JP2021148594A - Duct inner pressure measurement structure and wind tunnel test device - Google Patents

Duct inner pressure measurement structure and wind tunnel test device Download PDF

Info

Publication number
JP2021148594A
JP2021148594A JP2020048638A JP2020048638A JP2021148594A JP 2021148594 A JP2021148594 A JP 2021148594A JP 2020048638 A JP2020048638 A JP 2020048638A JP 2020048638 A JP2020048638 A JP 2020048638A JP 2021148594 A JP2021148594 A JP 2021148594A
Authority
JP
Japan
Prior art keywords
duct
pressure
pressure measurement
flow
wind tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020048638A
Other languages
Japanese (ja)
Other versions
JP7421769B2 (en
Inventor
亮太 高谷
Ryota Takaya
亮太 高谷
俊輝 三友
Toshiteru Mitomo
俊輝 三友
好和 牧野
Yoshikazu Makino
好和 牧野
篤史 上野
Atsushi Ueno
篤史 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Japan Aerospace Exploration Agency JAXA
Original Assignee
Subaru Corp
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp, Japan Aerospace Exploration Agency JAXA filed Critical Subaru Corp
Priority to JP2020048638A priority Critical patent/JP7421769B2/en
Publication of JP2021148594A publication Critical patent/JP2021148594A/en
Application granted granted Critical
Publication of JP7421769B2 publication Critical patent/JP7421769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

To make it possible to accurately measure a total pressure distribution while favorably adjusting flow rate even if a duct interior is a supersonic flow field.SOLUTION: A duct inner pressure measurement structure measures a pressure distribution on a predetermined pressure measurement surface S orthogonal to an air flow direction inside an intake duct 31. At an upstream side of the pressure measurement surface S, an annular plug 34 is provided that closes an outer peripheral side of a flow path in the intake duct 31 to adjust flow rate of air. The plug 34 is formed in a stepped shape so that a flow path expands in two stages along an air flow direction.SELECTED DRAWING: Figure 3

Description

本発明は、超音波流れ場におけるダクト内部の総圧分布を計測する技術に関する。 The present invention relates to a technique for measuring the total pressure distribution inside a duct in an ultrasonic flow field.

航空機に作用する気流の影響を模擬した風洞試験は、機体を模した模型周りの流れや、模型に作用する空気力などを調べるために行われる(例えば、特許文献1参照)。
このような風洞試験において、模型に作用する外部荷重を算出する場合、模型全体に作用する荷重計測値から、気流によるインテークダクト(空気取り入れ口)内部の空力荷重を除外する必要がある。インテークダクトの内部荷重は、ダクト出口付近の総圧および壁面圧力(静圧)の計測値から算出される。
A wind tunnel test that simulates the effect of airflow acting on an aircraft is conducted to investigate the flow around the model that imitates the aircraft, the aerodynamic force that acts on the model, and the like (see, for example, Patent Document 1).
In such a wind tunnel test, when calculating the external load acting on the model, it is necessary to exclude the aerodynamic load inside the intake duct (air intake) due to the air flow from the load measurement value acting on the entire model. The internal load of the intake duct is calculated from the measured values of the total pressure near the duct outlet and the wall surface pressure (static pressure).

そのため、模型の外部荷重を高精度に算出するには、これらの総圧および静圧を、流路断面での分布も含めてより正確に計測する必要がある。圧力分布をより正確に捉えるためには計測点数を増やすことが望ましいが、単純に計測用のピトー管数を増加させたりすると、その分だけ流路面積が減少してしまい、必要な流量を確保できなくなるおそれがある。 Therefore, in order to calculate the external load of the model with high accuracy, it is necessary to measure these total pressure and static pressure more accurately including the distribution in the cross section of the flow path. It is desirable to increase the number of measurement points in order to capture the pressure distribution more accurately, but if the number of pitot tubes for measurement is simply increased, the flow path area will decrease by that amount, and the required flow rate will be secured. It may not be possible.

ところで、インテークダクト内への流入空気量を模擬する場合には、図5に示すように、流路を部分的に閉塞させるプラグをダクト内壁に取り付けることで、流量を調整する。このプラグは、それ自体が流れに及ぼす影響を極力抑えるために、インテークダクトの下流端近くに設けられる。 By the way, when simulating the amount of inflow air into the intake duct, as shown in FIG. 5, the flow rate is adjusted by attaching a plug that partially blocks the flow path to the inner wall of the duct. This plug is installed near the downstream end of the intake duct in order to minimize the effect of itself on the flow.

しかしながら、インテークダクト内の流れ場が超音速である場合、プラグから衝撃波が発生し、総圧計測の精度低下を招いてしまう。
この点につき、解析例を挙げて説明する。図6は、この解析例の結果を示す図であり、このうち(a)が、超音速流れ場におけるインテークダクト内のマッハ数分布を示すコンター図であり、(b)が、(a)のコンターを超音速域(M≧1.0)と亜音速域(M<1.0)にまとめて表した図である。
図6(a)に示すように、インテークダクト内が超音速流れ場であると、プラグの下流端から衝撃波が発生する。すると、図6(b)に示すように、プラグの直ぐ下流に位置する圧力計測面内において、超音速域と亜音速域とが混在した不連続な圧力分布が生じてしまい、総圧分布の計測精度を低下させてしまう。
However, when the flow field in the intake duct is supersonic, a shock wave is generated from the plug, which causes a decrease in the accuracy of total pressure measurement.
This point will be described with reference to an analysis example. FIG. 6 is a diagram showing the results of this analysis example, of which (a) is a contour diagram showing the Mach number distribution in the intake duct in the supersonic flow field, and (b) is the contour diagram of (a). It is the figure which showed the contour collectively in the supersonic range (M ≧ 1.0) and the subsonic range (M <1.0).
As shown in FIG. 6A, when the inside of the intake duct is a supersonic flow field, a shock wave is generated from the downstream end of the plug. Then, as shown in FIG. 6B, a discontinuous pressure distribution in which the supersonic range and the subsonic range are mixed occurs in the pressure measurement plane located immediately downstream of the plug, and the total pressure distribution becomes It reduces the measurement accuracy.

特開平10−267786号公報Japanese Unexamined Patent Publication No. 10-267786

本発明は、上記事情を鑑みてなされたもので、ダクト内部が超音速流れ場の場合であっても、好適に流量を調整しつつ精度よく総圧分布を計測できるようにすることを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to enable accurate measurement of total pressure distribution while appropriately adjusting the flow rate even when the inside of the duct is a supersonic flow field. do.

上記目的を達成するために、請求項1に記載の発明は、ダクト内部のうち、気流方向に直交する所定の圧力計測面における圧力分布を計測するダクト内圧力計測構造であって、
前記圧力計測面の上流側には、前記ダクト内の流路の外周側を閉塞させて空気の流量を調整する環状の流量調整部材が設けられ、
前記流量調整部材は、気流方向に沿って2段階に流路が拡大するように、段付き状に形成されていることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is an in-duct pressure measuring structure for measuring a pressure distribution on a predetermined pressure measuring surface orthogonal to the airflow direction inside the duct.
An annular flow rate adjusting member for adjusting the flow rate of air by closing the outer peripheral side of the flow path in the duct is provided on the upstream side of the pressure measuring surface.
The flow rate adjusting member is characterized in that it is formed in a stepped shape so that the flow path expands in two stages along the direction of the air flow.

請求項2に記載の発明は、請求項1に記載のダクト内圧力計測構造において、
前記圧力計測面は前記ダクトの出口付近に設けられ、
前記流量調整部材は前記圧力計測面の直ぐ上流側に設けられていることを特徴とする。
The invention according to claim 2 is the invention according to claim 1 in the duct pressure measuring structure according to claim 1.
The pressure measuring surface is provided near the outlet of the duct.
The flow rate adjusting member is provided immediately upstream of the pressure measuring surface.

請求項3に記載の発明は、請求項1または2に記載のダクト内圧力計測構造において、
前記ダクトが、航空機の模型に設けられたインテークダクトであることを特徴とする。
The invention according to claim 3 is the in-duct pressure measuring structure according to claim 1 or 2.
The duct is an intake duct provided on a model of an aircraft.

請求項4に記載の発明は、風洞試験装置であって、
風洞と、
前記風洞内に気流を発生させる送風機と、
請求項3に記載のダクト内圧力計測構造と、
を備え、
前記風洞内で気流を受けたときの前記模型のインテークダクト内部の圧力分布を計測することを特徴とする。
The invention according to claim 4 is a wind tunnel test apparatus.
Wind tunnel and
A blower that generates airflow in the wind tunnel,
The duct internal pressure measurement structure according to claim 3 and
With
It is characterized in that the pressure distribution inside the intake duct of the model is measured when an air flow is received in the wind tunnel.

本発明によれば、ダクト内の流路を閉塞させる流量調整部材が、気流方向に沿って2段階に流路が拡大するように、段付き状に形成されている。
そのため、ダクト内部が超音速流れの場合には、まず1段目の流路拡大部において衝撃波が発生してマッハ数M<1.0となる流れが誘起される。そして、このM<1.0の領域に配置された2段目の流路拡大部により流れが減速されて、超音速域が圧力計測面まで及ばなくなり、当該圧力計測面における圧力分布が平準化される。
したがって、ダクト内部が超音速流れの場合であっても、好適に流量を調整しつつ精度よく総圧分布を計測することができる。
According to the present invention, the flow rate adjusting member that closes the flow path in the duct is formed in a stepped shape so that the flow path expands in two steps along the airflow direction.
Therefore, when the inside of the duct is a supersonic flow, a shock wave is first generated in the flow path expansion portion of the first stage, and a flow in which the Mach number M <1.0 is induced. Then, the flow is decelerated by the second-stage flow path expansion portion arranged in the region of M <1.0, the supersonic region does not reach the pressure measurement surface, and the pressure distribution on the pressure measurement surface is leveled. ..
Therefore, even when the inside of the duct has a supersonic flow, the total pressure distribution can be measured accurately while adjusting the flow rate appropriately.

実施形態における風洞試験装置の概略構成を示す図である。It is a figure which shows the schematic structure of the wind tunnel test apparatus in embodiment. 実施形態における模型の斜視図である。It is a perspective view of the model in an embodiment. (a)は実施形態における模型のうち、インテークダクトの延在方向に沿った断面図であり、(b)は(a)のうちインテークダクト出口付近の拡大図であり、(c)は圧力計測面でのピトー管の配列を説明するための図である。(A) is a cross-sectional view of the model in the embodiment along the extending direction of the intake duct, (b) is an enlarged view of the vicinity of the intake duct outlet of (a), and (c) is pressure measurement. It is a figure for demonstrating the arrangement of the Pitot tube in a plane. 実施形態における解析例の結果を示す図であって、(a)が超音速流れ場におけるインテークダクト内のマッハ数分布を示すコンター図であり、(b)が(a)のコンターを超音速域と亜音速域にまとめて表した図である。It is a figure which shows the result of the analysis example in an embodiment, (a) is a contour figure which shows the Mach number distribution in the intake duct in a supersonic flow field, (b) is the contour of (a) in a supersonic range. It is a figure that is summarized in the subsonic range. 従来のダクト内圧力計測構造を説明するための図である。It is a figure for demonstrating the conventional pressure measurement structure in a duct. 従来のダクト内圧力計測構造における解析例の結果を示す図であって、(a)が超音速流れ場におけるインテークダクト内のマッハ数分布を示すコンター図であり、(b)が(a)のコンターを超音速域と亜音速域にまとめて表した図である。It is a figure which shows the result of the analysis example in the conventional pressure measurement structure in a duct, (a) is a contour figure which shows the Mach number distribution in an intake duct in a supersonic flow field, and (b) is (a). It is the figure which showed the contour collectively in the supersonic range and the subsonic range.

以下、本発明に係るダクト内圧力計測構造を風洞試験装置に適用した場合の実施形態について、図面を参照して説明する。 Hereinafter, embodiments when the pressure measurement structure in the duct according to the present invention is applied to the wind tunnel test apparatus will be described with reference to the drawings.

図1は、本実施形態における風洞試験装置1の概略構成を示す図であり、図2は、風洞試験装置1に設置される模型3の斜視図である。 FIG. 1 is a diagram showing a schematic configuration of a wind tunnel test device 1 in the present embodiment, and FIG. 2 is a perspective view of a model 3 installed in the wind tunnel test device 1.

図1に示すように、本実施形態における風洞試験装置1は、航空機に作用する外部荷重等を測定するものであり、航空機を模した模型3と、模型3の機体前方から気流Fを発生させる送風機4とを、風洞2内に備えている。 As shown in FIG. 1, the wind tunnel test device 1 in the present embodiment measures an external load or the like acting on an aircraft, and generates a model 3 imitating an aircraft and an airflow F from the front of the model 3. A blower 4 is provided in the wind tunnel 2.

模型3は、風洞2内の測定部に立設された支持部材21から送風方向上流側に向けて突設されたスティング22の先端に、天秤23を介して取り付けられている。
天秤23は、図2に示すように、模型3の胴体30内部に設けられており、模型3全体に作用する空気力を計測する。
The model 3 is attached to the tip of the sting 22 projecting from the support member 21 erected in the measurement portion in the wind tunnel 2 toward the upstream side in the blowing direction via the balance 23.
As shown in FIG. 2, the balance 23 is provided inside the body 30 of the model 3 and measures the aerodynamic force acting on the entire model 3.

模型3に作用する外部荷重は、天秤23で計測される模型3全体に作用する空気力から、模型3のインテークダクト31内部に作用する空力荷重を除外することで算出される。インテークダクト31内部に作用する空力荷重は、実際の航空機では推力の一部と見做されるためである。 The external load acting on the model 3 is calculated by excluding the aerodynamic load acting on the inside of the intake duct 31 of the model 3 from the aerodynamic force acting on the entire model 3 measured by the balance 23. This is because the aerodynamic load acting on the inside of the intake duct 31 is regarded as a part of the thrust in an actual aircraft.

図3(a)は、模型3のうち、インテークダクト31の延在方向に沿った断面図であり、図3(b)は、図3(a)のうちインテークダクト31の出口付近の拡大図であり、図3(c)は、後述するピトー管24の配列を説明するための図である。
インテークダクト31内部に作用する空力荷重は、図3(a)に示すように、インテークダクト31の出口付近での総圧及び壁面圧力(静圧)から算出される。より詳しくは、インテークダクト31の延在方向と直交する圧力計測面Sにおける総圧及び壁面圧力が計測され、これらの計測値から空力荷重が算出される。
FIG. 3A is a cross-sectional view of the model 3 along the extending direction of the intake duct 31, and FIG. 3B is an enlarged view of the vicinity of the outlet of the intake duct 31 in FIG. 3A. 3 (c) is a diagram for explaining the arrangement of the Pitot tubes 24, which will be described later.
As shown in FIG. 3A, the aerodynamic load acting on the inside of the intake duct 31 is calculated from the total pressure and the wall surface pressure (static pressure) near the outlet of the intake duct 31. More specifically, the total pressure and the wall surface pressure on the pressure measuring surface S orthogonal to the extending direction of the intake duct 31 are measured, and the aerodynamic load is calculated from these measured values.

このうち、壁面圧力は、例えば、インテークダクト31の壁面のうち圧力計測面S上に形成された複数の計測孔(図示省略)における静圧の平均値として計測される。複数の計測孔はその外周側に設けられた図示しないチャンバーに全てが連通されており、このチャンバーが圧力配管を介して接続された圧力計によって、これら複数の計測孔における静圧が計測されるようになっている。 Of these, the wall surface pressure is measured as, for example, the average value of static pressure in a plurality of measurement holes (not shown) formed on the pressure measurement surface S on the wall surface of the intake duct 31. All of the plurality of measurement holes are communicated with a chamber (not shown) provided on the outer peripheral side thereof, and the static pressure in these multiple measurement holes is measured by a pressure gauge connected to this chamber via a pressure pipe. It has become like.

一方、総圧は、図3(b)に示すように、多点計測可能な複数のピトー管24によって計測される。これら複数のピトー管24は、各先端が圧力計測面S上に位置するように、開口した後端からインテークダクト31内に挿し込まれた状態に配置され、圧力計測面S内においては、図3(c)に示すように、特に限定はされないが、中心含む3箇所の半径方向位置と8箇所の周方向位置が計測できるように配列されている。 On the other hand, as shown in FIG. 3B, the total pressure is measured by a plurality of Pitot tubes 24 capable of measuring at multiple points. These plurality of Pitot tubes 24 are arranged in a state of being inserted into the intake duct 31 from the rear end of the opening so that their respective tips are located on the pressure measurement surface S. As shown in 3 (c), although not particularly limited, they are arranged so that three radial positions including the center and eight circumferential positions including the center can be measured.

インテークダクト31内の出口付近には、図3(b)に示すように、空気流量を調整するためのプラグ34が着脱可能に取り付けられている。
このプラグ34は、周方向に略一定肉厚の環状に形成され、インテークダクト31内壁に取り付けられて、インテークダクト31の流路の外周側を閉塞させる。
As shown in FIG. 3B, a plug 34 for adjusting the air flow rate is detachably attached near the outlet in the intake duct 31.
The plug 34 is formed in an annular shape having a substantially constant wall thickness in the circumferential direction, and is attached to the inner wall of the intake duct 31 to close the outer peripheral side of the flow path of the intake duct 31.

また、プラグ34は、気流方向に沿った断面においては、気流方向に沿って2段階に流路が拡大するように、段付き状に形成されている。より詳しくは、プラグ34は、最小内径のスロート部T1と、段付き部L1と、スロート部T1よりも大きい内径の中間段部T2と、下流端部L2とが、気流方向の上流側から連なるように形成されている。流路径の変化部分である段付き部L1と下流端部L2と上流端部は、流路が滑らかに変化するように傾斜面状に形成されている。下流端部L2は、本実施形態では、圧力計測面Sの直ぐ上流側に位置している。 Further, the plug 34 is formed in a stepped shape so that the flow path expands in two steps along the airflow direction in the cross section along the airflow direction. More specifically, in the plug 34, the throat portion T1 having the minimum inner diameter, the stepped portion L1, the intermediate step portion T2 having an inner diameter larger than the throat portion T1, and the downstream end portion L2 are connected from the upstream side in the airflow direction. It is formed like this. The stepped portion L1 and the downstream end portion L2 and the upstream end portion, which are portions where the flow path diameter changes, are formed in an inclined surface shape so that the flow path changes smoothly. In the present embodiment, the downstream end portion L2 is located immediately upstream of the pressure measuring surface S.

このようにプラグ34が段付き状に形成されていることにより、超音速流れにおける圧力計測面S上の圧力分布を均すことができる。
インテークダクト31内の流れ場が超音速となる場合、プラグで単純に流路を絞ってしまうと、プラグ後端から衝撃波が発生し、この衝撃波により圧力計測面S上に不連続な圧力分布が生じて総圧計測の精度低下を招いてしまう(図6参照)。
そこで本実施形態では、流路が2段階に拡大するようにプラグ34を段付き状に形成している。これにより、まずインテークダクト31における1段目の流路拡大部(プラグ34の段付き部L1)において衝撃波を発生させ、マッハ数M<1.0となる流れを誘起する。その後、このM<1.0の領域に配置された2段目の流路拡大部(プラグ34の下流端部L2)により流れが減速されて、圧力計測面Sにおける圧力分布が平準化される。
Since the plug 34 is formed in a stepped shape in this way, the pressure distribution on the pressure measuring surface S in the supersonic flow can be leveled.
When the flow field in the intake duct 31 becomes supersonic, if the flow path is simply throttled by the plug, a shock wave is generated from the rear end of the plug, and this shock wave causes a discontinuous pressure distribution on the pressure measurement surface S. This causes a decrease in the accuracy of total pressure measurement (see FIG. 6).
Therefore, in the present embodiment, the plug 34 is formed in a stepped shape so that the flow path expands in two stages. As a result, first, a shock wave is generated in the first-stage flow path expansion portion (stepped portion L1 of the plug 34) in the intake duct 31, and a flow in which the Mach number M <1.0 is induced. After that, the flow is decelerated by the second-stage flow path expansion portion (downstream end portion L2 of the plug 34) arranged in the region of M <1.0, and the pressure distribution on the pressure measurement surface S is leveled.

上述したプラグ34による効果を、CFD(Computational Fluid Dynamics)解析による解析例を挙げてさらに詳しく説明する。
図4は、本解析例の結果を示す図であり、このうち(a)が、超音速流れ場におけるインテークダクト31内のマッハ数分布を示すコンター図であり、(b)が、(a)のコンターを超音速域(M≧1.0)と亜音速域(M<1.0)にまとめて表した図である。
図4(a)の図に示すように、インテークダクト31内が超音速流れ場である場合、1段目の流路拡大部において斜め衝撃波が発生している。この斜め衝撃波のマッハ交差により垂直衝撃波が形成され、その後流では流れが減速されている。そして、更に2段目の流路拡大部において流れが減速される。
その結果、図4(b)の図に示すように、圧力計測面Sにおいて超音速域と亜音速域とが混在していた従来(図6(b)参照)と異なり、圧力計測面Sでは亜音速流れとなるように圧力分布が平準化される。
The effect of the plug 34 described above will be described in more detail with reference to an analysis example by CFD (Computational Fluid Dynamics) analysis.
FIG. 4 is a diagram showing the results of this analysis example, of which (a) is a contour diagram showing the Mach number distribution in the intake duct 31 in the supersonic flow field, and (b) is (a). Is a diagram showing the contours of the above in a supersonic range (M ≧ 1.0) and a subsonic range (M <1.0).
As shown in the figure of FIG. 4A, when the inside of the intake duct 31 is a supersonic flow field, an oblique shock wave is generated in the flow path expansion portion of the first stage. A vertical shock wave is formed by the Mach intersection of this oblique shock wave, and the flow is decelerated in the subsequent flow. Then, the flow is further decelerated at the flow path expansion portion of the second stage.
As a result, as shown in the figure of FIG. 4 (b), unlike the conventional method (see FIG. 6 (b)) in which the supersonic range and the subsonic range are mixed on the pressure measurement surface S, the pressure measurement surface S has a pressure measurement surface S. The pressure distribution is leveled so that the flow is subsonic.

以上のように、本実施形態によれば、インテークダクト31内の流路を閉塞させるプラグ34が、気流方向に沿って2段階に流路が拡大するように、段付き状に形成されている。
そのため、ダクト内部が超音速流れの場合には、まず1段目の流路拡大部(プラグ34の段付き部L1)において衝撃波が発生してマッハ数M<1.0となる流れが誘起される。そして、このM<1.0の領域に配置された2段目の流路拡大部(プラグ34の下流端部L2)により流れが減速されて、超音速域が圧力計測面Sまで及ばなくなり、当該圧力計測面Sにおける圧力分布が平準化される。
したがって、インテークダクト31内部が超音速流れの場合であっても、好適に流量を調整しつつ精度よく総圧分布を計測することができる。
As described above, according to the present embodiment, the plug 34 that closes the flow path in the intake duct 31 is formed in a stepped shape so that the flow path expands in two stages along the air flow direction. ..
Therefore, when the inside of the duct is a supersonic flow, a shock wave is first generated in the flow path expansion portion (stepped portion L1 of the plug 34) of the first stage, and a flow in which the Mach number M <1.0 is induced. Then, the flow is decelerated by the second stage flow path expansion portion (downstream end portion L2 of the plug 34) arranged in the region of M <1.0, and the supersonic region does not reach the pressure measurement surface S, and the pressure is concerned. The pressure distribution on the measurement surface S is leveled.
Therefore, even when the inside of the intake duct 31 has a supersonic flow, the total pressure distribution can be measured accurately while adjusting the flow rate appropriately.

なお、本発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 The embodiment to which the present invention can be applied is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.

例えば、プラグ34の段付き形状は、圧力計測面Sよりも上流で超音速域を無くせるものであれば、特に限定されない。具体的に、スロート部T1と中間段部T2の内径比(高さ比)や、段付き部L1及び下流端部L2の傾斜角度などは、適宜設定することができる。
また、流路形状は円形に限定されない。
For example, the stepped shape of the plug 34 is not particularly limited as long as it can eliminate the supersonic range upstream of the pressure measuring surface S. Specifically, the inner diameter ratio (height ratio) between the throat portion T1 and the intermediate step portion T2, the inclination angle of the stepped portion L1 and the downstream end portion L2, and the like can be appropriately set.
Further, the shape of the flow path is not limited to a circle.

また、上記実施形態では、本発明に係るダクト内圧力計測構造を風洞試験装置1に適用して、航空機の模型3におけるインテークダクト31の圧力分布を計測する場合について説明した。しかし、本発明に係るダクト内圧力計測構造は、このような計測例に限定されず、ダクト内部の圧力分布の計測に対して広く適用可能である。 Further, in the above embodiment, a case where the pressure measurement structure in the duct according to the present invention is applied to the wind tunnel test device 1 to measure the pressure distribution of the intake duct 31 in the model 3 of the aircraft has been described. However, the pressure measurement structure in the duct according to the present invention is not limited to such a measurement example, and can be widely applied to the measurement of the pressure distribution inside the duct.

1 風洞試験装置
2 風洞
3 模型
30 胴体
31 インテークダクト
34 プラグ
4 送風機
F 気流
L1 段付き部
L2 下流端部
T1 スロート部
T2 中間段部
S 圧力計測面
1 Wind tunnel test device 2 Wind tunnel 3 Model 30 Body 31 Intake duct 34 Plug 4 Blower F Airflow L1 Stepped part L2 Downstream end T1 Throat part T2 Intermediate stage S Pressure measurement surface

Claims (4)

ダクト内部のうち、気流方向に直交する所定の圧力計測面における圧力分布を計測するダクト内圧力計測構造であって、
前記圧力計測面の上流側には、前記ダクト内の流路の外周側を閉塞させて空気の流量を調整する環状の流量調整部材が設けられ、
前記流量調整部材は、気流方向に沿って2段階に流路が拡大するように、段付き状に形成されていることを特徴とするダクト内圧力計測構造。
It is a pressure measurement structure inside the duct that measures the pressure distribution on a predetermined pressure measurement surface orthogonal to the airflow direction inside the duct.
An annular flow rate adjusting member for adjusting the flow rate of air by closing the outer peripheral side of the flow path in the duct is provided on the upstream side of the pressure measuring surface.
The flow rate adjusting member has a duct internal pressure measuring structure characterized in that the flow velocity adjusting member is formed in a stepped shape so that the flow path expands in two stages along the air flow direction.
前記圧力計測面は前記ダクトの出口付近に設けられ、
前記流量調整部材は前記圧力計測面の直ぐ上流側に設けられていることを特徴とする請求項1に記載のダクト内圧力計測構造。
The pressure measuring surface is provided near the outlet of the duct.
The pressure measuring structure in a duct according to claim 1, wherein the flow rate adjusting member is provided immediately upstream of the pressure measuring surface.
前記ダクトが、航空機の模型に設けられたインテークダクトであることを特徴とする請求項1または2に記載のダクト内圧力計測構造。 The pressure measurement structure in a duct according to claim 1 or 2, wherein the duct is an intake duct provided in a model of an aircraft. 風洞と、
前記風洞内に気流を発生させる送風機と、
請求項3に記載のダクト内圧力計測構造と、
を備え、
前記風洞内で気流を受けたときの前記模型のインテークダクト内部の圧力分布を計測することを特徴とする風洞試験装置。
Wind tunnel and
A blower that generates airflow in the wind tunnel,
The duct internal pressure measurement structure according to claim 3 and
With
A wind tunnel test device for measuring the pressure distribution inside the intake duct of the model when an air flow is received in the wind tunnel.
JP2020048638A 2020-03-19 2020-03-19 Duct pressure measurement structure and wind tunnel test equipment Active JP7421769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020048638A JP7421769B2 (en) 2020-03-19 2020-03-19 Duct pressure measurement structure and wind tunnel test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020048638A JP7421769B2 (en) 2020-03-19 2020-03-19 Duct pressure measurement structure and wind tunnel test equipment

Publications (2)

Publication Number Publication Date
JP2021148594A true JP2021148594A (en) 2021-09-27
JP7421769B2 JP7421769B2 (en) 2024-01-25

Family

ID=77848513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020048638A Active JP7421769B2 (en) 2020-03-19 2020-03-19 Duct pressure measurement structure and wind tunnel test equipment

Country Status (1)

Country Link
JP (1) JP7421769B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116147882A (en) * 2023-04-23 2023-05-23 中国航空工业集团公司哈尔滨空气动力研究所 Low-speed wind tunnel flow field parameter measuring device and method
CN116222681A (en) * 2023-05-06 2023-06-06 中国航空工业集团公司沈阳空气动力研究所 In-situ flow measuring device and method for hole-shaped or slit-shaped flow paths

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4420147B2 (en) 1999-11-12 2010-02-24 株式会社Ihi Plug nozzle jet engine
US7469710B1 (en) 2004-06-22 2008-12-30 Ksy Corporation Supersonic diffuser
JP6993641B2 (en) 2017-10-27 2022-01-13 株式会社Subaru Wall pressure measurement structure and wind tunnel test equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116147882A (en) * 2023-04-23 2023-05-23 中国航空工业集团公司哈尔滨空气动力研究所 Low-speed wind tunnel flow field parameter measuring device and method
CN116222681A (en) * 2023-05-06 2023-06-06 中国航空工业集团公司沈阳空气动力研究所 In-situ flow measuring device and method for hole-shaped or slit-shaped flow paths

Also Published As

Publication number Publication date
JP7421769B2 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
JP6993641B2 (en) Wall pressure measurement structure and wind tunnel test equipment
US20180202893A1 (en) Wind tunnel with an effective variable nozzle for testing various aerospace specific sensors and probes
CN104848904B (en) Inlet duct flow system for measuring quantity
EP1860416B1 (en) Thrust correction
JP7421769B2 (en) Duct pressure measurement structure and wind tunnel test equipment
KR101869648B1 (en) Flow rate calibration device for wind tunnel model and method thereof
JP2019518221A (en) Wind generating means and wind test facility equipped with the same
CN113588200B (en) High-flow reverse jet test device and method for hypersonic aircraft
CN113946904B (en) Design method of large-size low-noise spray pipe
Khan et al. Effect of micro jet control on the flow filed of the duct at mach 1. 5
Reedy et al. Passive control of high-speed separated flows using splitter plates
US7024929B2 (en) Flow stabilizer for flow bench
JP2018518622A (en) Measurement of total fluid pressure in turbomachinery.
Soltani et al. Numerical investigation of the unstart suppression in a supersonic air intake
RU163025U1 (en) AERODYNAMIC TUBE
Quadros et al. Base Pressure Behaviour in a Suddenly Expanded Duct at Supersonic Mach Number Regimes using Taguchi Design of Experiments.
Christie Lateral jet interaction with a supersonic crossflow
CN110954292B (en) Method for generating hypersonic wind tunnel model surface low-speed jet flow
CN112197826A (en) Air inlet mass flow measuring device and measuring method for aircraft engine
Subramanian et al. Characterization of a low profile, rapidly deployable, MEMS pressure sensor array for aerodynamic applications.
KR20200044397A (en) A wind generator capable of constantly genereating wind speeds of less than 2m/s to veryfy the performance of an anemometer
Franzmann et al. Experimental Determination of Pitch Damping Coefficients Using a Wire Suspension
Beale Experimental measurement of venturi discharge coefficient including sensitivity to geometric and flow quality variables
Jerković et al. The aerodynamic characteristics determination of classic symmetric projectile
Smout et al. Wall proximity effects in pneumatic measurement of turbomachinery flows

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240104

R150 Certificate of patent or registration of utility model

Ref document number: 7421769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150