KR20120110764A - Elastomeric rubber bearing - Google Patents

Elastomeric rubber bearing Download PDF

Info

Publication number
KR20120110764A
KR20120110764A KR1020110028842A KR20110028842A KR20120110764A KR 20120110764 A KR20120110764 A KR 20120110764A KR 1020110028842 A KR1020110028842 A KR 1020110028842A KR 20110028842 A KR20110028842 A KR 20110028842A KR 20120110764 A KR20120110764 A KR 20120110764A
Authority
KR
South Korea
Prior art keywords
plate
rubber
reinforcement plate
elastic support
convex portion
Prior art date
Application number
KR1020110028842A
Other languages
Korean (ko)
Inventor
송원진
Original Assignee
송원진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 송원진 filed Critical 송원진
Priority to KR1020110028842A priority Critical patent/KR20120110764A/en
Publication of KR20120110764A publication Critical patent/KR20120110764A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/14Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against other dangerous influences, e.g. tornadoes, floods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0241Fibre-reinforced plastics [FRP]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/40Multi-layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Emergency Management (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

PURPOSE: An elastomeric rubber bearing is provided to improve the durability by laminating a reinforcement plate and increase adhesive property and vertical weight load between a rubber plate and the reinforcement plate. CONSTITUTION: An elastomeric rubber bearing(120) comprises a rubber plate(121), a reinforcement plate, and an embossing concave-convex portion. The rubber plate and a reinforcement plate are laminated alternately. The reinforcement plate is composed of one of a metal plate, a carbon mat, glass fiber reinforced plastic, or carbon fiber reinforced plastic. The embossing concave-convex portion is composed of a groove portion and a projection portion and formed on the contact surface of the rubber plate and the reinforcement plate. The boundary portion of a groove portion and the projection portion of the embossing concave-convex portion is rounded.

Description

탄성받침{Elastomeric Rubber Bearing}Elastomeric Rubber Bearing}

본 발명은 탄성받침에 관한 것으로서, 보다 상세하게는 지진파가 지반에서 구조물로 전달되는 것을 막기 위한 탄성받침에 관한 것이다.
The present invention relates to an elastic bearing, and more particularly, to an elastic bearing for preventing seismic waves from being transmitted from the ground to the structure.

일반적으로 지구상에 있는 모든 구조물(원자력 발전소, 석유화학 공장, 교량, 터널, 아파트, 공동주택)은 지구 중력과 같은 수직하중에는 대체적으로 잘 견딜 수 있도록 설계되어 있으나, 태풍이나 지진과 같은 수평하중에 대해서는 취약한 경우가 많다. 사회가 발달하고 경제 규모가 커짐에 따라 원자력 발전소와 같은 중요한 구조물이나 고층 빌딩 및 교량과 같은 대형 구조물의 지진피해는 막대한 인명 및 재산피해를 동반하므로 만일의 경우를 대비한 내진설계를 하지 않을 수 없게 되었다. 점차적으로 인구의 집중화에 따라 대도시가 발달하고 각종 구조물과 일반 구조물이 공존하고 있는 환경 현실에서는 지진이라는 자연재해에 대하여 방비대책이요구되고 있다.In general, all structures on the earth (nuclear power plants, petrochemical plants, bridges, tunnels, apartments, multi-unit houses) are generally designed to withstand vertical loads such as global gravity, but they are designed to withstand horizontal loads such as typhoons and earthquakes. Many are vulnerable. As society develops and the economy grows, earthquake damage of important structures such as nuclear power plants and large structures such as skyscrapers and bridges is accompanied by enormous casualties and property damage, so that earthquake-resistant design is inevitable. It became. Increasingly, in the environment where large cities are developed and various structures and general structures coexist with the concentration of the population, defense measures are required against natural disasters such as earthquakes.

지진에 대비한 구조물의 내진설계에 대하여 설명하면, 내진(Earthquake Resistance)이란 구조물을 아주 튼튼하게 건설하여 지진이 발생하여 구조물에 지진력이 작용하면 이 지진력에 대항하여 맞서 버텨서 구조물이 감당을 해내겠다는 개념이며, 즉 구조물에 작용하는 지진력을 부재의 강도 및 인성 등 부재력을 크게 하여 지진력에 대항하고자 하는 것이며, 면진은 지진을 피하는 수동적이지만 상당히 경제적이며 내진 여유도를 가지는 개념이고, 제진은 효율적으로 지진에 대항하여 지진의 피해를 극복하고자 하는 능동적 개념이라고 정의 할 수 있다.When explaining the seismic design of earthquake preparedness for earthquake, Earthquake Resistance is the concept of constructing a very strong structure and when the earthquake occurs and the earthquake force acts on the structure, it will stand up against the earthquake force and bear the structure. That is, the seismic force acting on the structure is intended to counter the seismic force by increasing the member force such as the strength and toughness of the member, and the seismic isolation is a passive but fairly economical and seismic margin to avoid the earthquake. It can be defined as an active concept that tries to overcome the damage of the earthquake.

내진설계(earthquake resistant design)란 앞으로 발생할 가능성이 있는 지진에 대하여 구조물이 안전하도록 설계하는 것을 의미하는데 지진발생시 구조물이 피해를 입지 않도록 하는 방진설계(earthquake proof design)는 사실상 불가능하기 때문에 최대한 지진의 충격에 견딜 수 있게 하는 내진설계를 고려하게 된다. 내진설계의 원리는 지진파가 절달되었을 때 구조물과 기초지반이 서로 떨어지지 않도록 견고하게 설계하는 것인데 이를 위해 예컨대 기둥에 철골재를 보강하고 벽면 콘크리트를 두껍게 해 충격에 버티는 설계방식을 적용하는 것으로, 내진 설계가 구조물의 기둥과 벽면을 보강하여 충격에 버티게 하는 것이라면, 면진설계는 구조물과 기초지반을 서로 분리시켜 지진파가 구조물에 영향을 주지 않도록 하는 것이나, 기초지반과 구조물을 완전히 분리한다는 것은 불가능하기 때문에 지진파가 지반에서 구조물로 전달되는 것을 최대한 막기 위해서 둘 사이에 완충재를 끼워 넣는 방법을 생각한 것이며, 완충재로는 보통 탄성이 높은 고무를 사용하며, 최근에 다양한 완충재가 사용되고 있다.Earthquake resistant design means that the structure is designed to be safe against earthquakes that are likely to occur in the future. Earthquake proof design, which prevents the structure from being damaged in the event of an earthquake, is virtually impossible. Consider seismic design to withstand The principle of seismic design is to design the structure so that the structure and the foundation ground are not separated from each other when the seismic wave is delivered. For this purpose, for example, by reinforcing steel aggregate on the column and thickening the wall concrete, the design method is applied to the impact. If is to reinforce the pillars and walls of the structure to sustain the impact, the seismic design prevents the seismic waves from affecting the structure by separating the structure and the ground from each other, but it is impossible to completely separate the ground and the structure. In order to prevent the transfer from the ground to the structure as much as possible the idea of inserting the cushioning material between the two, as a cushioning material is usually used a high elastic rubber, various cushioning materials have been used recently.

그러나, 기존에 사용되어 오던 완충재의 탄성받침은, 고무 패드부와 상?하부 플레이트 각 부재가 분리된 상태로 설치됨에 따라 교량의 상시 이동시 전단변형이 지속적으로 발생하게 되어 결국 고무 패드의 미끄럼 현상이 발생하게 된다는 문제점을 안고 있었다. 이러한 미끄럼 현상은 이동량이 큰 장대교에서 더욱 두드러지게 나타나고, 상부 상하중이 완전히 재하(載荷)되기 전에도 발생하는 경우가 나타난다. 이에 고무 패드가 설계시 의도한 위치를 이탈하게 되고 따라서 지진시에 충분한 내진 능력을 발휘하기 어려운 문제점이 있었다.
However, the elastic support of the cushioning material that has been used conventionally, since the rubber pad portion and each of the upper and lower plate members are installed in a state separated from each other, the shear deformation continuously occurs during the continuous movement of the bridge, and eventually the rubber pad slippage occurs. I had a problem that would occur. This sliding phenomenon is more prominent in the long bridge with a large amount of movement, and occurs even before the upper vertical load is completely loaded. Thus, the rubber pads deviate from their intended positions in the design, and thus, there is a problem that it is difficult to exhibit sufficient seismic capacity during an earthquake.

상기 종래기술의 문제점을 해결하기 위해 안출된 본 발명의 목적은 고무판 사이에 보강판을 적층시켜 수직하중에 대한 강성을 보강하는 한편, 상기 고무판과 보강판 사이의 접지면적을 확장시키기 위한 라운드(R)가 형성된 엠보싱 요철부를 형성함으로써, 고무판과 보강판 사이의 접착력 및 수평하중에 대한 강성이 향상되고 아울러 탄성받침의 탄성계수를 향상시켜 기초지반에서 지진으로 인하여 발생되는 지진파 또는 구조물에서 태풍 등으로 인하여 발생되는 진동이 구조물에 전달되는 것을 효과적으로 차단하도록 된 탄성받침을 제공함에 있다.
An object of the present invention devised to solve the problems of the prior art is to reinforce the rigidity against the vertical load by stacking the reinforcement plate between the rubber plate, while the round (R) to expand the ground area between the rubber plate and the reinforcement plate (R) ) By forming embossed concave-convex part, the adhesion between rubber plate and reinforcement plate and the rigidity against horizontal load are improved, and the elastic modulus of elastic support is improved, so that due to typhoon in structure or earthquake caused by earthquake in foundation ground It is to provide an elastic support to effectively block the generated vibration is transmitted to the structure.

본 발명의 목적을 달성하기 위한 탄성받침은, 고무판과 보강판이 교대로 적층되도록 하되, 상기 고무판과 보강판의 접지면에 엠보싱 요철부가 형성되도록 하는 것을 특징으로 한다.The elastic support for achieving the object of the present invention is characterized in that the rubber plate and the reinforcement plate to be laminated alternately, the embossed convex portion is formed on the ground surface of the rubber plate and the reinforcement plate.

여기서, 상기 보강판은 금속판, 카본매트, 유리섬유강화플라스틱, 탄소섬유강화플라스틱 중 어느 하나를 이용해 제작될 수 있다.Here, the reinforcing plate may be manufactured using any one of a metal plate, carbon mat, glass fiber reinforced plastic, carbon fiber reinforced plastic.

그리고, 상기 엠보싱 요철부는 보강판 및 고무판에 형성되는 홈부 및 돌부인 것을 특징으로 한다.And, the embossed concave-convex portion is characterized in that the grooves and protrusions formed in the reinforcement plate and the rubber plate.

또한, 상기 엠보싱 요철부는 홈부 및 돌부 둘레와 평판면의 경계지점을 라운드(R)로 형성하는 것을 특징으로 한다.
In addition, the embossed concave-convex portion is characterized in that the boundary between the groove portion and the periphery and the flat surface is formed in a round (R).

상기 구성에 따른 본 발명은 고무판 사이에 보강판을 적층시켜 수직하중에 대한 강성을 보강하는 한편, 상기 고무판과 보강판 사이의 접지면적을 확장시키기 위한 라운드(R)가 형성된 엠보싱 요철부를 형성함으로써, 고무판과 보강판 사이의 접착력 및 수평하중에 대한 강성이 향상되고 아울러 탄성받침의 탄성계수를 향상시켜 기초지반에서 지진으로 인하여 발생되는 지진파 또는 구조물에서 태풍 등으로 인하여 발생되는 진동이 구조물에 전달되는 것을 효과적으로 차단함으로써, 구조물의 내구성이 향상되는 효과가 있고, 안전한 설비환경을 제공하게 되는 효과를 갖는다.
The present invention according to the above configuration by reinforcing plate between the rubber plate to reinforce the rigidity to the vertical load, while forming an embossed concave-convex portion formed with a round (R) for expanding the ground area between the rubber plate and the reinforcing plate, The adhesion between the rubber plate and the reinforcement plate and the rigidity against the horizontal load are improved, and the elastic modulus of the elastic bearing is improved so that the vibration generated from the earthquake caused by the earthquake on the foundation ground or the typhoon from the structure is transmitted to the structure. By effectively blocking, there is an effect of improving the durability of the structure, and has the effect of providing a safe installation environment.

도 1은 본 발명의 실시예에 따른 탄성받침을 도시한 사시도.
도 2는 본 발명의 실시예에 따른 탄성받침을 도시한 평면도.
도 3은 도 2의 A-A선 단면도.
도 4는 도 3의 "A"부 상세도.
도 5는 본 발명의 실시예에 따른 탄성받침에 적용된 보강판의 사시도.
도 6은 본 발명의 실시예에 따른 탄성받침의 변형예를 도시한 사시도.
도 7은 본 발명의 실시예에 따른 탄성받침의 시공구조를 도시한 개략단면도.
1 is a perspective view showing an elastic support according to an embodiment of the present invention.
Figure 2 is a plan view showing an elastic support according to an embodiment of the present invention.
3 is a sectional view taken along the line AA in Fig.
4 is a detail view of the portion “A” of FIG. 3.
5 is a perspective view of the reinforcing plate applied to the elastic support according to an embodiment of the present invention.
6 is a perspective view showing a modification of the elastic support according to an embodiment of the present invention.
Figure 7 is a schematic cross-sectional view showing the construction structure of the elastic support according to an embodiment of the present invention.

이하, 본 발명의 바람직한 실시예에 대해 첨부된 도면을 참조하여 자세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 실시예에 따른 탄성받침을 도시한 사시도이다.1 is a perspective view showing an elastic support according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 실시예에 따른 탄성받침(120)은, 외면이 고무재질에 의해 감싸진 블록형태로 제작된다.Referring to Figure 1, the elastic support 120 according to an embodiment of the present invention, the outer surface is manufactured in the form of a block wrapped by a rubber material.

도 2는 본 발명의 실시예에 따른 탄성받침을 도시한 평면도이다. 도 2를 참조하면, 탄성받침(120) 내부에 은선으로 도시된 바와 같은 보강판(125)이 내삽된다. 상기 보강판(125)은 표면에 무수한 엠보싱 요철부(127)를 형성하고 있다.2 is a plan view showing an elastic support according to an embodiment of the present invention. Referring to FIG. 2, the reinforcing plate 125 as shown by the hidden line inside the elastic bearing 120 is interpolated. The reinforcing plate 125 forms a myriad of embossed uneven portions 127 on its surface.

상기 탄성받침(120)의 내부구조에 대해 도 3, 도 4를 참조하여 보다 자세히 설명하면 다음과 같다.The internal structure of the elastic support 120 will be described in more detail with reference to FIGS. 3 and 4 as follows.

도 3은 도 2의 A-A선 단면도이다. 도 3을 참조하면, 다수의 고무판(121)과 보강판(125)이 교대로 적층되어 있고, 특히 보강판(125)의 내외면이 모두 고무판(121)에 의해 감싸지는 구조로 이루어져 있다. 또한, 보강판(125)의 끝단 모서리(r′)를 매끈하게 라운드 처리하여, 탄성받침(120)의 외부충격 또는 과격한 누름시에 보강판(125)의 끝단 모서리(r′)로 인하여 고무판(121)이 찢어짐이 발생하는 것을 방지하도록 되어 있다.3 is a sectional view taken along the line A-A in Fig. Referring to FIG. 3, a plurality of rubber plates 121 and reinforcing plates 125 are alternately stacked, and in particular, the inner and outer surfaces of the reinforcing plates 125 are all covered by the rubber plates 121. In addition, by smoothly rounding the end edge (r ') of the reinforcing plate 125, due to the end edge (r') of the reinforcing plate 125 at the external impact or intense pressing of the elastic support 120 121) is to prevent tearing.

즉, 본 발명의 실시예에 따른 탄성받침판(120)은 외관상 보강판(125)이 외부로 드러나지 않는 구조로서, 외관이 간결하며, 수분이 침투되지 않는 이점을 갖게 된다.That is, the elastic support plate 120 according to the embodiment of the present invention is a structure in which the reinforcing plate 125 is not exposed to the outside, the appearance is concise, and the moisture does not penetrate.

도 5는 본 발명의 실시예에 따른 탄성받침에 적용된 보강판의 사시도이다.5 is a perspective view of a reinforcing plate applied to the elastic support according to an embodiment of the present invention.

도 5를 참조하면, 상기 보강판(125)은 탄성받침(120)에 구조강도를 제공하게 되는데, 금속판, 카본매트, 유리섬유강화플라스틱(GFRP: Glass Fiber Reinforced Plastic), 탄소섬유강화플라스틱(CFRP: Carbon Fiber Reinforced Plastic) 중 어느 하나를 선택해 제작될 수 있다. Referring to Figure 5, the reinforcing plate 125 is to provide the structural strength to the elastic support 120, a metal plate, carbon mat, glass fiber reinforced plastic (GFRP: Glass Fiber Reinforced Plastic), carbon fiber reinforced plastic (CFRP) Carbon Fiber Reinforced Plastic).

특히, 카본매트, 유리섬유강화플라스틱, 탄소섬유강화플라스틱을 사용할 수 있는데, 이와 같은 카본매트, 유리섬유강화플라스틱, 탄소섬유강화플라스틱은 가볍고, 내산성, 내구성, 내충격성, 내마모성이 좋고, 부식이 없으며, 고강도이고, 열에 변형되지 않으며, 가공하기 쉬운 이점을 갖고 있다.In particular, carbon mat, glass fiber reinforced plastic, carbon fiber reinforced plastic can be used. Such carbon mat, glass fiber reinforced plastic, carbon fiber reinforced plastic is light, acid resistance, durability, impact resistance, wear resistance, and no corrosion. It has the advantage of being high strength, not deformed by heat, and easy to process.

이때, 상기 고무판(121)과 보강판(125)의 접지면적을 넓히기 위한 방법으로 고무판(121)과 보강판(125)의 접지면을 도 4에서와 같은 라운드(R)가 형성된 엠보싱 요철부(127)로 형성하게 된다.At this time, the embossed concave-convex portion in which the ground surface of the rubber plate 121 and the reinforcing plate 125 is rounded as shown in FIG. 4 in a manner to widen the ground area of the rubber plate 121 and the reinforcing plate 125 ( 127).

도 4는 도 3의 "A"부 상세도이다. 도 4를 참조하면, 라운드(R)가 형성된 상기 엠보싱 요철부(127)는 홈부 또는 돌부 중 어느 하나일 수 있고, 홈부와 돌부가 교대로 반복형성되도록 할 수도 있다.4 is a detailed view of the portion “A” of FIG. 3. Referring to FIG. 4, the embossed concave-convex portion 127 in which the round R is formed may be either a groove or a protrusion, and the groove and the protrusion may be alternately repeatedly formed.

이와 같은 엠보싱 요철부(127)는 고무판(121)과 보강판(125)이 상호 합치되는 형태로 제작된다. 즉, 보강판(125)에 홈부를 형성하는 경우, 이와 대응되는 고무판(121)에는 돌부가 형성되도록 하는 것이다.The embossed convex portion 127 is manufactured in a form in which the rubber plate 121 and the reinforcement plate 125 coincide with each other. That is, when the groove is formed in the reinforcing plate 125, the protrusion is formed in the rubber plate 121 corresponding thereto.

이와 같이 고무판(121)과 보강판(125) 사이에 엠보싱 요철부(121)를 형성하게 되면, 접지면적이 크게 늘어나게 되고, 접지면적이 늘어난 만큼 수직하중에 대한 강성이 보강된다.When the embossed convex portion 121 is formed between the rubber plate 121 and the reinforcing plate 125 as described above, the ground area is greatly increased, and the rigidity against the vertical load is reinforced as the ground area is increased.

이때, 엠보싱 요철부(121)의 단면적은 다음과 같은 식으로 정리될 수 있다.At this time, the cross-sectional area of the embossed uneven portion 121 can be arranged in the following manner.

엠보싱 요철부(121)는 반구형상의 홈이라 할 때, 반구의 지름을 a라하고, 깊이를 a/2로 했을 때, 홈의 단면적을 다음 (식1)로 나타낼 수 있다.When the embossed convex-concave portion 121 is a hemispherical groove, the diameter of the hemisphere is a, and when the depth is a / 2, the cross-sectional area of the groove can be expressed by the following equation (1).

Figure pat00001
...........(식1)
Figure pat00001
........... (Equation 1)

이처럼, 접지면적이 넓어지게 되면, 탄성받침(120)의 탄성계수를 높여 진동흡수 및 복원력을 향상시킬 수 있게 된다.As such, when the ground area is widened, the elastic modulus of the elastic support 120 may be increased to improve vibration absorption and restoring force.

여기서, 접지면적을 보다 넓게 하기 위해 엠보싱 요철부(121)의 홈부 및 돌부 둘레와 평판면의 경계지점을 라운드(R)로 형성할 수 있다.Here, in order to increase the ground area, a boundary between the groove and the periphery of the embossed convex and convex portion 121 and the flat surface may be formed in a round (R).

이때, 상기 라운드(R)의 단면적은 다음의 식(2)로 나타낼 수 있다.At this time, the cross-sectional area of the round (R) can be represented by the following equation (2).

Figure pat00002
.........(식2)
Figure pat00002
......... (Equation 2)

즉, 라운드(R)가 형성된 엠보싱 요철부(121)의 단면적은 다음의 (식3)으로 정리될 수 있다.That is, the cross-sectional area of the embossed uneven portion 121 in which the round R is formed may be summarized by the following Equation 3.

Figure pat00003
.........(식3)
Figure pat00003
......... (Eq. 3)

본 발명에 설치되는 고무판(121)은 물과 유사하게 포아손비가 0.5에 근접하는 이상적인 비압축성 재질인 관계로 탄성받침의 팽출량은 사용되는 고무판(121)의 강성 및 사용되는 고무판(121) 한층의 두께에 지배적인 영향을 받게 된다.Since the rubber plate 121 installed in the present invention is an ideal incompressible material having a Poisson's ratio close to 0.5, similar to water, the amount of expansion of the elastic bearing is the rigidity of the rubber plate 121 used and the rubber plate 121 used. The thickness is dominantly affected.

또한, 외관상의 팽출량은 사용되는 피복고무의 두께에 따라서 상당히 달라지게 된다.In addition, the apparent amount of swelling varies considerably depending on the thickness of the coated rubber used.

포아손비란 압축하중에 대한 압축변형율과 측면방향의 인장변형율과의 비를 말하지만, 포아손비가 0.5란 물리적인 의미는 수직하중에 의한 압축변형량에 해당하는 체적감소와 동일한 부피가 수평방향으로 돌출하는 비압축성 재료라는 것이다.Poisson's ratio refers to the ratio of compressive strain to compressive load and tensile strain in the lateral direction.However, the Poisson's ratio of 0.5 means that a volume equal to the volume reduction corresponding to the compressive strain caused by the vertical load protrudes in the horizontal direction. It is called an incompressible material.

즉, 고무는 압축하중에 의한 압축되는 겉보기 부피와 수평으로 팽창하는 실제 부피가 동일한 포아손비가 0.5인 물체이다. In other words, rubber is an object with a Poisson's ratio of 0.5 equal to the apparent volume compressed by the compressive load and the actual volume expanding horizontally.

이에 비하여 코르크는 수직하중에 의한 압축변형량을 물체 내부의 공극이 흡수하기 때문에 수평돌출량이 전혀 없는 포아손비가 0인 물체이며, 콘크리트는 어느 정도는 흡수하고 어느 정도는 돌출하는 포아손비가 0.25정도 되는 물체이다.Cork, on the other hand, is an object with zero porosity ratio with no horizontal projection because the void inside the object absorbs the compressive strain due to vertical load. It is an object.

하기 실험예를 통해 탄성받침(120)의 수직탄성계수 및 단면적과의 함수관계에 대해 살펴보면 다음과 같다.
Looking at the functional relationship between the vertical elastic modulus and the cross-sectional area of the elastic support 120 through the following experimental example.

수직탄성계수의 계산 (예 : 사각형 135톤)Calculation of vertical modulus of elasticity (e.g. 135 tons square)

받침의 제원: 300mm(단변)×400mm(장변)×105mm(높이), 고무 한층의 두께: 12mm, 철판 한층의 두께: 4mm, 총 고무층수: 6층, 상하 피복두께: 2.5mm, 측면 피복두께: 4mm, 탄성받침의 높이: 12mm×6ea + 4mm×(6+1)ea + 2.5mm×2ea= 105mmSpecifications of the base: 300 mm (short side) × 400 mm (long side) × 105 mm (height), thickness of one rubber layer: 12 mm, thickness of one steel sheet: 4 mm, total number of rubber layers: 6 layers, top and bottom coating thickness: 2.5 mm, side cover thickness : 4mm, height of elastic base: 12mm × 6ea + 4mm × (6 + 1) ea + 2.5mm × 2ea = 105mm

탄성받침(120)의 수직탄성계수 Kv는 하기 식1에서 보는 바와 같이 고무의 탄성계수(E)와 단면적(A), 그리고 순고무두께(∑te)와의 함수관계에 있으며 다음 식으로 평가될 수 있다.The vertical elastic modulus Kv of the elastic support 120 is a function of the elastic modulus (E) and the cross-sectional area (A) of the rubber and the pure rubber thickness (∑te) as shown in Equation 1 below, and can be evaluated by the following equation. have.

식1.........Kv = E × A / ∑te = 2,962 kg/cm2×(39.2cm×29.2cm)/7.2cm = 470,989 kg/cmEquation 1 ......... Kv = E × A / ∑te = 2,962 kg / cm2 × (39.2cm × 29.2cm) /7.2cm = 470,989 kg / cm

여기서, here,

E : (3+6.58S2)×G = (3+658×6.972)×9.18 = 2,962 kg/cm2, E: (3 + 6.58S2) × G = (3 + 658 × 6.972) × 9.18 = 2,962 kg / cm2,

G : 고무의 전단탄성계수 (G=9.18kg/cm2)G: Shear modulus of rubber (G = 9.18kg / cm2)

S (형상계수) : a×b/[2(a+b)×te] = 29.2×39.2/[2(29.2+39.2)×1.2]= 6.97S (shape coefficient): a × b / [2 (a + b) × te] = 29.2 × 39.2 / [2 (29.2 + 39.2) × 1.2] = 6.97

∑te : 순수고무의 총두께 (상하 피복두께 제외) = 7.2cm
∑te: Total thickness of pure rubber (excluding top and bottom cover thickness) = 7.2cm

도 6은 본 발명의 실시예에 따른 탄성받침의 변형예를 도시한 사시도이다. 도 6을 참조하면, 본 발명의 실시예에 따른 탄성받침(120)의 외형을 원형블록형태로 제작할 수 있다. 앞서 살펴본 바와 같은 탄성받침(120)은 외형을 사각블록이나 원형블록으로 제작하는 것 외에도 다양한 형태로 얼마든지 변형이 가능한 특징을 갖는다.6 is a perspective view showing a modified example of the elastic bearing according to the embodiment of the present invention. Referring to Figure 6, the outer shape of the elastic bearing 120 according to an embodiment of the present invention can be produced in the form of a circular block. As described above, the elastic support 120 has a feature that can be deformed in any number of forms in addition to the appearance of a rectangular block or a circular block.

도 7은 본 발명의 실시예에 따른 탄성받침의 시공구조를 도시한 개략단면도이다.Figure 7 is a schematic cross-sectional view showing the construction structure of the elastic support according to an embodiment of the present invention.

도 7을 참조하면, 콘크리트 슬라브층(111) 상부에 탄성받침판(120)이 설치되고, 상기 탄성받침판(120) 상부에 마감층(113)이 설치된다.Referring to FIG. 7, an elastic support plate 120 is installed on the concrete slab layer 111, and a finishing layer 113 is installed on the elastic support plate 120.

이때, 상기 탄성받침판(120)은 콘크리트 슬라브층(111) 상부에 다수가 균일하게 배치되도록 설치할 수 있는데, 설치과정에서의 유동을 방지하기 위해 별도의 접합과정을 수행할 수 있다. 접합과정은 탄성받침판(120)을 콘크리트 슬라브층(111) 상부에 접합되도록 하거나, 마감층(113) 저면에 접합되도록 할 수 있다.At this time, the elastic support plate 120 may be installed so that a plurality of uniformly disposed on the concrete slab layer 111, a separate bonding process may be performed to prevent the flow in the installation process. Bonding process may be to be bonded to the elastic base plate 120 on the concrete slab layer 111, or to the bottom of the finishing layer 113.

앞서, 살펴본 바와 같은 본 발명의 실시예에 따른 탄성받침은 고무판(121) 사이에 보강판(125)을 적층시켜 수직하중에 대한 강성을 보강하는 한편, 상기 고무판(121)과 보강판(125) 사이의 접지면적을 확장시키기 위한 라운드(R)가 형성된 엠보싱 요철부(127)를 형성함으로써, 고무판(121)과 보강판(125) 사이의 접착력 및 수평하중에 대한 강성이 향상되고 아울러 탄성받침(120)의 탄성계수를 향상시켜 기초지반에서 지진으로 인하여 발생되는 지진파 또는 구조물에서 태풍 등으로 인하여 발생되는 진동이 구조물에 전달되는 것을 효과적으로 차단함으로써, 구조물의 내구력을 향상시키는 것은 물론, 안전한 설비환경을 제공할 수 있게 된다.As described above, the elastic support according to the embodiment of the present invention reinforces the rigidity against the vertical load by stacking the reinforcement plate 125 between the rubber plates 121, while the rubber plate 121 and the reinforcement plate 125 By forming the embossed concave-convex portion 127 in which the round R is formed to expand the ground area therebetween, the rigidity against the adhesive force and the horizontal load between the rubber plate 121 and the reinforcing plate 125 is improved and the elastic support ( By improving the modulus of elasticity of 120), it effectively blocks the transmission of vibration generated by earthquakes or earthquakes caused by earthquakes in the foundation to the structure, thereby improving the durability of the structure as well as providing a safe facility environment. It can be provided.

111: 콘크리트 슬라브층
113: 마감층
120: 탄성받침
121: 고무판
125: 보강판
127: 엠보싱 요철부
129: 볼트체결공
130: 체결볼트
111: concrete slab layer
113: finishing layer
120: elastic bearing
121: rubber plate
125: gusset
127: embossed irregularities
129: bolt fastener
130: fastening bolt

Claims (4)

고무판(121)과 보강판(125)이 교대로 적층되도록 하되, 상기 고무판(121)과 보강판(125)의 접지면에 엠보싱 요철부(127)가 형성되도록 하는 것을 특징으로 하는 탄성받침.
The rubber plate 121 and the reinforcement plate 125 to be alternately stacked, the elastic support, characterized in that the embossed convex portion 127 is formed on the ground surface of the rubber plate 121 and the reinforcement plate (125).
제1항에 있어서,
상기 보강판(125)은 끝단 모서리(r′)가 라운드 처리되고, 금속판, 카본매트, 유리섬유강화플라스틱(GFRP; Glass Fiber Reinforced Plastic), 탄소섬유강화플라스틱(CFRP: Carbon Fiber Reinforced Plastic) 중 어느 하나를 이용해 제작되는 것을 특징으로 하는 탄성받침.
The method of claim 1,
The reinforcing plate 125 is rounded at the end edge r ′, and any one of a metal plate, a carbon mat, a glass fiber reinforced plastic (GFRP), and a carbon fiber reinforced plastic (CFRP) Elastic stand, characterized in that made using one.
제1항에 있어서,
상기 엠보싱 요철부(127)는 보강판(125) 및 고무판(121)에 형성되는 홈부 및 돌부인 것을 특징으로 하는 탄성받침.
The method of claim 1,
The embossed concave-convex portion 127 is an elastic support, characterized in that the groove portion and the protrusion formed in the reinforcement plate 125 and the rubber plate 121.
제3항에 있어서,
상기 엠보싱 요철부(127)는 홈부 및 돌부 둘레와 평판면의 경계지점을 라운드(R)로 형성하는 것을 특징으로 하는 탄성받침.
The method of claim 3,
The embossed concave-convex portion 127 is an elastic bearing, characterized in that the boundary between the groove portion and the protrusion and the flat surface is formed in a round (R).
KR1020110028842A 2011-03-30 2011-03-30 Elastomeric rubber bearing KR20120110764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110028842A KR20120110764A (en) 2011-03-30 2011-03-30 Elastomeric rubber bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110028842A KR20120110764A (en) 2011-03-30 2011-03-30 Elastomeric rubber bearing

Publications (1)

Publication Number Publication Date
KR20120110764A true KR20120110764A (en) 2012-10-10

Family

ID=47281551

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110028842A KR20120110764A (en) 2011-03-30 2011-03-30 Elastomeric rubber bearing

Country Status (1)

Country Link
KR (1) KR20120110764A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108518450A (en) * 2018-04-20 2018-09-11 武汉中航传感技术有限责任公司 A kind of antivibration mount and fiber Bragg grating (FBG) demodulator
CN109681763A (en) * 2019-02-21 2019-04-26 林健 A kind of support reinforcing structure of Plastic floor mat
US20200124098A1 (en) * 2018-10-17 2020-04-23 Aktiebolaget Skf Elastomeric bearing having carbon-fiber reinforced laminae

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108518450A (en) * 2018-04-20 2018-09-11 武汉中航传感技术有限责任公司 A kind of antivibration mount and fiber Bragg grating (FBG) demodulator
US20200124098A1 (en) * 2018-10-17 2020-04-23 Aktiebolaget Skf Elastomeric bearing having carbon-fiber reinforced laminae
US11913496B2 (en) * 2018-10-17 2024-02-27 Aktiebolaget Skf Elastomeric bearing having carbon-fiber reinforced laminae
CN109681763A (en) * 2019-02-21 2019-04-26 林健 A kind of support reinforcing structure of Plastic floor mat

Similar Documents

Publication Publication Date Title
US8359793B2 (en) Earthquake force absorption system
CN101736750B (en) Shock isolation and energy dissipation double-controlled device for reinforcement reset masonry house foundation
CN202298983U (en) Concrete composite shear wall
WO2015033161A1 (en) A rubber part for incorporation into a brick or masonry wall in a reinforced concrete frame to protect against damage caused by seismic activity
CN203393868U (en) Buckling-restrained steel plate shear wall with out-of-plane deformation space
KR20120110764A (en) Elastomeric rubber bearing
CN111236285A (en) Disconnect-type basis with subtract shock insulation function
US20100088980A1 (en) Seismic isolator and method to produce said seismic isolator
CN205777792U (en) The T-shaped antivibrator of precast construction node energy-dissipating and shock-absorbing
CN102409807B (en) Steel reinforced concrete laminated column with mild steel plate surrounding concrete at bottom and manufacturing method thereof
CN201598845U (en) Earthquake-proof heightening structure for space buildings and space estates
JPH10131285A (en) Reinforcing structure for column base section of rc column-like structure
CN104294967A (en) L-shaped prefabricated composite shear wall vertical anti-seismic connection node and construction method thereof
CN210086948U (en) Assembled wall shock insulation foundation structure
CN211499276U (en) A earthquake-resistant structure for architectural design
CN1305044A (en) Combined anti-earthquake mechanism
KR200254739Y1 (en) Lead Rubber Bearing with Lead Core Protecting Tube
CN109056777B (en) Anti-overturning measure of foundation shock-insulation building and construction method thereof
CN212803245U (en) Bridge and culvert engineering reinforced damping support structure system
JP2010019007A (en) Base-isolating base plate of building
CN111734440A (en) Bridge and culvert engineering reinforced damping support structure system
CN113818559B (en) Giant frame structure and three-dimensional shock absorption substructure
CN215053173U (en) Anti-seismic foundation structure
RU2812360C1 (en) Pipe-concrete seismic isolating support
CN220133160U (en) Beam-slab structure shock-absorbing system

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application