JP2007284976A - Foundation structure of building - Google Patents
Foundation structure of building Download PDFInfo
- Publication number
- JP2007284976A JP2007284976A JP2006112731A JP2006112731A JP2007284976A JP 2007284976 A JP2007284976 A JP 2007284976A JP 2006112731 A JP2006112731 A JP 2006112731A JP 2006112731 A JP2006112731 A JP 2006112731A JP 2007284976 A JP2007284976 A JP 2007284976A
- Authority
- JP
- Japan
- Prior art keywords
- building
- ground
- foundation
- thickness
- disposing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Foundations (AREA)
Abstract
Description
本発明は、建物の基礎構造に関するものである。 The present invention relates to a foundation structure of a building.
近年、地震が多発しており、耐震対策としては、免震構造(地盤と建物の間に振動絶縁装置を設置し、建物と地盤とを切り離し、地震の振動を伝わり難くする構造)、耐震構造(柱や梁、筋交いなどの構造体の強度を増やし、地震力に対応する構造)及び制振構造(柱や梁や土台などの骨組みの間に特殊なオイルダンパーなどの装置を設置し、地震時に生じる建物の変形を吸収し、揺れを軽減する構造)が提案されている。 In recent years, earthquakes have occurred frequently, and as a seismic measure, seismic isolation structure (structure that installs a vibration isolation device between the ground and the building, separates the building from the ground and makes it difficult to transmit the vibration of the earthquake), seismic structure (Structures that increase the strength of structures such as columns, beams, braces, and respond to seismic forces) and vibration control structures (special oil dampers, etc. are installed between frames such as columns, beams, foundations, etc.) A structure that absorbs the deformation of buildings that sometimes occurs and reduces shaking is proposed.
しかしながら、前記免震構造及び前記制震構造は大規模な建物に対するものであり、戸建住宅に対する耐震対策としては未だ不十分であり、しかも、横方向の振動にしか効果を発揮せず縦方向の振動には効果が発揮されないという問題点がある。 However, the seismic isolation structure and the seismic control structure are for large-scale buildings, and are still insufficient as a seismic countermeasure for detached houses, and are effective only for lateral vibrations in the vertical direction. There is a problem that the vibration is not effective.
また、前記耐震構造は建物自体の強度が向上する反面、揺れがそのまま建物全体に広がり建物内部での被害が大きくなるという問題点がある。 In addition, the earthquake-resistant structure improves the strength of the building itself, but has the problem that the shaking spreads as it is throughout the building and damage inside the building is increased.
尚、建築基準法における耐震対策は、縦方向の突上げは検討されておらず、また、これまでの耐震対策は交通振動による振動対策は念頭におかれていない。 In addition, as for the earthquake resistance measures in the Building Standard Law, the vertical direction has not been studied, and the conventional earthquake resistance measures have not been taken into consideration for vibration measures due to traffic vibration.
そこで、従来、例えば特許第3150612号、特許第2980604号及び特開2005−248555号に開示される、建物の基礎部の下方に圧縮強度の高い発泡樹脂材で構成された配設材を設けた建物の基礎構造(以下、従来例)が提案されている。 Therefore, conventionally, for example, an arrangement material made of a foamed resin material having a high compressive strength is provided below the foundation of the building, as disclosed in, for example, Japanese Patent No. 3150612, Japanese Patent No. 2980604, and Japanese Patent Application Laid-Open No. 2005-248555. A basic structure of a building (hereinafter, a conventional example) has been proposed.
この従来例は、建物の下方に位置する基礎部の一部(下方部位)に圧縮強度の高い発泡樹脂材を設けた構造であるから、建物下方において該建物の荷重により地盤が圧縮される割合が減少し、しかも、地盤への荷重が軽減され且つこの荷重を分散することができ、よって、地盤の圧縮沈下(同沈下「建物及び基礎部の全体が沈下する現象」や不同沈下「建物及び基礎部の一部が沈下して建物等が傾く現象」)が軽減する。 Since this conventional example has a structure in which a foamed resin material having a high compressive strength is provided in a part (lower part) of the foundation located below the building, the ratio of the ground compressed by the load of the building below the building The load on the ground can be reduced and this load can be distributed, so that the compression of the ground (same subsidence “a phenomenon where the entire building and foundation subsidence” or non-settled subsidence “building and The phenomenon that part of the foundation sinks and the building etc. tilts is reduced.
また、発泡樹脂製の配設材は、内部の空隙により地盤から伝わる振動を吸収して建物への振動伝達が低減されるから(振動低減効果を発揮するから)、耐震性を発揮することになる。 In addition, the foamed resin arrangement material absorbs the vibration transmitted from the ground by the internal gap and reduces the vibration transmission to the building (because it exhibits a vibration reduction effect), so it will exhibit earthquake resistance Become.
ところで、従来例は、実際に配設材の厚さを決定する場合、建物平均単位重量(建物全重量÷基礎部面積)を算出し、この値が地盤調査で分かる地盤支持力の最小値よりも小さいか否かの検討を行い、地盤支持力の最小値よりも小さければ規定された厚さの配設材を配設し、地盤支持力の最小値よりも大きければ地盤支持力の不足数値から決定された厚さの配設材を配設している。 By the way, in the conventional example, when actually determining the thickness of the arrangement material, the average unit weight of the building (the total weight of the building ÷ the area of the foundation) is calculated, and this value is based on the minimum value of the ground bearing capacity that can be found in the ground survey If it is smaller than the minimum value of the ground support force, install a material with the specified thickness, and if it is larger than the minimum value of the ground support force, the ground support force is insufficient. An arrangement material having a thickness determined from the above is arranged.
しかしながら、この従来例に係る配設材の厚さの決定は、地盤支持力と接地圧のバランスが考慮されておらず、よって、即時沈下の事故が生じる可能性が高い。 However, the determination of the thickness of the arrangement material according to this conventional example does not consider the balance between the ground support force and the ground pressure, and therefore there is a high possibility that an accident of immediate settlement will occur.
尚、圧縮沈下には即時沈下(比較的短い時間で生じる沈下)と圧密沈下(比較的長い時間で生じる沈下)とがあり、沈下の仕方は、前記した通り同沈下と不同沈下とがある。地盤が弱い場合、同沈下が生じ、建物の下方に位置する地盤の一部が弱いか、或いは、建物の一部の荷重が大きい場合、不同沈下が起きる(建物の重量が地盤支持力以上の場合には地盤は破壊される。)。 The compression settlement includes immediate settlement (settlement occurring in a relatively short time) and consolidation settlement (settlement occurring in a relatively long time), and the settlement method includes the same settlement and the unsettled settlement as described above. If the ground is weak, the same subsidence occurs, and if the part of the ground located below the building is weak, or if a part of the building is heavily loaded, the uneven subsidence occurs (the weight of the building exceeds the ground bearing capacity). In that case, the ground is destroyed.)
本発明者は、前述した建物の基礎部の下方に配設材が配設される建物の基礎構造について更なる研究・開発を進め、極めて実用性に秀れるなどの作用効果を発揮する画期的な建物の基礎構造を開発した。 The present inventor has further advanced research and development on the foundation structure of the building in which the arrangement material is arranged below the foundation of the building described above, and exhibits an epoch-making effect such as extremely excellent practicality. The basic structure of a typical building was developed.
添付図面を参照して本発明の要旨を説明する。 The gist of the present invention will be described with reference to the accompanying drawings.
建物1の基礎部2の下方に、外縁が該基礎部2の外縁と同外縁若しくは該基礎部2の外縁から外方に延設される外縁の一若しくは複数の配設材4が設けられた建物の基礎構造であって、前記配設材4は、前記建物1が設置される地盤よりも比重の小さい部材で構成され、また、前記配設材4の厚さPは、下記のように設定されていることを特徴とする建物の基礎構造に係るものである。
Below the
記
厚さP:前記建物1の図心と重心とから当該建物1の複数箇所における接地圧を求め、この複数箇所における接地圧と当該箇所における予め求めた地盤支持力とを比較し、地盤支持力<接地圧の関係が1箇所でのみ成立した場合、次の式1により厚さPは設定され、また、地盤支持力<接地圧の関係が複数箇所で成立した場合、次の式1により設定される各厚さの最大値が厚さPに設定される。
Thickness P: The ground pressure at a plurality of locations of the building 1 is obtained from the centroid and the center of gravity of the building 1, the ground pressure at the plurality of locations is compared with the ground support force obtained in advance at the location, and the ground support When the relationship of force <ground pressure is established only at one location, the thickness P is set by the following equation 1, and when the relationship of ground support force <ground pressure is established at multiple locations, The maximum value of each thickness to be set is set as the thickness P.
式1
(接地圧−地盤支持力)÷(地盤の単位重量−配設材4の単位重量)
また、請求項1記載の建物の基礎構造において、前記配設材4は建物1の前記基礎部2の下方全面に設けられる一枚若しくは複数枚の平面視方形状体であることを特徴とする建物の基礎構造に係るものである。
Formula 1
(Ground pressure-Ground bearing capacity) ÷ (Unit weight of the ground-Unit weight of the arrangement material 4)
Further, in the foundation structure of a building according to claim 1, the
また、請求項1,2いずれか1項に記載の建物の基礎構造において、前記配設材4の上方に設けられる前記基礎部2には、該配設材4に接地する垂設部2aが設けられており、この垂設部2aの内方には前記建物1が設置される地盤よりも比重の小さい部材で構成された配設材3が配設されており、この配設材3が配設される前記垂設部2aの内方の空間の高さHは、下記のように設定されていることを特徴とする建物の基礎構造に係るものである。
Moreover, in the foundation structure of the building according to any one of
記
高さH:前記建物1の1階における剛心と前記基礎部2の重心とのずれ率(偏心率)が0.3以下となるように設定される。
Height H: It is set such that the deviation rate (eccentricity) between the rigid center on the first floor of the building 1 and the center of gravity of the
また、請求項1〜3いずれか1項に記載の建物の基礎構造において、前記両配設材4,3は、内部に空隙を有する部材で構成されていることを特徴とする建物の基礎構造に係るものである。
The building foundation structure according to any one of claims 1 to 3, wherein the disposing
また、請求項4記載の建物の基礎構造において、前記内部に空隙を有する部材として、発泡樹脂材が採用されていることを特徴とする建物の基礎構造に係るものである。
5. The building foundation structure according to
本発明は上述のように、建物の基礎部の下方に設けられる配設材の厚さを地盤支持力と接地圧のバランスを考慮して設定するようにした為、建物及び基礎部の圧縮沈下の発生を可及的に抑制できるとともに、建物へ伝わろうとする振動を可及的に低減する良好な振動低減効果(減震効果)が得られるなど、極めて実用性の高い画期的な建物の基礎構造となる。 In the present invention, as described above, since the thickness of the disposition material provided below the foundation of the building is set in consideration of the balance between the ground supporting force and the ground pressure, the compression settlement of the building and the foundation Of groundbreaking buildings with extremely high practicality, such as a good vibration reduction effect (vibration reduction effect) that reduces the vibrations that are transmitted to the building as much as possible. It becomes the basic structure.
また、請求項3記載の発明においては、配設材が配設される基礎部の垂設部の内方の空間の高さを基礎部での偏心率を低減させるという建物の重量バランスを考慮して設定するようにした為、建物変形が生じにくい基礎構造が得られることになるなど、極めて実用性の高い画期的な建物の基礎構造となる。
In the invention according to
好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。 An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.
建物1の基礎部2の下方に設ける配設材4は、建物1が設置される地盤よりも比重の小さい部材で構成されている為、基礎構造(建物全体)の重量を軽量することができ、また、この配設材4は適宜な圧縮強度を有するから、建物1の下方において該建物1の荷重により地盤が圧縮される割合が減少し、建物全体の軽量化と相まって地盤への荷重が軽減され、地盤の圧縮沈下(即時沈下)が軽減する。
Since the
また、配設材4は内部に空隙を有するから、建物へ伝わろうとする振動は該空隙により減衰し、よって、良好な振動低減効果(減震効果)が得られる。
Moreover, since the arrangement | positioning
更に、配設材4の厚さPは地盤支持力と接地圧のバランスを考慮して設定したから一層良好な地盤の圧縮沈下の軽減効果及び振動低減効果が得られることになる。
Furthermore, since the thickness P of the
従来、配設材の厚さを決定する場合には、前述したように単に建物平均単位重量(建物全重量÷基礎部面積)を算出し、この値が地盤調査で分かる地盤支持力の最小値よりも小さいか否かの検討を行うことで配設材の厚さを決定している為、圧縮沈下の事故が起こる可能性が高い。 Conventionally, when determining the thickness of the arrangement material, simply calculate the average unit weight of the building (total weight of the building divided by the area of the foundation) as described above, and this value is the minimum value of the ground bearing capacity that can be found in the ground survey. Since the thickness of the arrangement material is determined by examining whether or not it is smaller than that, there is a high possibility that an accident of compression settlement occurs.
そこで、本発明者は、この問題点について鋭意研究し、その結果、建物1の図心と重心とから当該建物1の複数箇所における接地圧を求め、この複数箇所における接地圧と当該箇所における予め求めた地盤支持力とを比較し、少なくとも地盤支持力<接地圧の関係が1箇所でも成立した場合に式「(接地圧−地盤支持力)÷(地盤単位重量−配設材4の単位重量)」により配設材4の厚さPを設定する、という地盤支持力と接地圧のバランスを考慮した最良の配設材4の厚さPを設定し得る設定方法を見出した。
Therefore, the present inventor has conducted earnest research on this problem, and as a result, obtained the ground pressure at a plurality of locations of the building 1 from the centroid and the center of gravity of the building 1, Compared with the obtained ground support force, and at least if the relationship of ground support force <ground pressure is established even at one location, the formula “(ground pressure−ground support force) ÷ (ground unit weight−unit weight of
本発明者は、実際に前述した本発明に係る設定方法から得られた厚さPの配設材4を建物1の基礎部2の下方に設けるようにした場合、従来例で生じていた圧縮沈下を防止でき、更に、良好な振動低減効果が得られることを確認している。
When the present inventor actually provided the
以上のように、本発明は、配設材4について最適な厚さPを得ることができる。
As described above, the present invention can obtain the optimum thickness P for the
また、配設材4の上方に設けられる基礎部2に、前記配設材4に接地する垂設部2aが設けられる場合には、この垂設部2aの内方に建物1が設置される地盤よりも比重の小さい部材で構成された配設材3を配設し、この配設材3が配設される前記垂設部2aの内方の空間の高さH(配設材3の厚さ)は、物1の1階における剛心と重心とのずれ率(偏心率)が0.3以下となるように設定される。
Further, when the
本発明は、配設材3が配設される前記垂設部2aの内方の空間の高さHを建物の重量バランスを考慮して設定している為、建物変形が生じにくい基礎構造が得られることになり、しかも、この配設材3が配設されることで前述した配設材4とともに基礎部2の下方に効率良く確実に厚みを持たせることができることになり、よって、振動低減効果及び沈下防止効果がより良好に得られることになる。
In the present invention, since the height H of the space inside the
本発明の具体的な実施例について図面に基づいて説明する。 Specific embodiments of the present invention will be described with reference to the drawings.
本実施例は、建物1の基礎部2の下方全面に、平面視形状が該基礎部2の外縁と同一若しくは大きい形状の配設材4を設けたものである。尚、配設材4は、基礎部2の下面全面に配設される場合は勿論、例えば複数の配設材4を所定間隔を介して配設したりする場合もある。
In the present embodiment, an
この配設材4は、建物1が設置される地盤よりも比重の小さい部材であって内部に空隙を有する発泡樹脂部材をパネル状に形成したものであり、この配設材4は平面視方形状(直方体)であり、その表裏面は平坦面に形成されている。
This
本実施例では、配設材4を構成する発泡樹脂部材としてポリスチレン樹脂とブタン、ペンタン等の発泡剤を主な原料としたEPS(ビーズ法ポリスチレンフォーム)を採用している。
In the present embodiment, EPS (bead method polystyrene foam) using polystyrene resin and a foaming agent such as butane and pentane as main raw materials is employed as the foamed resin member constituting the disposing
この発泡樹脂材としては、軽量で、必要な圧縮強度を有するものであればよく、ポリエスチレン、ポリプロピレン、ポリエチレン、ポリウレタン、ポリ塩化ビニル等が考えられる。尚、この発泡樹脂材の圧縮強度は、建物の構造が木造、鉄筋コンクリート、鉄筋等により異なるが一般的には3〜25t/m2であり、発泡倍率は、一般的に10倍〜60倍である。 The foamed resin material is not particularly limited as long as it is lightweight and has a necessary compressive strength. Polystyrene, polypropylene, polyethylene, polyurethane, polyvinyl chloride, and the like are conceivable. The compressive strength of the foamed resin material is generally 3 to 25 t / m 2 although the structure of the building varies depending on the wooden structure, reinforced concrete, reinforcing bar, etc., and the expansion ratio is generally 10 to 60 times. is there.
また、配設材4の厚さPは、必要な数値よりも薄い場合は勿論、過度の厚さも良くないとされており(配設材4の厚さPが過度に厚いと軽量過ぎて浮力が働いてしまう。)、本実施例では、この配設材4の厚さPを、建物1の図心と重心とから当該建物1の複数箇所における接地圧を求め、この複数箇所における接地圧と当該箇所における予め求めた地盤支持力とを比較し、少なくとも地盤支持力<接地圧の関係が1箇所でも成立した場合、次の式1により設定される。
In addition, the thickness P of the disposing
式1
(接地圧−地盤支持力)÷(地盤単位重量−配設材4の単位重量)
以下、具体的にこの配設材4の厚さPの設定方法について一例を挙げて説明する。配設材4の厚さPを設定する際の基本情報は次のイ)〜ニ)の通りとする(尚、後述する配設材3が配設される空間の高さH(配設材3の厚さ)を設定する際の基本情報も同一とする。)。
Formula 1
(Ground pressure-ground bearing capacity) ÷ (ground unit weight-unit weight of installation material 4)
Hereinafter, a method for setting the thickness P of the
イ)建物の形状
図4に図示した平面形状(1階部分は3m×6m、2階部分は3m×3m)とし、
図5に図示した立面形状(1階部分は3m×6m、2階部分は3m×3m)とする。
B) The shape of the building The plane shape shown in Fig. 4 (the first floor is 3m x 6m, the second floor is 3m x 3m)
The elevation is illustrated in FIG. 5 (the first floor portion is 3 m × 6 m, the second floor portion is 3 m × 3 m).
ロ)屋根(瓦)・外壁(サイディング)等仕上げ材の重量
瓦を800N/m2とし、サイディングを500N/m2とする。
B) The weight tile roof (tile), the outer wall (siding) such finishes and 800 N / m 2, the siding and 500 N / m 2.
ハ)地盤支持力
図6に図示したように地盤調査により建物1の四隅に対応した地盤部位を算出した
数値とする。
C) Ground bearing capacity As shown in Fig. 6, the ground part corresponding to the four corners of the building 1 is calculated by ground survey.
ニ)建物重量
総重量は217.8kN(12.1kN/m2)とし、2階重量は43.2kNと
し、1階重量は66.6kNとし、基礎重量は108kNとする。
D) Building weight The total weight is 217.8 kN (12.1 kN / m 2 ), the second floor weight is 43.2 kN, the first floor weight is 66.6 kN, and the foundation weight is 108 kN.
次に、配設材4の厚さPの設定に関する具体的手順を、図7に図示したフローチャートをもとに説明する。
Next, a specific procedure regarding the setting of the thickness P of the
a)建物の図心の算出
建物の図心は次の式2により算出され、本実施例では、1階部分はX方向3.0m
・Y方向1.5mの位置、2階部分はX方向1.5m・Y方向1.5mの位置となる
。尚、この図心は、建物左下角を基点0とし、基点からのX方向及びY方向の距離で
表示している。
a) Calculation of the centroid of the building The centroid of the building is calculated by the
・ The position in the Y direction is 1.5m, and the second floor is the position in the X direction 1.5m and the Y direction 1.5m. This centroid is indicated by the X and Y distances from the base point, with the lower left corner of the building as the
式2
(建物の図心)=(断面一次モーメント)÷(面積)
b)建物の重心の算出
建物の重心は次の式3により算出され、本実施例では、1階部分はX方向2.5m
・Y方向1.5mの位置、2階部分はX方向1.5m・Y方向1.5mの位置となる
。尚、この重心は、建物左下角を基点0とし、基点からのX方向及びY方向の距離で
表示している。
(Centroid of building) = (first moment of section) ÷ (area)
b) Calculation of the center of gravity of the building The center of gravity of the building is calculated by the
・ The position in the Y direction is 1.5m, and the second floor is the position in the X direction 1.5m and the Y direction 1.5m. The center of gravity is indicated by the distance in the X and Y directions from the base point, with the lower left corner of the building as the
式3
(建物の重心)=(断面一次モーメント)÷(重量)
c)図心と重心とを考慮した建物の接地圧の算出
建物の接地圧は次の式4により算出され、本実施例では、2階建て部分(1階と2
階が存在する部分)におけるニ隅の接地圧は18.1kN/m2、1階平屋部分(1
階のみ存在する部分)におけるニ隅の接地圧は6.05kN/m2となる。
(Center of gravity of the building) = (first moment of section) ÷ (weight)
c) Calculation of building ground pressure in consideration of centroid and center of gravity Building ground pressure is calculated by the following equation (4).
The ground contact pressure at the corner of the floor) is 18.1 kN / m 2 , the one-story one-story part (1
The ground contact pressure at the two corners in the part where only the floor exists) is 6.05 kN / m 2 .
式4
(最大接地圧σmax)=(αx+αy−1)×σf
(最小接地圧σmin)=(3−αx−αy)×σf
f:平均接地圧(全重量÷基礎部の面積)
αx:x方向の接地圧係数(場所により変わる変数)
αy:y方向の接地圧係数(場所により変わる変数)
d)前記c)で算出された接地圧と地盤支持力との比較
複数箇所における接地圧と当該箇所における予め求めた地盤支持力とを比較する。
(Maximum contact pressure σmax) = (αx + αy−1) × σf
(Minimum contact pressure σmin) = (3-αx−αy) × σf
f: Average contact pressure (total weight / basic area)
αx: Contact pressure coefficient in x direction (variable depending on location)
αy: Ground pressure coefficient in y direction (variable depending on location)
d) Comparison between the contact pressure calculated in c) and the ground support force The contact pressure at a plurality of locations is compared with the ground support force determined in advance at the locations.
本実施例では、各部分の接地圧と地盤支持力とを比較すると、2階建て部分は、接
地圧(18.1kN/m2)>地盤支持力(15kN/m2)であるから配設材4が
必要であり、1階平屋部分は、接地圧(6.05kN/m2)<地盤支持力(13k
N/m2)であるから配設材4は不要である。
In this example, when the ground pressure of each part is compared with the ground support force, the two-story part is arranged because the ground pressure (18.1 kN / m 2 )> the ground support force (15 kN / m 2 ).
N / m 2 ), the disposing
e)前記d)で地盤支持力<接地圧の関係が成立した箇所における配設材4の厚さPの
設定
配設材4の厚さPは次の式1により算出され、本実施例では、3.1kN/m2÷
15.8kN/m3=0.20mとなる。
e) Setting of the thickness P of the disposing
15.8 kN / m 3 = 0.20 m.
式1
(接地圧−地盤支持力)÷(地盤単位重量−配設材4の単位重量)
f)前記d)で地盤支持力<接地圧の関係が成立しなかった箇所における配設材4の厚
さPの設定
地盤支持力−接地圧=6.95kN/m2(不足なし)で配設材4は不要であるが
、基本的に建物1の基礎部2の下方に配設する配設材4は最大厚さに統一する為、0
.2mとなる。尚、後述する即時沈下の検討により配設材4の厚みPが調整される場
合もある。
Formula 1
(Ground pressure-ground bearing capacity) ÷ (ground unit weight-unit weight of installation material 4)
f) Setting of the thickness P of the
. 2m. In addition, the thickness P of the arrangement | positioning
g)即時沈下の検討
前記e).f)の計算により算出した配設材4は、計算上は問題ないが、接地圧(
圧力)バランスの不均一による即時沈下(地盤の縮みによる沈下)が発生する可能性
があるため、四隅にて即時沈下の検討を行う。
g) Examination of immediate subsidence e). The
(Pressure) Immediate settlement due to uneven balance (subsidence due to shrinkage of the ground) may occur.
即ち、接地圧上、問題なくても地盤の性質上建物重量により若干沈下(縮み)を起
こす。建物の接地圧(圧力)バランスが不均一な場合、不同沈下を起こすこともある
。即時沈下量は下記の式5で算出される。
In other words, even if there is no problem with the ground pressure, some settlement (shrinkage) occurs due to the weight of the building due to the nature of the ground. If the building's ground pressure (pressure) balance is uneven, it may cause uneven settlement. The amount of immediate settlement is calculated by the following
式5
即時沈下量Se=qB(1−v2)/EIs
q:基礎の平均荷重度(kN/m2)
B:基礎底面の短辺長さ、円形の場合は直径(m)
v:地盤のボアソン比(無次元)
E:地盤の弾性係数kN/m2
Is:沈下係数
この式を用い、建物4隅の即時沈下量を算出する(図8参照)。
Immediate settlement amount Se = qB (1-v 2 ) / EIs
q: Average load of foundation (kN / m 2 )
B: Length of short side of base bottom, diameter (m) if circular
v: Ground boisson ratio (dimensionless)
E: Elastic modulus of ground kN / m 2
Is: subsidence coefficient Using this equation, the amount of immediate subsidence at the four corners of the building is calculated (see FIG. 8).
建物4隅をすべて結ぶ6通りの距離と各点の即時沈下量による傾きを算出し、許容
値3/1000以下を確認する(許容値は任意で定義する)。
Calculate the slopes of the six distances connecting all four corners of the building and the instantaneous settlement of each point, and confirm that the tolerance is 3/1000 or less (the tolerance is arbitrarily defined).
h)配設材4の厚さPの再検討
前記g)の即時沈下の検討により、沈下による傾きが許容値を超える場合は配設材
4の厚さPを再検討し、許容値内となるようにする。
h) Reexamination of the thickness P of the disposing
この配設材4の厚さPを再検討し、図13,14に図示したように配設材4の厚さ
Pを適宜調整することで沈下を抑えることになる。尚、図15に図示したように基礎
部2の形状設定によっても沈下を抑えることができる。また、図24に図示したよう
に後述する配設材3が配設される垂設部2aの内方の空間の高さHを適宜許容値内で
変更し配設材4の厚さPを変えずに即時沈下を許容値内とする方法もある。
The thickness P of the disposing
以上の配設材4は、地盤支持力と接地圧のバランスを考慮した最良の厚さPであり、主に地震や交通振動などの振動を吸収する効果及び圧縮沈下を防止する効果を発揮する。
The
尚、地震は、その発生によりP波(最も早く伝わる縦方向の小刻みな揺れ)、S波(P波の次に伝わる横方向の大きな揺れ)及び表面波(最後に伝わるP波とS波の干渉により地表に伝わる揺れ)が生じものであり、基礎部2の下方に配設材4を設けることでこのいずれの揺れにも対応し得るものである。
In addition, earthquakes are caused by the occurrence of P-waves (longitudinal small vibrations transmitted in the earliest direction), S-waves (large horizontal vibrations transmitted next to P-waves), and surface waves (finally transmitted P-waves and S-waves). (Sway transmitted to the ground surface due to interference) occurs, and by providing the disposing
図25,26は、この配設材4による振動吸収効果を確認する実験(実験棟を建て、起振装置により振動を現実に付与した実験)の結果であり、基礎部2の下方に配設材4を設けた場合、配設材4を設けない場合に比し、縦方向の振動及び横方向の振動が平均で約60%減衰している。尚、縦方向だけを見ると約70%減衰している。
FIGS. 25 and 26 show the results of an experiment for confirming the vibration absorption effect by the arrangement material 4 (an experiment in which an experimental building is built and vibration is actually applied by a vibration generator). When the
また、本実施例は、配設材4の上方に設けられる基礎部2には、前記配設材4に接地する垂設部2aが設けられており、この垂設部2aの内方には配設材3が配設されている。
Further, in this embodiment, the
この配設材3は、前述した配設材4と同様、建物1が設置される地盤よりも比重の小さい部材であって内部に空隙を有する発泡樹脂部材をパネル状に形成したものであり、この配設材3平面視方形状であり、その表裏面は平坦面に形成されている。
This
本実施例では、配設材3を構成する発泡樹脂部材としては、前述した配設材4と同一のものEPS(ビーズ法ポリスチレンフォーム)を採用している。
In the present embodiment, as the foamed resin member constituting the disposing
また、この配設材3が配設される垂設部2aの内方の空間の高さH(配設材3の厚さ)は、前記建物1の1階における剛心と重心とのずれ率(偏心率)が0.3以下となるように設定される。
In addition, the height H (the thickness of the arrangement material 3) of the space inside the hanging
以下、具体的にこの配設材3が配設される空間の高さH(配設材3の厚さ)の設定方法について一例を挙げて説明する。配設材3が配設される垂設部2aの内方の空間の高さHを設定する際の基本情報は前述した配設材4の厚さPを設定する際の基本情報と同一とする。
Hereinafter, a method for setting the height H of the space in which the disposing
配設材3が配設される垂設部2aの内方の空間の高さH(配設材3の厚さ)の設定に関する具体的手順を、図9に図示したフローチャートをもとに説明する。
A specific procedure regarding the setting of the height H (the thickness of the placement material 3) of the space inside the hanging
i)建物の1階における剛心の算出
建物の剛心は次の式6により算出され、本実施例では、図10に図示した位置(1階
部分はX方向2.5m・Y方向2.0mの位置、2階部分はX方向2.5m・Y方向
2mの位置)とする。
i) Calculation of stiffness on the first floor of the building The stiffness of the building is calculated by the following equation (6). In this embodiment, the position shown in FIG. (0m position, 2nd floor part is 2.5m in the X direction and 2m in the Y direction).
式6
(建物の剛心)=(ΣD・重心位置)÷ΣD
ΣD:水平剛性
D:耐力壁(筋かい)の耐力値
j)建物の基礎部における重心の算出
建物の基礎部における重心は次の式7により算出され、本実施例では、X方向2.
5m・Y方向1.5mとする。
Equation 6
(Stiffness of the building) = (ΣD, center of gravity) ÷ ΣD
ΣD: Horizontal rigidity D: Strength value of bearing wall (muscle) j) Calculation of the center of gravity in the foundation of the building
5 m and Y direction 1.5 m.
式7
(建物の基礎部における重心)=(断面一次モーメント)÷(重量)
k)偏心率の算出及び検討
1階の剛心と基礎部の重心との偏心率の算出は次の式8により算出され、本実施例
では、前記i)で算出された建物の1階における剛心と前記j)で算出された建物の
基礎部における重心との偏心率を算出し、この偏心率が許容値0.3以内であるか否
かを検討する。
Equation 7
(Center of gravity at the foundation of the building) = (Cross section first moment) / (Weight)
k) Calculation and Examination of Eccentricity The eccentricity between the first-floor stiffness and the center of gravity of the foundation is calculated by the following formula 8, and in this embodiment, in the first floor of the building calculated in i) above Calculate the eccentricity between the center of gravity and the center of gravity of the foundation of the building calculated in step j) above, and examine whether this eccentricity is within an allowable value of 0.3.
尚、建物1の偏心率は、図11に図示したように外壁や柱などの構造を考慮した下記
の式にて算出される建物1の強さ(抵抗)の中心(剛心)K1.K2と重心G1.G
2のずれ率を求める計算方法により算出される。図12に図示したように建物1の剛心
と重心との距離(偏心距離)が長い程建物1の変形(揺れ)が大きくなる。
As shown in FIG. 11, the eccentricity of the building 1 is the center (rigidity) of the strength (resistance) of the building 1 calculated by the following formula taking into account the structure of the outer walls and columns. K2 and center of gravity G1. G
2 is calculated by a calculation method for obtaining a deviation rate of 2. As shown in FIG. 12, the deformation (swing) of the building 1 increases as the distance (eccentric distance) between the rigid center and the center of gravity of the building 1 increases.
式8
(建物の偏心率)=e/γe
e:偏心距離(重心と剛心の距離)
γe:弾力半径
l)配設材が配設される空間の高さH(配設材3の厚さ)の設定
前記k)で算出された偏心率が許容値0.3よりも大きい場合、基礎部の重心が建
物の剛心に近づけるように当該空間の高さH(配設材3の厚さ)を変更する。
Equation 8
(Eccentricity of building) = e / γe
e: Eccentric distance (distance between the center of gravity and rigid center)
γe: Elastic radius l) Setting of height H (thickness of arrangement material 3) where the arrangement material is arranged When the eccentricity calculated in k) is larger than the allowable value 0.3, The height H of the space (the thickness of the arrangement material 3) is changed so that the center of gravity of the foundation portion approaches the rigid center of the building.
前記k)で算出された偏心率が許容値0.3以内の場合、設計通りに当該空間の高
さH(配設材3の厚さ)が決定する。
When the eccentricity calculated in k) is within an allowable value of 0.3, the height H of the space (the thickness of the arrangement material 3) is determined as designed.
以上により決定される当該空間の高さHは、建物の重量バランスを考慮した最良の高さHであり、建物1の剛心と重心とのずれを可及的にゼロとなるようにして地震による建物1の変形を防止する効果を発揮し、前記配設材4と同様、圧縮沈下を防止する効果等も発揮する。
The height H of the space determined as described above is the best height H in consideration of the weight balance of the building, and the earthquake is performed so that the deviation between the rigid center and the center of gravity of the building 1 becomes as small as possible. The effect which prevents the deformation | transformation of the building 1 by, and the effect etc. which prevent a compression subsidence similarly to the said arrangement | positioning
次に、本実施例に係る建物1の基礎構造は次のように施工される。 Next, the foundation structure of the building 1 according to the present embodiment is constructed as follows.
図1に図示したように地盤5を掘削し、続いて、この掘削穴6に予め工場にて所定形状、所定厚及び所定圧縮強度に設定されたパネル状の配設材4,3を敷設する。この配設材4を敷設する場合には、複数の配設材4同士が当接するように配設する場合の他、図22に図示したように複数の配設材4を所定間隔を介して配設する場合があり、更に、図23に図示したように配設材3は配設せず、配設材4のみ配設する場合もある。尚、配設材4,3は、現場で配設して形成するようにしても良い。
As shown in FIG. 1, the
続いて、図2に図示したように配設材4,3の上部にコンクリート材を打設して基礎部2を形成する。また、掘削穴6における基礎部2が形成されない部位は埋め戻される。符号2aは基礎部2の下面に垂設される垂設部(通称:地中梁)である。尚、基礎部2の形状としては、図16,17,18,19に図示した基礎部2の下部に垂設部2aのない構造や、図20に図示した逆ベタ基礎構造や、図21に図示した3.3布基礎構造を構成する形状がある。
Subsequently, as shown in FIG. 2, a concrete material is placed on top of the
続いて、図3に図示したようにこの基礎部2の上に建物1を建築する。
Subsequently, as shown in FIG. 3, the building 1 is constructed on the
本実施例は上述のように構成したから、前述した本実施例により算出された厚さPの配設材4を建物1の基礎部2の下方に設け、更に、この配設材4と基礎部2との間に配設材3を配設した場合、確実にその条件に合った最良な振動低減効果(減振効果)が得られることになり、主に地震や交通振動などの振動を吸収する効果、地盤の破壊及び不同沈下を防止する効果、建物1の剛心と重心とのずれを可及的にゼロとなるようにして地震による建物1の変形を防止する効果を発揮することになる。
Since the present embodiment is configured as described above, the disposing
尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。 Note that the present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.
1 建物
2 基礎部
2a 垂設部
3 配設材
4 配設材
DESCRIPTION OF SYMBOLS 1
Claims (5)
記
厚さP:前記建物の図心と重心とから当該建物の複数箇所における接地圧を求め、この複数箇所における接地圧と当該箇所における予め求めた地盤支持力とを比較し、地盤支持力<接地圧の関係が1箇所でのみ成立した場合、次の式1により厚さPは設定され、また、地盤支持力<接地圧の関係が複数箇所で成立した場合、次の式1により設定される各厚さの最大値が厚さPに設定される。
式1
(接地圧−地盤支持力)÷(地盤の単位重量−配設材の単位重量) A building foundation structure in which one or a plurality of disposing materials are provided below the foundation of the building, the outer edge of which is the same as the outer edge of the foundation or the outer edge extending outward from the outer edge of the foundation. The arrangement material is composed of a member having a specific gravity smaller than that of the ground on which the building is installed, and the thickness P of the arrangement material is set as follows. The basic structure of the building.
Thickness P: The ground pressure at a plurality of locations of the building is obtained from the centroid and the center of gravity of the building, and the ground pressure at the plurality of locations is compared with the ground support force obtained in advance at the location, When the ground pressure relationship is established only at one location, the thickness P is set by the following equation 1, and when the ground support force <the ground pressure relationship is established at multiple locations, the thickness is set by the following equation 1. The maximum value of each thickness is set as the thickness P.
Formula 1
(Ground pressure-Ground bearing capacity) ÷ (Unit weight of ground-Unit weight of installed material)
記
高さH:前記建物の1階における剛心と前記基礎部の重心とのずれ率(偏心率)が0.3以下となるように設定される。 The building foundation structure according to any one of claims 1 and 2, wherein the foundation portion provided above the arrangement material is provided with a hanging portion that contacts the arrangement material. An arrangement material made of a member having a specific gravity smaller than that of the ground on which the building is installed is arranged inside the installation part, and the inside of the installation part in which the installation material is arranged The basic structure of the building is characterized in that the height H of the space is set as follows.
Height H: It is set so that the deviation rate (eccentricity) between the rigid center on the first floor of the building and the center of gravity of the foundation is 0.3 or less.
5. The basic structure of a building according to claim 4, wherein a foamed resin material is employed as the member having a gap inside.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006112731A JP4585987B2 (en) | 2006-04-14 | 2006-04-14 | Building basic structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006112731A JP4585987B2 (en) | 2006-04-14 | 2006-04-14 | Building basic structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007284976A true JP2007284976A (en) | 2007-11-01 |
JP4585987B2 JP4585987B2 (en) | 2010-11-24 |
Family
ID=38757011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006112731A Expired - Fee Related JP4585987B2 (en) | 2006-04-14 | 2006-04-14 | Building basic structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4585987B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015161065A (en) * | 2014-02-26 | 2015-09-07 | 積水ハウス株式会社 | Liquefaction prevention structure for housing ground |
CN111827254A (en) * | 2020-07-03 | 2020-10-27 | 广东省路桥建设发展有限公司 | Hollow gyroscope pile and foundation treatment method thereof |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62215727A (en) * | 1986-03-17 | 1987-09-22 | Fudo Constr Co Ltd | Foundation work for structure |
JP2980604B1 (en) * | 1998-11-19 | 1999-11-22 | 中村物産有限会社 | Vibration isolation foundation structure of building and its construction method |
JP3150612B2 (en) * | 1996-04-05 | 2001-03-26 | 笠原工業株式会社 | Foundation for low-rise buildings |
JP2001288754A (en) * | 2000-04-06 | 2001-10-19 | Misawa Homes Co Ltd | Footing design system of unit building |
JP2002138568A (en) * | 2000-10-30 | 2002-05-14 | S X L Corp | Simple checking method for eccentricity |
JP2002227330A (en) * | 2001-02-01 | 2002-08-14 | Ibiden Co Ltd | Earthquake resistant designing method for building and earthquake resistant structural body |
JP2003013460A (en) * | 2001-06-28 | 2003-01-15 | Kasahara Industries Co Ltd | Foundation structure in building and its construction method |
JP2003020659A (en) * | 2001-07-04 | 2003-01-24 | Shimizu Corp | Base isolation structure using soft ground |
JP2005248555A (en) * | 2004-03-04 | 2005-09-15 | Nakamura Bussan Kk | Building foundation structure and its construction method |
JP2006057297A (en) * | 2004-08-19 | 2006-03-02 | Nakamura Bussan Kk | Independent foundation structure |
JP2006099591A (en) * | 2004-09-30 | 2006-04-13 | Asahi Kasei Homes Kk | System for providing residential mortgage securitization information |
-
2006
- 2006-04-14 JP JP2006112731A patent/JP4585987B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62215727A (en) * | 1986-03-17 | 1987-09-22 | Fudo Constr Co Ltd | Foundation work for structure |
JP3150612B2 (en) * | 1996-04-05 | 2001-03-26 | 笠原工業株式会社 | Foundation for low-rise buildings |
JP2980604B1 (en) * | 1998-11-19 | 1999-11-22 | 中村物産有限会社 | Vibration isolation foundation structure of building and its construction method |
JP2001288754A (en) * | 2000-04-06 | 2001-10-19 | Misawa Homes Co Ltd | Footing design system of unit building |
JP2002138568A (en) * | 2000-10-30 | 2002-05-14 | S X L Corp | Simple checking method for eccentricity |
JP2002227330A (en) * | 2001-02-01 | 2002-08-14 | Ibiden Co Ltd | Earthquake resistant designing method for building and earthquake resistant structural body |
JP2003013460A (en) * | 2001-06-28 | 2003-01-15 | Kasahara Industries Co Ltd | Foundation structure in building and its construction method |
JP2003020659A (en) * | 2001-07-04 | 2003-01-24 | Shimizu Corp | Base isolation structure using soft ground |
JP2005248555A (en) * | 2004-03-04 | 2005-09-15 | Nakamura Bussan Kk | Building foundation structure and its construction method |
JP2006057297A (en) * | 2004-08-19 | 2006-03-02 | Nakamura Bussan Kk | Independent foundation structure |
JP2006099591A (en) * | 2004-09-30 | 2006-04-13 | Asahi Kasei Homes Kk | System for providing residential mortgage securitization information |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015161065A (en) * | 2014-02-26 | 2015-09-07 | 積水ハウス株式会社 | Liquefaction prevention structure for housing ground |
CN111827254A (en) * | 2020-07-03 | 2020-10-27 | 广东省路桥建设发展有限公司 | Hollow gyroscope pile and foundation treatment method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4585987B2 (en) | 2010-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8359793B2 (en) | Earthquake force absorption system | |
JP4585987B2 (en) | Building basic structure | |
JP2005139770A (en) | Vibration control reinforcing frame for existing building and vibration control building using it | |
Nayel et al. | The effect of shear wall locations in rc multistorey building with floating column subjected to seismic load | |
JP4812463B2 (en) | Base-isolated floor structure | |
JP4177817B2 (en) | Seismic isolation structure and wooden house | |
JP3134768U (en) | Weak seismic structure for wooden structures | |
KR101323589B1 (en) | Vibration isolation system in transfer story of apartment housing | |
Bozzo | the santa Fe ii tower | |
Rai et al. | Effectiveness of multiple TSWDs for seismic response control of masonry-infilled RC framed structures | |
JP5348945B2 (en) | Seismic isolation structure of building | |
RU2658940C2 (en) | Earthquake-resistant low noise building | |
Abdulhameed et al. | The Impact of Bracing System Distribution and Location on Seismic Performance Enhancement of Multi-Story Steel Buildings. | |
KR20120110764A (en) | Elastomeric rubber bearing | |
JP2008280818A (en) | Base isolation structure of building and building adopting the same | |
JP2006214201A (en) | Composite foundation of piles and continuous underground wall | |
JP5396196B2 (en) | building | |
JP5290786B2 (en) | Damping structure | |
CZ200393A3 (en) | Steel construction system | |
JP2001140497A (en) | Earthquake-resistant house | |
US20080184634A1 (en) | Aseismatic building structure | |
JP2003278405A (en) | Damper in building | |
JP2009013579A (en) | Rebuilding method | |
JPH0432454Y2 (en) | ||
KR20070072979A (en) | Building vibration reducing method using skybridge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091027 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100716 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100809 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4585987 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |