JP2007285997A - Cross-wind test facility - Google Patents

Cross-wind test facility Download PDF

Info

Publication number
JP2007285997A
JP2007285997A JP2006116642A JP2006116642A JP2007285997A JP 2007285997 A JP2007285997 A JP 2007285997A JP 2006116642 A JP2006116642 A JP 2006116642A JP 2006116642 A JP2006116642 A JP 2006116642A JP 2007285997 A JP2007285997 A JP 2007285997A
Authority
JP
Japan
Prior art keywords
wind
wind direction
test
wind speed
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006116642A
Other languages
Japanese (ja)
Other versions
JP4809111B2 (en
Inventor
Tetsuo Nogami
哲男 野上
Tsutomu Okayama
勉 岡山
Tatsuya Sugiyama
達也 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2006116642A priority Critical patent/JP4809111B2/en
Publication of JP2007285997A publication Critical patent/JP2007285997A/en
Application granted granted Critical
Publication of JP4809111B2 publication Critical patent/JP4809111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cross-wind test facility capable of improving the test accuracy by performing a cross wind test a plurality of times, under substantially identical conditions. <P>SOLUTION: The cross-wind test facility comprises an anemometer 5 for measuring the wind direction and wind speed near a test passage, in a blast band where cross wind is fed by the blower 2; a wind direction/wind speed setting apparatus for setting the wind direction and wind speed of the blower 2; a wind speed variable mechanism for varying the wind speed of the blower 2; a wind direction variable mechanism for varying the wind direction of the blower 2; and a controller for controlling the wind speed variable mechanism and wind direction variable mechanism so that the measured wind speed 14 and measured wind direction 15, measured by the anemometer 5, match with a target wind speed 8 and target wind direction 9 set by the wind direction/wind speed measuring apparatus. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、走行中の試験自動車が横風を受けたときの自動車の空力特性や操縦安定性等を試験する横風試験設備に関するものである。   The present invention relates to a crosswind test facility for testing aerodynamic characteristics, steering stability, and the like of a traveling test vehicle when it receives a crosswind.

従来より、自動車の走行試験として、所定時速で走行中に所定の風速の横風を受けた時の自動車の空力特性や操縦安定性等が横風試験によって試験されている。この横風試験は、「自動車−横風安定性試験方法(自動車規格 JASO Z108)」に規定されている。この規定によれば、例えば、試験車速100km/hで走行する試験自動車が、「自然風が1m/s以下の状態で平均値が(20±3)m/sの横風」を受けたときの「2秒間後の地点の横ずれ」、「最大ヨー角速度」、「最大横加速度」、「ロール角」等を試験することが規定されている。   Conventionally, as a running test of an automobile, the aerodynamic characteristics, steering stability, and the like of the automobile when subjected to a crosswind at a predetermined wind speed while traveling at a predetermined speed have been tested by a crosswind test. This crosswind test is defined in “Automobile-crosswind stability test method (automobile standard JASO Z108)”. According to this regulation, for example, when a test vehicle traveling at a test vehicle speed of 100 km / h receives “a crosswind with an average value of (20 ± 3) m / s in a state where the natural wind is 1 m / s or less”. It is stipulated that tests such as “lateral deviation of a point after 2 seconds”, “maximum yaw angular velocity”, “maximum lateral acceleration”, “roll angle”, and the like.

この横風試験を行う試験路は、自動車規格 JASO Z117−1(試験路)によって、「送風帯の前後にそれぞれ100m以上の直線路をもち、走路幅は送風帯突入前で5m以上、突入後で7m以上とする。」と規定されている。そのため、この直線の長い試験路を屋内に設置するのは難しく、通常、屋外に設けられている。この試験路に設けられる横風試験設備としては、試験路の横に送風機を複数台並べて設置することによって少なくとも15mの長さの送風帯を形成し、試験路に予め設定された走行基準線上を走行する試験自動車に対して送風帯の位置で横風を送風するように構成されている。   The test path for performing this cross wind test is, according to the car standard JASO Z117-1 (test road), “each has straight roads of 100 m or more before and after the blowing zone, and the running road width is 5 m or more before entering the blowing zone and after entering. It shall be 7m or more. " Therefore, it is difficult to install this long test path indoors, and it is usually provided outdoors. As a crosswind test facility provided on this test road, a plurality of fans are arranged side by side to form a blower band having a length of at least 15 m, and travel on a driving reference line set in advance on the test road. It is comprised so that a cross wind may be ventilated at the position of a ventilation zone with respect to the test automobile.

この横風試験設備による横風試験としては、通常、試験自動車の走行前に前記送風機からの風向風速を設定し、その風向風速で送風を開始した後に試験自動車で横風試験設備の前の送風帯を走行し、その走行中の試験自動車が横風を受けたときの空力特性や操縦安定性等の挙動が試験されている。   In the crosswind test by the crosswind test facility, the wind speed from the blower is usually set before running the test vehicle, and after the start of air blowing at the wind direction wind speed, the test vehicle runs in the airflow zone in front of the crosswind test facility. However, behaviors such as aerodynamic characteristics and steering stability when the running test vehicle is subjected to a crosswind are being tested.

なお、この種の関連技術として、圧力損失の変動に対する応答を早くして、安定した風速が得られるようにした風洞の風速制御装置や(例えば、特許文献1参照)、測定対象物に対して任意の風向・風速で変動する気流を与えることができるようにした全方位風向風洞装置があるが(例えば、特許文献2参照)、これらの技術では、本発明に係る横風試験設備において試験精度を向上させることはできない。
特開平10−123010号公報 特開2002−296143号公報
As a related technique of this type, a wind tunnel wind speed control device that speeds up the response to fluctuations in pressure loss so that a stable wind speed can be obtained (see, for example, Patent Document 1), and a measurement object. Although there is an omnidirectional wind tunnel device that can provide an air flow that fluctuates at an arbitrary wind direction and speed (see, for example, Patent Document 2), in these techniques, test accuracy is improved in the cross wind test facility according to the present invention. It cannot be improved.
JP 10-123010 A JP 2002-296143 A

ところで、前記「自動車−横風安定性試験方法(自動車規格 JASO Z108)」には、試験時の自然風として「自然風の風速は、その風向にかかわらず3m/s以下とする。」と規定されている。また、横風試験の試験回数としては、「試験回数は各車速ごとに5回以上とする。」と規定されている。   By the way, in the “automobile-crosswind stability test method (automobile standard JASO Z108)”, the natural wind during the test is defined as “the wind speed of the natural wind is 3 m / s or less regardless of the wind direction”. ing. Further, the number of times of the cross wind test is defined as “the number of tests is 5 or more for each vehicle speed”.

しかしながら、前記したように屋外に設けられる横風試験設備は自然風の影響を強く受けるため、精度の高い試験を実施することが難しい。しかも、自然風は時間とともに変化するため、この自然風が前記規定された範囲内の風速の時に5回の試験を行うには、多くの時間を要する場合がある。   However, as described above, the crosswind test facility provided outdoors is strongly affected by natural wind, and it is difficult to perform a highly accurate test. In addition, since the natural wind changes with time, it may take a long time to perform the test five times when the natural wind is at a wind speed within the specified range.

また、自然風の風速が前記規定範囲の時に同じ横風試験を5回行ったとしても、その規定範囲内での誤差は避けられないので、より精度を向上させるためにほぼ同じ条件で5回の横風試験を行うのは難しい。   Further, even if the same crosswind test is performed 5 times when the wind speed of the natural wind is within the specified range, an error within the specified range is unavoidable. Therefore, in order to improve accuracy, the test is performed 5 times under substantially the same conditions. It is difficult to perform a crosswind test.

そこで、本発明は、ほぼ同じ条件で複数回の横風試験を行って試験精度を向上させることができる横風試験設備を提供することを目的とする。   Accordingly, an object of the present invention is to provide a cross wind test facility capable of improving the test accuracy by performing a cross wind test a plurality of times under substantially the same conditions.

前記目的を達成するために、本発明は、吹出口の風向きを偏流する偏流装置を備えた送風機を試験路に設け、該送風機で走行する試験自動車に対して横風を送風し、該試験自動車の横風安定性を試験する横風試験設備において、前記送風機で横風を送風する送風帯において試験路の近傍で風向風速を計測する風向風速計と、前記送風機の風向風速を設定する風向風速設定器と、該送風機の風速を可変にする風速可変機構と、該送風機の風向を可変にする風向可変機構と、前記風向風速計で計測した風向風速信号が前記風向風速測定器で設定した風向風速と一致するように前記風速可変機構と風向可変機構とを制御する制御装置とを設けている。この制御装置による制御はフィードバック制御であり、これにより、風向風速設定器で設定した試験自動車に対する風向風速と風向風速計で実測した風向風速とが一致するようにフィードバック制御され、自然風の影響が補正された正確な横風試験を行うことができる。しかも、横風試験での風向風速の再現性向上を図ることができるので、試験精度を高めた効率の良い試験を実施することができる。   In order to achieve the above-mentioned object, the present invention provides a blower equipped with a drift device for drifting the wind direction of the blower outlet in a test path, blows a cross wind to a test automobile running on the blower, In a cross wind test facility for testing cross wind stability, a wind direction anemometer that measures the wind direction wind speed in the vicinity of a test path in a blow zone that blows cross wind with the blower, and a wind direction and wind speed setting device that sets the wind direction and wind speed of the blower, The wind direction variable mechanism that makes the wind speed of the blower variable, the wind direction variable mechanism that makes the wind direction of the blower variable, and the wind direction wind speed signal measured by the wind direction anemometer coincide with the wind direction wind speed set by the wind direction wind speed measuring device. Thus, a control device for controlling the wind speed variable mechanism and the wind direction variable mechanism is provided. The control by this control device is feedback control, whereby feedback control is performed so that the wind direction wind speed for the test vehicle set by the wind direction wind speed setting device matches the wind direction wind speed actually measured by the wind direction anemometer, and the influence of natural wind is exerted. Corrected accurate crosswind test can be performed. And since the reproducibility improvement of the wind direction wind speed in a cross wind test can be aimed at, the efficient test which raised the test precision can be implemented.

また、前記試験自動車が送風帯に入ったことを検出する位置検出器を設け、該位置検出器の検出信号に基いて前記制御装置による前記風向風速計の風向風速信号と前記風向風速測定器で設定した風向風速とを一致させる制御を制限する機能を前記制御装置に備えさせてもよい。これにより、送風帯(横風試験位置)に試験自動車が入ったことを位置検出器で検出したら送風機からの横風の風向風速を一定に保ち、通過する試験自動車の影響で自然風が乱されて制御に影響を与えるのを避け、試験精度を向上させることができる。   In addition, a position detector for detecting that the test automobile has entered the ventilation zone is provided, and based on a detection signal of the position detector, a wind direction wind speed signal of the wind direction anemometer and a wind direction wind speed measuring device by the control device The control device may be provided with a function of restricting control to match the set wind direction and wind speed. As a result, if the position detector detects that the test vehicle has entered the blower zone (cross wind test position), the wind speed of the cross wind from the blower is kept constant, and the natural wind is disturbed by the influence of the test vehicle that passes through and controlled. The test accuracy can be improved by avoiding the influence on the test.

さらに、前記試験自動車が走行する試験路の走行基準線上における仮想位置の風向風速を設定する機能を前記風向風速設定器に備えさせ、該風向風速設定器で設定した風向風速を前記風向風速計の位置での風向風速指令に変換する風向風速補正器を備えさせてもよい。これにより、風向風速計で検出した風向風速から走行基準線上の仮想位置における風向風速に換算して、その仮想位置における風向風速制御ができ、走行基準線上を走行する試験自動車のより正確な横風試験ができる。また、風向風速計を試験路の近くに設置しなくても正確な風向風速の制御ができる。   Further, the wind direction and wind speed setting device is provided with a function of setting the wind direction and wind speed at a virtual position on the running reference line of the test road on which the test vehicle travels, and the wind direction and wind speed set by the wind direction and wind speed setting device are included in the wind direction and anemometer. You may provide the wind direction wind speed corrector which converts into the wind direction wind speed command in a position. This allows the wind direction and wind speed detected at the virtual position on the travel reference line to be converted from the wind direction and wind speed detected by the wind direction anemometer to control the wind direction and wind speed at the virtual position, and the more accurate crosswind test of the test vehicle traveling on the travel reference line Can do. In addition, the wind direction and wind speed can be accurately controlled without installing an anemometer near the test path.

本発明は、以上説明したような手段により、自然風の影響を抑えて精度の高い横風試験を行うことができる横風試験設備を提供することが可能となる。   According to the present invention, it is possible to provide a crosswind test facility capable of performing a highly accurate crosswind test while suppressing the influence of natural wind by means as described above.

以下、本発明の一実施の形態を図面に基づいて説明する。図1は、本発明の第1実施の形態に係る横風試験設備の平面視の模式図である。図2は、図1に示す横風試験設備における風向風速の補正制御方式を示すブロック図であり、図3(a) 〜(d) は、図1に示す横風試験設備における風向風速の補正原理の説明図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view in plan view of the crosswind test facility according to the first embodiment of the present invention. 2 is a block diagram showing a correction control method of the wind direction and wind speed in the cross wind test facility shown in FIG. 1, and FIGS. 3 (a) to 3 (d) show the principle of correction of the wind direction and wind speed in the cross wind test facility shown in FIG. It is explanatory drawing.

図示するように、試験自動車Mが走行する試験路Rの所定位置に横風試験設備1が設けられており、この横風試験設備1が設けられた位置から前記したように試験路Rの幅員が広く形成されている。この横風試験設備1は、複数台(図では5台)の送風機2が横方向に並設されており、これらの送風機2から所定風速の横風を試験路Rに向けて送風するように構成されている。この実施の形態では、風速可変機構として、送風機2の回転数制御(例えば、インバータ制御)によって風速を可変にするように構成されている。   As shown in the drawing, a cross wind test facility 1 is provided at a predetermined position on a test road R on which the test vehicle M travels. The width of the test road R is wide as described above from the position where the cross wind test facility 1 is provided. Is formed. The cross wind test facility 1 includes a plurality of (five in the figure) blowers 2 arranged in parallel in the horizontal direction, and is configured to blow a cross wind at a predetermined wind speed toward the test path R from these blowers 2. ing. In this embodiment, the wind speed variable mechanism is configured to make the wind speed variable by controlling the rotational speed of the blower 2 (for example, inverter control).

また、横風試験設備1の試験路側には風向可変機構たる偏流装置3が設けられており、送風機2の風向きを変更できるように構成されている。この偏流装置3としては、試験路側にルーバー4を縦向きに設け、このルーバー4を垂直軸周りで回動させることによって水平方向の風向を変更できるようにしたものが採用されている。この送風機2による横風Wの風向風速は、試験者が所望する風向風速であり、予め設定される。   Moreover, the drift device 3 which is a wind direction variable mechanism is provided in the test path side of the cross wind test equipment 1, and it is comprised so that the wind direction of the air blower 2 can be changed. As the drifting device 3, a louver 4 is provided vertically on the test road side, and the louver 4 is rotated about a vertical axis so that the horizontal wind direction can be changed. The wind direction wind speed of the cross wind W by the blower 2 is a wind direction wind speed desired by the tester, and is set in advance.

そして、この横風試験設備1には、前記ルーバー4から送風された横風Wの風向と風速とを計測する風向風速計5が試験路Rの近傍に設けられている。この風向風速計5は、試験路Rに近接して試験自動車Mの走行ラインに近い位置に設けるのが好ましい。   In the cross wind test facility 1, a wind direction anemometer 5 for measuring the wind direction and the wind speed of the cross wind W blown from the louver 4 is provided in the vicinity of the test path R. The anemometer 5 is preferably provided at a position close to the test road R and close to the travel line of the test automobile M.

また、この実施の形態では、横風試験設備1の入口付近に試験自動車Mの通過を検出する位置検出器6が設けられている。この位置検出器6としては、例えば、光学式センサや画像センサのように、試験路Rを走行する試験自動車Mが横風試験設備1の横に突入したことを検出できるものであればよい。なお、図では横風試験設備1の試験自動車突入線(横風試験設備1の入口側端部)上に位置検出器6を設けているが、この位置検出器6は、試験自動車Mの先端から重心までの距離分上流側の突入地点付近に設けてもよく、横風試験設備1の入口側近傍であればよい。   In this embodiment, a position detector 6 for detecting the passage of the test vehicle M is provided near the entrance of the cross wind test facility 1. As the position detector 6, for example, an optical sensor or an image sensor may be used as long as it can detect that the test vehicle M traveling on the test road R has entered the side of the cross wind test facility 1. In the figure, a position detector 6 is provided on the test vehicle inrush line of the crosswind test facility 1 (inlet side end portion of the crosswind test facility 1). The position detector 6 has a center of gravity from the front end of the test vehicle M. It may be provided in the vicinity of the entry point on the upstream side by the distance up to, and may be in the vicinity of the entrance side of the crosswind test facility 1.

さらに、この横風試験設備1には、前記送風機2の回転数制御や偏流装置3の角度制御を行うとともに、風向風速計5の検出値からこれら送風機2の回転数と偏流装置3の角度制御を行う制御装置7が設けられている。この図では横風試験設備1に近接して制御装置7が設けられているが、この制御装置7は横風試験設備1から離れた操作室(図示略)等に設けてもよい。   Further, in the cross wind test facility 1, the rotational speed control of the blower 2 and the angle control of the drift device 3 are performed, and the rotational speed of the blower 2 and the angle control of the drift device 3 are controlled from the detected value of the wind direction anemometer 5. A control device 7 is provided. In this figure, the control device 7 is provided close to the crosswind test facility 1, but the control device 7 may be provided in an operation room (not shown) or the like apart from the crosswind test facility 1.

図2に示すように、前記横風試験設備1の風向風速の補正制御としては、予め、風向風速設定器(制御装置7に含まれるため、図示略)に横風試験を行う目標風速8と目標風向9とが設定され、その目標風速8となるように送風機2の回転数に換算10されるとともに、その目標風向9となるように偏流装置3の角度に換算11される。この換算されたそれぞれの値は、送風機回転数指令12として送風機2に出力されるとともに、偏流装置角度指令13として偏流装置3に出力される。そして、これらの指令によって所定風速で所定風向に送風される横風Wは、前記風向風速計5によって実測される。この風向風速計5で実測される横風Wは、送風機2による強制風と自然風との合成風が計測され、この風速は測定風速14としてフィードバック制御され、風向は測定風向15としてフィードバック制御される。このフィードバック制御された測定風速14と測定風向15とは、前記目標風速8と目標風向9と比較部16,17で比較され、それぞれが補正される。これらの補正は、前記制御装置7によって行われる。   As shown in FIG. 2, as the correction control of the wind direction and wind speed of the cross wind test facility 1, a target wind speed 8 and a target wind direction for performing a cross wind test on a wind direction and wind speed setter (not shown because it is included in the control device 7) in advance 9 is set, converted to the rotational speed of the blower 2 so as to be the target wind speed 8, and converted into the angle of the drift device 3 so as to be the target wind direction 9. Each of the converted values is output to the blower 2 as the blower rotation speed command 12 and is also output to the drift device 3 as the drift device angle command 13. The cross wind W blown in a predetermined wind direction at a predetermined wind speed by these commands is actually measured by the wind direction anemometer 5. The cross wind W measured by the wind direction anemometer 5 is a composite wind of the forced wind and the natural wind generated by the blower 2. The wind speed is feedback-controlled as the measured wind speed 14, and the wind direction is feedback-controlled as the measured wind direction 15. . The measurement-controlled wind speed 14 and the measurement wind direction 15 that are feedback-controlled are compared with the target wind speed 8 and the target wind direction 9 by the comparison units 16 and 17 and corrected. These corrections are performed by the control device 7.

図3(a) 〜(d) に示すように、このように横風試験設備1で補正された横風Wは、横風試験設備1から送風された強制風W1(太い実線)と、試験路Rにおける自然風W2(細い実線)との合成風W3(点線)となる。この合成風W3が前記目標風速8と目標風向9とになるように、前記風向風速計5によって実測された風速と風向とから、この合成風W3がフィードバック制御される。図示する(a) と(d) 、(b) と(c) とは自然風の影響が対称の例を示しており、このような自然風W2がある場合は、横風試験設備1から送風される強制風W1を図示するような対称にすれば、目標とする合成風W3を同じようにすることができる。   As shown in FIGS. 3 (a) to 3 (d), the cross wind W corrected by the cross wind test facility 1 in this way is the forced wind W 1 (thick solid line) blown from the cross wind test facility 1 and the test path R. It becomes the combined wind W3 (dotted line) with the natural wind W2 (thin solid line). The composite wind W3 is feedback-controlled from the wind speed and the wind direction measured by the wind direction anemometer 5 so that the composite wind W3 becomes the target wind speed 8 and the target wind direction 9. (A) and (d), (b) and (c) shown in the figure show examples in which the influence of the natural wind is symmetric. When there is such a natural wind W2, the air is blown from the cross wind test facility 1. If the forced wind W1 is made symmetrical as shown in the figure, the target synthesized wind W3 can be made the same.

図4は、本発明の第2実施の形態に係る横風試験設備における風向風速の補正制御方式を示すブロック図である。前記したように、この実施の形態の横風試験設備21の入口付近には、試験路Rを試験自動車Mが通過して送風帯に差し掛かったことを検出する位置検出器6が設けられている。第2実施の形態の横風試験設備21は、この位置検出器6を用いて風向風速の補正制御を行っており、横風試験設備21の前の送風帯を通過する試験自動車Mによる空気の乱れの影響で自然風が乱され、この自然風の乱れによって制御性に悪影響を与えるのを避けるようにしている。なお、前記第1実施の形態と同一の構成には同一符号を付して説明する。   FIG. 4 is a block diagram showing a correction control method for the wind direction and wind speed in the cross wind test facility according to the second embodiment of the present invention. As described above, the position detector 6 is provided near the entrance of the crosswind test facility 21 of this embodiment to detect that the test vehicle M has passed through the test path R and has reached the blower zone. The crosswind test facility 21 according to the second embodiment performs correction control of the wind direction and wind speed using the position detector 6, and the turbulence of the air by the test automobile M passing through the blast zone in front of the crosswind test facility 21. The natural wind is disturbed by the influence, and the disturbance of the natural wind is avoided to adversely affect the controllability. The same components as those in the first embodiment will be described with the same reference numerals.

図示するように、前記位置検出器6によって検出された試験自動車Mの車位置検出22の信号は、タイマ23に出力され、このタイマ23から信号ホールド処理24,25へと出力される。   As shown in the figure, the signal of the vehicle position detection 22 of the test vehicle M detected by the position detector 6 is output to the timer 23 and is output from the timer 23 to signal hold processing 24 and 25.

一方、この実施の形態の横風試験設備21においても、前記第1実施の形態と同様に、予め、横風試験を行う目標風速8と目標風向9とが設定され、その目標風速8となるような送風機2の回転数に換算10されるとともに、その目標風向9となるような偏流装置3の角度に換算11される。この換算されたそれぞれの値は、送風機回転数指令12として送風機2に出力されるとともに、偏流装置角度指令13として偏流装置3に出力される。これらの指令によって所定風速で所定風向に送風される横風Wは、前記風向風速計5によって実測される。この風向風速計5で実測される横風Wは、送風機2による強制風と自然風との合成風が計測され、この風速は測定風速14としてフィードバック制御され、風向は測定風向15としてフィードバック制御される。このフィードバック制御された測定風速14と測定風向15とは、前記目標風速8と目標風向9と比較部16,17で比較され、それぞれが補正される。   On the other hand, also in the cross wind test facility 21 of this embodiment, the target wind speed 8 and the target wind direction 9 for performing the cross wind test are set in advance and become the target wind speed 8 as in the first embodiment. 10 is converted into the rotational speed of the blower 2 and 11 is converted into the angle of the drift device 3 so that the target wind direction 9 is obtained. Each of the converted values is output to the blower 2 as the blower rotation speed command 12 and is also output to the drift device 3 as the drift device angle command 13. The cross wind W blown in a predetermined wind direction at a predetermined wind speed by these commands is measured by the wind direction anemometer 5. The cross wind W measured by the wind direction anemometer 5 is a composite wind of the forced wind and the natural wind generated by the blower 2. The wind speed is feedback-controlled as the measured wind speed 14, and the wind direction is feedback-controlled as the measured wind direction 15. . The measurement-controlled wind speed 14 and the measurement wind direction 15 that are feedback-controlled are compared with the target wind speed 8 and the target wind direction 9 by the comparison units 16 and 17 and corrected.

そして、このフィードバック制御される測定風速14と測定風向15との回路に前記信号ホールド処理24,25が設けられている。この測定風速14と測定風向15との回路に信号ホールド処理24,25を設けることにより、車位置検出22によって試験自動車Mが横風試験設備21の送風帯に差し掛かったことを検出すると、タイマ23からの信号で所定時間信号ホールド処理24,25が行われる。そのため、試験自動車Mは、横風試験設備21の前の送風帯を通過する前に設定された風速と風向とによって試験され、試験自動車Mの走行によって乱される空気の影響で自然風が乱されて制御性に悪影響を与えるのを防止することができる。つまり、試験自動車Mが送風帯を通過するときには、この試験自動車Mが横風試験設備21の送風帯を通過する前の測定風速・測定風向をホールドして外乱に対して不感にし、自然風の乱れによる制御性への影響をなくしている。したがって、この実施の形態の場合、特に、大型車のように試験自動車Mが走行することによって周囲の空気に乱れを生じさせるような場合に有効である。   The signal hold processes 24 and 25 are provided in the circuit of the measurement wind speed 14 and the measurement wind direction 15 that are feedback-controlled. By providing signal hold processing 24 and 25 in the circuit of the measurement wind speed 14 and the measurement wind direction 15, when the vehicle position detection 22 detects that the test automobile M has approached the blowing zone of the cross wind test facility 21, the timer 23 The signal hold processing 24, 25 is performed for a predetermined time with this signal. Therefore, the test vehicle M is tested by the wind speed and the wind direction set before passing through the air blowing zone in front of the cross wind test facility 21, and the natural wind is disturbed by the influence of the air disturbed by the travel of the test vehicle M. Thus, adverse effects on controllability can be prevented. In other words, when the test vehicle M passes through the blast zone, the test vehicle M holds the measured wind speed and direction before passing through the blast zone of the cross wind test facility 21 to make it insensitive to disturbance, and the natural wind turbulence. The influence on the controllability by is eliminated. Therefore, in the case of this embodiment, it is particularly effective in the case where the surrounding air is disturbed by the test vehicle M traveling like a large vehicle.

図5は、本発明の第3実施の形態に係る横風試験設備の平面視の模式図である。図6は、図5に示す横風試験設備における風向風速の補正制御方式による位置換算を説明する平面視の模式図であり、図7は、図6に示す風向風速の補正制御方式を示すブロック図である。なお、この実施の形態でも、前記第1実施の形態と同一の構成には同一符号を付して説明する。   FIG. 5 is a schematic diagram in plan view of the crosswind test facility according to the third embodiment of the present invention. FIG. 6 is a schematic diagram for explaining the position conversion by the wind direction wind speed correction control method in the cross wind test facility shown in FIG. 5, and FIG. 7 is a block diagram showing the wind direction wind speed correction control method shown in FIG. It is. In this embodiment as well, the same components as those in the first embodiment will be described with the same reference numerals.

図5に示すように、前記第1,2実施の形態における横風試験設備1,21は、試験路Rに予め設定された走行基準線C上を走行する試験自動車Mに対する横風Wを、試験路Rの近傍に設けた風向風速計5で計測した風向風速信号によって補正している。しかし、所定の開口から送風された風は徐々に減衰するので、試験路Rの走行基準線C上を走行する試験自動車Mに対して、正確な目標風速と目標風向とで横風Wを送風しているとは限らない。   As shown in FIG. 5, the cross wind test facility 1, 21 in the first and second embodiments has a cross wind W for a test vehicle M traveling on a travel reference line C set in advance on the test road R. Correction is made by a wind direction and wind speed signal measured by an anemometer 5 provided in the vicinity of R. However, since the wind blown from the predetermined opening is gradually attenuated, the cross wind W is blown to the test vehicle M running on the running reference line C of the test path R with an accurate target wind speed and target wind direction. Not necessarily.

そこで、図6に示すように、この実施の形態の横風試験設備31では、走行基準線C上の仮想位置32における風向風速を、風向風速計5の位置における風向風速に換算することで、風向風速計5の位置と異なる位置における風向風速制御を可能としている。この図において、仮想位置32と風向風速計5とからの風向の延長線上における横風試験設備31の吹出口33を基準点(x10,y10)、(x20,y20)とし、基準点(x10,y10)から風向風速計5が設けられた位置(x1,y1)までの距離をl1 とし、基準点(x20,y20)から走行基準線C上の風向風速調整位置である仮想位置32(x2,y2)までの距離をl2 として、補正する場合を説明する。 Therefore, as shown in FIG. 6, in the cross wind test facility 31 of this embodiment, the wind direction and wind speed at the virtual position 32 on the travel reference line C are converted into the wind direction and wind speed at the position of the wind direction anemometer 5, thereby Wind direction and wind speed control at a position different from the position of the anemometer 5 is possible. In this figure, the outlet 33 of the cross wind test facility 31 on the extension line of the wind direction from the virtual position 32 and the anemometer 5 is set as the reference points (x 10 , y 10 ), (x 20 , y 20 ), and the reference point The distance from (x 10 , y 10 ) to the position (x 1 , y 1 ) where the wind direction anemometer 5 is provided is l 1, and the wind direction wind speed on the travel reference line C from the reference point (x 20 , y 20 ) A case will be described in which the distance to the virtual position 32 (x 2 , y 2 ), which is the adjustment position, is l 2 and correction is performed.

前記送風機2から送風される横風Wは噴流となるため、吹出口33から離れると減衰する。この横風Wは水平方向に広がる二次元の自由噴流と考えられ、二次元自由噴流の最大速度としては、機械工学便覧に下記[数1]が示されている。この式において、u ;出口風速、u ;所望位置の最大風速、λ;実験的に求める係数、d;管径、l;距離、である。 Since the cross wind W blown from the blower 2 becomes a jet, it attenuates when it leaves the blower outlet 33. This cross wind W is considered to be a two-dimensional free jet that spreads in the horizontal direction, and the maximum velocity of the two-dimensional free jet is shown in [Equation 1] below in the mechanical engineering manual. In this equation, u 0 : outlet wind speed, u m : maximum wind speed at a desired position, λ: coefficient obtained experimentally, d: tube diameter, l: distance.

Figure 2007285997
Figure 2007285997

そして、この[数1]の式における風速umを所望の位置における風速とし、この[数1]の式と距離の式である下記[数2]の式とによって、走行基準線C上の風向風速調整位置(x2,y2)において所望の風速uを得るための前記風向風速計5の位置(x1,y1)における風速uを、下記[数3]の式によって求める。[数2]の式における「l」は「l1」「l2」、「x2+y2」は「x1 2+y1 2」「x2 2+y2 2」とする。 Then, the wind speed um in the formula [1] is set as the wind speed at a desired position, and the wind direction on the travel reference line C is calculated by the formula [1] and the following formula [2] which is a distance formula. The wind speed u 1 at the position (x 1 , y 1 ) of the anemometer 5 for obtaining a desired wind speed u 2 at the wind speed adjustment position (x 2 , y 2 ) is obtained by the following equation (3). In the equation (2), “l” is “l 1 ” “l 2 ”, and “x 2 + y 2 ” is “x 1 2 + y 1 2 ” “x 2 2 + y 2 2 ”.

Figure 2007285997
Figure 2007285997

Figure 2007285997
Figure 2007285997

但し、実際には、理論通りの理想的な自由噴流とならないので、距離lの関数を、下記[数4]の式によって、走行基準線C上の風向風速調整位置(x2,y2)と基準点(x20,y20)との間の複数点で実測した実測値から作成してもよい。 However, in actuality, since the ideal free jet as in theory does not occur, the function of the distance l is converted into the wind direction / wind speed adjustment position (x 2 , y 2 ) on the traveling reference line C by the following [Equation 4]. And a reference value (x 20 , y 20 ) may be created from actual measurement values measured at a plurality of points.

Figure 2007285997
Figure 2007285997

このような第3実施の形態の横風試験設備31によれば、予め、試験自動車Mの走行基準線C上における風向風速調整位置(x2,y2)と、風向風速計5の位置(x1,y1)と、横風試験設備31の吹出口33である基準点(x10,y10)、(x20,y20)とから、風向風速位置換算値が求められる。 According to the cross wind test facility 31 of the third embodiment as described above, the wind direction and wind speed adjustment position (x 2 , y 2 ) on the travel reference line C of the test vehicle M and the position of the wind direction anemometer 5 (x 1 , y 1 ) and the reference point (x 10 , y 10 ), (x 20 , y 20 ) that is the outlet 33 of the cross wind test facility 31, the wind direction wind speed position converted value is obtained.

図7に示すように、この求められた風向風速位置換算値は、風向風速補正器たる風向風速位置換算34によって、予め設定された仮想位置32において風向風速調整位置での目標風速38が得られるような風速に換算される。つまり、この風向風速位置換算34によって、横風試験設備31から離れた位置にある走行基準線C上の風向風速調整位置(x2,y2)において、前記予め設定された風向風速調整位置での目標風速38が得られるような風速に換算される。また、この風向風速位置換算34には、風向風速調整位置での目標風向39も入力され、風向データも考慮された風速が決定される。 As shown in FIG. 7, the calculated wind direction wind speed position converted value is obtained by a wind direction wind speed position conversion 34 as a wind direction wind speed corrector to obtain a target wind speed 38 at a wind direction wind speed adjustment position at a preset virtual position 32. It is converted to such wind speed. That is, according to the wind direction / wind speed position conversion 34, the wind direction / wind speed adjustment position (x 2 , y 2 ) on the travel reference line C located at a position away from the cross wind test facility 31 is the preset wind direction / wind speed adjustment position. The wind speed is converted so that the target wind speed 38 is obtained. Further, the target wind direction 39 at the wind direction / wind speed adjustment position is also input to the wind direction / wind speed position conversion 34, and the wind speed considering the wind direction data is determined.

そして、この風向風速位置換算34によって換算された目標風速38となるように送風機2の回転数に換算10されるとともに、風向風速調整位置での目標風向39となるような偏流装置3の角度に換算11される。この換算されたそれぞれの値は、送風機回転数指令12として送風機2に出力されるとともに、偏流装置角度指令13として偏流装置3に出力される。これらの指令によって所定風速で所定風向に送風される横風Wは、前記風向風速計5によって実測される。この風向風速計5で実測される横風Wは、送風機2による強制風と自然風との合成風が計測され、この風速は測定風速14としてフィードバック制御され、風向は測定風向15としてフィードバック制御される。このフィードバック制御された測定風速14と測定風向15とは、前記風向風速位置換算34で換算された目標風速38と、風向風速調整位置での目標風向39と比較部16,17で比較され、それぞれが補正される。   Then, the rotational speed of the blower 2 is converted to 10 so that the target wind speed 38 converted by the wind direction / wind speed position conversion 34 is obtained, and the angle of the drift device 3 is set to the target wind direction 39 at the wind direction / wind speed adjustment position. Conversion 11 is performed. Each of the converted values is output to the blower 2 as the blower rotation speed command 12 and is also output to the drift device 3 as the drift device angle command 13. The cross wind W blown in a predetermined wind direction at a predetermined wind speed by these commands is measured by the wind direction anemometer 5. The cross wind W measured by the wind direction anemometer 5 is a composite wind of the forced wind and the natural wind generated by the blower 2. The wind speed is feedback-controlled as the measured wind speed 14, and the wind direction is feedback-controlled as the measured wind direction 15. . The feedback-controlled measured wind speed 14 and measured wind direction 15 are compared by the comparison units 16 and 17 with the target wind speed 38 converted by the wind direction wind speed position conversion 34 and the target wind direction 39 at the wind direction and wind speed adjustment position, respectively. Is corrected.

なお、前記いずれの実施の形態も、送風機2の回転数制御によって風速を可変にする風速可変機構を例に説明したが、送風機2の吸込側に絞りを設け、この絞りを制御することによって風速を可変にしてもよく、また、送風機2に可変ピッチの羽根を設け、この羽根のピッチを変更することにより風速を可変にするように構成してもよく、風速を可変にする機構は前記実施の形態に限定されるものではない。さらに、前記いずれの実施の形態も、送風機2のルーバー4によって風向を可変にする風向可変機構を例に説明したが、送風機2からの風向を変更できる構成であればよく、前記実施の形態に限定されるものではない。   In each of the above embodiments, the wind speed variable mechanism that changes the wind speed by controlling the rotation speed of the blower 2 has been described as an example. However, a throttle is provided on the suction side of the blower 2, and the wind speed is controlled by controlling the throttle. In addition, the air blower 2 may be provided with variable pitch blades, and the wind speed may be varied by changing the pitch of the blades. It is not limited to the form. Furthermore, in any of the above-described embodiments, the wind direction variable mechanism that changes the wind direction using the louver 4 of the blower 2 has been described as an example. However, any configuration that can change the wind direction from the blower 2 may be used. It is not limited.

また、前述した実施の形態は一例を示しており、本発明の要旨を損なわない範囲での種々の変更は可能であり、本発明は前述した実施の形態に限定されるものではない。   Further, the above-described embodiment shows an example, and various modifications can be made without departing from the gist of the present invention, and the present invention is not limited to the above-described embodiment.

本発明に係る横風試験設備は、試験自動車に対しより安定した横風試験を行う場合に有用である。   The crosswind test facility according to the present invention is useful when performing a more stable crosswind test on a test vehicle.

本発明の第1実施の形態に係る横風試験設備の平面視の模式図である。It is a mimetic diagram of the plane view of the crosswind test equipment concerning a 1st embodiment of the present invention. 図1に示す横風試験設備における風向風速の補正制御方式を示すブロック図である。It is a block diagram which shows the correction | amendment control system of the wind direction wind speed in the cross wind test equipment shown in FIG. (a) 〜(d) は、図1に示す横風試験設備における風向風速の補正原理の説明図である。(a)-(d) is explanatory drawing of the correction | amendment principle of the wind direction wind speed in the crosswind test equipment shown in FIG. 本発明の第2実施の形態に係る横風試験設備における風向風速の補正制御方式を示すブロック図である。It is a block diagram which shows the correction | amendment control system of the wind direction wind speed in the crosswind test equipment which concerns on 2nd Embodiment of this invention. 本発明の第3実施の形態に係る横風試験設備の平面視の模式図である。It is a schematic diagram of the planar view of the crosswind test equipment which concerns on 3rd Embodiment of this invention. 図5に示す横風試験設備における風向風速の補正制御方式による位置換算を説明する平面視の模式図である。It is a schematic diagram of the planar view explaining the position conversion by the correction | amendment control system of the wind direction wind speed in the cross wind test equipment shown in FIG. 図6に示す風向風速の補正制御方式を示すブロック図である。It is a block diagram which shows the correction | amendment control system of the wind direction wind speed shown in FIG.

符号の説明Explanation of symbols

1…横風試験設備
2…送風機
3…偏流装置
4…ルーバー
5…風向風速計
6…位置検出器
7…制御装置
8…目標風速
9…目標風向
10…送風機回転数換算
11…偏流装置角度換算
12…送風機回転数指令
13…偏流装置角度指令
14…測定風速
15…測定風向
16,17…比較部
21…横風試験設備
22…車位置検出
23…タイマ
24,25…信号ホールド処理
31…横風試験設備
32…仮想位置
33…吹出口
34…風向風速位置換算
38…風向風速調整位置での目標風速
39…風向風速調整位置での目標風向
M…試験自動車
R…試験路
C…走行基準線
W…横風
W1…強制風
W2…自然風
W3…合成風
1 ... Crosswind test facility
2 ... Blower
3 ... Diffusion device
4 ... Louvre
5 ... Wind anemometer
6 ... Position detector
7. Control device
8 ... Target wind speed
DESCRIPTION OF SYMBOLS 9 ... Target wind direction 10 ... Blower rotation speed conversion 11 ... Diffusion apparatus angle conversion 12 ... Blower rotation speed command 13 ... Diffusion apparatus angle command 14 ... Measurement wind speed 15 ... Measurement wind direction 16, 17 ... Comparison part 21 ... Cross wind test equipment 22 ... Car Position detection 23 ... Timer 24, 25 ... Signal hold processing 31 ... Cross wind test facility 32 ... Virtual position 33 ... Outlet 34 ... Wind direction / wind speed position conversion 38 ... Target wind speed at wind direction / wind speed adjustment position 39 ... Target at wind direction / wind speed adjustment position Wind direction
M ... Test car
R ... Test path
C ... Running reference line
W ... Cross wind W1 ... Forced wind W2 ... Natural wind W3 ... Synthetic wind

Claims (3)

吹出口の風向きを偏流する偏流装置を備えた送風機を試験路に設け、該送風機で走行する試験自動車に対して横風を送風し、該試験自動車の横風安定性を試験する横風試験設備において、
前記送風機で横風を送風する送風帯において試験路の近傍で風向風速を計測する風向風速計と、前記送風機の風向風速を設定する風向風速設定器と、該送風機の風速を可変にする風速可変機構と、該送風機の風向を可変にする風向可変機構と、前記風向風速計で計測した風向風速信号が前記風向風速測定器で設定した風向風速と一致するように前記風速可変機構と風向可変機構とを制御する制御装置とを設けたことを特徴とする横風試験設備。
In the crosswind test facility for installing a blower equipped with a drift device for drifting the wind direction of the blowout outlet in the test path, blowing a crosswind to a test vehicle running on the blower, and testing the crosswind stability of the test vehicle,
A wind direction anemometer that measures the wind direction wind speed in the vicinity of a test path in a blower zone that blows cross wind with the blower, a wind direction wind speed setter that sets the wind direction wind speed of the blower, and a wind speed variable mechanism that makes the wind speed of the blower variable A wind direction variable mechanism that makes the wind direction of the blower variable, and the wind direction variable mechanism and the wind direction variable mechanism so that the wind direction wind speed signal measured by the wind direction anemometer matches the wind direction wind speed set by the wind direction wind speed measuring device. A crosswind test facility characterized by comprising a control device for controlling the wind.
前記試験自動車が送風帯に入ったことを検出する位置検出器を設け、該位置検出器の検出信号に基いて前記制御装置による前記風向風速計の風向風速信号と前記風向風速測定器で設定した風向風速とを一致させる制御を制限する機能を前記制御装置に備えさせた請求項1に記載の横風試験設備。   A position detector for detecting that the test automobile has entered the ventilation zone is provided, and the wind direction wind speed signal of the wind direction anemometer by the control device and the wind direction wind speed measuring device are set based on the detection signal of the position detector. The cross wind test facility according to claim 1, wherein the control device is provided with a function of restricting control to match the wind direction and wind speed. 前記試験自動車が走行する試験路の走行基準線上における仮想位置の風向風速を設定する機能を前記風向風速設定器に備えさせ、該風向風速設定器で設定した風向風速を前記風向風速計の位置での風向風速指令に変換する風向風速補正器を備えさせた請求項1又は請求項2に記載の横風試験設備。   The wind direction and wind speed setting device is provided with a function of setting the wind direction and wind speed at a virtual position on the running reference line of the test road on which the test vehicle travels, and the wind direction and wind speed set by the wind direction and wind speed setting device are provided at the position of the wind direction and anemometer. The crosswind test facility according to claim 1 or 2, further comprising a wind direction and wind speed corrector that converts the wind direction and wind speed command.
JP2006116642A 2006-04-20 2006-04-20 Crosswind test facility Active JP4809111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006116642A JP4809111B2 (en) 2006-04-20 2006-04-20 Crosswind test facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006116642A JP4809111B2 (en) 2006-04-20 2006-04-20 Crosswind test facility

Publications (2)

Publication Number Publication Date
JP2007285997A true JP2007285997A (en) 2007-11-01
JP4809111B2 JP4809111B2 (en) 2011-11-09

Family

ID=38757895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006116642A Active JP4809111B2 (en) 2006-04-20 2006-04-20 Crosswind test facility

Country Status (1)

Country Link
JP (1) JP4809111B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953998A (en) * 2016-04-25 2016-09-21 辽宁工业大学 Racing car cross wind stability index evaluation method based on wind tunnel test
CN107356287A (en) * 2017-08-30 2017-11-17 国网湖南省电力公司 Novel conductive wire ice-coated test system and test method
CN110243418A (en) * 2019-08-05 2019-09-17 桂林电子科技大学 A kind of environment measuring device
CN114659793A (en) * 2022-02-11 2022-06-24 厦门大学 Wind speed and direction envelope determination method for open-air test run experiment of engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110024A (en) * 1984-11-02 1986-05-28 Mitsubishi Heavy Ind Ltd Air direction control for diffusion air tunnel experiment
JPH01153935A (en) * 1987-12-11 1989-06-16 Hitachi Ltd Device for generating wind speed following vehicle speed
JPH01165443U (en) * 1988-05-12 1989-11-20
JPH03225842A (en) * 1990-01-30 1991-10-04 Mitsubishi Electric Corp Bonding tool
JPH0686051U (en) * 1993-05-26 1994-12-13 三菱重工業株式会社 Circulating wind tunnel dynamic pressure controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110024A (en) * 1984-11-02 1986-05-28 Mitsubishi Heavy Ind Ltd Air direction control for diffusion air tunnel experiment
JPH01153935A (en) * 1987-12-11 1989-06-16 Hitachi Ltd Device for generating wind speed following vehicle speed
JPH01165443U (en) * 1988-05-12 1989-11-20
JPH03225842A (en) * 1990-01-30 1991-10-04 Mitsubishi Electric Corp Bonding tool
JPH0686051U (en) * 1993-05-26 1994-12-13 三菱重工業株式会社 Circulating wind tunnel dynamic pressure controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953998A (en) * 2016-04-25 2016-09-21 辽宁工业大学 Racing car cross wind stability index evaluation method based on wind tunnel test
CN107356287A (en) * 2017-08-30 2017-11-17 国网湖南省电力公司 Novel conductive wire ice-coated test system and test method
CN107356287B (en) * 2017-08-30 2023-04-07 国网湖南省电力公司 Novel wire icing test system and test method
CN110243418A (en) * 2019-08-05 2019-09-17 桂林电子科技大学 A kind of environment measuring device
CN114659793A (en) * 2022-02-11 2022-06-24 厦门大学 Wind speed and direction envelope determination method for open-air test run experiment of engine
CN114659793B (en) * 2022-02-11 2022-11-25 厦门大学 Wind speed and direction envelope determination method for open-air test run experiment of engine

Also Published As

Publication number Publication date
JP4809111B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP6818052B2 (en) Wind generation means and wind test facility equipped with this
JP4809111B2 (en) Crosswind test facility
US7150560B2 (en) Device and method for determining total temperature for aircraft
US10890519B2 (en) Sensor system for sensing the mass concentration of particles in air
JP2015004616A (en) Circular stream type open type wind tunnel device, and method for rectifying air stream in circular stream type open type wind tunnel
CN104155986B (en) Inertial coupling characteristic-based spacecraft attitude compensation control method
JP2006064571A (en) Wind speed adjusting device of closed-circuit wind tunnel equipment
JP4283286B2 (en) Ventilation control method of shaft tunnel centralized exhaust ventilation road tunnel
KR20150144289A (en) Test appatauts of cross-wind gust and test method thereof
JP2021148594A (en) Duct inner pressure measurement structure and wind tunnel test device
JP4906392B2 (en) Crosswind test facility
KR102351970B1 (en) Aparptus of automatic isokinetic inlet for measuring partical matter from stack emission
JPH09269281A (en) Environmental testing device for self-advancing vehicle
WO2018135284A1 (en) Dust detecting device
JP2008241198A (en) Connection structure of flexible duct and air volume control device
JPH05180492A (en) Ion concentration controller in air conditioning room
KR102469001B1 (en) Drone for measuring atmosphere environment
JP2004198271A (en) Flow measurement device in duct
JP2005249705A (en) Wind tunnel testing device
KR20200044397A (en) A wind generator capable of constantly genereating wind speeds of less than 2m/s to veryfy the performance of an anemometer
JP2018054532A (en) Device and method for measuring air flow
JP5731992B2 (en) Condensation test equipment
KR101242749B1 (en) Method of pressure drop simulation for avionics
JPH01153935A (en) Device for generating wind speed following vehicle speed
JPH09113404A (en) Breeze-velocity control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4809111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250