JP2007288002A - Nitride semiconductor light emitting device - Google Patents

Nitride semiconductor light emitting device Download PDF

Info

Publication number
JP2007288002A
JP2007288002A JP2006115024A JP2006115024A JP2007288002A JP 2007288002 A JP2007288002 A JP 2007288002A JP 2006115024 A JP2006115024 A JP 2006115024A JP 2006115024 A JP2006115024 A JP 2006115024A JP 2007288002 A JP2007288002 A JP 2007288002A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
positive electrode
layer
protective film
insulating protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006115024A
Other languages
Japanese (ja)
Other versions
JP4857883B2 (en
Inventor
Masahiro Koto
雅弘 湖東
Takahide Shiroichi
隆秀 城市
Tsuyoshi Takano
剛志 高野
Hiroaki Okagawa
広明 岡川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2006115024A priority Critical patent/JP4857883B2/en
Publication of JP2007288002A publication Critical patent/JP2007288002A/en
Application granted granted Critical
Publication of JP4857883B2 publication Critical patent/JP4857883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that an operating voltage is raised by forming insulation protective films in a nitride semiconductor light emitting device in which there are formed the consecutive insulation protective films from an upper part of a nitride semiconductor layer to an upper part of a positive electrode. <P>SOLUTION: A nitride semiconductor light emitting device 100 is equipped with a p-type nitride semiconductor layer 14 formed on an n-type nitride semiconductor layer 12 through an active layer 13, wherein a metallic positive electrode 16 is formed in a region excluding an edge part of a top face of the p-type nitride semiconductor layer 14 and furthermore by removing an aperture 22 there are formed consecutive insulating protective films 17 from a region which is not covered with the positive electrode 16 on the p-type nitride semiconductor layer 14 to an upper part of the positive electrode 16. The insulation protective films 17 include a portion formed by an electron beam evaporation method above the positive electrode 16. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は窒化物半導体発光素子に関し、特に、窒化物半導体層上から正電極上にかけて連続した絶縁保護膜が形成された窒化物半導体発光素子に関する。 The present invention relates to a nitride semiconductor light emitting device, and more particularly to a nitride semiconductor light emitting device in which a continuous insulating protective film is formed from a nitride semiconductor layer to a positive electrode.

窒化物半導体とは、一般式AlInGa1−a−bN(0≦a≦1、0≦b≦1、0≦a+b≦1)で表される化合物半導体であり、GaN、InGaN、AlGaN、AlInGaN、AlN、InNなど、任意の組成のものを含む。上記化学式において、3族元素の一部をB(ホウ素)、Tl(タリウム)などで置換したもの、また、N(窒素)の一部をP(リン)、As(ヒ素)、Sb(アンチモン)、Bi(ビスマス)などで置換したものも、窒化物半導体に含まれる。 A nitride semiconductor is a compound semiconductor represented by the general formula Al a In b Ga 1-ab N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1), GaN, InGaN , AlGaN, AlInGaN, AlN, InN, etc. In the above chemical formula, a part of the group 3 element is substituted with B (boron), Tl (thallium), etc., and a part of N (nitrogen) is P (phosphorus), As (arsenic), Sb (antimony) Those substituted with Bi (bismuth) or the like are also included in the nitride semiconductor.

窒化物半導体発光素子は、例えば、サファイア基板上に、n型窒化物半導体層、窒化物半導体からなる活性層、p型窒化物半導体層をこの順に成長させて積層し、p型窒化物半導体層および活性層の一部を除去して露出させたn型窒化物半導体層の上面に負電極を形成し、p型窒化物半導体層の上面に正電極を形成することにより、構成される。正電極および負電極が形成された領域を除く、窒化物半導体層の上面には、酸化ケイ素、窒化ケイ素等の無機材料からなる絶縁保護膜が形成され、それによって、正負の電極と外部電極(実装時に発光素子チップが固定されるリードフレーム、回路基板、サブマウント等の側に設けられた電極)との接続に用いられるハンダ等の導電性接合材料と、窒化物半導体との短絡が防止される。この短絡がより効果的に防止されるように、該絶縁保護膜は、p型窒化物半導体層上から正電極上にかけて連続した膜とされる(特許文献1)。 A nitride semiconductor light emitting device is formed by, for example, stacking an n-type nitride semiconductor layer, an active layer made of a nitride semiconductor, and a p-type nitride semiconductor layer in this order on a sapphire substrate, and p-type nitride semiconductor layer The negative electrode is formed on the upper surface of the n-type nitride semiconductor layer exposed by removing a part of the active layer, and the positive electrode is formed on the upper surface of the p-type nitride semiconductor layer. An insulating protective film made of an inorganic material such as silicon oxide or silicon nitride is formed on the upper surface of the nitride semiconductor layer excluding the region where the positive electrode and the negative electrode are formed, whereby the positive and negative electrodes and the external electrodes ( A short circuit between the nitride semiconductor and a conductive bonding material such as solder used for connection with a lead frame, a circuit board, an electrode provided on the side of the submount, etc., to which the light emitting element chip is fixed at the time of mounting is prevented. The In order to prevent this short circuit more effectively, the insulating protective film is a continuous film from the p-type nitride semiconductor layer to the positive electrode (Patent Document 1).

ここで、従来の窒化物半導体発光素子においては、上記絶縁保護膜がプラズマCVD法やスパッタリング法によって形成される(特許文献2)。 Here, in the conventional nitride semiconductor light emitting device, the insulating protective film is formed by a plasma CVD method or a sputtering method (Patent Document 2).

特開平6−177434号公報JP-A-6-177434 特開平11−150301号公報JP-A-11-150301

本発明者等は、従来の窒化物半導体発光素子に該当する発光ダイオード素子について、絶縁保護膜の形成前後における順方向電圧(Vf)を調べたところ、絶縁保護膜の形成前に比べて、形成後のVfが著しく高くなる問題があることを見出した。Vfの上昇はそれ自体が発光効率の低下を意味する他、Vfが高い発光素子は動作時の発熱が大きいので、素子温度の上昇に伴う発光効率の低下が起こり易く、また、構成部材の劣化が速くなることから、寿命が短くなり、信頼性も低くなる。 The inventors of the present invention examined the forward voltage (Vf) before and after the formation of the insulating protective film for the light emitting diode element corresponding to the conventional nitride semiconductor light emitting element. It has been found that there is a problem that Vf is remarkably increased later. An increase in Vf itself means a decrease in light emission efficiency, and a light emitting element having a high Vf generates a large amount of heat during operation. Becomes faster, the life is shortened, and the reliability is also lowered.

本発明は上記事情に鑑みなされたものであり、従来の窒化物半導体発光素子において見出だされた、絶縁保護膜の形成によって動作電圧が上昇するという問題を解決し、それによって、良好な発光効率を有し、寿命および信頼性の改善された窒化物半導体発光素子を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has solved the problem of an increase in operating voltage due to the formation of an insulating protective film, which has been found in conventional nitride semiconductor light-emitting devices, thereby achieving good light emission. An object of the present invention is to provide a nitride semiconductor light emitting device having efficiency and improved lifetime and reliability.

本発明は、p型窒化物半導体上から正電極上にかけて連続した絶縁保護膜が形成された窒化物半導体発光素子における、該絶縁保護膜の構成を鋭意検討することにより完成されたものである。本発明は次の特徴を有する。 The present invention has been completed by diligently examining the configuration of the insulating protective film in the nitride semiconductor light emitting device in which a continuous insulating protective film is formed from the p-type nitride semiconductor to the positive electrode. The present invention has the following features.

(1)n型窒化物半導体層の上に活性層を介して形成されたp型窒化物半導体層を備え、該p型窒化物半導体層の上面の縁部を除く領域に正電極が形成され、さらに、該正電極上に外部電極との接続のために設けられた開口部を除いて、該p型窒化物半導体層上の該正電極に覆われていない領域から該正電極上にかけて連続した絶縁保護膜が形成された窒化物半導体発光素子であって、前記絶縁保護膜が、前記正電極の上方に、電子ビーム蒸着法で形成された部分を含むことを特徴とする窒化物半導体発光素子。
(2)前記絶縁保護膜が、前記正電極に接して、前記電子ビーム蒸着法で形成された部分を含む、前記(1)に記載の窒化物半導体発光素子。
(3)前記絶縁保護膜が、電子ビーム蒸着法で形成された部分のみからなる、前記(2)に記載の窒化物半導体発光素子。
(4)前記絶縁保護膜が、電子ビーム蒸着法により形成された第1の層とプラズマCVD法またはスパッタリング法により形成された第2の層とを少なくとも含む積層構造部を有する、前記(1)に記載の窒化物半導体発光素子。
(5)前記積層構造部において、前記第1の層が正電極に接している、前記(4)に記載の窒化物半導体発光素子。
(6)前記開口部が丸みを帯びた形状に形成されている、前記(1)〜(5)のいずれかに記載の窒化物半導体発光素子。
(7)前記正電極が、前記p型窒化物半導体層と接する部分に、白金族元素またはAuからなる層を有する、前記(1)〜(6)のいずれかに記載の窒化物半導体発光素子。
(8)前記正電極と前記絶縁保護膜との間に、該正電極と該絶縁保護膜との接着強度を高めるための接着強化層が形成されている、前記(1)〜(7)のいずれかに記載の窒化物半導体発光素子。
(1) A p-type nitride semiconductor layer formed on an n-type nitride semiconductor layer via an active layer is provided, and a positive electrode is formed in a region excluding the edge of the upper surface of the p-type nitride semiconductor layer. In addition, except for an opening provided on the positive electrode for connection to an external electrode, continuous from the region not covered by the positive electrode on the p-type nitride semiconductor layer to the positive electrode A nitride semiconductor light emitting device having an insulating protective film formed thereon, wherein the insulating protective film includes a portion formed by an electron beam evaporation method above the positive electrode element.
(2) The nitride semiconductor light emitting element according to (1), wherein the insulating protective film includes a portion formed by the electron beam evaporation method in contact with the positive electrode.
(3) The nitride semiconductor light-emitting element according to (2), wherein the insulating protective film includes only a portion formed by an electron beam evaporation method.
(4) The insulating protective film includes a laminated structure portion including at least a first layer formed by an electron beam evaporation method and a second layer formed by a plasma CVD method or a sputtering method. The nitride semiconductor light-emitting device according to 1.
(5) The nitride semiconductor light-emitting element according to (4), wherein the first layer is in contact with a positive electrode in the stacked structure portion.
(6) The nitride semiconductor light emitting element according to any one of (1) to (5), wherein the opening is formed in a rounded shape.
(7) The nitride semiconductor light emitting device according to any one of (1) to (6), wherein the positive electrode has a layer made of a platinum group element or Au at a portion in contact with the p-type nitride semiconductor layer. .
(8) The bonding reinforcing layer for increasing the adhesive strength between the positive electrode and the insulating protective film is formed between the positive electrode and the insulating protective film. The nitride semiconductor light emitting device according to any one of the above.

従来の窒化物半導体発光素子において、絶縁保護膜の形成に伴い動作電圧の上昇が起こったのは、絶縁保護膜と正電極との間の熱膨張率差に起因して生じる熱応力が正電極に作用して、正電極とp型窒化物半導体層との密着性が低下し、それによって正電極の接触抵抗が上昇したことが原因であると思われる。そこで、本発明に係る窒化物半導体発光素子では、絶縁保護膜が、正電極の上方に、電子ビーム蒸着法で形成された部分を含むように構成している。電子ビーム蒸着法によれば、プラズマCVD法やスパッタリング法よりも低温で絶縁保護膜が形成されるので、絶縁保護膜と正電極との熱膨張率差に起因して生じる熱応力が低減される。また、電子ビーム蒸着法で形成される無機薄膜は、プラズマCVD法やスパッタリング法により形成されるものに比べて緻密性が低く、変形し易いものとなるので、絶縁保護膜と正電極との熱膨張率差に起因する熱応力が絶縁保護膜の変形により緩和される。そのために、該熱応力の作用による正電極とp型窒化物半導体層との密着性の低下が防止される。 In the conventional nitride semiconductor light emitting device, the operating voltage rises with the formation of the insulating protective film because the thermal stress caused by the difference in thermal expansion coefficient between the insulating protective film and the positive electrode is the positive electrode. This is considered to be caused by a decrease in the adhesion between the positive electrode and the p-type nitride semiconductor layer, thereby increasing the contact resistance of the positive electrode. Therefore, in the nitride semiconductor light emitting device according to the present invention, the insulating protective film is configured to include a portion formed by the electron beam evaporation method above the positive electrode. According to the electron beam evaporation method, the insulating protective film is formed at a lower temperature than the plasma CVD method or the sputtering method, so that the thermal stress caused by the difference in thermal expansion coefficient between the insulating protective film and the positive electrode is reduced. . In addition, the inorganic thin film formed by the electron beam evaporation method has a lower density than the one formed by the plasma CVD method or the sputtering method and is easily deformed. The thermal stress resulting from the difference in expansion coefficient is alleviated by the deformation of the insulating protective film. Therefore, a decrease in adhesion between the positive electrode and the p-type nitride semiconductor layer due to the action of the thermal stress is prevented.

絶縁保護膜が、正電極に接して電子ビーム蒸着法で形成された部分を含むとき、該部分の変形による熱応力の緩和がより効果的に生じると考えられる。その場合の一態様として、絶縁保護膜の全体を電子ビーム蒸着法で形成してもよい。 When the insulating protective film includes a portion formed by the electron beam evaporation method in contact with the positive electrode, it is considered that the thermal stress is mitigated more effectively due to the deformation of the portion. In that case, the entire insulating protective film may be formed by electron beam evaporation.

絶縁保護膜は、少なくとも正電極の上方に電子ビーム蒸着法で形成された部分が含まれるように、その一部または全部を、電子ビーム蒸着法で形成した層と、プラズマCVD法またはスパッタリング法で形成した層とを積層した、積層膜としてもよい。製造工程を簡略化するうえでは、絶縁保護膜の全体を、このような積層膜とすることが好ましい。プラズマCVD法またはスパッタリング法により形成した層は、電子ビーム蒸着法で形成した層よりも緻密で、発光素子にとって有害な水蒸気等の透過性がより低い層となるので、電子ビーム蒸着法により形成した層を設けることによる絶縁保護膜の保護機能の低下を補うことができる。なお、この場合も、正電極に接する層を電子ビーム蒸着法で形成した層としたとき、絶縁保護膜と正電極との熱膨張率差に起因する熱応力の緩和が、より効果的に生じると考えられる。 The insulating protective film includes a layer formed by an electron beam evaporation method and a plasma CVD method or a sputtering method so that at least a part formed by the electron beam evaporation method is included above the positive electrode. It is good also as a laminated film which laminated | stacked the formed layer. In order to simplify the manufacturing process, it is preferable that the entire insulating protective film is a laminated film. The layer formed by the plasma CVD method or the sputtering method is denser than the layer formed by the electron beam evaporation method, and becomes a layer having lower permeability such as water vapor harmful to the light emitting element. A decrease in the protective function of the insulating protective film due to the provision of the layer can be compensated. In this case as well, when the layer in contact with the positive electrode is a layer formed by electron beam evaporation, the thermal stress caused by the difference in thermal expansion coefficient between the insulating protective film and the positive electrode is more effectively generated. it is conceivable that.

正電極上の絶縁保護膜には、正電極を外部電極に接続できるように、開口部が設けられるが、この開口部を丸みを帯びた形状とすることにより、絶縁保護膜の正電極からの剥離が防止される。この剥離防止効果は、絶縁保護膜の特定部位への応力集中がなくなる結果、絶縁保護膜の変形・破壊が抑制されることにより生じるものと考えられる。このことは、逆に、開口部をこのように丸みを帯びた形状に形成したときには、正電極に加わる熱応力が大きくなる傾向があることを意味している。よって、この場合に、絶縁保護膜の、正電極の上方に位置する部分を電子ビーム蒸着法で形成することによって、正電極が受ける熱応力を低減することは、特に有効であると考えられる。 The insulating protective film on the positive electrode is provided with an opening so that the positive electrode can be connected to the external electrode. By forming the opening into a rounded shape, the insulating protective film from the positive electrode is provided. Peeling is prevented. This delamination prevention effect is considered to be caused by the fact that the stress concentration on a specific part of the insulating protective film is eliminated, so that the deformation and destruction of the insulating protective film are suppressed. This means that, conversely, when the opening is formed in such a rounded shape, the thermal stress applied to the positive electrode tends to increase. Therefore, in this case, it is considered particularly effective to reduce the thermal stress received by the positive electrode by forming the portion of the insulating protective film located above the positive electrode by the electron beam evaporation method.

また、正電極が、p型窒化物半導体層と接する部分に、化学的に安定な元素である白金族元素またはAu(金)からなる層を有するとき、該正電極とp型半導体層との密着性が低くなる傾向がある。白金族元素とは、Rh(ロジウム)、Pd(パラジウム)、Pt(白金)、Ir(イリジウム)、Ru(ルテニウム)およびOs(オスミウム)である。従って、この場合に、絶縁保護膜の、正電極の上方に位置する部分を電子ビーム蒸着法で形成することによって、正電極が受ける熱応力を低減することは、特に有効であると考えられる。 Further, when the positive electrode has a layer made of a platinum group element or Au (gold) which is a chemically stable element in a portion in contact with the p-type nitride semiconductor layer, the positive electrode and the p-type semiconductor layer There is a tendency for adhesion to be low. The platinum group elements are Rh (rhodium), Pd (palladium), Pt (platinum), Ir (iridium), Ru (ruthenium), and Os (osmium). Therefore, in this case, it is considered to be particularly effective to reduce the thermal stress received by the positive electrode by forming the portion of the insulating protective film located above the positive electrode by the electron beam evaporation method.

また、正電極と絶縁保護膜との間に、正電極と絶縁保護膜との接着強度を高めるための接着強化層を形成すると、絶縁保護膜の安定性が向上する一方で、正電極と絶縁保護膜の界面の変形・破壊による熱応力の緩和が起こり難くなる。従って、この場合に、絶縁保護膜の、正電極の上方に位置する部分を電子ビーム蒸着法で形成することによって、正電極が受ける熱応力を低減することは、特に有効であると考えられる。 In addition, if an adhesion strengthening layer is formed between the positive electrode and the insulating protective film to increase the adhesive strength between the positive electrode and the insulating protective film, the stability of the insulating protective film is improved, while the positive electrode and the insulating protective film are insulated. Thermal stress relaxation due to deformation / destruction of the protective film interface is less likely to occur. Therefore, in this case, it is considered to be particularly effective to reduce the thermal stress received by the positive electrode by forming the portion of the insulating protective film located above the positive electrode by the electron beam evaporation method.

本発明によれば、p型窒化物半導体上から正電極上にかけて連続した絶縁保護膜が形成された窒化物半導体発光素子において、絶縁保護膜の形成に伴い動作電圧が上昇することを防止できる。従って、本発明に係る窒化物半導体発光素子は、同様に形成された絶縁保護膜を有する従来の窒化物半導体発光素子に比べ、良好な発光効率を有し、また、寿命および信頼性の改善されたものとなる。 According to the present invention, in the nitride semiconductor light emitting device in which a continuous insulating protective film is formed from the p-type nitride semiconductor to the positive electrode, it is possible to prevent the operating voltage from increasing with the formation of the insulating protective film. Therefore, the nitride semiconductor light emitting device according to the present invention has better light emission efficiency and improved lifetime and reliability compared to a conventional nitride semiconductor light emitting device having an insulating protective film formed in the same manner. It will be.

以下、図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る窒化物半導体発光素子である発光ダイオード素子の構造を模式的に示す断面図である。図1において、100は窒化物半導体発光素子であり、11は基板であり、12はn型窒化物半導体層であり、13は活性層であり、14はp型窒化物半導体層であり、15は負電極であり、16は正電極であり、17は絶縁保護膜である。負電極15は、エッチングによりp型窒化物半導体層14および活性層13の一部が除去されて露出したn型窒化物半導体層12の表面上に形成されている。正電極16は、p型窒化物半導体層14の上面に形成されている。p型窒化物半導体層14の上面は、その縁部を除いて、正電極16に覆われている。絶縁保護膜17は、電子ビーム蒸着法により形成されたものであり、負電極15上に設けられた開口部21および正電極16上に設けられた開口部22を除いて、素子100の上面側全体を覆っている。図2には、図1に示す素子100を上面側から見たときの、開口部21、22の形状を示す。どちらの開口部も、その輪郭形状を定める直線が交わる部分には丸みが付けられている。即ち、どちらの開口部も、丸みを帯びた形状に形成されている。これらの開口部は円形または楕円形に形成してもよい。円形や楕円形も、丸みを帯びた形状である。 FIG. 1 is a cross-sectional view schematically showing the structure of a light-emitting diode element that is a nitride semiconductor light-emitting element according to an embodiment of the present invention. In FIG. 1, 100 is a nitride semiconductor light emitting device, 11 is a substrate, 12 is an n-type nitride semiconductor layer, 13 is an active layer, 14 is a p-type nitride semiconductor layer, 15 Is a negative electrode, 16 is a positive electrode, and 17 is an insulating protective film. The negative electrode 15 is formed on the surface of the n-type nitride semiconductor layer 12 exposed by removing a part of the p-type nitride semiconductor layer 14 and the active layer 13 by etching. The positive electrode 16 is formed on the upper surface of the p-type nitride semiconductor layer 14. The upper surface of the p-type nitride semiconductor layer 14 is covered with the positive electrode 16 except for its edge. The insulating protective film 17 is formed by an electron beam vapor deposition method, and the upper surface side of the element 100 except for the opening 21 provided on the negative electrode 15 and the opening 22 provided on the positive electrode 16. Covers the whole. FIG. 2 shows the shapes of the openings 21 and 22 when the element 100 shown in FIG. 1 is viewed from the upper surface side. Both openings are rounded at the intersection of the straight lines that define the contour shape. That is, both openings are formed in a rounded shape. These openings may be circular or elliptical. Circular and elliptical shapes are also rounded.

図1に示す発光ダイオード素子は、次のようにして製造することができる。
まず、基板11上に、MOVPE(有機金属化合物気相成長)法、HVPE(ハイドライド気相成長)法、MBE(分子ビームエピタキシー)法等の気相エピタキシャル成長法を用いて、n型窒化物半導体層12、活性層13、p型窒化物半導体層14を、順次成長して積層する。基板11とn型窒化物半導体層12との間には、バッファ層を介在させてもよい。p型窒化物半導体層14に添加したp型不純物を活性化させるためのアニーリング処理や電子線照射処理は、適宜行うことができる。
The light emitting diode element shown in FIG. 1 can be manufactured as follows.
First, an n-type nitride semiconductor layer is formed on a substrate 11 using a vapor phase epitaxial growth method such as a MOVPE (organometallic compound vapor phase growth) method, an HVPE (hydride vapor phase growth) method, or an MBE (molecular beam epitaxy) method. 12, the active layer 13 and the p-type nitride semiconductor layer 14 are sequentially grown and stacked. A buffer layer may be interposed between the substrate 11 and the n-type nitride semiconductor layer 12. An annealing process and an electron beam irradiation process for activating the p-type impurity added to the p-type nitride semiconductor layer 14 can be appropriately performed.

次に、p型窒化物半導体層14の表面に、蒸着、スパッタリング等の方法を用いて、正電極16を形成する。正電極16には、必要に応じて、p型窒化物半導体層14との接触抵抗を低下させるための熱処理を施す。次に、塩素ガスを用いた反応性イオンエッチング法により、p型窒化物半導体層14の表面側から、n型窒化物半導体層12に達する深さのエッチングを行って、n型窒化物半導体層12を部分的に露出させる。次に、露出したn型窒化物半導体層12の表面に、蒸着、スパッタリング等の方法を用いて、負電極15を形成する。負電極15には、必要に応じて、n型窒化物半導体層12との接触抵抗を低下させるための熱処理を施す。 Next, the positive electrode 16 is formed on the surface of the p-type nitride semiconductor layer 14 using a method such as vapor deposition or sputtering. The positive electrode 16 is subjected to heat treatment for reducing the contact resistance with the p-type nitride semiconductor layer 14 as necessary. Next, the n-type nitride semiconductor layer is etched by a depth reaching the n-type nitride semiconductor layer 12 from the surface side of the p-type nitride semiconductor layer 14 by a reactive ion etching method using chlorine gas. 12 is partially exposed. Next, the negative electrode 15 is formed on the exposed surface of the n-type nitride semiconductor layer 12 using a method such as vapor deposition or sputtering. The negative electrode 15 is subjected to heat treatment for reducing the contact resistance with the n-type nitride semiconductor layer 12 as necessary.

次に、電子ビーム蒸着法により、素子の上面側の表面全体を覆うように、絶縁保護膜17を形成する。その後、エッチングによって絶縁保護膜17の一部を除去し、負電極15上に開口部21を、また、正電極16上に開口部22を、それぞれ形成し、各開口部に負電極15、正電極16を露出させる。なお、リフトオフ法を用いて、絶縁保護膜17を、初めから、開口部21、22を備えた形状に形成することもできる。最後に、基板をダイシング、スクライビング、レーザ溶断等、この分野における周知の方法を用いて切断し、チップ状の発光ダイオード素子を得る。 Next, an insulating protective film 17 is formed by electron beam evaporation so as to cover the entire surface on the upper surface side of the element. Thereafter, a part of the insulating protective film 17 is removed by etching, an opening 21 is formed on the negative electrode 15, and an opening 22 is formed on the positive electrode 16. The negative electrode 15 and the positive electrode 15 are formed in each opening. The electrode 16 is exposed. Note that the lift-off method can be used to form the insulating protective film 17 into a shape having the openings 21 and 22 from the beginning. Finally, the substrate is cut using a known method in this field such as dicing, scribing, laser fusing, etc., to obtain a chip-like light emitting diode element.

図1に示す発光ダイオード素子において、基板11には、サファイア基板、SiC基板、GaN基板、AlGaN基板、AlN基板、Si基板、GaAs基板、GaP基板、スピネル基板、ZnO基板、NGO(NdGaO3)基板、LGO(LiGaO2)基板、LAO(LaAlO3)基板、ZrB2基板、TiB2基板等、窒化物半導体のエピタキシャル成長に適用可能な公知の基板を任意に使用することができる。基板が導電性を有する場合には、負電極を基板に形成することができる。窒化物半導体の結晶成長に用いた基板を、最終製品である発光素子に残すことは必須ではなく、研磨、エッチング、レーザリフトオフ等の方法によって、その一部または全部を除去してもよく、また、除去後、別途準備した支持基板と置換してもよい。 In the light emitting diode element shown in FIG. 1, the substrate 11 includes a sapphire substrate, a SiC substrate, a GaN substrate, an AlGaN substrate, an AlN substrate, a Si substrate, a GaAs substrate, a GaP substrate, a spinel substrate, a ZnO substrate, an NGO (NdGaO3) substrate, Any known substrate applicable to the epitaxial growth of a nitride semiconductor, such as an LGO (LiGaO2) substrate, an LAO (LaAlO3) substrate, a ZrB2 substrate, or a TiB2 substrate, can be used arbitrarily. If the substrate is conductive, a negative electrode can be formed on the substrate. It is not essential to leave the substrate used for crystal growth of the nitride semiconductor in the light-emitting element that is the final product, and part or all of the substrate may be removed by methods such as polishing, etching, and laser lift-off. After the removal, a support substrate prepared separately may be replaced.

n型窒化物半導体層12、活性層13およびp型窒化物半導体層14の、それぞれのバンドギャップや膜厚、各層に添加する不純物の種類、各層における厚さ方向の不純物濃度分布等は、周知技術を適宜参照して設定することができる。これらの窒化物半導体層は、一定の結晶組成を有していてもよいし、結晶組成の異なる層からなる積層体であってもよく、また、結晶組成が傾斜した部分を含んでいてもよい。発光効率を高くするためには、ダブルヘテロ構造が構成されるようにすることが好ましく、また、活性層は量子井戸構造、特に、多重量子井戸構造とすることが好ましい。 The band gap and film thickness of n-type nitride semiconductor layer 12, active layer 13 and p-type nitride semiconductor layer 14, types of impurities added to each layer, impurity concentration distribution in the thickness direction in each layer, etc. are well known. It can be set by referring to the technology as appropriate. These nitride semiconductor layers may have a certain crystal composition, may be a laminate composed of layers having different crystal compositions, or may include a portion where the crystal composition is inclined. . In order to increase the light emission efficiency, it is preferable to form a double heterostructure, and the active layer preferably has a quantum well structure, particularly a multiple quantum well structure.

n型窒化物半導体層12の中でも、負電極と接する部分は、負電極との接触抵抗を低くするために、電子濃度を十分に高くすることが好ましい。一方、p型窒化物半導体層14の、正電極と接する部分(上面を含む部分)には、Mg(マグネシウム)等のp型不純物を、正孔濃度が最大となる濃度よりも高濃度に添加することが、正電極との接触抵抗を低くするうえで好ましい。 In the n-type nitride semiconductor layer 12, it is preferable that the portion in contact with the negative electrode has a sufficiently high electron concentration in order to reduce the contact resistance with the negative electrode. On the other hand, a p-type impurity such as Mg (magnesium) is added to a portion of the p-type nitride semiconductor layer 14 in contact with the positive electrode (a portion including the upper surface) at a concentration higher than the concentration at which the hole concentration becomes maximum. It is preferable to reduce the contact resistance with the positive electrode.

負電極15は、n型窒化物半導体層12と接する部分を、Al(アルミニウム)、Ti(チタン)、W(タングステン)、Ni(ニッケル)、Cr(クロム)、V(バナジウム)等の単体、または、これらから選ばれる1種以上の金属を含む合金で形成することが好ましい。また、負電極16には、酸化や腐食に対する耐性の良好な、Auや白金族元素からなる表面層を設けることが好ましい。 The negative electrode 15 has a portion in contact with the n-type nitride semiconductor layer 12 as a simple substance such as Al (aluminum), Ti (titanium), W (tungsten), Ni (nickel), Cr (chromium), V (vanadium), Or it is preferable to form with the alloy containing 1 or more types of metals chosen from these. Further, the negative electrode 16 is preferably provided with a surface layer made of Au or a platinum group element, which has good resistance to oxidation and corrosion.

正電極16は、p型窒化物半導体層14との接触抵抗を低くするために、p型窒化物半導体層14と接する部分を、白金族元素、Au、Ni、Co(コバルト)等の単体、または、これらから選ばれる1種以上の金属を含む合金で形成することが好ましい。正電極による光吸収を小さくして発光効率の低下を防ぐ目的のためには、該部分を光反射性の良好な白金族元素で形成することが好ましく、とりわけ、Rhで形成することが好ましい。また、正電極16には、酸化や腐食に対する耐性の良好な、Auや白金族元素からなる表面層を設けることが好ましい。正電極には、更に、ボンディング用のパッドを付加することもできる。 In order to reduce the contact resistance with the p-type nitride semiconductor layer 14, the positive electrode 16 has a portion in contact with the p-type nitride semiconductor layer 14 as a simple substance such as a platinum group element, Au, Ni, Co (cobalt), Or it is preferable to form with the alloy containing 1 or more types of metals chosen from these. For the purpose of reducing light absorption by the positive electrode and preventing a decrease in light emission efficiency, the portion is preferably formed of a platinum group element having good light reflectivity, and particularly preferably formed of Rh. Further, the positive electrode 16 is preferably provided with a surface layer made of Au or a platinum group element that has good resistance to oxidation and corrosion. Further, a bonding pad can be added to the positive electrode.

絶縁保護膜17は無機材料で形成される。好ましい無機材料としては、金属酸化物、金属窒化物、金属酸窒化物が挙げられる。金属酸化物の好適例は、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化タンタル、酸化ハフニウム、酸化イットリウム、酸化マグネシウム、酸化アルミニウム、酸化ニオブである。金属窒化物の好適例は窒化ケイ素である。これらの他、フッ化マグネシウムも好適に用いることができる。絶縁保護膜は、異なる無機材料からなる層を積層した多層膜としてもよい。絶縁保護膜17の膜厚は、例えば、0.05μm〜3μmとすることができるが、好ましくは、0.1μm〜1μmであり、より好ましくは、0.2μm〜0.5μmである。 The insulating protective film 17 is made of an inorganic material. Preferred inorganic materials include metal oxides, metal nitrides, and metal oxynitrides. Preferred examples of the metal oxide are silicon oxide, titanium oxide, zirconium oxide, tantalum oxide, hafnium oxide, yttrium oxide, magnesium oxide, aluminum oxide, and niobium oxide. A preferred example of the metal nitride is silicon nitride. In addition to these, magnesium fluoride can also be suitably used. The insulating protective film may be a multilayer film in which layers made of different inorganic materials are stacked. Although the film thickness of the insulating protective film 17 can be set to 0.05 μm to 3 μm, for example, it is preferably 0.1 μm to 1 μm, and more preferably 0.2 μm to 0.5 μm.

図1に例示した窒化物半導体発光素子100では、絶縁保護膜17の全体を電子ビーム蒸着法によって形成しているが、絶縁保護膜は、電子ビーム蒸着法で形成した層と、電子ビーム蒸着法以外の方法で形成した層とを、積層した構成としてもよい。その場合、図3に例示する発光ダイオード素子100のように、絶縁保護膜17全体を、電子ビーム蒸着法で形成した層17aと、電子ビーム蒸着法以外の方法で形成した層17bとからなる積層構造としてもよいし、あるいは、図4に例示する発光ダイオード素子100のように、絶縁保護膜17のうち、正電極16上に形成された部分だけを、電子ビーム蒸着法で形成した層17aと、電子ビーム蒸着法以外の方法で形成した層17bとからなる積層構造とすることもできる。また、正電極17上に形成された部分の、更に一部だけを、このような積層構造とすることもできる。ここで、電子ビーム蒸着法以外の絶縁保護膜の形成方法としては、プラズマCVD法、スパッタリング法等が挙げられる。なお、図3および図4に示す例では、電子ビーム蒸着法で形成した層17aが正電極16に接しているが、入れ替えて、電子ビーム蒸着法以外の方法で形成した層17bが正電極16に接するようにしてもよい。また、積層構造は、電子ビーム蒸着法で形成した層と、電子ビーム蒸着法以外の方法で形成した層の、いずれか一方、または両方を、2層以上含む交互積層構造であってもよい。 In the nitride semiconductor light emitting device 100 illustrated in FIG. 1, the entire insulating protective film 17 is formed by an electron beam evaporation method. The insulating protective film includes a layer formed by an electron beam evaporation method and an electron beam evaporation method. It is good also as a structure which laminated | stacked the layer formed by methods other than. In that case, as in the light-emitting diode element 100 illustrated in FIG. 3, the entire insulating protective film 17 is composed of a layer 17a formed by an electron beam evaporation method and a layer 17b formed by a method other than the electron beam evaporation method. A structure may be used, or like the light emitting diode element 100 illustrated in FIG. 4, only a portion of the insulating protective film 17 formed on the positive electrode 16 may be formed by an electron beam evaporation method. Alternatively, a laminated structure including the layer 17b formed by a method other than the electron beam evaporation method may be used. Further, only a part of the portion formed on the positive electrode 17 may have such a laminated structure. Here, examples of the method for forming the insulating protective film other than the electron beam evaporation method include a plasma CVD method and a sputtering method. 3 and 4, the layer 17a formed by the electron beam evaporation method is in contact with the positive electrode 16. However, the layer 17b formed by a method other than the electron beam evaporation method is replaced with the positive electrode 16. You may make it contact. Further, the laminated structure may be an alternating laminated structure including two or more layers of any one or both of a layer formed by an electron beam vapor deposition method and a layer formed by a method other than the electron beam vapor deposition method.

負電極15および正電極16と、絶縁保護膜17との間には、接着強度を高めるための接着強化層を形成してもよい。特に、負電極15や正電極16に、Auまたは白金族元素からなる表面層を設ける場合には、該表面層と絶縁保護膜との接着性が低くなるために、これを補うために、接着強化層を用いることが好ましい。接着強化層は、W、Ti、Cr、Ni、CuおよびAlから選ばれるいずれかの金属、またはその酸化物を主成分とし、スパッタリング法により数nm〜数十nmの厚さに形成する。 Between the negative electrode 15 and the positive electrode 16 and the insulating protective film 17, an adhesion reinforcing layer for increasing the adhesive strength may be formed. In particular, in the case where a surface layer made of Au or a platinum group element is provided on the negative electrode 15 or the positive electrode 16, the adhesion between the surface layer and the insulating protective film is lowered. It is preferable to use a reinforcing layer. The adhesion strengthening layer is mainly composed of any metal selected from W, Ti, Cr, Ni, Cu and Al, or an oxide thereof, and is formed to a thickness of several nanometers to several tens of nanometers by a sputtering method.

本発明の実施例として、図5に断面構造を示す、フリップチップ実装用の発光ダイオード素子(発光波長405nm)を作製した。素子のサイズは、チップ化後のサイズが350μm角となるように設定した。 As an example of the present invention, a light-emitting diode element (light emission wavelength: 405 nm) for flip-chip mounting whose cross-sectional structure is shown in FIG. 5 was produced. The element size was set so that the size after chip formation was 350 μm square.

まず、周知のMOVPE法を用いて、直径2インチのC面サファイア基板11上に、AlGaN低温成長バッファ層(図示せず)を介して、膜厚2μmのアンドープGaN層121、SiドープGaNからなる膜厚3μmのn型コンタクト層122、GaN障壁層とInGaN井戸層とを6層ずつ積層してなる多重量子井戸構造の活性層13、MgドープAlGaNからなる膜厚0.05μmのp型クラッド層141、MgドープGaNからなる膜厚0.1μmのp型コンタクト層142をこの順に成長し、積層した。積層後、p型クラッド層およびp型コンタクト層にドープしたMgを活性化させるために、RTA装置を用いて、窒素雰囲気中、900℃、1分間の熱処理を行った。 First, using a well-known MOVPE method, an undoped GaN layer 121 having a thickness of 2 μm and Si-doped GaN are formed on a C-plane sapphire substrate 11 having a diameter of 2 inches via an AlGaN low-temperature growth buffer layer (not shown). An n-type contact layer 122 having a thickness of 3 μm, an active layer 13 having a multiple quantum well structure in which six GaN barrier layers and InGaN well layers are stacked, and a p-type cladding layer having a thickness of 0.05 μm made of Mg-doped AlGaN. 141, a 0.1 μm-thick p-type contact layer 142 made of Mg-doped GaN was grown and laminated in this order. After the lamination, in order to activate Mg doped in the p-type cladding layer and the p-type contact layer, heat treatment was performed at 900 ° C. for 1 minute in a nitrogen atmosphere using an RTA apparatus.

次に、p型コンタクト層142の表面に、電子ビーム蒸着法を用いて、膜厚30nmのRh層の上に、Au層とPt層の交互積層膜を最上層がAu層となるように積層し、その上に更に接着強化層として膜厚10nmのTi層を積層した、総膜厚0.6μmの正電極16を形成した。形成後、RTA装置を用いて、窒素雰囲気中、500℃、1分間の熱処理を行った。 Next, on the surface of the p-type contact layer 142, using an electron beam evaporation method, an alternating layered film of an Au layer and a Pt layer is laminated on the 30-nm-thick Rh layer so that the uppermost layer is an Au layer. Then, a positive electrode 16 having a total film thickness of 0.6 μm was formed by further laminating a Ti layer having a thickness of 10 nm as an adhesion reinforcing layer thereon. After the formation, heat treatment was performed at 500 ° C. for 1 minute in a nitrogen atmosphere using an RTA apparatus.

次に、正電極16を形成したp型コンタクト層142の上に所定形状のレジストマスクを形成し、塩素ガスを用いたRIE(反応性イオンエッチング)により、図5に示すように、n型コンタクト層122を露出させた。露出後、n型コンタクト層の表面に、RFスパッタ法を用いて、膜厚100nmのTiW合金層の上に、Au層とPt層の交互積層膜を最上層がAu層となるように積層した、総膜厚0.7μmの負電極15を形成した。形成後、RTA装置を用いて、窒素雰囲気中、500℃、1分間の熱処理を行った。 Next, a resist mask having a predetermined shape is formed on the p-type contact layer 142 on which the positive electrode 16 is formed, and n-type contact is performed by RIE (reactive ion etching) using chlorine gas, as shown in FIG. Layer 122 was exposed. After the exposure, on the surface of the n-type contact layer, an alternating layer film of Au layer and Pt layer was laminated on the TiW alloy layer with a film thickness of 100 nm using the RF sputtering method so that the uppermost layer was an Au layer. A negative electrode 15 having a total film thickness of 0.7 μm was formed. After the formation, heat treatment was performed at 500 ° C. for 1 minute in a nitrogen atmosphere using an RTA apparatus.

続いて、電子ビーム蒸着法を用いて、酸化ケイ素からなる膜厚300nmの絶縁保護膜17を、素子の表面全体を覆うように形成した。蒸着材料には、キヤノンオプトロン株式会社製の顆粒状SiO(サイズ:1mm〜3mm)を用いた。蒸着時にはウェハの加熱、冷却は特に行わなかったが、ルツボからの輻射によってウェハの表面温度は100℃〜150℃程度となった。蒸着時の雰囲気は真空雰囲気とし、イオンビームアシストやプラズマアシスト等は行わなかった。成膜速度は、30nm/分に設定した。 Subsequently, an insulating protective film 17 made of silicon oxide and having a thickness of 300 nm was formed so as to cover the entire surface of the element by using an electron beam evaporation method. Granular SiO 2 (size: 1 mm to 3 mm) manufactured by Canon Optron Co., Ltd. was used as the vapor deposition material. While the wafer was not heated or cooled during the deposition, the surface temperature of the wafer became about 100 ° C. to 150 ° C. due to radiation from the crucible. The atmosphere during vapor deposition was a vacuum atmosphere, and ion beam assist, plasma assist, etc. were not performed. The film formation rate was set to 30 nm / min.

続いて、テトラフルオロメタンを用いたRIEによって絶縁保護膜17を部分的に除去し、図5に示すように、正電極の上面の一部と、負電極を露出させた。最後に、この分野で通常用いられる方法により、ウェハから発光ダイオード素子をチップ状に切り出した。このようにして、電流値20mAにおける順方向電圧(Vf)が3.4V以下のチップ状発光ダイオード素子を得ることができた。 Subsequently, the insulating protective film 17 was partially removed by RIE using tetrafluoromethane, and a part of the upper surface of the positive electrode and the negative electrode were exposed as shown in FIG. Finally, light emitting diode elements were cut out from the wafer into chips by a method usually used in this field. In this manner, a chip-like light emitting diode element having a forward voltage (Vf) of 3.4 V or less at a current value of 20 mA could be obtained.

比較例として、絶縁保護膜をプラズマCVD法で形成したことを除き、上記実施例と同様にしてチップ状の発光ダイオード素子を作製した。プラズマCVD法による絶縁保護膜の形成は、TEOS(テトラエチルオルソシリケート)を原料として用い、ウェハを350℃に加熱した条件で行った。この比較例のチップ状発光ダイオード素子は、電流値20mAにおける順方向電圧(Vf)が3.9V以上となった。 As a comparative example, a chip-like light emitting diode element was fabricated in the same manner as in the above example except that the insulating protective film was formed by the plasma CVD method. The insulating protective film was formed by plasma CVD using TEOS (tetraethylorthosilicate) as a raw material and the wafer was heated to 350 ° C. The chip light-emitting diode element of this comparative example had a forward voltage (Vf) of 3.9 V or more at a current value of 20 mA.

本発明の一実施形態に係る窒化物半導体発光素子の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the nitride semiconductor light-emitting device concerning one Embodiment of this invention. 図1に示す窒化物半導体発光素子を上面側から見たときの、開口部の形状を示す図である。FIG. 2 is a diagram showing a shape of an opening when the nitride semiconductor light emitting element shown in FIG. 1 is viewed from the upper surface side. 本発明の一実施形態に係る窒化物半導体発光素子の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the nitride semiconductor light-emitting device concerning one Embodiment of this invention. 本発明の一実施形態に係る窒化物半導体発光素子の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the nitride semiconductor light-emitting device concerning one Embodiment of this invention. 本発明の一実施形態に係る窒化物半導体発光素子の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the nitride semiconductor light-emitting device concerning one Embodiment of this invention.

符号の説明Explanation of symbols

11 基板
12 n型窒化物半導体層
13 活性層
14 p型窒化物半導体層
15 負電極
16 正電極
17 絶縁保護膜
21、22 開口部
100 窒化物半導体発光素子
DESCRIPTION OF SYMBOLS 11 Substrate 12 N-type nitride semiconductor layer 13 Active layer 14 P-type nitride semiconductor layer 15 Negative electrode 16 Positive electrode 17 Insulating protective films 21 and 22 Opening portion 100 Nitride semiconductor light emitting device

Claims (8)

n型窒化物半導体層の上に活性層を介して形成されたp型窒化物半導体層を備え、該p型窒化物半導体層の上面の縁部を除く領域に正電極が形成され、さらに、該正電極上に外部電極との接続のために設けられた開口部を除いて、該p型窒化物半導体層上の該正電極に覆われていない領域から該正電極上にかけて連続した絶縁保護膜が形成された窒化物半導体発光素子であって、
前記絶縁保護膜が、前記正電極の上方に、電子ビーム蒸着法で形成された部分を含むことを特徴とする窒化物半導体発光素子。
a p-type nitride semiconductor layer formed on the n-type nitride semiconductor layer via an active layer, and a positive electrode is formed in a region excluding the edge of the upper surface of the p-type nitride semiconductor layer; Continuous insulation protection from the region not covered by the positive electrode on the p-type nitride semiconductor layer to the positive electrode except for the opening provided for connection to the external electrode on the positive electrode A nitride semiconductor light emitting device having a film formed thereon,
The nitride semiconductor light-emitting element, wherein the insulating protective film includes a portion formed by an electron beam evaporation method above the positive electrode.
前記絶縁保護膜が、前記正電極に接して、前記電子ビーム蒸着法で形成された部分を含む、請求項1に記載の窒化物半導体発光素子。 The nitride semiconductor light-emitting element according to claim 1, wherein the insulating protective film includes a portion formed by the electron beam evaporation method in contact with the positive electrode. 前記絶縁保護膜が、電子ビーム蒸着法で形成された部分のみからなる、請求項2に記載の窒化物半導体発光素子。 The nitride semiconductor light-emitting element according to claim 2, wherein the insulating protective film includes only a portion formed by an electron beam evaporation method. 前記絶縁保護膜が、電子ビーム蒸着法により形成された第1の層とプラズマCVD法またはスパッタリング法により形成された第2の層とを少なくとも含む積層構造部を有する、請求項1に記載の窒化物半導体発光素子。 2. The nitridation according to claim 1, wherein the insulating protective film has a laminated structure portion including at least a first layer formed by an electron beam evaporation method and a second layer formed by a plasma CVD method or a sputtering method. Semiconductor light emitting device. 前記積層構造部において、前記第1の層が正電極に接している、請求項4に記載の窒化物半導体発光素子。 The nitride semiconductor light-emitting element according to claim 4, wherein in the stacked structure portion, the first layer is in contact with a positive electrode. 前記開口部が丸みを帯びた形状に形成されている、請求項1〜5のいずれかに記載の窒化物半導体発光素子。 The nitride semiconductor light-emitting element according to claim 1, wherein the opening is formed in a rounded shape. 前記正電極が、前記p型窒化物半導体層と接する部分に、白金族元素またはAuからなる層を有する、請求項1〜6のいずれかに記載の窒化物半導体発光素子。 The nitride semiconductor light-emitting device according to claim 1, wherein the positive electrode has a layer made of a platinum group element or Au at a portion in contact with the p-type nitride semiconductor layer. 前記正電極と前記絶縁保護膜との間に、該正電極と該絶縁保護膜との接着強度を高めるための接着強化層が形成されている、請求項1〜7のいずれかに記載の窒化物半導体発光素子。

The nitriding according to any one of claims 1 to 7, wherein an adhesion reinforcing layer is formed between the positive electrode and the insulating protective film to increase an adhesive strength between the positive electrode and the insulating protective film. Semiconductor light emitting device.

JP2006115024A 2006-04-18 2006-04-18 Nitride semiconductor light emitting device Expired - Fee Related JP4857883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115024A JP4857883B2 (en) 2006-04-18 2006-04-18 Nitride semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115024A JP4857883B2 (en) 2006-04-18 2006-04-18 Nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2007288002A true JP2007288002A (en) 2007-11-01
JP4857883B2 JP4857883B2 (en) 2012-01-18

Family

ID=38759470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115024A Expired - Fee Related JP4857883B2 (en) 2006-04-18 2006-04-18 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4857883B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102032A1 (en) * 2008-02-15 2009-08-20 Mitsubishi Chemical Corporation Gan led device and method for manufacturing the same
JP2011165799A (en) * 2010-02-08 2011-08-25 Showa Denko Kk Flip-chip light emitting diode and method for manufacturing the same, and light emitting diode lamp
JP2011187787A (en) * 2010-03-10 2011-09-22 Toshiba Corp Semiconductor light emitting element, lighting device using the same, and method of manufacturing semiconductor light emitting element
JP2012204365A (en) * 2011-03-23 2012-10-22 Rohm Co Ltd Multi-beam semiconductor laser device
US8525194B2 (en) 2011-05-16 2013-09-03 Kabushiki Kaisha Toshiba Nitride semiconductor device, nitride semiconductor wafer and method for manufacturing nitride semiconductor layer
JP2015082612A (en) * 2013-10-23 2015-04-27 旭化成株式会社 Nitride light-emitting element and method of manufacturing the same
JP2018014350A (en) * 2016-07-19 2018-01-25 株式会社東芝 Method for manufacturing LED device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150301A (en) * 1997-11-14 1999-06-02 Nichia Chem Ind Ltd Nitride semiconductor element
WO2003012859A1 (en) * 2001-07-30 2003-02-13 Mitsubishi Denki Kabushiki Kaisha Electrode structure, and method for manufacturing thin-film structure
WO2004061923A1 (en) * 2002-12-27 2004-07-22 General Electric Company Gallium nitride crystal, homoepitaxial gallium-nitride-based devices and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150301A (en) * 1997-11-14 1999-06-02 Nichia Chem Ind Ltd Nitride semiconductor element
WO2003012859A1 (en) * 2001-07-30 2003-02-13 Mitsubishi Denki Kabushiki Kaisha Electrode structure, and method for manufacturing thin-film structure
WO2004061923A1 (en) * 2002-12-27 2004-07-22 General Electric Company Gallium nitride crystal, homoepitaxial gallium-nitride-based devices and method for producing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102032A1 (en) * 2008-02-15 2009-08-20 Mitsubishi Chemical Corporation Gan led device and method for manufacturing the same
JPWO2009102032A1 (en) * 2008-02-15 2011-06-16 三菱化学株式会社 GaN-based LED element and manufacturing method thereof
JP2011165799A (en) * 2010-02-08 2011-08-25 Showa Denko Kk Flip-chip light emitting diode and method for manufacturing the same, and light emitting diode lamp
JP2011187787A (en) * 2010-03-10 2011-09-22 Toshiba Corp Semiconductor light emitting element, lighting device using the same, and method of manufacturing semiconductor light emitting element
US8680549B2 (en) 2010-03-10 2014-03-25 Kabushiki Kaisha Toshiba Semiconductor light-emitting device and lighting instrument employing the same
US9040324B2 (en) 2010-03-10 2015-05-26 Kabushiki Kaisha Toshiba Semiconductor light-emitting device, lighting instrument employing the same and process for production of the semiconductor light-emitting device
JP2012204365A (en) * 2011-03-23 2012-10-22 Rohm Co Ltd Multi-beam semiconductor laser device
US8525194B2 (en) 2011-05-16 2013-09-03 Kabushiki Kaisha Toshiba Nitride semiconductor device, nitride semiconductor wafer and method for manufacturing nitride semiconductor layer
US8759851B2 (en) 2011-05-16 2014-06-24 Kabushiki Kaisha Toshiba Nitride semiconductor device, nitride semiconductor wafer and method for manufacturing nitride semiconductor layer
US8969891B2 (en) 2011-05-16 2015-03-03 Kabushiki Kaisha Toshiba Nitride semiconductor device, nitride semiconductor wafer and method for manufacturing nitride semiconductor layer
JP2015082612A (en) * 2013-10-23 2015-04-27 旭化成株式会社 Nitride light-emitting element and method of manufacturing the same
JP2018014350A (en) * 2016-07-19 2018-01-25 株式会社東芝 Method for manufacturing LED device

Also Published As

Publication number Publication date
JP4857883B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
US10396249B2 (en) Semiconductor light emitting element and method of manufacturing the same
KR101212435B1 (en) Semiconductor light emitting device, wafer, method for manufacturing semiconductor light emitting device, and method for manufacturing wafer
US7023026B2 (en) Light emitting device of III-V group compound semiconductor and fabrication method therefor
JP5045336B2 (en) Semiconductor light emitting device
JP4766966B2 (en) Light emitting element
JP5526712B2 (en) Semiconductor light emitting device
JP5423390B2 (en) Group III nitride compound semiconductor device and method for manufacturing the same
US9263642B2 (en) III nitride semiconductor light emitting device and method for manufacturing the same
JPWO2006082687A1 (en) GaN-based light emitting diode and light emitting device
JP4857883B2 (en) Nitride semiconductor light emitting device
JP2008543032A (en) InGaAlN light emitting device and manufacturing method thereof
EP1424726B1 (en) N-electrode for III-group nitride based compound semiconductor element and methof of manufacture thereof
JP2005117020A (en) Gallium nitride based compound semiconductor device and its manufacturing method
JP7146589B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2008294188A (en) Semiconductor light emitting device and method of manufacturing the same
JP2005354049A (en) Semiconductor laser device
JP2008016629A (en) Manufacturing method of group iii nitride light emitting diode element
JP4868821B2 (en) Gallium nitride compound semiconductor and light emitting device
JP5353809B2 (en) Semiconductor light emitting element and light emitting device
JP4635418B2 (en) Semiconductor device manufacturing method and semiconductor device
JP4474887B2 (en) Semiconductor laser element
KR20090109598A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
KR20090111889A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
KR101124470B1 (en) Semiconductor light emitting device
JP2001332760A (en) Iii nitride compound semiconductor light emitting device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees