention, the life-time disconnection portion that is not protected by the protective film is deteriorated relatively quickly by the acid generated by hydrolysis of the urethane resin. In addition, it is possible to easily form a disconnection part at the time of life without adding circuit components.

請求項3の発明によれば、ウレタン樹脂が加水分解して生じる酸によって、導体パターンの幅寸法を細くすることで形成された寿命時断線部が相対的に早く劣化することになるから、寿命に達した場合により確実に断線させることができ、且つ回路部品の追加無しに寿命時断線部を容易に形成することができる。   According to the invention of claim 3, the life-time disconnection portion formed by narrowing the width dimension of the conductor pattern is deteriorated relatively quickly by the acid generated by hydrolysis of the urethane resin. Therefore, it is possible to reliably disconnect the wire, and to easily form the disconnection portion at the time of life without adding circuit components.

請求項4の発明によれば、寿命時断線部が断線したときに制御部が主回路部の動作を停止するから、寿命を超えた使用による不具合の発生がより確実に防止できる。   According to the invention of claim 4, since the control unit stops the operation of the main circuit unit when the disconnection part at the time of service life is disconnected, it is possible to more reliably prevent the occurrence of trouble due to use exceeding the service life.

請求項5の発明によれば、熱によって寿命時断線部の劣化が加速されるため、寿命に達した場合により確実に断線させることができる。   According to the invention of claim 5, since the deterioration of the disconnection portion at the time of life is accelerated by heat, the disconnection can be surely made when the lifetime is reached.

請求項6の発明によれば、空気中の水分(湿気)によって寿命時断線部の劣化が加速されるため、寿命に達した場合により確実に断線させることができる。   According to the invention of claim 6, since the deterioration of the disconnection part at the time of life is accelerated by the moisture (humidity) in the air, the disconnection can be surely made when the service life is reached.

請求項7〜9の発明によれば、しきい値以下となる低温度時又は低湿度時に、寿命時断線部における導体パターンの幅寸法を見かけ上細くするか、寿命時断線部に印加される直流電圧を高くするか、あるいは寿命時断線部を幅方向に挟んで対向配置された一対の電極間に印加する電圧を高くするので、寿命時断線部以外の部分が寿命に達する前に寿命時断線部を確実に断線させることができる。   According to the seventh to ninth aspects of the present invention, the width dimension of the conductor pattern at the life-time disconnection portion is apparently narrowed or applied to the life-time disconnection portion at a low temperature or low humidity that is equal to or lower than the threshold value. The DC voltage is increased, or the voltage applied between a pair of electrodes placed opposite each other with the broken part at the end of the life in the width direction is increased. The disconnection portion can be reliably disconnected.

請求項10の発明によれば、しきい値以下となる低温度時に、寿命時断線部の近傍にある発熱部品の発熱量を増大させるので、寿命時断線部以外の部分が寿命に達する前に寿命時断線部を確実に断線させることができる。   According to the invention of claim 10, since the amount of heat generated by the heat generating component in the vicinity of the disconnection part at the time of life is increased at a low temperature that is equal to or lower than the threshold value, before the part other than the disconnection part at the end of the life reaches the end of life. The disconnection part at the end of the life can be surely disconnected.

請求項11の発明によれば、温度又は湿度によって劣化の進行度合いが異なる複数の前記寿命時断線部が設けられているので、様々な温度条件及び湿度条件のもとでも寿命時断線部以外の部分が寿命に達する前に寿命時断線部を確実に断線させることができる。   According to the invention of claim 11, since the plurality of life-time disconnection portions having different degrees of deterioration depending on temperature or humidity are provided, other than the life-time disconnection portion under various temperature conditions and humidity conditions. Before the part reaches the end of its life, the disconnection part at the end of the life can be surely disconnected.

以下、本発明の技術思想を無電極放電灯点灯装置に適用した実施形態について、図面を参照して詳細に説明する。但し、本発明の技術思想が適用可能な電源装置は無電極放電灯点灯装置に限定されるものではない。   Hereinafter, embodiments in which the technical idea of the present invention is applied to an electrodeless discharge lamp lighting device will be described in detail with reference to the drawings. However, the power supply device to which the technical idea of the present invention can be applied is not limited to the electrodeless discharge lamp lighting device.

(実施形態1)
図1に本実施形態の無電極放電灯点灯装置の回路図を示す。本実施形態の無電極放電灯点灯装置は、特開2005−158464公報に開示されているものと基本構成が共通であって、商用交流電源ACの交流出力から所望の直流出力を作成する主回路部Eと、主回路部Eの直流出力を高周波出力に変換して無電極放電灯6の近傍に配置された誘導コイル5に供給する電力変換回路9と、無電極放電灯6の始動時に電力変換回路9の出力電圧を徐々に上昇させて無電極放電灯6を始動する始動回路13と、電力変換回路9の出力電圧(誘導コイル5の印加電圧)Vxを検出する電圧検出回路14とを備える。主回路部Eは、交流電源ACの交流出力を整流する整流回路10と、インダクタL10、ダイオードD10、スイッチング素子Q6、平滑コンデンサC10並びにスイッチング素子Q6を駆動する駆動回路2を具備した従来周知の昇圧チョッパ回路からなる。また電力変換回路9は、主回路部Eの出力端間に直列接続された一対のスイッチング素子Q3,Q4を具備し、ローサイドのスイッチング素子Q4にインダクタLs、コンデンサCp,Csからなる共振回路が接続された所謂ハーフブリッジ型のインバータ回路で構成され、電界効果トランジスタからなる一対のスイッチング素子Q3,Q4を、駆動回路16から出力される矩形波パルスの駆動信号VDH,VDLにより交互にスイッチングすることで共振回路を介して誘導コイル5に高周波出力を供給する。なお、スイッチング素子Q3を駆動する駆動信号VDHとスイッチング素子Q4を駆動する駆動信号VDLは略180度の位相差を有している。電圧検出回路14は整流用のダイオード、分圧用の抵抗、平滑用のコンデンサ等からなり、出力電圧Vxに応じた直流電圧である検出電圧Vxsを始動回路13に出力する。
(Embodiment 1)
FIG. 1 shows a circuit diagram of the electrodeless discharge lamp lighting device of the present embodiment. The electrodeless discharge lamp lighting device of the present embodiment has the same basic configuration as that disclosed in Japanese Patent Application Laid-Open No. 2005-158464, and creates a desired DC output from the AC output of the commercial AC power supply AC. Part E, a power conversion circuit 9 for converting the DC output of the main circuit part E into a high-frequency output and supplying it to the induction coil 5 arranged in the vicinity of the electrodeless discharge lamp 6, and power when starting the electrodeless discharge lamp 6 A start circuit 13 for starting the electrodeless discharge lamp 6 by gradually increasing the output voltage of the conversion circuit 9 and a voltage detection circuit 14 for detecting the output voltage (application voltage of the induction coil 5) Vx of the power conversion circuit 9 Prepare. The main circuit section E includes a rectifier circuit 10 that rectifies the AC output of the AC power supply AC, and a well-known booster that includes an inductor L10, a diode D10, a switching element Q6, a smoothing capacitor C10, and a driving circuit 2 that drives the switching element Q6. It consists of a chopper circuit. The power conversion circuit 9 includes a pair of switching elements Q3 and Q4 connected in series between the output ends of the main circuit portion E, and a resonance circuit including an inductor Ls and capacitors Cp and Cs is connected to the low-side switching element Q4. The so-called half-bridge type inverter circuit is configured to alternately switch a pair of switching elements Q3 and Q4 composed of field-effect transistors according to rectangular wave pulse drive signals V DH and V DL output from the drive circuit 16. Thus, a high frequency output is supplied to the induction coil 5 through the resonance circuit. The drive signal V DH for driving the switching element Q3 and the drive signal V DL for driving the switching element Q4 have a phase difference of about 180 degrees. The voltage detection circuit 14 includes a rectifying diode, a voltage dividing resistor, a smoothing capacitor, and the like, and outputs a detection voltage Vxs, which is a DC voltage corresponding to the output voltage Vx, to the starting circuit 13.

一方、始動回路13は、主回路部Eの出力電圧Vdcを降圧・安定化して得られる動作電圧Vdにより感温抵抗R1を介して充電されるコンデンサC1と、オペアンプOP1に入力抵抗および帰還抵抗を接続してなり、コンデンサC1の両端電圧Vc1と電圧検出回路14の検出電圧Vxsの差分を増幅する誤差増幅器と、コンデンサC1と並列に接続された分圧抵抗R2と、コンデンサC1と並列に接続された放電用のスイッチSWとを具備し、後述するように抵抗R1とコンデンサC1からなる充電回路の時定数(=抵抗R1の抵抗値とコンデンサC1の容量値の積)に応じて出力電圧Vfが徐々に上昇するものである。そして、始動回路13の出力電圧Vfが電圧制御発振器(VCO)からなる駆動回路16に入力されており、駆動回路16は始動回路13の出力電圧Vfの上昇に応じて駆動信号VDH,VDLの周波数を徐々に減少させている。 On the other hand, the starting circuit 13 has a capacitor C1 charged via the temperature-sensitive resistor R1 with an operating voltage Vd obtained by stepping down and stabilizing the output voltage Vdc of the main circuit section E, and an input resistor and a feedback resistor for the operational amplifier OP1. An error amplifier that amplifies the difference between the voltage Vc1 across the capacitor C1 and the detection voltage Vxs of the voltage detection circuit 14, a voltage dividing resistor R2 connected in parallel with the capacitor C1, and a capacitor C1. And the output voltage Vf according to the time constant (= the product of the resistance value of the resistor R1 and the capacitance value of the capacitor C1) of the charging circuit comprising the resistor R1 and the capacitor C1, as will be described later. It will gradually rise. The output voltage Vf of the starting circuit 13 is input to a driving circuit 16 composed of a voltage controlled oscillator (VCO). The driving circuit 16 drives the driving signals V DH and V DL in accordance with the increase of the output voltage Vf of the starting circuit 13. The frequency is gradually reduced.

また、共振回路に流れる共振電流を検出する電流検出回路と、電流検出回路の検出電流を参照して電力変換回路9の出力電圧Vxが所望のレベルとなるように駆動回路16を制御して駆動信号VDH,VDLの周波数(動作周波数)finvを変化させる制御回路17を備え、駆動回路16が、始動回路13が出力する第1の制御出力(第1の制御電流Isw)と、制御回路17が出力する第2の制御出力(第2の制御電流Ifb)とを加算した制御出力(制御電流)Ioに応じて動作周波数finvを変化させる。 In addition, a current detection circuit that detects a resonance current flowing in the resonance circuit, and a drive circuit 16 that controls the drive circuit 16 so that the output voltage Vx of the power conversion circuit 9 becomes a desired level with reference to the detection current of the current detection circuit. A control circuit 17 for changing the frequencies (operating frequencies) finv of the signals V DH and V DL is provided. The drive circuit 16 includes a first control output (first control current Isw) output from the start circuit 13, and a control circuit. The operating frequency finv is changed in accordance with the control output (control current) Io obtained by adding the second control output (second control current Ifb) output by the control unit 17.

電流検出回路は、電力変換回路9を構成するローサイドのスイッチング素子Q4と回路のグランドとの間に接続された検出抵抗Rdからなり、スイッチング素子Q4に流れる高周波電流(共振回路に流れる共振電流)に応じた検出電圧VRdを制御回路17に出力している。 The current detection circuit includes a detection resistor Rd connected between the low-side switching element Q4 constituting the power conversion circuit 9 and the circuit ground, and generates a high-frequency current flowing through the switching element Q4 (resonance current flowing through the resonance circuit). The corresponding detection voltage V Rd is output to the control circuit 17.

制御回路17は、オペアンプOP2に入力抵抗等を接続してなり、基準電圧Vrefと電流検出回路の検出電圧VRdの差分を増幅する誤差増幅器(差動増幅器)と、抵抗を介してオペアンプOP2の出力端子にカソードが接続されたダイオードD2とを具備する。オペアンプOP2は、基準電圧Vrefが非反転端子に入力されるとともに、反転端子と出力端子の間に抵抗R10とコンデンサC11の並列回路からなる遅延回路が接続されている。また、始動回路13の誤差増幅器を構成するオペアンプOP1の出力端子にも抵抗を介してダイオードD1のカソードが接続されており、これら2つのダイオードD1,D2のアノードが駆動回路16の入力端子に並列接続されている。ここで、駆動回路16の入力端子には定電圧(入力端子電圧)が印加されており、始動回路13の誤差増幅器の出力電圧(オペアンプOP1の出力端子電圧)が駆動回路16の入力端子電圧よりも小さいときにダイオードD1が導通してその電位差に応じた第1の制御電流Iswが流れるとともに、制御回路17の誤差増幅器の出力電圧(オペアンプOP2の出力端子電圧)が駆動回路16の入力端子電圧よりも小さいときにダイオードD2が導通してその電位差に応じた第2の制御電流Ifbが流れる。故に、駆動回路16の入力端子から流れ出る制御電流Ioの大きさは第1および第2の制御電流Isw,Ifbの和となる。 The control circuit 17 is configured by connecting an input resistor or the like to the operational amplifier OP2, and an error amplifier (differential amplifier) that amplifies the difference between the reference voltage Vref and the detection voltage V Rd of the current detection circuit, and the operational amplifier OP2 via the resistor. And a diode D2 having a cathode connected to the output terminal. In the operational amplifier OP2, the reference voltage Vref is input to the non-inverting terminal, and a delay circuit including a parallel circuit of a resistor R10 and a capacitor C11 is connected between the inverting terminal and the output terminal. Further, the cathode of the diode D1 is connected to the output terminal of the operational amplifier OP1 constituting the error amplifier of the starting circuit 13 via a resistor, and the anodes of these two diodes D1 and D2 are connected in parallel to the input terminal of the drive circuit 16. It is connected. Here, a constant voltage (input terminal voltage) is applied to the input terminal of the drive circuit 16, and the output voltage of the error amplifier of the starting circuit 13 (the output terminal voltage of the operational amplifier OP 1) is greater than the input terminal voltage of the drive circuit 16. Is smaller, the first control current Isw corresponding to the potential difference flows and the output voltage of the error amplifier of the control circuit 17 (the output terminal voltage of the operational amplifier OP2) is the input terminal voltage of the drive circuit 16. When it is smaller than that, the diode D2 becomes conductive, and a second control current Ifb corresponding to the potential difference flows. Therefore, the magnitude of the control current Io flowing out from the input terminal of the drive circuit 16 is the sum of the first and second control currents Isw and Ifb.

一方、駆動回路16は発振器を具備しており、入力端子から始動回路13並びに制御回路17の出力端子へ流れる制御電流Ioに応じて発振器の発振周波数を変化させ、制御電流Ioに比例して駆動信号VDH,VDLの周波数(動作周波数)finvを増減している。したがって、始動回路13並びに制御回路17の誤差増幅器の出力電圧が大きくなるほど駆動回路16の動作周波数finvは減少することになる。 On the other hand, the drive circuit 16 includes an oscillator, and changes the oscillation frequency of the oscillator according to the control current Io flowing from the input terminal to the start circuit 13 and the output terminal of the control circuit 17, and is driven in proportion to the control current Io. The frequency (operating frequency) finv of the signals V DH and V DL is increased or decreased. Therefore, the operating frequency finv of the drive circuit 16 decreases as the output voltage of the error amplifier of the starting circuit 13 and the control circuit 17 increases.

交流電源ACから主回路部Eへの電源供給が開始されてスイッチSWがオンからオフに切り替わると、主回路部Eの出力電圧Vdcが立ち上がり、動作電圧VdによってコンデンサC1が充電されてオペアンプOP1の出力電圧が徐々に上昇し、それに伴って第1の制御電流Iswが徐々に減少する。一方、この時点では電力変換回路9の出力電流(共振電流)は略ゼロであるからその検出電圧VRdも略ゼロとなり、制御回路17の誤差増幅器を構成するオペアンプOP1の出力電圧Vnは基準電圧Vrefに応じた初期値(最大値)となる。そして、時間の経過とともに電力変換回路9の出力電流が増加して検出電圧VRdも増加し、それに合わせてオペアンプOP2の出力電圧Vnが減少するが、抵抗R10およびコンデンサC11からなる遅延回路のはたらきで誤差増幅器の出力電圧は初期値(略ゼロ)から増加せず、制御回路17の第2の制御電流Ifbもほぼゼロとなる。したがって、オペアンプOP2の出力電圧Vnが駆動回路16の入力端子電圧よりも高電圧である間は第2の制御電流Ifbが略ゼロとなり、制御出力Ioが第1の制御出力Iswとほぼ一致するため、制御回路17による動作周波数finvのフィードバック制御が行われず、従来例で説明したように始動回路13から出力される第1の制御電流Iswによって動作周波数finvを徐々に減少させる制御のみが行われる。 When the power supply from the AC power supply AC to the main circuit unit E is started and the switch SW is switched from on to off, the output voltage Vdc of the main circuit unit E rises, the capacitor C1 is charged by the operating voltage Vd, and the operational amplifier OP1 The output voltage gradually increases, and the first control current Isw gradually decreases accordingly. On the other hand, since the output current (resonant current) of the power conversion circuit 9 is substantially zero at this time, the detection voltage V Rd is also substantially zero, and the output voltage Vn of the operational amplifier OP1 constituting the error amplifier of the control circuit 17 is the reference voltage. It becomes an initial value (maximum value) according to Vref. As the time elapses, the output current of the power conversion circuit 9 increases and the detection voltage V Rd also increases, and the output voltage Vn of the operational amplifier OP2 decreases accordingly, but the delay circuit composed of the resistor R10 and the capacitor C11 works. Thus, the output voltage of the error amplifier does not increase from the initial value (substantially zero), and the second control current Ifb of the control circuit 17 is also substantially zero. Therefore, while the output voltage Vn of the operational amplifier OP2 is higher than the input terminal voltage of the drive circuit 16, the second control current Ifb is substantially zero, and the control output Io substantially coincides with the first control output Isw. The feedback control of the operating frequency finv by the control circuit 17 is not performed, and only the control for gradually decreasing the operating frequency finv by the first control current Isw output from the starting circuit 13 is performed as described in the conventional example.

そして、始動回路13により駆動回路16の動作周波数finvが徐々に減少して始動周波数fmに達すると、電力変換回路9の出力電圧Vxが始動電圧に達し、無電極放電灯6が点灯して特性が変化することで出力電圧Vxが下降する。さらに、無電極放電灯6が点灯した後も始動回路13は動作周波数finvを始動終了周波数feまで減少させる。ここで、制御回路17における遅延回路の遅延時間は無電極放電灯6が始動点灯するまでに要する時間程度に設定されており、それ以降はオペアンプOP2の出力電圧Vnと駆動回路16の入力端子電圧の電位差に応じて第2の制御電流Ifbが流れるため、制御電流Ioの増加とともに動作周波数finvも増加し、電力変換回路9の出力電圧Vxが減少することになる。なお、駆動回路16の動作周波数finvは、共振電流が無電極放電灯6の定格点灯持における所望のレベルに一致するとき、すなわち、検出電圧VRdが基準電圧Vrefと一致するときの周波数(定格点灯周波数)fxに落ち着くことになる。これ以降、制御回路17は共振電流(電力変換回路9の出力電流)を基準電圧Vrefで決まる所望のレベルに一致させるように駆動回路16の動作周波数finvをフィードバック制御して無電極放電灯6を安定点灯させる。なお、始動回路13のコンデンサC1の両端電圧Vc1は、動作電圧Vdを抵抗R1,R2で分圧した電圧までしか増加しないので、この分圧電圧と無電極放電灯6の点灯時における電圧検出回路14の検出電圧Vxsとの電位差が駆動回路16の入力端子電圧よりも高電圧となるようにしておけば、始動回路13が動作周波数finvの減少を終了した後は制御回路17のみで駆動回路16を制御することとなり、無電極放電灯6の点灯時における制御回路17の制御が簡単になるという利点がある。 Then, when the operating frequency finv of the drive circuit 16 is gradually decreased by the starting circuit 13 and reaches the starting frequency fm, the output voltage Vx of the power conversion circuit 9 reaches the starting voltage, and the electrodeless discharge lamp 6 is turned on and the characteristics are increased. Changes the output voltage Vx. Further, even after the electrodeless discharge lamp 6 is turned on, the starting circuit 13 reduces the operating frequency finv to the starting end frequency fe. Here, the delay time of the delay circuit in the control circuit 17 is set to the time required until the electrodeless discharge lamp 6 is started and lit. Thereafter, the output voltage Vn of the operational amplifier OP2 and the input terminal voltage of the drive circuit 16 are set. Since the second control current Ifb flows in accordance with the potential difference between them, the operating frequency finv increases as the control current Io increases, and the output voltage Vx of the power conversion circuit 9 decreases. Note that the operating frequency finv of the drive circuit 16 is a frequency (rated rating) when the resonance current matches a desired level when the electrodeless discharge lamp 6 is lit and rated, that is, when the detected voltage V Rd matches the reference voltage Vref. The lighting frequency is settled to fx. Thereafter, the control circuit 17 feedback-controls the operating frequency finv of the drive circuit 16 so that the resonance current (the output current of the power conversion circuit 9) matches the desired level determined by the reference voltage Vref, and the electrodeless discharge lamp 6 is controlled. Make it light stably. Note that the voltage Vc1 across the capacitor C1 of the starting circuit 13 increases only up to the voltage obtained by dividing the operating voltage Vd by the resistors R1 and R2, so that the divided voltage and the voltage detection circuit when the electrodeless discharge lamp 6 is turned on. 14 is made higher than the input terminal voltage of the drive circuit 16, the drive circuit 16 is controlled only by the control circuit 17 after the starter circuit 13 finishes reducing the operating frequency finv. Therefore, there is an advantage that the control of the control circuit 17 is simplified when the electrodeless discharge lamp 6 is turned on.

また、主回路部E並びに電力変換回路9は、スイッチング素子Q6,Q3,Q4などの回路部品をプリント配線板50に実装して構成され、図2に示すように金属材料によって箱状に形成されたケース60の内部に収納される。プリント配線板50は各回路部品間の電気配線となる導体パターン(図示せず)が表面(若しくは表裏両面)に形成されている。さらに、ケース60の内部は回路部品のリードが隠れる程度までウレタン樹脂200が充填されて封止されている。   The main circuit portion E and the power conversion circuit 9 are configured by mounting circuit components such as switching elements Q6, Q3, and Q4 on the printed wiring board 50, and are formed in a box shape from a metal material as shown in FIG. The case 60 is housed inside. The printed wiring board 50 has a conductor pattern (not shown) for electrical wiring between circuit components formed on the front surface (or both front and back surfaces). Furthermore, the inside of the case 60 is filled and sealed with the urethane resin 200 to the extent that the leads of the circuit components are hidden.

次に本実施形態の要旨となる構成について説明する。   Next, the structure which becomes the summary of this embodiment is demonstrated.

本実施形態は、プリント配線板50に形成された導体パターンにおける直流電圧が印加される1乃至複数箇所に、経時的な劣化が相対的に進行し易く且つ寿命末期には劣化によって断線する寿命時断線部30が設けられている点に特徴がある。また、図1に示すように、主回路部Eの出力端間に2つの分圧抵抗R11,R12の直列回路が接続されるとともに、一方の分圧抵抗R11と主回路部Eの高電位側の出力端との間に前記寿命時断線部30が挿入され、主回路部Eの出力電圧Vdcを分圧抵抗R11,R12で分圧した検出電圧Vmが制御部100に入力されている。制御部100は、検出電圧Vmが所望の値となるように駆動回路2から出力する駆動信号のオンデューティ比を調整するフィードバック制御(PWM制御)を行うものであって、寿命時断線部30が断線して検出電圧Vmがゼロとなったときに駆動回路2による駆動信号の出力を停止させると同時に駆動回路16による駆動信号の出力を停止させることで主回路部E並びに電力変換回路9の双方の動作を停止させる。   In the present embodiment, at one or more places where a DC voltage is applied to the conductor pattern formed on the printed wiring board 50, deterioration with time is relatively easy to progress, and at the end of life, the life is broken due to deterioration. It is characterized in that the disconnection portion 30 is provided. Further, as shown in FIG. 1, a series circuit of two voltage dividing resistors R11 and R12 is connected between the output terminals of the main circuit portion E, and one voltage dividing resistor R11 and the high potential side of the main circuit portion E are connected. The disconnection part 30 at the time of life is inserted between the output terminal and the detection voltage Vm obtained by dividing the output voltage Vdc of the main circuit part E by the voltage dividing resistors R11 and R12. The control unit 100 performs feedback control (PWM control) for adjusting the on-duty ratio of the drive signal output from the drive circuit 2 so that the detection voltage Vm has a desired value. When the detection voltage Vm becomes zero due to disconnection, the output of the drive signal by the drive circuit 2 is stopped and simultaneously the output of the drive signal by the drive circuit 16 is stopped so that both the main circuit unit E and the power conversion circuit 9 are stopped. Stop the operation.

寿命時断線部30は、例えば、図3(a)に示すように導体パターン51が形成されたプリント配線板50の表面に絶縁性を有する塗料をシルク印刷することで保護膜61を形成する際、導体パターン51を幅方向に横切り且つ保護膜61が存在しないスリットを設けて形成されている。つまり、ケース60内部を封止するウレタン樹脂200が回路部品から発生する熱や空気中に含まれる水分によって加水分解されて酸を発生し、かかる酸がプリント配線板50の導体パターン51等を腐食させてしまうことがあるが、導体パターン51において寿命時断線部30以外の部分は保護膜61で覆われているために酸によって腐食され難いのに対して、スリットの部分では保護膜61がないために周囲よりも電界が若干強くなって酸を引き寄せるから、スリットによって保護膜61で覆われていない部分が腐食され易くなり、その結果、寿命時断線部30が相対的に早く劣化が進行して断線することになる。   When the protective film 61 is formed by, for example, silk-printing an insulating paint on the surface of the printed wiring board 50 on which the conductor pattern 51 is formed as shown in FIG. The slit is formed across the conductor pattern 51 in the width direction and the protective film 61 does not exist. That is, the urethane resin 200 that seals the inside of the case 60 is hydrolyzed by heat generated from the circuit components and moisture contained in the air to generate an acid, and the acid corrodes the conductor pattern 51 and the like of the printed wiring board 50. In the conductor pattern 51, the portions other than the broken portion 30 at the end of the life are covered with the protective film 61 and are not easily corroded by acid, whereas the protective film 61 is not present in the slit portion. For this reason, the electric field is slightly stronger than the surroundings, and the acid is attracted. Therefore, the portion not covered with the protective film 61 is easily corroded by the slit, and as a result, the breakage portion 30 at the time of life progresses relatively quickly. Will be disconnected.

したがって、劣化したときの影響が他の部分に比べて少ない箇所に寿命時断線部30を設けておけば、装置が寿命に達したときに他の部分よりも先に寿命時断線部30が断線して主回路部E並びに電力変換回路9を停止させることができるから、劣化したときの影響が多い危険な箇所が寿命に達した後も継続して使用されることを防ぐことができ、しかも、主回路部E並びに電力変換回路9が停止することで無電極放電灯6が点灯しなくなるから、装置が寿命に達したことを使用者に容易に知らしめることができる。また、寿命に達したか否かの判定を導体パターン51の断線、すなわち、通電の有無で行うことにより、特定回路部品や電気特性の変化等に着目して判定する場合に比べて環境変化や一時的な特性変化、ばらつきに左右されること無しに確実且つ明確な寿命判定が行える。しかも、寿命時断線部30については追加の部品無しに簡単な構造で形成できるから小型且つ安価になるという利点がある。さらに、寿命時断線部30の劣化の進行度合いを導体パターン51の幅寸法等に応じて調整可能であるから、主回路部Eや電力変換回路9の動作と独立して寿命設計ができるという利点もある。   Therefore, if the lifetime disconnection part 30 is provided in a place where the influence when it deteriorates is less than other parts, the lifetime disconnection part 30 is disconnected before the other part when the device reaches the end of its life. Since the main circuit portion E and the power conversion circuit 9 can be stopped, it is possible to prevent a dangerous part having a large influence when it is deteriorated from being continuously used even after reaching the end of its life. Since the electrodeless discharge lamp 6 does not light when the main circuit portion E and the power conversion circuit 9 are stopped, the user can easily be informed that the device has reached the end of its life. In addition, by determining whether or not the life has been reached based on the disconnection of the conductor pattern 51, that is, the presence or absence of energization, environmental changes and A reliable and clear life determination can be made without being affected by temporary characteristic changes and variations. In addition, the disconnection portion 30 at the time of service life can be formed with a simple structure without any additional parts, and thus has an advantage of being small and inexpensive. Furthermore, since the progress of deterioration of the disconnection part 30 at the time of life can be adjusted according to the width dimension of the conductor pattern 51 and the like, it is possible to design the life independently of the operation of the main circuit part E and the power conversion circuit 9. There is also.

ここで、ガラスバルブ内にフィラメントを納装した白熱灯や有極の放電灯の場合、通常、フィラメントが劣化して不点となるためにランプ寿命を容易に知ることができるが、フィラメントを持たない無電極放電灯の場合、寿命末期に光束が徐々に低下はするもののフィラメントがないために不点とはならず、ランプ寿命を超えて使用される可能性が高い。そして、無電極放電灯6がランプ寿命を超えて使用された場合、光束不足となるだけでなく、電力変換回路9の回路部品に過大なストレスがかかって破壊されたり、あるいは、誘導コイル5の被覆が劣化して地絡するといった不都合な状況に至る虞がある。また、無電極放電灯点灯装置では、有極の放電灯を点灯する放電灯点灯装置に比べて負荷の寿命が長い分だけ、当該放電灯点灯装置では起こり得なかったような故障が生じることも想定され、故障によって危険な状況が発生する可能性が高くなると考えられる。したがって、本実施形態のように寿命時断線部30が断線して主回路部E並びに電力変換回路9の動作を停止することで無電極放電灯6を不点にすれば、装置が寿命に達したことを確実に使用者に知らしめることができて安全性の向上が図れるものである。   Here, in the case of an incandescent lamp or a polarized discharge lamp in which a filament is mounted in a glass bulb, the lamp life is usually deteriorated and becomes inconspicuous, so that the lamp life can be easily known. In the case of a non-electrodeless discharge lamp, although the luminous flux gradually decreases at the end of the life, there is no filament, so there is no disadvantage, and there is a high possibility that it will be used beyond the lamp life. When the electrodeless discharge lamp 6 is used beyond the lamp life, not only the light flux becomes insufficient, but the circuit components of the power conversion circuit 9 are damaged due to excessive stress, or the induction coil 5 There is a possibility that it may lead to an inconvenient situation where the coating deteriorates and causes a ground fault. Also, in an electrodeless discharge lamp lighting device, a failure that could not have occurred in the discharge lamp lighting device may occur due to a longer load life than a discharge lamp lighting device that lights a polar discharge lamp. It is assumed that there is a high possibility that a dangerous situation will occur due to a failure. Accordingly, if the electrodeless discharge lamp 6 is made unsatisfactory by stopping the operation of the main circuit portion E and the power conversion circuit 9 by disconnecting the lifetime disconnection portion 30 as in this embodiment, the device reaches the end of its lifetime. The user can be surely informed of this and the safety can be improved.

また本実施形態では、直流の印加電圧が最も高くなる主回路部Eの出力端に寿命時断線部30を設けているので、劣化が進行したときに確実に断線させることができ、しかも、交流電源ACの定格電圧が異なる場合(例えば、100V〜240Vなど)でも一定の電圧が印加されるから寿命の変化を抑えることができる。但し、寿命時断線部30を設ける箇所は直流の高電圧が印加される箇所であればよく、例えば、断線に至るまでの時間が相対的に長くはなるが、分圧抵抗R11,R12の接続点に寿命時断線部30を設けても構わないし、あるいは、主回路部Eの高電位側の出力端と電力変換回路9の入力端との間に寿命時断線部30を設けても構わない。   Further, in the present embodiment, the life-time disconnection portion 30 is provided at the output end of the main circuit portion E where the DC applied voltage becomes the highest, so that it can be surely disconnected when deterioration progresses, and the AC Even when the rated voltage of the power supply AC is different (for example, 100V to 240V, etc.), a change in life can be suppressed because a constant voltage is applied. However, the location where the disconnection portion 30 is provided may be a location where a high DC voltage is applied. For example, although the time until disconnection is relatively long, the connection of the voltage dividing resistors R11 and R12 The life-time disconnection part 30 may be provided at the point, or the life-time disconnection part 30 may be provided between the output terminal on the high potential side of the main circuit part E and the input terminal of the power conversion circuit 9. .

また寿命時断線部30の構造についても、図3(b)に示すように保護膜61を導体パターン51の周辺部分にのみ形成してもよいし、同図(c)に示すように導体パターン51に対してスリットを直交させずに傾けたり、同図(d)に示すようにスリットを略S字状としたり、同図(e)に示すようにコ字状に形成された導電パターン51を跨ぐようにスリットを形成することで寿命時断線部30を複数(2つ)形成したり、あるいは、同図(f)に示すように2つのスリットを平行に並べて寿命時断線部30を2つ形成しても構わない。特に、寿命時断線部30を複数設ければ、寿命時に導体パターン51を確実に断線させることができる。   As for the structure of the disconnection portion 30 at the time of life, the protective film 61 may be formed only on the peripheral portion of the conductor pattern 51 as shown in FIG. 3B, or the conductor pattern as shown in FIG. The conductive pattern 51 is tilted without being orthogonal to the slit 51, the slit is substantially S-shaped as shown in FIG. 4D, or is formed in a U-shape as shown in FIG. By forming slits so as to straddle, a plurality of (two) lifetime disconnection portions 30 are formed, or, as shown in FIG. One may be formed. In particular, if a plurality of disconnections 30 at the time of life are provided, the conductor pattern 51 can be reliably disconnected at the end of the lifetime.

ところで、上述のようにプリント配線板50の表面に保護膜61をシルク印刷した場合、プリント配線板50の表面に印刷されている回路部品の記号等が判読しづらくなるので、図4(a)〜(e)に示すように導体パターン51を部分的に細くすることで寿命時断線部30を形成しても良い。この場合も、図4(e)に示すように寿命時断線部30を複数設ければ、寿命時に導体パターン51を確実に断線させることができる。   By the way, when the protective film 61 is silk-printed on the surface of the printed wiring board 50 as described above, it becomes difficult to read the symbols and the like of the circuit components printed on the surface of the printed wiring board 50. FIG. As shown in (e), the lifetime disconnection 30 may be formed by partially thinning the conductor pattern 51. Also in this case, the conductor pattern 51 can be reliably disconnected at the end of the lifetime by providing a plurality of at-life disconnections 30 as shown in FIG.

あるいは、図5(a)〜(b)示すように導体パターン51を幅方向に挟む形で一対の電極52,52をプリント配線板50に形成し、かかる電極52,52間に低電圧を印加して電界をかけることでウレタン樹脂200の加水分解によって生じた酸を引き寄せて劣化(腐食)を進行させる構造の寿命時断線部30としても良いし、同図(c)に示すように導体パターン51を挟んで対向するグランドと電極52間に低電圧を印加する構造としても構わない。かかる構造の寿命時断線部30であれば、図4に示した構造に比べて導体パターン51の幅寸法を自由に設計できるとともにプリント配線板50の表面に印刷されている回路部品の記号等が判読しづらくなることもない。また、電極52,52間の距離や電位差によって断線に至るまでの時間(寿命)を調整することができる。   Alternatively, as shown in FIGS. 5A and 5B, a pair of electrodes 52, 52 are formed on the printed wiring board 50 so as to sandwich the conductor pattern 51 in the width direction, and a low voltage is applied between the electrodes 52, 52. Then, by applying an electric field, it is good also as the disconnection part 30 at the time of lifetime of the structure which draws the acid produced by hydrolysis of the urethane resin 200 and advances deterioration (corrosion), and as shown in FIG. A structure may be adopted in which a low voltage is applied between the ground 52 and the electrode 52 opposed to each other with the 51 therebetween. In the case of the disconnection portion 30 at the time of such a structure, the width dimension of the conductor pattern 51 can be freely designed as compared with the structure shown in FIG. 4 and the symbols of the circuit components printed on the surface of the printed wiring board 50 can be used. It won't be difficult to read. Further, the time (life) until disconnection can be adjusted by the distance between the electrodes 52 and 52 and the potential difference.

また、プリント配線板50においては回路部品を半田付けするためのランドを除く部分が導体パターン51を含めてソルダーレジストSRで覆われているが、図6に示すように当該ソルダーレジストSRを部分的に剥離するなどして導体パターン51がむき出しとなる1乃至複数の部分を形成することで寿命時断線部30を設けても構わない。但し、かかるむき出しとなる部分には半田が付着しないようにする必要がある。   Further, in the printed wiring board 50, the portion excluding the land for soldering the circuit component is covered with the solder resist SR including the conductor pattern 51, but the solder resist SR is partially covered as shown in FIG. The lifetime disconnection portion 30 may be provided by forming one or a plurality of portions where the conductor pattern 51 is exposed due to peeling. However, it is necessary to prevent solder from adhering to the exposed portion.

ところで、寿命時断線部30が断線するまでの時間(寿命)は、無電極放電灯点灯装置が設置される場所や使用環境の温度並びに湿度によって変化する。一般に温度に対する寿命の推定にはアレニウスモデルが最も良く用いられており、寿命時断線部30の寿命Lと使用温度Tとの間には、L∝exp(Ea/kT)という関係が成り立つ(但し、k:ボルツマン定数、Ea:活性化エネルギ、T:絶対温度)。つまり、アレニウスモデルによれば、温度Tが高くなるほど寿命Lは短くなり、反対に温度Tが低くなるほど寿命Lは長くなる。また、湿度に対する寿命の推定にはアイリングモデルが最も良く用いられており、寿命時断線部30の寿命Lと湿度RHとの間には、L∝(RH)-nという関係が成り立つ。つまり、アイリングモデルによれば、湿度RHが高くなるほど寿命Lは短くなり、反対に湿度RHが低くなるほど寿命Lは長くなる。 By the way, the time (life) until the disconnection part 30 at the time of life changes depends on the location where the electrodeless discharge lamp lighting device is installed and the temperature and humidity of the use environment. In general, the Arrhenius model is most often used to estimate the lifetime with respect to temperature, and the relationship L∝exp (Ea / kT) holds between the lifetime L of the broken portion 30 at the lifetime and the operating temperature T (however, , K: Boltzmann constant, Ea: activation energy, T: absolute temperature). That is, according to the Arrhenius model, the life L becomes shorter as the temperature T becomes higher, and conversely, the life L becomes longer as the temperature T becomes lower. Further, the Eyring model is most often used to estimate the lifetime with respect to humidity, and a relationship of L∝ (RH) −n is established between the lifetime L of the disconnection portion 30 at the lifetime and the humidity RH. That is, according to the Eyring model, the life L becomes shorter as the humidity RH becomes higher, and conversely, the life L becomes longer as the humidity RH becomes lower.

ここで、図2(b)に示すようにプリント配線板50の反実装面(図2(b)における下面)側で相対的に発熱量が多い回路部品(例えば、主回路部EのインダクタL10)近傍の位置W1、プリント配線板50の実装面(図2(b)における上面)側で発熱量の多い回路部品から離れた位置W2、プリント配線板50の反実装面側で発熱量が多い回路部品から離れた位置W3のそれぞれに寿命時断線部30を設けた場合において、当該寿命時断線部30の寿命LW1,LW2,LW3を各々温度と湿度をパラメータとして推定した結果を図7(a),(b)にそれぞれ示す。なお、位置W1は相対的に最も高温となる箇所であり、位置W2はウレタン樹脂200の厚みが薄いために相対的に最も湿度の影響を受けやすい箇所であり、位置W3は位置W1,W2に比較して温湿度の影響を受けにくい箇所である。但し、位置W3の寿命時断線部30については、位置W1,W2の寿命時断線部30よりも導体パターン51の幅寸法を細くするなどして劣化が進行しやすくしてある。また、図7(a),(b)における曲線Xは、寿命時断線部30の断線に対応する活性化エネルギと異なる活性化エネルギを有した劣化による寿命の推定結果である。 Here, as shown in FIG. 2B, a circuit component (for example, an inductor L10 of the main circuit portion E) that generates a relatively large amount of heat on the side opposite to the mounting surface (the lower surface in FIG. 2B) of the printed wiring board 50. ) Position W1 in the vicinity, a position W2 away from circuit components that generate a large amount of heat on the mounting surface (upper surface in FIG. 2B) side of the printed wiring board 50, and a large amount of heat generation on the side opposite to the mounting surface of the printed wiring board 50 Fig. 5 shows the results of estimation of the lifetimes L W1 , L W2 , and L W3 of the lifetime disconnection portion 30 using temperature and humidity as parameters when the lifetime disconnection portion 30 is provided at each position W3 away from the circuit component. 7 (a) and 7 (b), respectively. Note that the position W1 is a place where the temperature is relatively highest, the position W2 is a place where the urethane resin 200 is thin, and is relatively susceptible to humidity, and the position W3 is located at the positions W1 and W2. Compared to temperature and humidity, it is a place that is not easily affected. However, the life-time disconnection portion 30 at the position W3 is more likely to deteriorate by making the width dimension of the conductor pattern 51 thinner than the life-time disconnection portion 30 at the positions W1 and W2. Moreover, the curve X in FIGS. 7A and 7B is a life estimation result due to deterioration having activation energy different from the activation energy corresponding to the breakage of the breakage portion 30 at the time of life.

図7(a),(b)に示すように温度並びに湿度の高低によって寿命が逆転しており、例えば、位置W1にのみ寿命時断線部30を設けた場合、低温度域や低湿度域において寿命時断線部30が断線する前に別の箇所が劣化して寿命に至ってしまい(曲線X参照)、予測し得ない不具合が発生してしまう虞がある。ここで、温度並びに湿度の影響を受けにくい箇所(位置W3)の寿命時断線部30を劣化し易くしているから、相対的に低温度又は低湿度の条件では位置W3の寿命LW3が最も短くなると推定される。一方、相対的に高温度の条件では位置W1の寿命LW1が最も短くなると推定され、相対的に高湿度の条件では位置W2の寿命LW2が最も短くなると推定されるから(図7(b)参照)、図2(b)に示すように複数箇所(位置W1,W2,W3)に寿命時断線部30を設けるとともに、温度並びに湿度の影響を受けにくい箇所(位置W3)の寿命時断線部30を劣化し易くすれば、図7(a),(b)において太い実線イ,ロで示すようにあらゆる温度域及び湿度域で寿命時断線部30が最も早く劣化して断線するように設定することが可能であり、予測し得ない不具合が発生する前に主回路部E並びに電力変換回路9を停止させることができる。 As shown in FIGS. 7A and 7B, the life is reversed depending on the temperature and humidity. For example, in the case where the disconnection portion 30 at the time of life is provided only at the position W1, in the low temperature range and the low humidity range. There is a possibility that another part deteriorates before the disconnection part 30 at the time of life breaks and the life is reached (refer to the curve X), and an unpredictable problem may occur. Here, since the disconnection part 30 at the time of life (position W3) that is not easily affected by temperature and humidity is easily deteriorated, the life L W3 of the position W3 is the most under relatively low temperature or low humidity conditions. Estimated to be shorter. On the other hand, the life L W1 at the position W1 is estimated to be the shortest under the relatively high temperature condition, and the life L W2 at the position W2 is estimated to be the shortest under the relatively high humidity condition (FIG. 7B). 2), as shown in FIG. 2 (b), life-time disconnection portions 30 are provided at a plurality of locations (positions W1, W2, and W3), and disconnection at the end of life (location W3) is difficult to be affected by temperature and humidity. If the part 30 is easily deteriorated, as shown in FIGS. 7A and 7B, the broken line 30 at the end of its life deteriorates the fastest and breaks in any temperature range and humidity range as shown by thick solid lines A and B. The main circuit unit E and the power conversion circuit 9 can be stopped before a failure that cannot be predicted occurs.

なお、湿度の影響を受けやすくするために、図2(c)に示すように寿命時断線部30が設けられた位置W2におけるウレタン樹脂200の厚みを部分的に薄くしても構わない。   In addition, in order to make it easy to receive to the influence of humidity, as shown in FIG.2 (c), you may make thin the thickness of the urethane resin 200 in the position W2 in which the disconnection part 30 at the time of life was provided.

(実施形態2)
図8に本実施形態の無電極放電灯点灯装置の回路図を示す。但し、本実施形態の基本構成は実施形態と共通であるから、共通の構成要素については同一の符号を付して説明を省略する。
(Embodiment 2)
FIG. 8 shows a circuit diagram of the electrodeless discharge lamp lighting device of the present embodiment. However, since the basic configuration of the present embodiment is the same as that of the embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.

本実施形態では、主回路部Eの出力電圧Vdcに比例した検出電圧Vmが寿命時断線部30の断線によってゼロになったときに交流電源ACから主回路部Eへの給電を停止させる寿命検出停止回路40を備えている。この寿命検出停止回路40は、主回路部Eの出力電圧Vdcを分圧する分圧抵抗R40,R41と、分圧抵抗R40,R41の接続点から取り出される検出電圧Vnがマイナス端子に入力されるとともに基準電圧Vfがプラス端子に入力されるコンパレータCP1と、コンパレータCP1の出力端に接続された抵抗R13並びにコンデンサC11からなる遅延回路と、遅延回路の出力端にアノードが接続され且つカソードがスイッチング素子Q6のゲートに接続されたダイオードD11とを具備する。   In the present embodiment, when the detected voltage Vm proportional to the output voltage Vdc of the main circuit unit E becomes zero due to the disconnection of the lifetime disconnection unit 30, the lifetime detection is performed to stop the power supply from the AC power supply AC to the main circuit unit E. A stop circuit 40 is provided. In the life detection stop circuit 40, the voltage dividing resistors R40 and R41 that divide the output voltage Vdc of the main circuit portion E, and the detection voltage Vn taken out from the connection point of the voltage dividing resistors R40 and R41 are input to the minus terminal. A delay circuit including a comparator CP1 to which the reference voltage Vf is input to the plus terminal, a resistor R13 and a capacitor C11 connected to the output terminal of the comparator CP1, and an anode connected to the output terminal of the delay circuit and a cathode connected to the switching element Q6 And a diode D11 connected to the gate.

而して、寿命時断線部30が断線していない状態では検出電圧Vnが常に基準電圧Vfを超えているためにコンパレータCP1の出力がローレベルとなり、主回路部Eのスイッチング素子Q6は制御部100によってスイッチング制御されるが、寿命時断線部30が断線すると検出電圧Vnがゼロとなって基準電圧Vfを下回るためにコンパレータCP1の出力がハイレベルとなり、主回路部Eのスイッチング素子Q6が常にオンすることになる。そして、スイッチング素子Q6が常にオンした状態でしばらく通電されると、交流電源ACと主回路部Eとの間に挿入されているフューズFが切れるから、交流電源ACから主回路部Eへの給電が停止する。すなわち、実施形態1では寿命時断線部30が断線したときに制御部100が主回路部Eと電力変換回路9の動作を停止しているものの、主回路部Eの出力端には交流電源ACの電源電圧が印加され続けるから、寿命時断線部30が断線した後も電源電圧の印加によって回路部品の劣化が進行してしまう場合があるが、本実施形態では寿命時断線部30が断線してフューズFが切れた後は回路部品に電圧が印加されず、電圧印加による劣化の進行が防止できる。   Thus, in the state where the disconnection section 30 at the time of life is not disconnected, the detection voltage Vn always exceeds the reference voltage Vf, so the output of the comparator CP1 becomes low level, and the switching element Q6 of the main circuit section E is controlled by the control section. The switching is controlled by 100, but when the disconnection part 30 at the time of the life is disconnected, the detection voltage Vn becomes zero and falls below the reference voltage Vf, so that the output of the comparator CP1 becomes high level, and the switching element Q6 of the main circuit part E is always turned on. Will turn on. When the switching element Q6 is always turned on and energized for a while, the fuse F inserted between the AC power supply AC and the main circuit portion E is cut off, so that power is supplied from the AC power supply AC to the main circuit portion E. Stops. That is, in the first embodiment, although the control unit 100 stops the operation of the main circuit unit E and the power conversion circuit 9 when the life-time disconnection unit 30 is disconnected, the AC circuit AC is connected to the output terminal of the main circuit unit E. Since the power supply voltage continues to be applied, deterioration of the circuit components may progress due to the application of the power supply voltage even after the life-time disconnection portion 30 is disconnected. However, in this embodiment, the life-time disconnection portion 30 is disconnected. Thus, after the fuse F is blown, no voltage is applied to the circuit components, and the progress of deterioration due to voltage application can be prevented.

また、本実施形態では主回路部Eの出力電圧Vdcを降圧して直流の動作電源を作成する制御電源回路110を備え、制御電源回路110で作成した動作電源によって制御部100が動作していることから、図8に示すように制御電源回路110の入力端に寿命時断線部30を設け、寿命時断線部30が断線したときに制御電源回路110が停止するようにしても良い。つまり、制御電源回路110が停止すれば動作電源が供給されなくなり、制御部100が動作を停止することで主回路部E並びに電力変換回路9も停止することになる。   Further, in the present embodiment, a control power supply circuit 110 that steps down the output voltage Vdc of the main circuit section E to create a DC operating power supply is provided, and the control section 100 is operated by the operating power supply created by the control power supply circuit 110. Therefore, as shown in FIG. 8, a life-time disconnection portion 30 may be provided at the input end of the control power supply circuit 110, and the control power supply circuit 110 may be stopped when the life-time disconnection portion 30 is disconnected. That is, if the control power supply circuit 110 is stopped, the operation power is not supplied, and when the control unit 100 stops the operation, the main circuit unit E and the power conversion circuit 9 are also stopped.

(実施形態3)
実施形態1で説明したように、寿命時断線部30が寿命に達して断線するまでの期間(寿命)は温度が高いほど短くなり、温度が低いほど長くなる傾向にある。したがって、回路部品周辺の雰囲気温度を検出し、当該温度が相対的に高ければ寿命時断線部30の寿命を相対的に長くし、当該温度が相対的に低ければ寿命時断線部30の寿命を相対的に短くなるように調整すれば、実施形態1のように温度が異なる複数の箇所に各々寿命時断線部30を設けなくても、あらゆる温度域で寿命時断線部30が最も早く劣化して断線するように設定することが可能となり、予測し得ない不具合が発生する前に主回路部E並びに電力変換回路9を停止させることができる。
(Embodiment 3)
As described in the first embodiment, the period (life) until the life-time disconnection portion 30 reaches the end of the service life and is disconnected tends to be shorter as the temperature is higher, and longer as the temperature is lower. Therefore, the ambient temperature around the circuit component is detected, and if the temperature is relatively high, the life of the disconnection portion 30 at the lifetime is relatively long, and if the temperature is relatively low, the lifetime of the disconnection portion 30 at the lifetime is increased. If adjusted so as to be relatively short, the lifetime break portion 30 deteriorates the fastest in any temperature range even if the lifetime break portion 30 is not provided at each of a plurality of locations having different temperatures as in the first embodiment. Therefore, the main circuit unit E and the power conversion circuit 9 can be stopped before a problem that cannot be predicted occurs.

そこで本実施形態では、周囲の温度を検出する検出手段と、検出手段の検出値が所定のしきい値以下のときに寿命時断線部30における導体パターン51の幅寸法を見かけ上細くする手段とを備えている。具体的には、図9に示すように検出手段たる正特性サーミスタPTCと分圧抵抗R20とで定電圧V0を分圧した電圧(検出電圧)VpsをコンパレータCP2のマイナス端子に入力してプラス端子に入力されるしきい値電圧Vthと比較し、周囲温度(検出電圧Vps)が所定温度(しきい値電圧Vth)よりも低ければスイッチ要素S1をオンとし高ければオフとする。スイッチ要素S1は抵抗R24を介して分圧抵抗R21,R22,R23におけるR21とR22の接続点に接続されており、R21,R22におけるR22,R23の接続点がコンパレータCP3のマイナス端子に接続されている。ここで、分圧抵抗R21,R22を接続する導体パターンが相対的に幅細く形成されている。したがって、スイッチ要素S1がオンしているときは分圧抵抗R21,R22の接続点に印加される電圧が相対的に低いために当該接続点の導体パターンが寿命時断線部30よりも先に断線することはないが、スイッチ要素S1がオフしているときは分圧抵抗R21,R22の接続点に印加される電圧が相対的に高いために当該接続点の導体パターンが寿命時断線部30よりも先に断線する。そして、分圧抵抗R21,R22の接続点の導体パターンが寿命時断線部30よりも先に断線すれば、コンパレータCP3のマイナス端子の入力がゼロになるためにコンパレータCP3の出力がローレベルからハイレベルに切り替わる。   Therefore, in the present embodiment, detection means for detecting the ambient temperature, and means for apparently reducing the width dimension of the conductor pattern 51 in the disconnection portion 30 at the time of life when the detection value of the detection means is equal to or lower than a predetermined threshold value. It has. Specifically, as shown in FIG. 9, a positive voltage thermistor PTC as a detecting means and a voltage dividing resistor R20 divided by a constant voltage V0 (detection voltage) Vps is input to the negative terminal of the comparator CP2 and the positive terminal When the ambient temperature (detection voltage Vps) is lower than a predetermined temperature (threshold voltage Vth), the switch element S1 is turned on, and when it is higher, the switch element S1 is turned off. The switch element S1 is connected to the connection point of R21 and R22 in the voltage dividing resistors R21, R22, and R23 via the resistor R24, and the connection point of R22 and R23 in R21 and R22 is connected to the negative terminal of the comparator CP3. Yes. Here, the conductor pattern connecting the voltage dividing resistors R21 and R22 is formed relatively thin. Therefore, when the switch element S1 is on, the voltage applied to the connection point of the voltage dividing resistors R21 and R22 is relatively low, so that the conductor pattern at the connection point is disconnected before the life-time disconnection part 30. However, since the voltage applied to the connection point of the voltage dividing resistors R21 and R22 is relatively high when the switch element S1 is off, the conductor pattern at the connection point is longer than the disconnection part 30 at the time of life. Also disconnect first. If the conductor pattern at the connection point of the voltage dividing resistors R21, R22 is disconnected before the lifetime disconnection part 30, the input of the negative terminal of the comparator CP3 becomes zero, so the output of the comparator CP3 is changed from low level to high level. Switch to level.

一方、一対の幅細の導体パターン51a,51aと、片側の導体パターン51aに接続されたスイッチ要素S2と、もう片側の導体パターン51aに接続され且つスイッチ要素S2の内部抵抗値に等しい抵抗R25とで寿命時断線部30が形成されており、スイッチ要素S2がオンしていれば寿命時断線部30の見かけ上の幅寸法が太くなり、スイッチ要素S2がオフしていれば寿命時断線部30の見かけ上の幅寸法が細くなる。   On the other hand, a pair of narrow conductor patterns 51a, 51a, a switch element S2 connected to one conductor pattern 51a, and a resistor R25 connected to the other conductor pattern 51a and equal to the internal resistance value of the switch element S2 If the switch element S2 is turned on, the apparent width of the lifetime break part 30 is increased. If the switch element S2 is turned off, the life break part 30 is formed. The apparent width dimension of becomes narrower.

したがって、雰囲気温度が相対的に高いときは寿命時断線部30の見かけ上の幅寸法を太くすることで寿命時断線部30の寿命を相対的に長くし、雰囲気温度が相対的に低いときは寿命時断線部30の見かけ上の幅寸法を細くすることで寿命時断線部30の寿命を相対的に短くすることができる。その結果、実施形態1のように温度が異なる複数の箇所に各々寿命時断線部30を設けなくても、あらゆる温度域で寿命時断線部30が最も早く劣化して断線するように設定することが可能となり、予測し得ない不具合が発生する前に主回路部E並びに電力変換回路9を停止させることができる。   Therefore, when the ambient temperature is relatively high, the apparent width dimension of the lifetime disconnection portion 30 is increased to increase the lifetime of the lifetime disconnection portion 30 and when the ambient temperature is relatively low. By shortening the apparent width dimension of the lifetime disconnection portion 30, the lifetime of the lifetime disconnection portion 30 can be relatively shortened. As a result, even if the lifetime disconnection portion 30 is not provided at each of the plurality of locations having different temperatures as in the first embodiment, the lifetime disconnection portion 30 is set to be deteriorated earliest and disconnected at any temperature range. The main circuit unit E and the power conversion circuit 9 can be stopped before an unforeseeable malfunction occurs.

あるいは図10に示すように、実施形態2で説明した寿命検出停止回路40において、分圧抵抗R11,R12の間に雰囲気温度の検出手段たる負特性サーミスタNTCを挿入すれば、高温度域では負特性サーミスタNTCの抵抗値が減少して寿命時断線部30への印加電圧が低下することで寿命時断線部30の寿命を相対的に長くし、低温度域では負特性サーミスタNTCの抵抗値が増加して寿命時断線部30への印加電圧が上昇することで寿命時断線部30の寿命を相対的に短くすることができる。この構成であれば、スイッチ要素S1,S2などの追加が不要であるから、省スペース且つ低コストで実現できる。   Alternatively, as shown in FIG. 10, in the life detection stop circuit 40 described in the second embodiment, if a negative characteristic thermistor NTC serving as a means for detecting the ambient temperature is inserted between the voltage dividing resistors R11 and R12, it is negative in the high temperature range. The resistance value of the characteristic thermistor NTC decreases and the applied voltage to the life-time disconnection portion 30 decreases, so that the life of the life-time disconnection portion 30 is relatively increased. In the low temperature range, the resistance value of the negative characteristic thermistor NTC By increasing the applied voltage to the life-time disconnection portion 30 and increasing the lifetime, the life of the life-time disconnection portion 30 can be relatively shortened. With this configuration, it is not necessary to add the switch elements S1, S2, etc., so that it can be realized in a space-saving and low cost.

または、図11に示すように導体パターン51の幅寸法を相対的に細くしてなる寿命時断線部30と、寿命時断線部30を挟んで対向配置された一対の電極52,52とを設け、主回路部Eの出力電圧Vdcを正特性サーミスタPTCと分圧抵抗R30で分圧した電圧を電極52,52間に印加すれば、高温度域では正特性サーミスタPTCの抵抗値が増加して寿命時断線部30にかかる電界が弱くなることで寿命時断線部30の寿命を相対的に長くし、低温度域では正特性サーミスタPTCの抵抗値が増加して寿命時断線部30にかかる電界が強くなることで寿命時断線部30の寿命を相対的に短くすることができる。この構成であれば、寿命時断線部30に印加される電圧を変える必要がないから、回路のどの部分にでも寿命時断線部30を設けることが可能である。   Alternatively, as shown in FIG. 11, a life-time disconnection portion 30 obtained by relatively narrowing the width dimension of the conductor pattern 51 and a pair of electrodes 52 and 52 arranged to face each other with the life-time disconnection portion 30 interposed therebetween are provided. If the voltage obtained by dividing the output voltage Vdc of the main circuit portion E with the positive characteristic thermistor PTC and the voltage dividing resistor R30 is applied between the electrodes 52 and 52, the resistance value of the positive characteristic thermistor PTC increases in the high temperature range. Since the electric field applied to the disconnection part 30 at the time of life is weakened, the life of the disconnection part 30 at the time of the life is relatively increased, and the resistance value of the positive temperature coefficient thermistor PTC is increased in the low temperature range. By strengthening, it is possible to relatively shorten the life of the disconnection portion 30 at the time of life. With this configuration, since it is not necessary to change the voltage applied to the life-time disconnection portion 30, the life-time disconnection portion 30 can be provided in any part of the circuit.

さらに、図12に示すように寿命時断線部30の近傍に発熱量の多い回路部品(図示例では抵抗R31)を配置し、主回路部Eの出力電圧Vdcを分圧抵抗R32と負特性サーミスタNTCで分圧した電圧でダイオードD20を介して抵抗R31に直列接続されたスイッチ要素S3をオン・オフすれば、低温度域において負特性サーミスタNTCの抵抗値が増加しダイオードD20が導通してスイッチ要素S3がオンし、その結果、寿命時断線部30の周囲温度が上昇して寿命時断線部30の寿命を相対的に短くすることができる。この構成によれば、湿度の影響を考慮せずに温度の影響のみを考慮して寿命設計が行えるから誤差が減少するという利点がある。   Further, as shown in FIG. 12, a circuit component (heat resistance R31 in the illustrated example) having a large amount of heat is disposed in the vicinity of the disconnection portion 30 at the end of life, and the output voltage Vdc of the main circuit portion E is divided by the voltage dividing resistor R32 and the negative characteristic thermistor If the switch element S3 connected in series to the resistor R31 via the diode D20 is turned on / off with a voltage divided by the NTC, the resistance value of the negative temperature coefficient thermistor NTC increases in the low temperature range, and the diode D20 becomes conductive. The element S3 is turned on, and as a result, the ambient temperature of the lifetime disconnection portion 30 is increased, and the lifetime of the lifetime disconnection portion 30 can be relatively shortened. According to this configuration, there is an advantage that errors can be reduced because life design can be performed considering only the influence of temperature without considering the influence of humidity.

(実施形態4)
実施形態1で説明したように、寿命時断線部30が寿命に達して断線するまでの期間(寿命)は湿度が高いほど短くなり、湿度が低いほど長くなる傾向にある。したがって、回路部品周辺の湿度を検出し、当該湿度が相対的に高ければ寿命時断線部30の寿命を相対的に長くし、当該湿度が相対的に低ければ寿命時断線部30の寿命を相対的に短くなるように調整すれば、実施形態1のように湿度が異なる複数の箇所に各々寿命時断線部30を設けなくても、あらゆる湿度域で寿命時断線部30が最も早く劣化して断線するように設定することが可能となり、予測し得ない不具合が発生する前に主回路部E並びに電力変換回路9を停止させることができる。
(Embodiment 4)
As described in the first embodiment, the period (life) until the life-time disconnection portion 30 reaches the end of life and is disconnected tends to be shorter as the humidity is higher, and is longer as the humidity is lower. Accordingly, the humidity around the circuit component is detected, and if the humidity is relatively high, the life of the disconnection portion 30 at the lifetime is relatively long, and if the humidity is relatively low, the lifetime of the disconnection portion 30 at the lifetime is relatively If the adjustment is made to shorten the lifetime, the lifetime disconnection portion 30 deteriorates the fastest in any humidity range without providing the lifetime disconnection portions 30 at a plurality of locations having different humidity as in the first embodiment. It is possible to set so as to be disconnected, and the main circuit portion E and the power conversion circuit 9 can be stopped before an unforeseeable malfunction occurs.

そこで本実施形態では、周囲の湿度を検出する検出手段と、検出手段の検出値が低いときに寿命時断線部30における導体パターン51の幅寸法を見かけ上細くする手段とを備えている。具体的には、図13に示すように分圧抵抗R40,R41,R42で定電圧V0を分圧した電圧(検出電圧)VptをコンパレータCP4のマイナス端子に入力してプラス端子に入力されるしきい値電圧Vthと比較するとともに分圧抵抗R40と並列に接続された導体パターンからなる湿度検出部54が接続され、分圧抵抗R41,R42の接続点の電圧がコンパレータCP5のマイナス端子に入力されるとともに基準電圧Vfがプラス端子に入力されている。ここで、湿度検出部54は相対的に湿度が低いときに劣化の進行度合いが早くなるものであって、湿度が低いときは寿命時断線部30よりも先に断線することはないが、湿度が高いときは寿命時断線部30よりも先に断線する。そして、湿度検出部54が寿命時断線部30よりも先に断線すれば、コンパレータCP5のマイナス端子に入力される電圧が相対的に低くなるためにコンパレータCP5の出力がローレベルからハイレベルに切り替わる。   Therefore, in the present embodiment, there are provided detection means for detecting the ambient humidity, and means for apparently reducing the width dimension of the conductor pattern 51 in the life-time disconnection portion 30 when the detection value of the detection means is low. Specifically, as shown in FIG. 13, a voltage (detection voltage) Vpt obtained by dividing the constant voltage V0 by the voltage dividing resistors R40, R41, R42 is input to the negative terminal of the comparator CP4 and input to the positive terminal. A humidity detector 54 comprising a conductor pattern connected to the voltage dividing resistor R40 in parallel with the threshold voltage Vth is connected, and the voltage at the connection point of the voltage dividing resistors R41, R42 is input to the negative terminal of the comparator CP5. The reference voltage Vf is input to the plus terminal. Here, when the humidity is relatively low, the humidity detection unit 54 has a faster degree of deterioration. When the humidity is low, the humidity detection unit 54 does not break before the lifetime disconnection unit 30. Is high, the wire breaks before the lifetime break portion 30. If the humidity detection unit 54 is disconnected before the lifetime disconnection unit 30, the voltage input to the negative terminal of the comparator CP5 is relatively low, and the output of the comparator CP5 is switched from the low level to the high level. .

一方、一対の幅細の導体パターン51a,51aと、片側の導体パターン51aに接続されたスイッチ要素S4とで寿命時断線部30が形成されており、スイッチ要素S4がオンしていれば寿命時断線部30の見かけ上の幅寸法が太くなり、スイッチ要素S4がオフしていれば寿命時断線部30の見かけ上の幅寸法が細くなる。   On the other hand, the pair of narrow conductor patterns 51a, 51a and the switch element S4 connected to the conductor pattern 51a on one side form a disconnection part 30 at the end of life, and if the switch element S4 is turned on, the service life is reached. If the apparent width dimension of the disconnection part 30 becomes thick and the switch element S4 is turned off, the apparent width dimension of the disconnection part 30 at the time of life becomes thin.

したがって、湿度が相対的に高いときは寿命時断線部30の見かけ上の幅寸法を太くすることで寿命時断線部30の寿命を相対的に長くし、湿度が相対的に低いときは寿命時断線部30の見かけ上の幅寸法を細くすることで寿命時断線部30の寿命を相対的に短くすることができる。その結果、実施形態1のように湿度が異なる複数の箇所に各々寿命時断線部30を設けなくても、あらゆる湿度域で寿命時断線部30が最も早く劣化して断線するように設定することが可能となり、予測し得ない不具合が発生する前に主回路部E並びに電力変換回路9を停止させることができる。   Accordingly, when the humidity is relatively high, the apparent width dimension of the life-time disconnection portion 30 is increased to increase the life of the life-time disconnection portion 30 and when the humidity is relatively low, By shortening the apparent width dimension of the disconnection part 30, the lifetime of the disconnection part 30 at the time of a lifetime can be shortened relatively. As a result, even if the lifetime disconnection portions 30 are not provided at a plurality of locations where the humidity is different as in the first embodiment, the lifetime disconnection portion 30 is set to be deteriorated most quickly and disconnected in any humidity range. The main circuit unit E and the power conversion circuit 9 can be stopped before an unforeseeable malfunction occurs.

あるいは、図14に示すように分圧抵抗R43と抵抗値が湿度に対して負特性を有する湿度検出部55とで定電圧V0を分圧した電圧をコンパレータCP6のマイナス端子に入力してプラス端子に入力されるしきい値電圧Vthと比較するとともに、寿命時断線部30を挟んで直列接続された抵抗R44,R45と、一方の抵抗R45に抵抗R46を介して並列接続されたスイッチ要素S5とを設ければ、高湿度域では湿度検出部55の抵抗値が減少してコンパレータCP6のマイナス端子に入力される電圧が相対的に低くなるためにコンパレータCP6の出力がローレベルからハイレベルに切り替わってスイッチ要素S5がオンとなり、寿命時断線部30の印加電圧が低下することで寿命時断線部30の寿命を相対的に長くし、低湿度域では湿度検出部55の抵抗値が増加してコンパレータCP6のマイナス端子に入力される電圧が相対的に高くなるためにコンパレータCP6の出力がハイレベルからローレベルに切り替わってスイッチ要素S5がオフとなり、寿命時断線部30の印加電圧が上昇することで寿命時断線部30の寿命を相対的に短くすることができる。   Alternatively, as shown in FIG. 14, a voltage obtained by dividing the constant voltage V0 by the voltage dividing resistor R43 and the humidity detecting unit 55 whose resistance value has a negative characteristic with respect to humidity is input to the negative terminal of the comparator CP6, and the positive terminal And the switch element S5 connected in parallel to one of the resistors R45 via the resistor R46. In the high humidity region, the resistance value of the humidity detector 55 decreases and the voltage input to the negative terminal of the comparator CP6 becomes relatively low, so the output of the comparator CP6 switches from low level to high level. The switch element S5 is turned on, and the applied voltage of the disconnection unit 30 at the time of service life is lowered, so that the life of the disconnection unit 30 at the time of service life is relatively long. Since the resistance value of the degree detection unit 55 increases and the voltage input to the negative terminal of the comparator CP6 becomes relatively high, the output of the comparator CP6 switches from the high level to the low level, the switch element S5 is turned off, and the lifetime When the applied voltage of the time-breaking portion 30 increases, the life of the life-time breaking portion 30 can be relatively shortened.

または、図15に示すように導体パターン51の幅寸法を相対的に細くしてなる寿命時断線部30と、寿命時断線部30を挟んで対向配置された一対の電極52,52とを設け、所定の定電圧V0を湿度検出部55と分圧抵抗R47で分圧した電圧を電極52,52間に印加すれば、高湿度域では湿度検出部55の抵抗値が増加して寿命時断線部30にかかる電界が弱くなることで寿命時断線部30の寿命を相対的に長くし、低湿度域では湿度検出部55の抵抗値が減少して寿命時断線部30にかかる電界が強くなることで寿命時断線部30の寿命を相対的に短くすることができる。   Alternatively, as shown in FIG. 15, a life-time disconnection portion 30 formed by relatively narrowing the width dimension of the conductor pattern 51 and a pair of electrodes 52 and 52 arranged to face each other with the life-time disconnection portion 30 interposed therebetween are provided. If a voltage obtained by dividing the predetermined constant voltage V0 by the humidity detecting unit 55 and the voltage dividing resistor R47 is applied between the electrodes 52, 52, the resistance value of the humidity detecting unit 55 increases in the high humidity region, and the life is broken. Since the electric field applied to the part 30 is weakened, the life of the disconnection part 30 at the lifetime is relatively increased, and the resistance value of the humidity detector 55 is reduced in the low humidity region, and the electric field applied to the disconnection part 30 at the lifetime is increased. Thereby, the lifetime of the disconnection part 30 at the time of lifetime can be shortened relatively.

ところで、実施形態1〜4の無電極放電灯点灯装置は、図16(b)に示すようにケース60から導出されたケーブル61にランプソケット62が接続され、このランプソケット62に、同図(a)に示すような無電極放電灯6が着脱自在に装着される。無電極放電灯6は、内側に円筒形状の空洞部6bを有し内部に放電ガスが封入されたガラスバルブ6aを備え、無電極放電灯点灯装置からケーブル61を介して空洞部6b内に配置されている誘導コイル5に高周波電力を供給し、ガラスバルブ6a内に封入されている放電ガスに高周波磁界をかけることで放電が生じて点灯する。   By the way, in the electrodeless discharge lamp lighting devices of Embodiments 1 to 4, a lamp socket 62 is connected to a cable 61 led out from the case 60 as shown in FIG. An electrodeless discharge lamp 6 as shown in a) is detachably mounted. The electrodeless discharge lamp 6 includes a glass bulb 6a that has a cylindrical hollow portion 6b inside and is filled with a discharge gas, and is disposed in the hollow portion 6b from the electrodeless discharge lamp lighting device via the cable 61. A high frequency magnetic field is supplied to the induction coil 5 and a high frequency magnetic field is applied to the discharge gas sealed in the glass bulb 6a, thereby causing discharge and lighting.

また、図17は本発明に係る照明器具を示し、扁平な略円筒形状であって内部に無電極放電灯点灯装置を収納し且つ一端面にランプソケット62が設けられた器具本体200と、ランプソケット62を囲むように器具本体200に取り付けられた円錐台形状のプリズム201と、ランプソケット62とプリズム201を囲むように器具本体200に取り付けられた略椀形のグローブ202とを備えている。但し、器具本体200内に収納される無電極放電灯点灯装置は、実施形態1〜4の何れのものであっても構わない。   FIG. 17 shows a lighting fixture according to the present invention, a fixture main body 200 that has a flat, substantially cylindrical shape, houses an electrodeless discharge lamp lighting device therein, and is provided with a lamp socket 62 on one end surface; A truncated cone-shaped prism 201 attached to the instrument body 200 so as to surround the socket 62, and a substantially bowl-shaped globe 202 attached to the instrument body 200 so as to surround the lamp socket 62 and the prism 201. However, the electrodeless discharge lamp lighting device housed in the appliance main body 200 may be any one of the first to fourth embodiments.

本発明に係る無電極放電灯点灯装置の実施形態1を示す回路図である。It is a circuit diagram which shows Embodiment 1 of the electrodeless discharge lamp lighting device which concerns on this invention. 同上を示し、(a)は平面図、(b)は断面図、(c)は別構成の寿命時断線部を有する場合の一部省略した断面図である。FIG. 4A is a plan view, FIG. 5B is a cross-sectional view, and FIG. 4C is a cross-sectional view in which a part having a disconnection at the time of lifetime is omitted. (a)〜(f)はそれぞれ寿命時断線部の具体的構成例を示す平面図である。(A)-(f) is a top view which shows the specific structural example of a disconnection part at the time of a lifetime, respectively. (a)〜(e)はそれぞれ寿命時断線部の別の具体的構成例を示す平面図である。(A)-(e) is a top view which shows another specific structural example of a disconnection part at the time of a lifetime, respectively. (a)〜(c)はそれぞれ寿命時断線部のさらに別の具体的構成例を示す平面図である。(A)-(c) is a top view which shows another example of another specific structure of a lifetime break part, respectively. (a),(b)はそれぞれ寿命時断線部のさらにまた別の具体的構成例を示す平面図である。(A), (b) is a top view which shows another example of another specific structure of a lifetime break part, respectively. (a),(b)は温度並びに湿度と寿命との関係を示すグラフである。(A), (b) is a graph which shows the relationship between temperature, humidity, and lifetime. 本発明に係る無電極放電灯点灯装置の実施形態2を示す回路図である。It is a circuit diagram which shows Embodiment 2 of the electrodeless discharge lamp lighting device which concerns on this invention. 本発明に係る無電極放電灯点灯装置の実施形態3における要部の回路図である。It is a circuit diagram of the principal part in Embodiment 3 of the electrodeless discharge lamp lighting device which concerns on this invention. 同上における要部の別の構成を示す回路図である。It is a circuit diagram which shows another structure of the principal part in the same as the above. 同上における要部のさらに別の構成を示す回路図である。It is a circuit diagram which shows another structure of the principal part in the same as the above. 同上における要部のさらまた別の構成を示す回路図である。It is a circuit diagram which shows another structure of the principal part in the same as the above. 本発明に係る無電極放電灯点灯装置の実施形態4における要部の回路図である。It is a circuit diagram of the principal part in Embodiment 4 of the electrodeless discharge lamp lighting device which concerns on this invention. 同上における要部の別の構成を示す回路図である。It is a circuit diagram which shows another structure of the principal part in the same as the above. 同上における要部のさらに別の構成を示す回路図である。It is a circuit diagram which shows another structure of the principal part in the same as the above. 同上を示し、(a)は無電極放電灯の断面図、(b)は無電極放電灯点灯装置の外観斜視図である。The same as the above, (a) is a sectional view of an electrodeless discharge lamp, and (b) is an external perspective view of an electrodeless discharge lamp lighting device. 本発明に係る照明器具を示す半断面図である。It is a half sectional view showing a lighting fixture according to the present invention.

符号の説明Explanation of symbols

E 主回路部
5 誘導コイル
6 無電極放電灯
30 寿命時断線部
100 制御部
E Main circuit part 5 Inductive coil 6 Electrodeless discharge lamp 30 Lifetime disconnection part 100 Control part

Claims (13)

直流又は交流の入力を所望の直流若しくは交流の出力に変換する主回路部と、主回路部を構成する複数の回路部品が実装されるとともに各回路部品間の電気配線となる導体パターンが表面に形成されたプリント配線板と、箱状に形成され内部にプリント配線板を収納し且つウレタン樹脂が充填されたケースとを備えた電源装置であって、
前記導体パターンにおける直流電圧が印加される1乃至複数箇所に、経時的な劣化が相対的に進行し易く且つ寿命末期には劣化によって断線する寿命時断線部が設けられたことを特徴とする電源装置。
A main circuit part that converts a direct current or alternating current input into a desired direct current or alternating current output, and a plurality of circuit parts constituting the main circuit part are mounted, and a conductor pattern serving as an electrical wiring between the circuit parts is provided on the surface. A power supply device comprising a formed printed wiring board, and a case formed in a box shape and containing the printed wiring board inside and filled with urethane resin,
A power source characterized in that at one or a plurality of locations to which a DC voltage is applied in the conductor pattern, there is provided a life-time disconnection portion that is relatively easily deteriorated with time and is disconnected due to the deterioration at the end of the life. apparatus.
前記導体パターンのうちで直流電圧が印加される箇所が絶縁性を有する保護膜で覆われ、前記導体パターンを幅方向に横切り且つ前記保護膜が存在しないスリットで前記寿命時断線部が形成されたことを特徴とする請求項1記載の電源装置。   Of the conductor pattern, a portion to which a DC voltage is applied is covered with an insulating protective film, and the disconnection portion at the end of life is formed by a slit that crosses the conductor pattern in the width direction and does not have the protective film. The power supply device according to claim 1. 前記導体パターンの幅寸法を相対的に細くすることで前記寿命時断線部が形成されたことを特徴とする請求項1記載の電源装置。   The power supply device according to claim 1, wherein the disconnection portion at the end of life is formed by relatively narrowing a width dimension of the conductor pattern. 前記主回路部の動作を制御するとともに前記寿命時断線部が断線した場合に主回路部の動作を停止させる制御部を備えたことを特徴とする請求項1〜3の何れか1項に記載の電源装置。   The control part which controls operation | movement of the said main circuit part, and stops the operation | movement of a main circuit part when the said disconnection part at the time of a life breaks is provided, The any one of Claims 1-3 characterized by the above-mentioned. Power supply. 前記主回路部若しくは制御部を構成する回路部品のうちで相対的に発熱量の多い回路部品の近傍に前記寿命時断線部が設けられたことを特徴とする請求項1〜4の何れか1項に記載の電源装置。   5. The lifetime disconnection portion is provided in the vicinity of a circuit component having a relatively large amount of heat generation among circuit components constituting the main circuit portion or the control portion. The power supply device according to item. 前記寿命時断線部は、前記プリント配線板における回路部品の実装面側に設けられたことを特徴とする請求項1〜5の何れか1項に記載の電源装置。   The power supply device according to any one of claims 1 to 5, wherein the disconnection portion at the time of service life is provided on a circuit component mounting surface side of the printed wiring board. 周囲の温度又は湿度を検出する検出手段と、検出手段の検出値が所定のしきい値以下のときに前記寿命時断線部における導体パターンの幅寸法を見かけ上細くする手段とを備えたことを特徴とする請求項3記載の電源装置。   Detection means for detecting ambient temperature or humidity, and means for apparently reducing the width dimension of the conductor pattern at the disconnection portion at the time of life when the detection value of the detection means is a predetermined threshold value or less. The power supply device according to claim 3, wherein: 周囲の温度又は湿度を検出する検出手段と、検出手段の検出値が所定のしきい値以下のときに前記寿命時断線部に印加される直流電圧を高くする手段とを備えたことを特徴とする請求項1〜6の何れか1項に記載の電源装置。   And a detecting means for detecting an ambient temperature or humidity, and a means for increasing the DC voltage applied to the disconnection portion at the end of life when the detection value of the detecting means is a predetermined threshold value or less. The power supply device according to any one of claims 1 to 6. 周囲の温度又は湿度を検出する検出手段と、前記寿命時断線部を幅方向に挟んで対向配置された一対の電極と、検出手段の検出値が所定のしきい値以下のときに前記電極間に印加する電圧を高くする手段とを備えたことを特徴とする請求項1〜6の何れか1項に記載の電源装置。   Detection means for detecting ambient temperature or humidity, a pair of electrodes arranged opposite to each other with the disconnection portion at the end of its life in the width direction, and between the electrodes when the detection value of the detection means is a predetermined threshold value or less The power supply device according to any one of claims 1 to 6, further comprising means for increasing a voltage applied to the power supply. 周囲の温度を検出する温度検出手段と、温度検出手段の検出値が所定のしきい値以下のときに前記発熱部品の発熱量を増大させる手段とを備えたことを特徴とする請求項5記載の電源装置。   6. A temperature detecting means for detecting an ambient temperature, and means for increasing the amount of heat generated by the heat-generating component when the detected value of the temperature detecting means is not more than a predetermined threshold value. Power supply. 温度又は湿度によって劣化の進行度合いが異なる複数の前記寿命時断線部が設けられたことを特徴とする請求項1〜10の何れか1項に記載の電源装置。   The power supply device according to any one of claims 1 to 10, wherein a plurality of the disconnection portions at the time of life whose deterioration progresses differ depending on temperature or humidity are provided. 請求項1〜11の何れか1項に記載された電源装置と、該電源装置から供給される直流電力を高周波電力に変換する高周波電源部と、無電極放電灯の近傍に設けられ前記高周波電源部の出力端に接続された誘導コイルとを備えたことを特徴とする無電極放電灯点灯装置。   The power supply device according to any one of claims 1 to 11, a high-frequency power supply unit that converts DC power supplied from the power supply device into high-frequency power, and the high-frequency power supply provided in the vicinity of an electrodeless discharge lamp. An electrodeless discharge lamp lighting device comprising: an induction coil connected to an output end of the unit. 請求項12記載の無電極放電灯点灯装置と、無電極放電灯を保持するランプソケットとを備えたことを特徴とする照明器具。   An illuminator comprising the electrodeless discharge lamp lighting device according to claim 12 and a lamp socket for holding the electrodeless discharge lamp.
JP2006116051A 2006-04-19 2006-04-19 Power supply apparatus and electrodeless discharge lamp lighting device, lighting fixture Withdrawn JP2007288978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006116051A JP2007288978A (en) 2006-04-19 2006-04-19 Power supply apparatus and electrodeless discharge lamp lighting device, lighting fixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006116051A JP2007288978A (en) 2006-04-19 2006-04-19 Power supply apparatus and electrodeless discharge lamp lighting device, lighting fixture

Publications (1)

Publication Number Publication Date
JP2007288978A true JP2007288978A (en) 2007-11-01

Family

ID=38760236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006116051A Withdrawn JP2007288978A (en) 2006-04-19 2006-04-19 Power supply apparatus and electrodeless discharge lamp lighting device, lighting fixture

Country Status (1)

Country Link
JP (1) JP2007288978A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205861A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Discharge lamp lighting device and luminaire
CN109792241A (en) * 2016-09-01 2019-05-21 法雷奥西门子新能源汽车(德国)有限公司 Running semiconductor switch is being connected in control
CN115296377A (en) * 2022-09-30 2022-11-04 荣耀终端有限公司 Electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205861A (en) * 2008-02-26 2009-09-10 Panasonic Electric Works Co Ltd Discharge lamp lighting device and luminaire
CN109792241A (en) * 2016-09-01 2019-05-21 法雷奥西门子新能源汽车(德国)有限公司 Running semiconductor switch is being connected in control
JP2019530397A (en) * 2016-09-01 2019-10-17 ヴァレオ ジーメンス エーアオトモーティヴェ ゲルマニー ゲーエムベーハーValeo Siemens eAutomotive Germany GmbH Control of semiconductor switches in switch mode
JP7083338B2 (en) 2016-09-01 2022-06-10 ヴァレオ ジーメンス エーアオトモーティヴェ ゲルマニー ゲーエムベーハー Control of semiconductor switch in switch mode
CN115296377A (en) * 2022-09-30 2022-11-04 荣耀终端有限公司 Electronic device

Similar Documents

Publication Publication Date Title
JP5669086B2 (en) Hybrid relay
CN1895006B (en) High pressure discharge lamp lighting device and lighting fixture
JP2016085813A (en) Illumination lamp and lighting device
US20110234096A1 (en) Integrated Gas Discharge Lamp with an Ignition Electronics Integrated Into the Base for Generating Asymmetrical Ignition Pulses
US7821207B2 (en) Lighting unit and discharge lamp
KR100303527B1 (en) Lighting equipment
CN101133686B (en) Lighting unit and lamp
JP5874052B2 (en) Power supply device, lighting device, lamp, vehicle
JP2007288978A (en) Power supply apparatus and electrodeless discharge lamp lighting device, lighting fixture
US20230020744A1 (en) Surge protection circuit, power supply device using same, and led illumination device
CN105280471B (en) Discharge lamp, the light supply apparatus with the discharge lamp and use for discharge lamp transmitter
KR100773865B1 (en) Bimetal
US9265120B2 (en) Lighting device and luminaire using same
JP2005294061A (en) Led lighting device and illumination fixture
JP3832053B2 (en) Discharge lamp lighting device
JP2014049386A (en) Lighting device and illuminating device
JP5227112B2 (en) Electrodeless discharge lamp lighting device and lighting apparatus using the same
US20240093841A1 (en) LED lamp and misuse warning module thereof
JP2010205688A (en) Heater device
JPWO2017146049A1 (en) Power supply device, illumination lamp, and illumination device
JP2002299089A (en) Discharge lamp lighting device and luminaire
JP2009176679A (en) Discharge lamp lighting device, and luminaire
JP2011204554A (en) Discharge lamp lighting device and lighting system
JP2010147011A (en) Electrodeless discharge lamp lightning device and lighting equipment using the same
JP2009048907A (en) Protection circuit, and lamp driving device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707