JP2008280818A - Base isolation structure of building and building adopting the same - Google Patents

Base isolation structure of building and building adopting the same Download PDF

Info

Publication number
JP2008280818A
JP2008280818A JP2007128616A JP2007128616A JP2008280818A JP 2008280818 A JP2008280818 A JP 2008280818A JP 2007128616 A JP2007128616 A JP 2007128616A JP 2007128616 A JP2007128616 A JP 2007128616A JP 2008280818 A JP2008280818 A JP 2008280818A
Authority
JP
Japan
Prior art keywords
foundation
support member
base
building
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007128616A
Other languages
Japanese (ja)
Inventor
Hisaya Tanaka
久也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007128616A priority Critical patent/JP2008280818A/en
Publication of JP2008280818A publication Critical patent/JP2008280818A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base isolation structure of a building suitably adopted in small buildings such as general houses and acting an effective damper effect (attenuation effect) when a horizontal displacement of the skeleton of the building relative to the foundation thereof while sufficiently allowing the horizontal displacement of the skeleton relative to the foundation by a vibration isolating means. <P>SOLUTION: A base 50 is fixed to a foundation 46 while a metal connection member 14 is positioned on the sides of the base 50 and the foundation 46 and extends in the vertical direction. Therefore, the length dimension of the connection member 14 is larger than the distance between the fixed portions of the base 50 and the foundation 46 stacked on each other through the vibration isolating means. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、建築物の免震構造の関連技術に属し、特に、一般住宅や倉庫等の小型建築物において好適に採用される、新規な構造の免震構造の技術に関するものである。   The present invention belongs to a related technology for a base-isolated structure of a building, and particularly relates to a technology for a base-isolated structure having a novel structure that is suitably employed in small buildings such as ordinary houses and warehouses.

より詳細には、振動絶縁手段によって水平方向の相対変位が許容された建築物の基礎と土台とを連結して、それら基礎と土台の水平方向の相対変位に際してダンパー効果を発揮し得る連結部材を備えた、新規な構造の建築物用免震構造とそれを採用した建築物に関するものである。   More specifically, a connecting member that connects the foundation and the foundation of the building whose relative displacement in the horizontal direction is allowed by the vibration isolation means and can exhibit a damper effect when the horizontal displacement of the foundation and the foundation is performed. The present invention relates to a seismic isolation structure for a building having a new structure and a building adopting it.

良く知られているように、一般住宅等の小型建築物では、躯体の最下部に位置する土台が、地盤に敷設された基礎に対して載置されて、アンカーボルトで固定されている。これにより、躯体を含む上部構造の荷重を、下部構造としての基礎を介し、支持地盤に伝達させて、建築物を安定して支持せしめるようになっている。   As is well known, in a small building such as a general house, a base located at the lowermost part of the frame is placed on a foundation laid on the ground and fixed with anchor bolts. Thereby, the load of the upper structure containing a housing is transmitted to a support ground via the foundation as a lower structure, and a building is supported stably.

ところで、近年では、地震等の外部荷重から上部構造を保護するために、外部荷重の入力部分である基礎と上部構造の土台との間にゴムマウント等の振動絶縁手段を介在させた免震構造が提案されている。この免震構造によれば、地震で基礎が水平方向変位しても、基礎から上部構造への力の伝達が、振動絶縁手段で軽減乃至は遮断されることから、上部構造のダメージを効果的に抑えることが出来るのである。   By the way, in recent years, in order to protect the superstructure from external loads such as earthquakes, a seismic isolation structure in which a vibration isolation means such as a rubber mount is interposed between the foundation that is the input portion of the external load and the base of the superstructure. Has been proposed. According to this seismic isolation structure, even if the foundation is displaced in the horizontal direction due to an earthquake, the transmission of force from the foundation to the superstructure is reduced or blocked by the vibration insulation means, so that damage to the superstructure is effective. It can be suppressed to.

ところが、従来からの一般住宅では、前述のとおり土台が基礎に対してアンカーボルトによって強固に固定されていた。それ故、免震構造を採用するに際しては、このアンカーボルトによる土台と基礎の固定構造を解消して、土台の基礎に対する水平方向の相対変位を許容することが必要となる。   However, in the conventional ordinary houses, as described above, the base is firmly fixed to the foundation by the anchor bolts. Therefore, when adopting the seismic isolation structure, it is necessary to eliminate the fixing structure between the foundation and the foundation by the anchor bolt and to allow relative displacement in the horizontal direction with respect to the foundation of the foundation.

そこで、かかる要求に対処するために、例えば特許文献1(特開平10−220067号公報)や特許文献2(特開2000−110403号公報)において、基礎の上端面におけるアンカーボルトの突出部分の周囲をザグリ状に肉抜きすることにより、アンカーボルトによる土台と基礎の連結力を軽減して、土台の基礎に対する水平方向の相対変位を許容することが提案されている。   Therefore, in order to cope with this requirement, for example, in Patent Document 1 (Japanese Patent Laid-Open No. 10-220067) and Patent Document 2 (Japanese Patent Laid-Open No. 2000-110403), the periphery of the protruding portion of the anchor bolt on the upper end surface of the foundation It has been proposed to reduce the connecting force between the foundation and the foundation by anchor bolts and to allow relative displacement in the horizontal direction with respect to the foundation of the foundation by removing the wall in a counterbore shape.

しかしながら、これら特許文献1,2に示された従来構造では、基礎のザグリによって基礎強度の低下が避けられないという大きな問題があるばかりでなく、たとえザグリを設けたとしても、基礎と土台の対向面間に跨がって上下方向に延びるアンカーボルトでは、その自由長が極めて小さいが故に、免震構造に要求される躯体の基礎に対する数十センチ或いはそれ以上の水平方向変位を許容することが極めて困難であった。   However, in the conventional structures shown in these Patent Documents 1 and 2, there is not only a great problem that the foundation strength is inevitably lowered by the counterbore of the foundation, but even if counterbore is provided, the foundation and the base are opposed to each other. Anchor bolts that extend between the surfaces and extend in the vertical direction have a very small free length, and therefore allow horizontal displacement of several tens of centimeters or more relative to the foundation of the frame required for the seismic isolation structure. It was extremely difficult.

加えて、たとえ基礎のザグリを設けてアンカーボルトの曲げ変形を許容し得たとしても、アンカーボルトの軸方向となる躯体の基礎に対する鉛直方向の相対変位は、アンカーボルトによる大きな締結力と引張強度によって殆ど許容され得ない。それ故、縦揺れの直下型地震に対しては、免震効果が殆ど発揮され得ないという問題もあったのである。   In addition, even if the foundation bolts are provided to allow bending deformation of the anchor bolts, the relative displacement in the vertical direction with respect to the foundation of the frame, which is the axial direction of the anchor bolts, can cause a large fastening force and tensile strength by the anchor bolts. Is almost unacceptable. Therefore, there was also a problem that the seismic isolation effect could hardly be exhibited for the vertical type earthquake with pitching.

一方、躯体の基礎に対する水平方向変位を許容するためにアンカーボルトを用いないで、水平方向変位量を制限するストッパ機構だけを採用することも提案されている。ところが、このような構造では、地震による外力作用時における基礎に対する躯体の振動変位を抑える減衰作用が発揮され得ず、長い時間に亘って躯体が水平方向に往復変位を繰り返してしまうという問題があった。   On the other hand, it is also proposed to employ only a stopper mechanism that limits the amount of horizontal displacement without using anchor bolts in order to allow horizontal displacement relative to the foundation of the housing. However, in such a structure, the damping action that suppresses the vibration displacement of the frame with respect to the foundation when an external force is applied due to an earthquake cannot be exhibited, and the frame repeats a reciprocating displacement in the horizontal direction for a long time. It was.

特開平10−220067号公報Japanese Patent Laid-Open No. 10-220067 特開2000−110403号公報JP 2000-110403 A

本発明は上述の如き事情を背景として為されたものであって、その解決課題とするところは、一般住宅等の小型建築物に対して好適に採用されて、振動絶縁手段による躯体の基礎に対する水平方向変位を十分に許容せしめつつ、より一層優れた免震効果を発現せしめ得る新規な免震構造を提供すること、およびかかる免震構造を備えた建築物を提供することにある。   The present invention has been made in the background as described above, and the problem to be solved is that it is suitably adopted for small buildings such as ordinary houses, and is based on the foundation of a housing by vibration isolation means. An object of the present invention is to provide a novel seismic isolation structure capable of exhibiting a further excellent seismic isolation effect while sufficiently allowing horizontal displacement, and to provide a building having such a seismic isolation structure.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載され、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. In addition, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized on the basis of.

すなわち、建築物用免震構造に関する本発明の特徴とするところは、建築物の基礎と土台の間に振動絶縁手段を配して、該建築物における該土台を含む上部構造の荷重を該振動絶縁手段を介して該基礎に伝達支持せしめると共に、該振動絶縁手段によって該建築物の該上部構造の該基礎に対する水平方向の相対変位を許容せしめた建築物の免震構造において、前記土台と前記基礎の側方に位置して上下方向に延びる金属製の連結部材を配設して、該連結部材の上端を該土台に固定する一方、該連結部材の下端を該基礎に固定することにより、前記振動絶縁手段を介して重ね合わされた該土台と該基礎との上下方向の対向面間距離よりも大きな長さ寸法を有する該連結部材によって該土台と該基礎を連結せしめて、前記建築物の前記上部構造が該基礎に対して水平方向に相対変位せしめられた際に該連結部材が変形せしめられるようにした建築物の免震構造にある。   That is, the feature of the present invention relating to a seismic isolation structure for buildings is that vibration isolation means is disposed between the foundation and the foundation of the building, and the load of the superstructure including the foundation in the building is the vibration. In the seismic isolation structure of a building that is supported and transmitted to the foundation through an insulating means, and that allows relative displacement in the horizontal direction of the upper structure of the building with respect to the foundation by the vibration insulating means. By disposing a metal connecting member located on the side of the foundation and extending in the vertical direction, fixing the upper end of the connecting member to the base, while fixing the lower end of the connecting member to the foundation, The foundation and the foundation are connected by the connecting member having a length dimension larger than the distance between the opposing surfaces in the vertical direction between the foundation and the foundation overlaid via the vibration isolation means. The superstructure is In seismic isolation of a building which is adapted it said coupling member is deformed when that is allowed relative displacement in the horizontal direction relative to the base.

このような本発明に従う構造とされた免震構造においては、土台と基礎が特定構造の連結部材によって相互に連結されているのであり、かかる連絡部材が土台と基礎の側方で上下方向に延びて配設されていることによって自由長が大きく確保されていることから、土台の基礎に対する水平方向の相対変位が、この連結部材の変形に基づいて十分なストロークで許容され得る。特に、特許文献1,2に記載のような基礎上端面にザグリを設ける必要もないことから、基礎の強度を十分に確保しつつ、連結部材の自由長を大きく設定することが可能となる。   In such a base-isolated structure according to the present invention, the base and the foundation are connected to each other by a connecting member having a specific structure, and such a connecting member extends vertically on the side of the base and the base. Since the free length is secured largely by being arranged, horizontal relative displacement with respect to the foundation of the foundation can be allowed with a sufficient stroke based on the deformation of the connecting member. In particular, since it is not necessary to provide counterbore on the upper end surface of the foundation as described in Patent Documents 1 and 2, it is possible to set the free length of the connecting member large while ensuring sufficient strength of the foundation.

また、かかる連結部材を、例えば鉛や銅、鉄鋼等の適当な金属材料で形成して、土台が基礎に対して水平方向変位せしめられることに伴って塑性変形が生ぜしめられるようにしても良い。この塑性変形履歴によってダンパ効果(減衰効果)を発揮し得る。このダンパ効果によって、上部構造の揺れが速やかに抑えられる。また、かかる連結部材を、例えば鉄鋼やばね鋼等の適当な金属材料で成形して、土台の基礎に対する相対変位が相当に大きな領域まで、当該連結部材の弾性変形が生ぜしめられるようにしても良い。なお、土台の基礎に対する相対変位量が小さい場合には、連結部材が弾性変形領域で変形せしめられることから、この鉄鋼やばね鋼等の連結部材の弾性に基づいて、基礎に対して相対変位せしめられた土台の基礎に対する初期位置への返戻作動が一層速やかに且つ自動的に発現され得る。   Further, the connecting member may be formed of an appropriate metal material such as lead, copper, or steel so that plastic deformation is caused when the base is displaced in the horizontal direction with respect to the foundation. . The damper effect (damping effect) can be exhibited by this plastic deformation history. By this damper effect, the shaking of the superstructure can be quickly suppressed. Further, the connecting member is formed of an appropriate metal material such as steel or spring steel so that the connecting member can be elastically deformed to a region where the relative displacement with respect to the foundation of the base is considerably large. good. If the relative displacement of the foundation with respect to the foundation is small, the connecting member is deformed in the elastic deformation region. Therefore, the relative displacement with respect to the foundation is performed based on the elasticity of the connecting member such as steel or spring steel. The return operation to the initial position with respect to the foundation of the base that has been established can be manifested more quickly and automatically.

また、連結部材の総長(自由長)が、土台と基礎の直線的な連結長(土台側連結部位と基礎側連結部位間の鉛直方向離隔距離)よりも大きくされていることにより、土台と基礎の上下方向の相対変位も、連結部材の変形によって許容されることとなる。しかも、かかる土台と基礎の上下方向の変位に際しても、前述の如き、連結部材の塑性変形に基づくダンパー効果や、弾性変形に基づく初期位置への復元効果が有効に発揮される。   In addition, since the total length (free length) of the connecting member is larger than the linear connection length between the foundation and the foundation (the vertical separation distance between the foundation-side coupling portion and the foundation-side coupling portion), the foundation and the foundation The relative displacement in the vertical direction is also allowed by the deformation of the connecting member. Moreover, even when the base and the foundation are displaced in the vertical direction, as described above, the damper effect based on the plastic deformation of the connecting member and the restoring effect to the initial position based on the elastic deformation are effectively exhibited.

しかも、かかる連結部材は、金属材で形成されていることから、強風等の地震時振動に比して振動加速度が小さな外力作用時には、この連結部材が土台と基礎を相互に固定的に連結することとなり、いわゆるアンカー機能を発揮して上部構造の下部構造による安定支持効果も発揮されるのである。   In addition, since the connecting member is formed of a metal material, the connecting member fixedly connects the foundation and the foundation to each other when an external force is exerted with a vibration acceleration that is small compared to vibration during an earthquake such as a strong wind. In other words, the so-called anchor function is exhibited and the stable support effect by the lower structure of the upper structure is also exhibited.

なお、本態様において連結部材の上端部と下端部における土台と基礎への固定部位や固定構造は、特に限定されるものでない。具体的に例示すると、土台や基礎に対して水平方向に貫通する挿通孔を形成し、この挿通孔に対して連結部材の上端部や下端部を挿通固定することも可能である。或いは、土台や基礎に対して、予め固定された基台等の取付部材を設けておいて、この取付部材に対して、連結部材の上端部や下端部を固定することも可能である。特に、土台は一般に木や金属で形成されることから、この土台に対して孔を穿ったり、ねじ固定したり等して、連結部材の上端部を容易に固定することが可能である。一方、基礎は一般に鉄筋コンクリートで形成されていることから、その配筋に対して係止等させることにより、連結部材の基礎に対する固定強度を基礎配筋を利用して容易に且つ十分に得ることが可能となる。また、基礎が布基礎やベタ基礎等で形成されている場合には、そのフーチング部分に対して、連結部材の下端部を固定することも可能である。その場合には、例えば基礎梁の側方に所定距離だけ離れた位置において、フーチングの上面から上方に延び出すようにして、連結部材が設けられることとなる。   In addition, in this aspect, the fixing | fixed site | part and fixing structure to the base and foundation in the upper end part and lower end part of a connection member are not specifically limited. Specifically, it is possible to form an insertion hole penetrating in the horizontal direction with respect to the base and the foundation, and to insert and fix the upper end portion and the lower end portion of the connecting member to the insertion hole. Alternatively, it is possible to provide a mounting member such as a base fixed in advance on the base or the foundation, and fix the upper end and lower end of the connecting member to the mounting member. In particular, since the base is generally made of wood or metal, it is possible to easily fix the upper end portion of the connecting member by drilling a hole in the base or fixing the screw. On the other hand, since the foundation is generally formed of reinforced concrete, it is possible to easily and sufficiently obtain the fixing strength of the connecting member with respect to the foundation by using the foundation reinforcement by locking the reinforcement. It becomes possible. In addition, when the foundation is formed of a cloth foundation, a solid foundation, or the like, the lower end portion of the connecting member can be fixed to the footing portion. In this case, for example, the connecting member is provided so as to extend upward from the upper surface of the footing at a position separated by a predetermined distance to the side of the foundation beam.

また、本発明では、例えば、前記連結部材が、前記土台の側面から外方に延び出している上端側方突出部と、前記基礎における基礎梁の側面から外方に延び出している下端側方突出部と、それら上端側方突出部の突出先端部分と下端側方突出部の突出先端部分とを一体的に連結して上下方向に延びる中央部分とを、含んだ一体構造とされてなる態様が、好適に採用され得る。   Further, in the present invention, for example, the connecting member has an upper side protrusion projecting outward from the side surface of the base, and a lower side side extending outward from the side surface of the foundation beam in the foundation. A mode in which the projecting portion and the projecting tip portion of the upper end side projecting portion and the projecting tip portion of the lower end side projecting portion are integrally coupled to each other and include a central portion extending in the vertical direction. Can be suitably employed.

このような連結部材を採用することにより、連結部材の配設スペースを比較的に小さく抑えつつ、連結部材の自由長を一層効率的に確保することが可能となる。なお、連結部材の基礎および土台からの突出方向は、建築物の外側に向かって突出させる他、建築物の内側すなわち縁の下に向かって突出させても良い。   By adopting such a connecting member, it is possible to more efficiently secure the free length of the connecting member while keeping the arrangement space of the connecting member relatively small. In addition, the protrusion direction from the foundation and base of the connecting member may be protruded toward the inside of the building, that is, below the edge, in addition to protruding toward the outside of the building.

また、本発明では、例えば、前記連結部材が、その全長に亘って、折れ曲がった部分を有しないで滑らかに連続した形状とされている態様が、好適に採用され得る。   In the present invention, for example, a mode in which the connecting member has a smoothly continuous shape without having a bent portion over the entire length thereof can be suitably employed.

このような連結部材においては、変形に際しての応力集中が緩和されて、長さ方向の広い範囲に亘って変形が生ぜしめられることから、耐荷重強度が大きくされると共に、塑性変形を利用した減衰効果や弾性変形を利用した初期位置への復元効果が有利に図られ得る。   In such a connecting member, stress concentration during deformation is relaxed and deformation occurs over a wide range in the length direction, so that the load bearing strength is increased and damping using plastic deformation is performed. An effect of restoring the initial position using the effect and elastic deformation can be advantageously achieved.

また、本発明では、例えば、前記土台と前記基礎を連結する前記連結部材が複数設けられており、該複数の連結部材のうち、少なくとも1つが他の連結部材に対して異なる弾性限度を有している態様が、好適に採用され得る。   In the present invention, for example, a plurality of the connecting members for connecting the base and the foundation are provided, and at least one of the plurality of connecting members has a different elastic limit with respect to the other connecting members. The aspect which is mentioned can be employ | adopted suitably.

このような態様においては、弾性限度が異なる連結部材の複数が採用されていることによって、例えば、ある連結部材に塑性変形によるダンパー効果を積極的に生ぜしめる一方、別の連結部材に弾性変形による初期位置の復元効果を積極的に生ぜしめるようにすることも可能となる。それ故、ダンパー効果や復元効果等を含んでなる免震効果のチューニング自由度の更なる向上が図られ得る。   In such an aspect, by employing a plurality of connecting members having different elastic limits, for example, a damper effect due to plastic deformation is positively generated in one connecting member, while another connecting member is caused by elastic deformation. It is also possible to positively produce the restoring effect of the initial position. Therefore, the tuning flexibility of the seismic isolation effect including the damper effect and the restoration effect can be further improved.

また、本発明では、例えば、前記基礎に取付基台が固設されていると共に、該取付基台における該基礎の側部から露出する部分に対して前記連結部材の前記基礎側固定部が固定される態様が、好適に採用される。   In the present invention, for example, a mounting base is fixed to the foundation, and the base-side fixing portion of the connecting member is fixed to a portion of the mounting base exposed from the side of the base. The embodiment is preferably adopted.

このような態様においては、基礎コンクリートの打設後に連結部材を基礎に固定することが出来る。それ故、基礎から突出配置される連結部材によって阻害されることなく、基礎コンクリート型枠を容易に組み立てることが出来、基礎工などの作業性が有利に確保され得る。また、取付基台自体を基礎コンクリート型枠の巾決固定用セパレータとして用いることもできる。   In such an aspect, the connecting member can be fixed to the foundation after the foundation concrete is placed. Therefore, the foundation concrete formwork can be easily assembled without being obstructed by the connecting member protruding from the foundation, and workability such as foundation work can be advantageously ensured. The mounting base itself can also be used as a separator for fixing the width of the foundation concrete formwork.

また、本発明では、例えば、前記連結部材が、既存の前記土台および前記基礎に対して固定されることにより、後付けで取り付けられるようになっている態様が、好適に採用され得る。   In the present invention, for example, a mode in which the connecting member is attached to the existing base and the foundation so as to be attached later can be suitably employed.

このような態様においては、基礎や土台の設置等の作業に際して連結部材を組み付ける必要がなく、それら基礎や土台の設置作業が容易となる。しかも、地震等によって連結部材が塑性変形した場合には、連結部材を容易に交換することも可能となる。即ち、本発明では、前記連結部材が前記土台および前記基礎に対して着脱可能とされている態様が、採用されても良い。また、本態様に従えば、既存の一般住宅に対しても、それが免震住宅の場合にはそのまま、免震住宅でない場合には振動絶縁手段の組み付けと併せて、連結部材を装着することも、容易に実現可能となる。   In such an aspect, it is not necessary to assemble a connecting member for work such as foundation and foundation installation, and the foundation and foundation installation work is facilitated. In addition, when the connecting member is plastically deformed due to an earthquake or the like, the connecting member can be easily replaced. That is, in the present invention, a mode in which the connecting member is detachable from the base and the foundation may be employed. In addition, according to this aspect, a connecting member is attached to an existing ordinary house as it is if it is a base-isolated house, and if it is not a base-isolated house, along with the assembly of vibration isolation means. Can also be realized easily.

また、本発明では、例えば、前記土台が前記基礎に対して水平方向に相対変位せしめられた際に、初期位置へ返戻方向の復元力を及ぼす初期位置復元手段を設けた態様が、好適に採用され得る。   Further, in the present invention, for example, when the base is relatively displaced in the horizontal direction with respect to the foundation, an aspect provided with an initial position restoring means that applies a restoring force in the returning direction to the initial position is preferably employed. Can be done.

このような態様においては、基礎に対して相対変位せしめられた土台の基礎に対する初期位置への返戻作動が確実となり、それによって、免震効果が一層有利に発揮され得る。なお、初期位置復元手段には、例えば、弾性限度がチューニングされた前述の如き連結部材の弾性の他、相互に重ね合わせられた部材の重ね合わせ面間に働く摩擦力や、凸部を凹所に支持せしめる機械的な構造等が採用される。   In such an aspect, the return operation to the initial position with respect to the foundation of the foundation, which is relatively displaced with respect to the foundation, is ensured, whereby the seismic isolation effect can be more advantageously exhibited. The initial position restoring means includes, for example, the frictional force acting between the overlapping surfaces of the members overlapped with each other as well as the elasticity of the connecting member having the elastic limit tuned as described above, and the convex portion as a recess. A mechanical structure or the like that is supported on the surface is employed.

また、本発明では、例えば、前記基礎に固定される下側支持部材と前記土台に固定される上側支持部材とを上下方向に重ね合わせて配すると共に、該下側支持部材と該上側支持部材の対向面にはそれぞれ他方に向かって開口するすり鉢状の凹所を形成して、それら下側支持部材と上側支持部材の両凹所の対向面間に球形状のころがり部材を組み込むことによって、前記振動絶縁手段を構成し、該下側支持部材と該上側支持部材が同一中心軸上に位置合わせされた平常時には、該下側支持部材の該凹所と該上側支持部材の該凹所の各中央最深部間に該ころがり部材が位置せしめられるようにすると共に、前記建築物の前記上部構造が該基礎に対して水平方向に相対変位せしめられた際には、該下側支持部材の該凹所と該上側支持部材の該凹所を乗り上げる方向に該ころがり部材が移動せしめられるようにした構造が、好適に採用される。   In the present invention, for example, a lower support member fixed to the foundation and an upper support member fixed to the base are arranged so as to overlap each other in the vertical direction, and the lower support member and the upper support member By forming a mortar-shaped recess that opens toward the other of the opposing surfaces, and incorporating a spherical rolling member between the opposing surfaces of both the lower support member and the upper support member, In the normal state in which the vibration isolating means is configured and the lower support member and the upper support member are aligned on the same central axis, the recesses of the lower support member and the recesses of the upper support member are arranged. The rolling member is positioned between the central deepest portions, and when the superstructure of the building is relatively displaced in the horizontal direction with respect to the foundation, the lower support member The recess and the recess of the upper support member Structure where the rolling member in the direction so as be moved to raise Ri is preferably employed.

このような特定構造の振動絶縁手段を採用することにより、家屋における上部構造の大きな重力を巧く利用して、その分力作用によって、土台が基礎に対して水平方向に相対変位せしめられた際の帰心力、即ち初期位置へ返戻する方向の作用力を効果的に得ることが可能となる。それ故、連結部材の弾性だけによる帰心力よりも大きな帰心力を得ることが可能となり、比較的に小さな外力の作用時には、上部構造物を基礎に対して固定支持せしめて、上部構造物を安定支持せしめることが可能となる。また、地震等に際して水平力が及ぼされた際にも、連結部材が塑性変形領域までも至らない程度であれば、連結部材の弾性と振動絶縁手段による上下構造重力の分力作用に基づいて、減衰的作用が発揮されて、上部構造の水平方向変位が一層速やかに収束されると共に、初期位置に速やかに返戻されることとなる。   By adopting vibration isolation means with such a specific structure, when the base is displaced relative to the foundation in the horizontal direction due to its component force, utilizing the great gravity of the superstructure in the house It is possible to effectively obtain the return force, that is, the acting force in the direction of returning to the initial position. Therefore, it is possible to obtain a greater centripetal force than the centripetal force solely due to the elasticity of the connecting member, and the upper structure is fixed and supported with respect to the foundation when a relatively small external force is applied, thereby stabilizing the upper structure. It can be supported. Also, even when a horizontal force is exerted during an earthquake or the like, if the connecting member does not reach the plastic deformation region, based on the elasticity of the connecting member and the component force action of the upper and lower structure gravity by the vibration insulating means, The attenuating action is exerted, and the horizontal displacement of the superstructure is converged more quickly and is quickly returned to the initial position.

また、上述の如き振動絶縁手段では、土台が基礎に対して水平方向変位せしめられた際に、下側支持部材の凹所と上側支持部材の凹所を乗り上げる方向にころがり部材が移動せしめられることにより、上下支持部材が上下方向で相互に離隔せしめられて土台が基礎に対して上方に離隔変位せしめられることとなる。それ故、本発明に従う特定構造の連結部材と、かかる特定の振動絶縁手段とを、組み合わせて採用したことにより、水平方向振動に際して土台と基礎が水平方向だけでなく上下方向にも相対変位せしめられることとなり、その結果、かかる連結部材に対してより効率的に変形が及ぼされるのである。これにより、連結部材の塑性変形に基づくダンパ効果が、より効果的に発揮され得ることとなり、一層優れた免震効果が実現可能となるのである。   Further, in the vibration isolating means as described above, when the base is displaced in the horizontal direction with respect to the foundation, the rolling member can be moved in a direction to ride over the recess of the lower support member and the recess of the upper support member. Thus, the vertical support members are separated from each other in the vertical direction, and the base is displaced upwardly with respect to the foundation. Therefore, by adopting a combination of the connecting member having a specific structure according to the present invention and the specific vibration isolating means, the base and the foundation can be relatively displaced not only in the horizontal direction but also in the vertical direction during horizontal vibration. As a result, the connecting member is more efficiently deformed. Thereby, the damper effect based on the plastic deformation of the connecting member can be more effectively exhibited, and a further excellent seismic isolation effect can be realized.

なお、かかる振動絶縁手段における凹所の底面の形状は、特に限定されるものでなく、外周側に行くに従って次第に立ち上がる傾斜角度や、その開口面積等を含めて、要求される制振効果や予想される振動外力の大きさ、更に地震作用時に予想される上部構造の基礎に対する相対変位量の大きさ等を考慮して、適宜に設計される。具体的には、例えば、凹所の底面を円錐形状や湾曲したすり鉢形状等とする他、中央部分に平坦面を形成したり、中央を尖鋭形状としたりすることも可能である。   In addition, the shape of the bottom surface of the recess in the vibration isolating means is not particularly limited, and the required damping effect and expectation including the inclination angle gradually rising toward the outer peripheral side, the opening area, etc. It is designed appropriately in consideration of the magnitude of the vibration external force to be generated and the magnitude of the relative displacement amount with respect to the foundation of the superstructure expected at the time of the earthquake action. Specifically, for example, the bottom surface of the recess may be a conical shape or a curved mortar shape, and a flat surface may be formed at the center portion, or the center may be a sharp shape.

また、本発明では、例えば、前記すり鉢状の凹所が、円錐面形状を有する中央部と、湾曲面形状を有する外周縁部から構成されており、該円錐面形状の中央部が、該湾曲面形状の外周縁部の接線方向に延び出している態様が、好適に採用され得る。   In the present invention, for example, the mortar-shaped recess is composed of a central portion having a conical surface shape and an outer peripheral edge portion having a curved surface shape, and the central portion of the conical surface shape is the curved portion. The aspect extended in the tangential direction of the outer peripheral edge part of a surface shape may be employ | adopted suitably.

このような態様においては、円錐面形状の中央部によって、凹所の中央最深部が有利に実現され得ることに加え、風等の振動加速度の小さな外力作用時には円錐面の傾斜が抵抗となり、土台と基礎の連結が安定して保持される。しかも、かかる中央部の外周側、即ち凹所の外周縁部が湾曲面形状とされていることによって、ころがり部材が凹所から飛び出す方向に大きく変位することが制限されることから、土台と基礎が過度に相対変位することが抑えられ、延いては上部構造の大きな揺れが一層速やかに抑えられる。   In such an embodiment, the deepest central part of the recess can be advantageously realized by the central part of the conical surface shape, and the slope of the conical surface becomes a resistance when an external force with a small vibration acceleration, such as wind, acts as a resistance. And the connection of the foundation is kept stable. In addition, since the outer peripheral side of the central portion, that is, the outer peripheral edge of the recess, has a curved surface shape, it is limited that the rolling member is greatly displaced in the direction of protruding from the recess. Is suppressed from excessively displacing, and as a result, large shaking of the superstructure can be suppressed more quickly.

また、本発明では、例えば、前記基礎に固定される下側支持部材と前記土台に固定される上側支持部材とを上下方向に重ね合わせて配すると共に、該下側支持部材の上面には上方に向かって開口するすり鉢状の凹所を形成する一方、該上側支持部材の下面には該下方に向かって突出する当接突部を形成して、上側支持部材の該当接突部を該下側支持部材の該凹所内に突出位置せしめることによって、前記振動絶縁手段を構成し、該下側支持部材と該上側支持部材が同一中心軸上に位置合わせされた平常時には、該下側支持部材の該凹所の中央最深部に対して該上側支持部材の該当接突部が突出位置せしめられるようにすると共に、前記建築物の前記上部構造が該基礎に対して水平方向に相対変位せしめられた際には、該上側支持部材の該当接突部が該下側支持部材の該凹所の内面を乗り上げる方向に当接状態で移動せしめられるようにした態様が、好適に採用される。   In the present invention, for example, the lower support member fixed to the foundation and the upper support member fixed to the base are arranged so as to overlap each other in the vertical direction, and the upper surface of the lower support member is While forming a mortar-shaped recess that opens toward the bottom, a contact protrusion that protrudes downward is formed on the lower surface of the upper support member, and the corresponding contact protrusion of the upper support member is The vibration isolation means is configured by projecting into the recess of the side support member, and the lower support member is normally used when the lower support member and the upper support member are aligned on the same central axis. The upper support member is protruded from the central deepest portion of the recess, and the upper structure of the building is displaced relative to the foundation in the horizontal direction. The upper support member Aspects part has to be moved in the direction rides the inner surface of the recess of the lower side support member in a contact state is preferably employed.

このような特定構造の振動絶縁手段を採用した場合でも、上述のころがり部材を含んで構成される振動絶縁手段を採用した場合と同様に、家屋における上部構造の大きな重力を巧く利用して、その分力作用によって、土台が基礎に対して水平方向に相対変位せしめられた際の帰心力を得ることが出来るのであり、上述のころがり部材を含んで構成される振動絶縁手段を採用した場合と同様な効果が、何れも有効に発揮され得る。   Even when adopting such a vibration isolation means of a specific structure, similarly to the case of adopting the vibration isolation means configured to include the rolling member described above, skillfully utilizing the large gravity of the upper structure in the house, With the component action, it is possible to obtain a centering force when the base is displaced relative to the foundation in the horizontal direction, and when the vibration isolating means configured to include the above-mentioned rolling member is employed. Any of the same effects can be effectively exhibited.

それに加えて、本態様では、ころがり部材が不要とされることから、部品点数の減少と構造の簡略化も図られ得ることとなる。なお、本態様において、上側支持部材における当接突部は、上側支持部材と一体形成されていても良いし、別体形成された例えば球体等を上側支持部材に対して組み付けることによって形成されていても良い。   In addition, in this aspect, since the rolling member is unnecessary, the number of parts can be reduced and the structure can be simplified. In this aspect, the contact protrusion in the upper support member may be formed integrally with the upper support member, or formed by assembling a sphere or the like formed separately from the upper support member. May be.

また、本発明では、例えば、前記すり鉢状の凹所が、全体として円錐面形状とされた態様が、好適に採用され得る。   Moreover, in this invention, the aspect by which the said mortar-shaped recessed part was made into the cone surface shape as a whole can be employ | adopted suitably, for example.

このような態様においては、円錐面形状の頂部によって、凹所の中央最深部が簡単な構造で有利に実現され得ることに加え、風等の振動加速度の小さな外力作用時には円錐面の傾斜が抵抗となり、土台と基礎の連結が安定して保持される。   In such an embodiment, the top of the conical surface can be advantageously realized with a simple structure at the central deepest part of the recess, and the conical surface slope is resisted when an external force with a small vibration acceleration such as wind is applied. Thus, the connection between the foundation and the foundation is stably maintained.

さらに、上述の如きころがり部材や当接突部を採用してなる、特定構造の振動絶縁手段においては、例えば、その下側支持部材の凹所に粘性材を収容した態様が、好適に採用される。   Furthermore, in the vibration insulating means having a specific structure that employs a rolling member or a contact protrusion as described above, for example, a mode in which a viscous material is accommodated in a recess of the lower support member is preferably employed. The

このように凹所を利用して粘性材を収容することにより、ころがり部材や当接部材の転動や滑動に基づいた土台の基礎に対する水平方向の相対変位が一層安定して所定の抵抗をもって許容され得ることとなり、免震構造の信頼性の向上も図られ得る。   By accommodating the viscous material using the recess in this way, the horizontal relative displacement with respect to the foundation of the foundation based on the rolling and sliding of the rolling member and the abutting member is more stable and allowed with a predetermined resistance. As a result, the reliability of the base isolation structure can be improved.

要するに、本発明において、上述の如き当接突部を採用してなる特定構造の振動絶縁手段を採用するに際して、上側支持部材の下面に対して凹所を形成すると共に、下側支持部材の上面に対して当接突部を形成することも可能であるが、そのような態様の場合に比して、前述の如き下側支持部材の上面に対して凹所を形成すると共に、上側支持部材の下面に対して当接突部を形成した態様では、かかる凹所に粘性材を収容させることにより、信頼性の向上等の一層優れた効果が発現可能となるのである。   In short, in the present invention, when adopting the vibration isolation means having a specific structure employing the above-described contact protrusion, a recess is formed on the lower surface of the upper support member and the upper surface of the lower support member. It is also possible to form an abutting protrusion against the upper support member, while forming a recess with respect to the upper surface of the lower support member as described above, as compared with such a case. In the aspect in which the contact protrusion is formed on the lower surface of the material, a more excellent effect such as improvement in reliability can be realized by accommodating the viscous material in the recess.

なお、かかる粘性材としては、オイルやグリス等の液状やゲル状の各種摩擦軽減剤が採用可能であるが、好適には、雨水の侵入に対処するために疎水性(親油性)のものが望ましく、耐火性が高い方が一層望ましい。   As the viscous material, various liquid or gel friction reducers such as oil and grease can be used. Preferably, the material is hydrophobic (lipophilic) to cope with rainwater intrusion. Desirably, higher fire resistance is more desirable.

また、かくの如き振動絶縁部材に粘性材の収容構造を採用するに際しては、例えば、前記平常時において、前記下側支持部材と前記上側支持部材が、前記凹所の外周縁部において互いにシール状態で当接せしめられるようになっている態様が、好適に採用される。   In addition, when adopting the viscous material housing structure in such a vibration insulating member, for example, in the normal state, the lower support member and the upper support member are sealed with each other at the outer peripheral edge of the recess. A mode that is adapted to be brought into contact with is preferably employed.

このような態様によれば、平常時に雨水等が内部侵入して耐久性や作動性が低下してしまう不具合が効果的に防止され得ることとなり、信頼性の向上も図られ得る。   According to such an aspect, it is possible to effectively prevent a problem in which rainwater or the like intrudes into the inside during normal times and the durability and operability are lowered, and the reliability can be improved.

さらに、建築物に関する本発明の特徴とするところは、上述の如き本発明に従う構造とされた建築物の免震構造を採用した建築物にある。   Further, the present invention relating to a building is characterized by a building that employs a seismic isolation structure for a building that has the structure according to the present invention as described above.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について説明する。先ず、図1,2には、本発明の建築物の免震構造に係る一実施形態としての免震構造10を採用した建築物12の要部が示されている。この免震構造10は、連結部材としてのダンパーアンカ14や振動絶縁手段としてのローラーパッキン16を含んで構成されている。以下の説明において、特に断りのない限り、上下方向は、図1,2中の上下方向をいう。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described. First, the principal part of the building 12 which employ | adopted the seismic isolation structure 10 as one Embodiment which concerns on the seismic isolation structure of the building of this invention by 1 and 2 is shown. The seismic isolation structure 10 includes a damper anchor 14 as a connecting member and a roller packing 16 as vibration isolation means. In the following description, unless otherwise specified, the vertical direction refers to the vertical direction in FIGS.

より詳細には、ダンパーアンカ14は、図3〜7にも示されているように、略全体に亘って略一定の円形断面で延びる金属材からなり、上部に配されたボルト部18と中央部分に配された湾曲部20と下部に配された固定板部22が互いに一体形成された構造を呈している。   More specifically, as shown in FIGS. 3 to 7, the damper anchor 14 is made of a metal material extending in a substantially constant circular cross section over substantially the whole, and a bolt portion 18 disposed at the upper portion and the center. The curved portion 20 disposed in the portion and the fixed plate portion 22 disposed in the lower portion are formed integrally with each other.

ボルト部18は、左右方向(図2中、左右)に略ストレートに延びていると共に、外周面に全体に亘って雄ねじ加工が施されている。また、ダンパーアンカ14におけるボルト部18の一方の端部(図2中、右)と上下方向に所定距離を隔てた下部には、固定板部22が配されている。   The bolt portion 18 extends substantially straight in the left-right direction (left and right in FIG. 2), and the outer peripheral surface is entirely subjected to male thread processing. In addition, a fixed plate portion 22 is disposed at a lower portion of the damper anchor 14 that is spaced a predetermined distance in the vertical direction from one end portion (right in FIG. 2) of the bolt portion 18.

固定板部22は、略矩形平板形状を有しており、固定板部22の板厚方向がボルト部18の軸方向と略平行に延びている。これらボルト部18と固定板部22の間に湾曲部20が形成されている。   The fixed plate portion 22 has a substantially rectangular flat plate shape, and the plate thickness direction of the fixed plate portion 22 extends substantially parallel to the axial direction of the bolt portion 18. A curved portion 20 is formed between the bolt portion 18 and the fixed plate portion 22.

湾曲部20は、左右方向の一方(図2中、右)に凸となる形態で略弓形状に湾曲しており、一方(図2中、上)の端部がボルト部18の一方(図2中、右)の端部と接続されていると共に、湾曲部20の他方(図2中、下)の端部が固定板部22の一方(図2中、右)の端面の中央部分と接続されている。このことからも明らかなように、ダンパーアンカ14は、ボルト部18と固定板部22を除く略全体が湾曲部20で構成された湾曲部分を備えている。   The curved portion 20 is curved in a substantially bow shape so as to be convex in one of the left and right directions (right in FIG. 2), and one end (upper in FIG. 2) is one end of the bolt portion 18 (see FIG. 2). 2 and right) and the other end (lower in FIG. 2) of the bending portion 20 is connected to the central portion of one end surface (right in FIG. 2) of the fixed plate portion 22. It is connected. As is clear from this, the damper anchor 14 includes a curved portion in which substantially the entire portion excluding the bolt portion 18 and the fixed plate portion 22 is configured by the curved portion 20.

なお、本実施形態に係る湾曲部20の形状は何等限定されるものでなく、図1に示されるように、その全長に亘って、折れ曲がった部分を有さずに滑らか連続して湾曲する形状とされていたり、図2に示されるように、湾曲部20の中央部分が湾曲部20の湾曲方向と反対方向に湾曲していても良い。   In addition, the shape of the bending part 20 which concerns on this embodiment is not limited at all, and as FIG. 1 shows, the shape which curves smoothly smoothly without having the bent part over the full length. Alternatively, as shown in FIG. 2, the central portion of the bending portion 20 may be bent in a direction opposite to the bending direction of the bending portion 20.

本実施形態では、建築物12の後述する土台50と布基礎46の間において、ダンパーアンカ14が水平方向に所定距離を隔てて複数設けられて、土台50と布基礎46を連結するようになっており、目的とする減衰効果や初期位置復元効果その他の免震効果に応じて、各ダンパーアンカ14の形成材料が設定変更される。具体的に、例えば、それらダンパーアンカ14のうちの一又は二以上が、鉛や銅、鉄鋼等を用いて形成されていることによって、土台50と布基礎46の水平方向の相対変位に際して塑性変形に基づく減衰効果が発揮されるようにしても良い。また、例えば、ダンパーアンカ14のうちの一又は二以上が、鉄鋼やばね鋼等で形成されていることによって、土台50と布基礎46の水平方向の相対変位に際して、弾性変形に基づき、土台50を布基礎46に対して初期の位置に戻す初期位置復元効果が発揮されるようにしても良い。本実施形態では、これらダンパーアンカ14による減衰効果および初期位置復元効果を両方得ようと、各効果を奏するダンパーアンカ14が組み合わせて採用されていることで、複数のダンパーアンカ14のうちの少なくとも1つが他のダンパーアンカ14に対して異なる弾性限度を有している。なお、本実施形態では、これに限定されるものでなく、前述の如く目的とする免震効果に応じて、例えば全てのダンパーアンカ14に同一の材料が採用されることにより全てのダンパーアンカ14の弾性限度を略等しくして、同一の効果を奏するようにしても良い。また、ダンパーアンカ14に弾性および塑性を備えた材料が採用されることによって、一つのダンパーアンカ14で減衰効果および初期位置復元効果を得ることも可能である。   In the present embodiment, a plurality of damper anchors 14 are provided at a predetermined distance in the horizontal direction between the foundation 50 and the cloth foundation 46 described later of the building 12 to connect the foundation 50 and the cloth foundation 46. The material for forming each damper anchor 14 is changed according to the intended damping effect, initial position restoring effect, and other seismic isolation effects. Specifically, for example, one or more of the damper anchors 14 are formed using lead, copper, steel, or the like, so that the plastic deformation is caused when the base 50 and the cloth foundation 46 are displaced in the horizontal direction. A damping effect based on the above may be exhibited. Further, for example, when one or more of the damper anchors 14 are formed of steel, spring steel, or the like, the base 50 and the fabric foundation 46 are subjected to elastic deformation when the base 50 and the cloth foundation 46 are displaced in the horizontal direction. The initial position restoring effect of returning the fabric to the initial position with respect to the fabric foundation 46 may be exhibited. In the present embodiment, in order to obtain both the damping effect and the initial position restoring effect by the damper anchors 14, the damper anchors 14 having the respective effects are employed in combination, so that at least one of the plurality of damper anchors 14 is used. Have different elastic limits with respect to the other damper anchors 14. In the present embodiment, the present invention is not limited to this. For example, all damper anchors 14 may be used by adopting the same material for all the damper anchors 14 according to the target seismic isolation effect as described above. The elastic limit may be made substantially equal to achieve the same effect. Further, by adopting a material having elasticity and plasticity for the damper anchor 14, it is possible to obtain a damping effect and an initial position restoring effect with one damper anchor 14.

また、ダンパーアンカ14の固定板部22が、取付基台としてのアンカープレート24に装着されるようになっている。アンカープレート24は、固定板部22よりも一回り大きな且つ厚肉の略矩形平板形状を有していると共に、複数のフック26が固設されている。これらフック26は、後述する布基礎46や布基礎46に埋設された鉄筋52に対して係止可能とされていればよく、特に限定されるものでないが、本実施形態では、アンカープレート24の上端面から左右方向一方(図2中、左)の側において斜め上方に延びて先端部分が湾曲せしめられた上部フック26aと、アンカープレート24における上部フック26aの基端部分よりも下方の端面から左右方向一方に向かってストレートに延びて先端部分が湾曲せしめられた下部フック26bとが、それぞれ各一対設けられて、アンカープレート24の長手方向に所定距離を隔てて配されている。また、アンカープレート24の中央部分には、一対の下部フック26b,26bの間を下部フック26bと平行に延びるようにしてセパレートボルト28が螺着固定されている。これにより、アンカープレート24は、コンクリート型枠の巾決固定用セパレータとしても利用することができる。   Further, the fixed plate portion 22 of the damper anchor 14 is attached to an anchor plate 24 as an attachment base. The anchor plate 24 has a substantially rectangular flat plate shape that is slightly larger than the fixed plate portion 22 and is thick, and a plurality of hooks 26 are fixedly provided. These hooks 26 are not particularly limited as long as they can be locked to a fabric foundation 46 and a reinforcing bar 52 embedded in the fabric foundation 46, which will be described later. An upper hook 26a that extends obliquely upward on one side in the left-right direction (left in FIG. 2) from the upper end surface and has a distal end portion curved, and an end surface below the base end portion of the upper hook 26a in the anchor plate 24 A pair of lower hooks 26b that extend straight in one direction in the left-right direction and whose tip portions are curved are provided in pairs, and are arranged at a predetermined distance in the longitudinal direction of the anchor plate 24. Further, a separate bolt 28 is screwed and fixed to the central portion of the anchor plate 24 so as to extend between the pair of lower hooks 26b and 26b in parallel with the lower hook 26b. Thereby, the anchor plate 24 can be used also as a separator for fixing the width of the concrete formwork.

一方、ローラーパッキン16は、図8,9に示される如き上側支持部材としての上沓部材30と下側支持部材としての下沓部材32を備えている。本実施形態において、上沓部材30と下沓部材32(以下、上下沓部材30,32とも言う。)の形状や大きさ、構造は、同一とされている。   On the other hand, the roller packing 16 includes an upper collar member 30 as an upper support member and a lower collar member 32 as a lower support member as shown in FIGS. In the present embodiment, the shape, size, and structure of the upper collar member 30 and the lower collar member 32 (hereinafter also referred to as the upper and lower collar members 30, 32) are the same.

上下沓部材30,32は、図10,11にも示されているように、略矩形平板形状を有する弾性材を用いて形成されている。弾性材としては、例えば天然ゴムやスチレンブタジエンゴム、アクリロニトリルブタジエンゴム、シリコンゴムの他、スチレン系や塩化ビニル系のエラストマ等が単体で若しくはそれらを適宜に混合したもの採用され、望ましくは耐圧性能や耐蝕性能、高減衰特性等に優れたものが採用される。なお、弾性材の採用により、上下沓部材30,32が、縦揺れの地震振動に対して、応答衝撃エネルギーの吸収緩和機能等の作用を発揮することが可能となる一方、長期鉛直荷重に対する安定した支持作用も奏し得る。   As shown in FIGS. 10 and 11, the upper and lower flange members 30 and 32 are formed using an elastic material having a substantially rectangular flat plate shape. As the elastic material, for example, natural rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, silicon rubber, styrene-based or vinyl chloride-based elastomer, etc. are used alone or appropriately mixed with them, desirably pressure resistance performance or Those with excellent corrosion resistance and high damping characteristics are used. The use of the elastic material enables the upper and lower eaves members 30 and 32 to exhibit an action such as a function of absorbing and absorbing response shock energy against the seismic vibration of pitching, while maintaining stability against a long-term vertical load. The supporting action can also be achieved.

また、上下沓部材30,32の中央部分には、底部付近から一方(図11中、上)の端面に向かって円形状に開口するすり鉢状凹所34が形成されている。すり鉢状凹所34の縁部が、上下沓部材30,32の略正方形状の外周縁部よりも内側に位置せしめられていると共に、すり鉢状凹所34の深さ寸法が外周縁部から内側に向かって次第に大きくされており、上下沓部材30,32の中央部分において最大とされている。特に本実施形態では、すり鉢状凹所34の中央部分から外周部分にかけて、深さ寸法の変化が少しとされる一方、外周部分から周縁部にかけて変化が急に大きくされていることによって、上下沓部材30の縦断面において、すり鉢状凹所34の中央部分から外周部分にかけての底面が緩やかに湾曲していると共に、外周部分から周縁部にかけての底面が大きく湾曲している。   In addition, a mortar-shaped recess 34 that opens in a circular shape from the vicinity of the bottom toward one end (upper in FIG. 11) is formed in the central portion of the upper and lower saddle members 30 and 32. The edge of the mortar-shaped recess 34 is positioned inside the outer peripheral edge of the substantially square shape of the upper and lower bowl members 30, 32, and the depth dimension of the mortar-shaped recess 34 is set to the inner side from the outer peripheral edge. The upper and lower saddle members 30 and 32 are maximized in the central portion. In particular, in the present embodiment, the depth dimension is slightly changed from the central portion to the outer peripheral portion of the mortar-shaped recess 34, while the change is abruptly increased from the outer peripheral portion to the peripheral portion. In the longitudinal section of the member 30, the bottom surface from the central portion to the outer peripheral portion of the mortar-shaped recess 34 is gently curved, and the bottom surface from the outer peripheral portion to the peripheral portion is greatly curved.

すり鉢状凹所34の底面を含む上下沓部材30,32の一方(図11中、上)の端面には、ステンレス鋼等からなる鋼板36が被着されている。鋼板36の厚さ寸法が全体に亘って略一定とされていることで、すり鉢状凹所34の底面に被着された部分の鋼板36の表面の曲率が、すり鉢状凹所34の底面の曲率と略同じとされている。また、上下沓部材30,32における鋼板36が被着された側の角部が、斜めに切り欠かれた形状を有している。   A steel plate 36 made of stainless steel or the like is attached to one end surface (upper in FIG. 11) of the upper and lower bowl members 30 and 32 including the bottom surface of the mortar-shaped recess 34. Since the thickness dimension of the steel plate 36 is substantially constant over the entire surface, the curvature of the surface of the steel plate 36 in the portion deposited on the bottom surface of the mortar-shaped recess 34 is the same as that of the bottom surface of the mortar-shaped recess 34. It is almost the same as the curvature. Moreover, the corner | angular part by the side to which the steel plate 36 was attached in the up-and-down saddle members 30 and 32 has a shape where it notched diagonally.

さらに、鋼板36の外周縁部が、上下沓部材30,32における鋼板36が設けられたのと反対側の表面に向かって、該表面に至らない所定の長さで延びるようにして、上下沓部材30,32の外周縁部に被着形成されている。この鋼板36の外周縁部の長さはすり鉢状凹所34の中央底部の深さ寸法と略同じとされている。即ち、本実施形態に係る上下沓部材30,32において、厚さ方向(図8,9中、上下)で鋼板36が設けられたのと反対側の表面から鋼板36に至る領域が、略矩形平板形状の弾性材からなるゴム層39とされている。また、図8等では省略してあるが、上下沓部材30,32における鋼板36と反対側に設けられたゴム層39の表面には、略全体に亘って複数の溝部が形成されていることによって、滑り止め加工が施されている。なお、鋼板36の厚さ寸法は、静止時に及ぼされる鉛直荷重による上下沓部材30,32の圧縮変形を抑制するのに十分な厚さとされている一方、ゴム層39の厚さ寸法は、上下沓部材30,32を後述する土台50や基礎梁56に重ね合わせた際に、幅方向の位置ずれを剪断変形して吸収したり、或いは後述する上下沓部材30,32の収容領域38に鋼球40を収容配置した際に、ゴム層39の弾性変形により鋼板36や鋼球40等の寸法誤差を吸収したりするのに十分な厚さ寸法とされている。   Further, the outer peripheral edge of the steel plate 36 extends toward the surface on the opposite side of the upper and lower saddle members 30 and 32 where the steel plate 36 is provided, so as to extend at a predetermined length that does not reach the surface. The members 30 and 32 are formed on the outer peripheral edge portions. The length of the outer peripheral edge of the steel plate 36 is substantially the same as the depth of the center bottom of the mortar-shaped recess 34. That is, in the vertical saddle members 30 and 32 according to the present embodiment, a region extending from the surface on the opposite side to where the steel plate 36 is provided in the thickness direction (up and down in FIGS. 8 and 9) to the steel plate 36 is substantially rectangular. The rubber layer 39 is made of a flat plate elastic material. Moreover, although omitted in FIG. 8 and the like, a plurality of groove portions are formed over substantially the entire surface of the rubber layer 39 provided on the opposite side of the steel plate 36 in the upper and lower saddle members 30 and 32. The anti-slip process is given by. The thickness dimension of the steel plate 36 is sufficient to suppress the compressive deformation of the upper and lower saddle members 30 and 32 due to the vertical load exerted when stationary, while the thickness dimension of the rubber layer 39 is When the eaves members 30 and 32 are superposed on the foundation 50 and the foundation beam 56 described later, the displacement in the width direction is absorbed by shearing deformation, or the housing region 38 of the upper and lower eaves members 30 and 32 described later is steel. When the ball 40 is accommodated and disposed, the thickness is sufficient to absorb a dimensional error of the steel plate 36, the steel ball 40, etc. due to elastic deformation of the rubber layer 39.

本実施形態では、すり鉢状凹所34の中央部分から外周部分にかけて緩やかに湾曲した底面に被着されて、該底面と略同じ曲率で湾曲する鋼板36の表面によって、第一の湾曲面41が形成されていると共に、すり鉢状凹所34の外周部分から周縁部にかけて大きく湾曲する底面に被着されて、該底面と略同じ曲率で湾曲する鋼板36の表面によって、第二の湾曲面43が形成されている。これら第一の湾曲面41と第二の湾曲面43は滑らかに接続されている。また、上下沓部材30,32におけるすり鉢状凹所34から外周側に広がる表面に被着された鋼板36の略平坦な形状の表面によって、平坦面45が形成されている。これら第一及び第二の湾曲面41,43や平坦面45は、全体に亘ってショットブラスト加工が施されていることによって、粗面化されている。   In the present embodiment, the first curved surface 41 is formed by the surface of the steel plate 36 that is attached to the bottom surface that is gently curved from the central portion to the outer peripheral portion of the mortar-shaped recess 34 and is curved with substantially the same curvature as the bottom surface. The second curved surface 43 is formed by the surface of the steel plate 36 that is formed and is attached to the bottom surface that is largely curved from the outer peripheral portion to the peripheral portion of the mortar-shaped recess 34 and is curved with substantially the same curvature as the bottom surface. Is formed. The first curved surface 41 and the second curved surface 43 are smoothly connected. Further, a flat surface 45 is formed by the substantially flat surface of the steel plate 36 applied to the surface extending from the mortar-shaped recess 34 to the outer peripheral side of the upper and lower saddle members 30 and 32. The first and second curved surfaces 41, 43 and the flat surface 45 are roughened by shot blasting throughout.

これら上沓部材30と下沓部材32が、鋼板36が設けられた面が互いに向き合うようにして上下方向で対向位置せしめられて、上下沓部材30,32の中心軸を同一線上に位置せしめた状態下、上下沓部材30,32の平坦面45,45が互いに重ね合わせられることによって、各すり鉢状凹所34に被着された鋼板36の第一及び第二の湾曲面41,43が協働して略扁平球殻形状の収容領域38を構成している。   The upper eaves member 30 and the lower eaves member 32 are opposed to each other in the vertical direction so that the surfaces on which the steel plates 36 are provided face each other, and the central axes of the upper and lower eaves members 30 and 32 are located on the same line. Under the condition, the flat surfaces 45, 45 of the upper and lower saddle members 30, 32 are superposed on each other, so that the first and second curved surfaces 41, 43 of the steel plate 36 applied to each mortar-shaped recess 34 cooperate. Thus, a housing area 38 having a substantially flat spherical shell shape is formed.

上述の説明からも明らかなように、すり鉢状凹所34の深さ寸法が外周縁部から内側に向かって次第に大きくされて、上下沓部材30,32の中央部分において最大とされていることから、各すり鉢状凹所34の底面に被着された鋼板36の第一の湾曲面41の一対で構成される収容領域38の中央部分において、中央部分の高さ寸法:H1が最も大きくされており、かかる中央部分から外周部分に向かって次第に小さくされている。また、外周部分から周縁部にかけて深さ寸法の変化が急に大きくなるすり鉢状凹所34の底面に被着された第二の湾曲面43の一対で構成される収容領域38の外周部分乃至は外周縁部において、収容領域38の中央部分と接続される部分の高さ寸法が、H2とされており、H1>H2とされている。   As is clear from the above description, the depth dimension of the mortar-shaped recess 34 is gradually increased from the outer peripheral edge toward the inside, and is maximized in the central portion of the upper and lower saddle members 30 and 32. In the central portion of the housing region 38 constituted by a pair of the first curved surfaces 41 of the steel plate 36 deposited on the bottom surface of each mortar-shaped recess 34, the height dimension H1 of the central portion is maximized. It is gradually made smaller from the central part toward the outer peripheral part. Further, the outer peripheral portion or the outer peripheral portion of the accommodation region 38 constituted by a pair of second curved surfaces 43 attached to the bottom surface of the mortar-shaped recess 34 where the change in depth dimension suddenly increases from the outer peripheral portion to the peripheral portion. In the outer peripheral edge portion, the height dimension of the portion connected to the central portion of the accommodation region 38 is H2, and H1> H2.

かかる収容領域38には、ころがり部材としての鋼球40が収容配置されている。鋼球40は、中心を通る断面が全て略同じ大きさの円形状とされた略球体とされており、ステンレス鋼等の高剛性材料を用いて形成されている。   A steel ball 40 as a rolling member is accommodated in the accommodation area 38. The steel ball 40 is a substantially spherical body whose cross section passing through the center is a circular shape having substantially the same size, and is formed using a highly rigid material such as stainless steel.

ここで、鋼球40の直径寸法:φAと収容領域38の最大高さ寸法:H1が略等しくされていることによって、鋼球40が収容領域38の中央部分に収容された状態下で、上下沓部材30,32の中心軸および鋼球40の中心が略一致せしめられており、ローラーパッキン16の初期状態(平常時の状態)とされる。また、鋼球40の第一及び第二の湾曲面41,43に沿った回転により、上沓部材30と下沓部材32が水平方向で360°相対的に変位可能とされている。また、鋼球40が、その回転により第一及び第二の湾曲面41,43の形状に沿って中央の最深部から周縁の浅い部分向かって乗り上げるように移動し、上沓部材30と下沓部材32が水平方向で相対変位せしめられると、その高さの違いにより建築物12の自重の分力が上沓部材30を下沓部材32に対する初期位置へ返戻する方向に作用せしめられるようになっており、ローラーパッキン16の帰心作用が有利に発揮されるようになっている。   Here, the diameter dimension of the steel ball 40: φA and the maximum height dimension of the accommodation area 38: H1 are substantially equal, so that the steel ball 40 is accommodated in the central portion of the accommodation area 38 in the vertical direction. The center axis of the flange members 30 and 32 and the center of the steel ball 40 are substantially matched, and the roller packing 16 is in an initial state (normal state). Further, by rotation along the first and second curved surfaces 41 and 43 of the steel ball 40, the upper rod member 30 and the lower rod member 32 can be relatively displaced by 360 ° in the horizontal direction. Further, the steel ball 40 moves so as to run from the deepest part of the center toward the shallow part of the periphery along the shapes of the first and second curved surfaces 41 and 43 by the rotation, and the upper and lower members 30 and 30 When the member 32 is relatively displaced in the horizontal direction, due to the difference in height, the component force of the weight of the building 12 is caused to act in a direction to return the upper rod member 30 to the initial position with respect to the lower rod member 32. The roller packing 16 has a beneficial effect on the centripetal action.

なお、鋼球40の直径寸法:φAと収容領域38の最大内法寸法(最大高さ寸法):H1との関係は、必ずしも略同じとされる必要はなく、例えば、鋼球40の直径寸法:φAが収容領域38の最大高さ寸法:H1に比して小さくされることによって、鋼球40が収容領域38の中央部分に位置せしめられた状態で、鋼球40と収容領域38の間に隙間があっても良い。これにより、収容領域38の中央部分の鋼板36の間に略点当たり状で当接する鋼球40を介して、建築物12の木造家屋44の荷重が集中的に及ぼされることを回避して、ローラーパッキン16の耐久性を好適に確保することも可能となる。また、鋼球40が収容領域38の中央部分に位置せしめられた初期状態で鋼球40を挟んで上下沓部材30,32が重ね合わせられないことから、例えば振動加速度の小さな風等の外圧が建築物12に及ぼされても、鋼球40の回転変位が制限されることに伴い上下沓部材30,32延いては土台50と布基礎46の水平方向の相対変位を制限して、小さな外圧では木造家屋44が容易に動かないようにすることも可能である。更に、大きな振動加速度の地震等に際して、土台50と布基礎46が水平方向に大きく相対変位して、鋼球40が収容領域38の外周部分の第二の湾曲面43に当接することによって回転し、建築物12の自重の分力を利用して収容領域38の中央部分に返戻しても良い。   The relationship between the diameter dimension of the steel ball 40: φA and the maximum inner dimension (maximum height dimension) of the accommodation region 38: H1 does not necessarily have to be substantially the same. For example, the diameter dimension of the steel ball 40 : ΦA is made smaller than the maximum height dimension: H1 of the accommodation area 38, so that the steel ball 40 is positioned in the central portion of the accommodation area 38, and the space between the steel ball 40 and the accommodation area 38. There may be gaps. Thereby, avoiding that the load of the wooden house 44 of the building 12 is intensively applied via the steel balls 40 that are in contact with each other between the steel plates 36 in the central portion of the housing region 38 in a substantially point-like manner, It is also possible to suitably ensure the durability of the roller packing 16. In addition, since the upper and lower saddle members 30 and 32 are not overlapped across the steel ball 40 in the initial state in which the steel ball 40 is positioned at the central portion of the accommodation region 38, for example, external pressure such as wind with small vibration acceleration is applied. Even if it is exerted on the building 12, the rotational displacement of the steel ball 40 is restricted, so that the horizontal displacement of the upper and lower saddle members 30, 32 and the base 50 and the fabric foundation 46 is restricted, and a small external pressure is applied. Then, it is possible to prevent the wooden house 44 from moving easily. Further, in the event of an earthquake with a large vibration acceleration, the base 50 and the fabric foundation 46 are relatively displaced in the horizontal direction, and the steel ball 40 rotates by coming into contact with the second curved surface 43 of the outer peripheral portion of the accommodation region 38. Alternatively, the building 12 may be returned to the central portion of the housing area 38 by utilizing the component weight of the building 12.

あるいは、鋼球40の直径寸法:φAが収容領域38の最大高さ寸法:H1に比して大きくされることによって、ローラーパッキン16を建築物12に装着する前の単品状態で、上下沓部材30,32の収容領域38における一対の鋼板36,36が鋼球40を挟んで重ね合わせられると、それら鋼板36,36が重ね合わせられる平坦面45,45の間に隙間があるようにしても良い。そして、ローラーパッキン16を土台50と基礎梁56の間に装着した際に、木造家屋44の自重がローラーパッキン16に及ぼされて、上下沓部材30,32のゴム層39が弾性変形することに伴い鋼板36,36の重ね合わせ面間の隙間を小さくし乃至は消失するようにしても良い。その結果、上下沓部材30,32を鉛直方向に強固に重ね合わせて、木造家屋44の自重が鋼球44を介して一対の鋼板36,36に大きく及ぼされることにより、小さな外圧では、鋼球40が容易に回転しないようにして、土台50と布基礎46の水平方向の相対変位による木造家屋44の変位を抑えることも可能となる。   Alternatively, the diameter dimension of the steel ball 40: φA is made larger than the maximum height dimension of the accommodation area 38: H1, so that the upper and lower cage members are in a single product state before the roller packing 16 is mounted on the building 12. When the pair of steel plates 36 and 36 in the accommodation areas 38 of 30 and 32 are overlapped with the steel ball 40 interposed therebetween, there is a gap between the flat surfaces 45 and 45 on which the steel plates 36 and 36 are overlapped. good. When the roller packing 16 is mounted between the base 50 and the foundation beam 56, the weight of the wooden house 44 is exerted on the roller packing 16, and the rubber layers 39 of the upper and lower eaves members 30 and 32 are elastically deformed. Accordingly, the gap between the overlapping surfaces of the steel plates 36, 36 may be reduced or eliminated. As a result, the upper and lower eaves members 30 and 32 are firmly overlapped in the vertical direction, and the weight of the wooden house 44 is greatly exerted on the pair of steel plates 36 and 36 via the steel balls 44. It is also possible to suppress the displacement of the wooden house 44 due to the horizontal relative displacement of the base 50 and the cloth foundation 46 by preventing the 40 from rotating easily.

一方、鋼球40の直径寸法:φAと収容領域38における中央部分と外周部分との接続部分の内法寸法(高さ寸法):H2との関係は、φA≧H2とされることが望ましい。特に本実施形態では、鋼球40の半径が、すり鉢状凹所34の湾曲が大きくなる外周部分から周縁部にかけて被着された鋼板36の第二の湾曲面43の曲率半径と略同じとされている。これにより、図12にも示されているように、鋼球40の転がり作用で上下沓部材30,32が相対変位して、鋼球40の外周面が両第二の湾曲面43,43に当接すると、鋼球40を介して上下沓部材30,32に係止作用が機能して、上沓部材30と下沓部材32におけるそれ以上の各同一の方向への変位が制限されるようになっている。即ち、上下沓部材30,32が、所定の量だけ水平方向に変位した後に、抵抗力が働いて静止することとなる。   On the other hand, the relationship between the diameter dimension of the steel ball 40: φA and the inner dimension (height dimension) of the connecting portion between the central portion and the outer peripheral portion in the accommodating region 38: H2 is preferably φA ≧ H2. In particular, in this embodiment, the radius of the steel ball 40 is substantially the same as the radius of curvature of the second curved surface 43 of the steel plate 36 applied from the outer peripheral portion where the curvature of the mortar-shaped recess 34 increases to the peripheral portion. ing. As a result, as shown in FIG. 12, the upper and lower saddle members 30 and 32 are relatively displaced by the rolling action of the steel balls 40, and the outer peripheral surfaces of the steel balls 40 become the second curved surfaces 43 and 43. When contacted, the upper and lower rod members 30 and 32 are engaged with each other via the steel balls 40 so that further displacement of the upper rod member 30 and the lower rod member 32 in the same direction is limited. It has become. That is, after the upper and lower saddle members 30 and 32 are displaced in the horizontal direction by a predetermined amount, the resisting force works and stops.

また、ローラーパッキン16の収容領域38には、粘性材としての高粘性流体42が収容されている。これにより、上下沓部材30,32の水平方向変位に際して、粗面化された第一及び第二の湾曲面41,43上を鋼球40が回転したり、一対の平坦面45,45が相対変位することによる減衰効果と相俟って、減衰効果が一層大きく働くようになっていると共に、鋼球40のスリップ防止や、回転移動の際の摩擦音等の抑制が図られ得る。高粘性流体42としては、オイル、グリース等の液状やゲル状の所定の抵抗を発揮し得る粘性材が採用可能である。雨水の侵入等に対処するため、疎水性のものが望ましい。なお、高粘性流体42は、鋼球40を収容配置した収容領域38にあって、重力作用で下沓部材32のすり鉢状凹所34の内側に位置せしめられた際に、該すり鉢状凹所34の開口縁部以下の量となるように、即ち鋼球40を収容配置した収容領域38の半分の容積を超えない量で、収容領域38に収容されている。なお、ローラーパッキン16の初期状態においては、上下沓部材30,32がすり鉢状凹所34の外周縁部において互いにシール状態で当接せしめられようになっており、平常時の雨水等の内部への侵入によるローラーパッキン16の作動性の低下等が有利に防止される。   In addition, a highly viscous fluid 42 as a viscous material is accommodated in the accommodating region 38 of the roller packing 16. Accordingly, when the vertical saddle members 30 and 32 are displaced in the horizontal direction, the steel balls 40 rotate on the roughened first and second curved surfaces 41 and 43, or the pair of flat surfaces 45 and 45 are relative to each other. Combined with the damping effect due to the displacement, the damping effect is more greatly activated, and the slip prevention of the steel ball 40 and the suppression of the frictional noise during the rotational movement can be achieved. As the high-viscosity fluid 42, a viscous material that can exhibit a predetermined liquid or gel-like resistance, such as oil or grease, can be used. Hydrophobic materials are desirable to cope with rainwater intrusion and the like. The highly viscous fluid 42 is located in the accommodation area 38 in which the steel balls 40 are accommodated. When the highly viscous fluid 42 is positioned inside the mortar-shaped recess 34 of the lower collar member 32 by gravity, the mortar-shaped recess 42 is provided. 34 is accommodated in the accommodating area 38 in an amount not exceeding the half of the capacity of the accommodating area 38 in which the steel balls 40 are accommodated. In the initial state of the roller packing 16, the upper and lower eaves members 30 and 32 are brought into contact with each other in a sealed state at the outer peripheral edge of the mortar-shaped recess 34. The deterioration of the operability of the roller packing 16 due to the intrusion is advantageously prevented.

本実施形態では、鋼球40の直径寸法:φAと収容領域38の最大内法寸法:H1と収容領域38における中央部分と外周部分との接続部分の内法寸法:H2との関係が、望ましくはH2≦φA≦1.2・H1、より好ましくは1.2・H2≦φA≦H1とされる。蓋し、φA<H2だと、鋼球40の直径寸法:φAが収容領域38における中央部分と外周部分との接続部分の内法寸法:H2に比して小さくなって、鋼球40が第二の湾曲面43の外周縁部にまで容易に当接され難くなり、要求される土台50と基礎梁56の相対変位量が確保され難くなるおそれがあるからである。また、φA>1.2・H1だと、鋼球40の直径寸法:φAが収容領域38の最大内法寸法:H1に比して大きくなり過ぎて、建物(木造家屋44)の自重が鋼球40に集中して及ぼされる結果、鋼球40乃至は鋼球40と当接する鋼板36の耐久性が確保され難くなることに加えて、鋼球40の回転が著しく制限されて、目的とする土台50と基礎梁56の相対変位量が確保され難くなるおそれがあるからである。   In the present embodiment, the relationship between the diameter dimension of the steel ball 40: φA, the maximum inner dimension of the receiving area 38: H1, and the inner dimension of the connecting portion between the central portion and the outer periphery of the receiving area 38: H2 is desirable. H2 ≦ φA ≦ 1.2 · H1, more preferably 1.2 · H2 ≦ φA ≦ H1. When φA <H2, the diameter dimension of the steel ball 40: φA is smaller than the inner dimension of the connecting portion between the central portion and the outer peripheral portion in the accommodating region 38: H2, and the steel ball 40 This is because it is difficult to easily come into contact with the outer peripheral edge portion of the second curved surface 43, and the required relative displacement amount between the base 50 and the foundation beam 56 may be difficult to be secured. If φA> 1.2 · H1, the diameter dimension of the steel ball 40: φA is too large compared to the maximum inner dimension of the accommodation area 38: H1, and the weight of the building (the wooden house 44) is steel. As a result of being concentrated on the sphere 40, the durability of the steel ball 40 or the steel plate 36 in contact with the steel ball 40 becomes difficult to be ensured, and in addition, the rotation of the steel ball 40 is remarkably limited. This is because the relative displacement between the base 50 and the foundation beam 56 may be difficult to ensure.

次に、上述の如きダンパーアンカ14やローラーパッキン16、アンカープレート24等を含んでなる免震構造10を採用する建築物12について簡単に説明すると、建築物12は、建物(上部構造)としての木造家屋44や基礎(下部構造)としての布基礎46を含んで構成されている。木造家屋44は、木造軸組構法(在来構法)で施工されて、柱48や梁、土台50等が軸組されることによって構成されている。一方、布基礎46は、施工された地盤に図示しない型枠を設置すると共に、複数の鉄筋52を組み込んで、型枠にコンクリートを流し込むことにより、逆T字状の断面で水平方向に延びる鉄筋コンクリートとされて、フーチング54の上面に基礎梁56が突設された構造を呈している。なお、基礎梁56の上端面には、水準器等で上端面が水平方向に延びるように形成されたレベルモルタルが敷設されている。   Next, the building 12 that adopts the seismic isolation structure 10 including the damper anchor 14, the roller packing 16, the anchor plate 24 and the like as described above will be briefly described. The building 12 is a building (upper structure). It includes a wooden house 44 and a cloth foundation 46 as a foundation (understructure). The wooden house 44 is constructed by a wooden frame construction method (conventional construction method), and a pillar 48, a beam, a base 50, and the like are constructed. On the other hand, the cloth foundation 46 is a reinforced concrete that extends horizontally in an inverted T-shaped cross section by installing a formwork (not shown) on the constructed ground, incorporating a plurality of reinforcing bars 52, and pouring concrete into the formwork. Thus, a structure in which a foundation beam 56 projects from the upper surface of the footing 54 is presented. Note that a level mortar is formed on the upper end surface of the foundation beam 56 so that the upper end surface extends in the horizontal direction with a level or the like.

ここで、アンカープレート24の上部フック26aと下部フック26bが布基礎46の鉄筋52に係止された状態下、コンクリートが打設されることにより、基礎梁56の一方(図2中、右)の側部からアンカープレート24の表面が露出した形態で、アンカープレート24が基礎梁56に埋入固着されている。なお、アンカープレート24に設けられたセパレートボルト28を利用して、コンクリート型枠の巾決固定が可能となり、作業工程の簡略化が図られ得る。   Here, concrete is cast in a state where the upper hook 26a and the lower hook 26b of the anchor plate 24 are locked to the reinforcing bar 52 of the cloth foundation 46, so that one of the foundation beams 56 (right in FIG. 2). The anchor plate 24 is embedded and fixed to the foundation beam 56 in a form in which the surface of the anchor plate 24 is exposed from the side portion of the base plate 56. In addition, it is possible to fix the width of the concrete form using the separate bolt 28 provided on the anchor plate 24, and the work process can be simplified.

このような木造家屋44の最下部に位置する土台50と布基礎46の基礎梁56の間において、柱48の直下若しくは柱48から外れた箇所には、複数のローラーパッキン16が配設されている。   A plurality of roller packings 16 are arranged between the base 50 located at the lowermost part of the wooden house 44 and the foundation beam 56 of the fabric foundation 46, directly below the pillar 48 or at a position away from the pillar 48. Yes.

すなわち、ローラーパッキン16の上沓部材30の中央部分が土台50の幅方向(図2中、左右)の中央部分に位置せしめられて、上沓部材30の滑り止め加工が施されたゴム層39の表面(上端面)が土台50の下端面に重ね合わせられると共に、複数の固定ボルト58が上沓部材30の各角部を貫通して土台50に螺着固定されている。また、ローラーパッキン16の下沓部材32の中央部分が基礎梁56の幅方向(図2中、左右)の中央部分に位置せしめられて、下沓部材32の滑り止め加工が施されたゴム層39の表面(下端面)が基礎梁56(レベルモルタル)の上端面に重ね合わせられると共に、複数の固定ボルト58が下沓部材32の各角部を貫通して基礎梁56に螺着固定されている。更に、上下沓部材30,32の各鋼板36の平坦面45が、鉛直方向(図1中、上下)で相互に重ね合わせられると共に、各鋼板36の中央部分(第一の湾曲面41の中央部分)が、鉛直方向両側から鋼球40を挟み込んで支持している。   That is, the rubber layer 39 in which the center part of the upper collar member 30 of the roller packing 16 is positioned at the center part in the width direction (left and right in FIG. 2) of the base 50 and the upper collar member 30 is subjected to anti-slip processing. The upper surface (upper end surface) of the upper base member 50 is superimposed on the lower end surface of the base 50, and a plurality of fixing bolts 58 are screwed and fixed to the base 50 through the corners of the upper collar member 30. Further, a rubber layer in which the center portion of the lower gutter member 32 of the roller packing 16 is positioned in the middle portion of the foundation beam 56 in the width direction (left and right in FIG. 2) and the lower gutter member 32 is subjected to anti-slip processing. The surface (lower end surface) 39 is superposed on the upper end surface of the foundation beam 56 (level mortar), and a plurality of fixing bolts 58 are screwed and fixed to the foundation beam 56 through each corner of the lower collar member 32. ing. Further, the flat surfaces 45 of the steel plates 36 of the upper and lower saddle members 30 and 32 are overlapped with each other in the vertical direction (up and down in FIG. 1), and the central portion of each steel plate 36 (the center of the first curved surface 41). Part) sandwiches and supports the steel balls 40 from both sides in the vertical direction.

これにより、土台50を備えた木造家屋44が複数のローラーパッキン16を介して布基礎46に載置されており、木造家屋44の荷重が各ローラーパッキン16に分担されて布基礎46に伝わるようになっている。ここで、地震等の大きな外圧が木造家屋44に及ぼされない平常時には、上沓部材30の中央部分と下沓部材32の中央部分が鋼球40を介して重ね合わせられることによるセンタリング機能によって、土台50の幅方向中央部分と基礎梁56の幅方向中央部分が互いに位置合わせされている。また、木造家屋44の荷重をローラーパッキン16を介して布基礎46に及ぼした状態下、鋼球40がすり鉢状凹所34の中央部分から外周部分に向かって凹所34を乗り上げる方向に変位することにより、ローラーパッキン16における上下沓部材30,32の水平方向の相対的な変位に基づく変形によって、土台50を備えた木造家屋44と布基礎46が、水平方向に360°相対的に変位可能とされている。一方、鋼球40が上下沓部材30,32の両すり鉢状凹所34,34の周縁部に被着された鋼板36,36の表面(第二の湾曲面43,43)に当接することで発揮される係止作用によって、木造家屋44と布基礎46の水平方向の相対変位量が制限され、もって木造家屋44の布基礎46からの脱落を防止し得ることとなる。   Thereby, the wooden house 44 provided with the base 50 is placed on the cloth foundation 46 via the plurality of roller packings 16 so that the load of the wooden house 44 is shared by the roller packings 16 and transmitted to the cloth foundation 46. It has become. Here, in normal times when a large external pressure such as an earthquake is not exerted on the wooden house 44, the center portion of the upper rod member 30 and the center portion of the lower rod member 32 are overlapped via the steel ball 40 by the centering function. The center portion in the width direction of 50 and the center portion in the width direction of the foundation beam 56 are aligned with each other. In addition, the steel ball 40 is displaced in the direction of climbing the recess 34 from the central portion of the mortar-shaped recess 34 toward the outer peripheral portion under a state in which the load of the wooden house 44 is applied to the cloth foundation 46 via the roller packing 16. Thus, the wooden house 44 provided with the base 50 and the cloth foundation 46 can be displaced by 360 ° in the horizontal direction by deformation based on the horizontal displacement of the upper and lower eaves members 30 and 32 in the roller packing 16. It is said that. On the other hand, the steel ball 40 comes into contact with the surfaces (second curved surfaces 43, 43) of the steel plates 36, 36 attached to the peripheral portions of the mortar-shaped recesses 34, 34 of the upper and lower saddle members 30, 32. The amount of relative displacement in the horizontal direction between the wooden house 44 and the cloth foundation 46 is limited by the locking action to be exerted, so that the wooden house 44 can be prevented from falling off from the cloth foundation 46.

特に本実施形態では、土台50と基礎梁56の一方(図2中、左)の側部の側である建築物12の外方において、上下の水切り板60,62が配設されている。これら上下の水切り板60,62は長手板状を呈しており、上水切り板60が、土台50から外方に張り出して且つ土台50と平行に延びるようにして土台50にボルト等で固定されていると共に、下水切り板62が、基礎梁56から外方に張り出して且つ基礎梁56と平行に延びるようにして基礎梁56に固設された複数のローラーパッキン16の下沓部材32にボルト等で固定されている。また、上下の水切り板60,62は、上下方向で複数折り曲げられた形状を呈しており、土台50の幅方向中央部分と基礎梁56の幅方向中央部分が位置合わせされた状態下、上水切り板60の下端部と下水切り板62の上端部が、複数のローラーパッキン16が配設された土台50と基礎梁56の間の隙間よりも建築物12の外方において、上下方向に僅かな距離を隔てて対向位置せしめられている。これにより、土台50と布基礎46の水平方向の相対変位を許容しつつ、上下の水切り板60,62によって土台50と基礎梁56の間の隙間への風雨等の入り込みが抑えられるようになっている。また、上下の水切り板60,62に貫設された小形の通孔64の複数を通じて、土台50と基礎梁56の間の空間、延いては床下空間が外部空間と連通せしめられており、それによって、床下の換気効率が高められている。   In particular, in the present embodiment, upper and lower draining plates 60 and 62 are disposed outside the building 12 on the side of one side of the base 50 and the foundation beam 56 (left in FIG. 2). These upper and lower draining plates 60 and 62 have a long plate shape, and the upper draining plate 60 is fixed to the base 50 with bolts or the like so as to project outward from the base 50 and extend in parallel with the base 50. In addition, a sewage draining plate 62 protrudes outward from the foundation beam 56 and extends parallel to the foundation beam 56 so that bolts or the like are attached to the lower collar members 32 of the plurality of roller packings 16 fixed to the foundation beam 56. It is fixed with. Further, the upper and lower draining plates 60 and 62 have a shape that is bent in the vertical direction, and the upper drainage is performed with the center portion in the width direction of the base 50 and the center portion in the width direction of the foundation beam 56 being aligned. The lower end portion of the plate 60 and the upper end portion of the sewage draining plate 62 are slightly more in the vertical direction outside the building 12 than the gap between the base 50 where the plurality of roller packings 16 are disposed and the foundation beam 56. Opposite positions are spaced apart. Thereby, while allowing the relative displacement of the base 50 and the cloth foundation 46 in the horizontal direction, the upper and lower draining plates 60 and 62 can suppress the entry of wind and rain into the gap between the base 50 and the foundation beam 56. ing. In addition, the space between the base 50 and the foundation beam 56 and the underfloor space are communicated with the external space through a plurality of small through holes 64 penetrating the upper and lower draining plates 60 and 62. By this, the ventilation efficiency under the floor is improved.

また、ダンパーアンカ14のボルト部18が、土台50の長手方向に直交する方向に延びて土台50の両側部に開口するように形成された貫通孔66に挿通されると共に、ボルト部18の両端に螺着された一対の押さえナット68,68で土台50を両側部から挟み込むようにして固定されている。   Further, the bolt portion 18 of the damper anchor 14 is inserted into a through-hole 66 formed so as to extend in a direction perpendicular to the longitudinal direction of the base 50 and open on both sides of the base 50, and both ends of the bolt portion 18. The base 50 is fixed by being sandwiched from both sides by a pair of presser nuts 68 and 68 that are screwed to each other.

このボルト部18が土台50に固定されると共に、ダンパーアンカ14の固定板部22が、基礎梁56の側部に露出したアンカープレート24の表面に重ね合わせられて、一対の固定ボルト70,70が固定板部22を貫通してアンカープレート24に螺着固定されている。その結果、ダンパーアンカ14が土台50と布基礎46に後付けで固定されて、土台50と布基礎46を剛結している。なお、ボルト部18と固定板部22は、それぞれ土台50と基礎梁56に固定された後に取り外すことが可能であり、それによって、ダンパーアンカ14が土台50および布基礎46に対して着脱可能とされている。   The bolt portion 18 is fixed to the base 50 and the fixing plate portion 22 of the damper anchor 14 is superposed on the surface of the anchor plate 24 exposed on the side of the foundation beam 56 to form a pair of fixing bolts 70, 70. Is fixed to the anchor plate 24 by screwing through the fixing plate portion 22. As a result, the damper anchor 14 is fixed to the base 50 and the cloth foundation 46 by retrofitting, and the base 50 and the cloth foundation 46 are rigidly connected. The bolt portion 18 and the fixing plate portion 22 can be removed after being fixed to the base 50 and the foundation beam 56, respectively, so that the damper anchor 14 can be attached to and detached from the base 50 and the cloth foundation 46. Has been.

本実施形態では、図1に示す通り、分担荷重が大となる柱48の直下に耐荷重性の高いローラーパッキン16を配設し、当該柱48の直下を外れた近い位置において、土台50と基礎梁56に固定されたダンパーアンカ14が配設されている。これにより、柱48の直下における土台50の強度劣化を防止しつつ、ローラーパッキン16の作動安定性が確保されている。   In the present embodiment, as shown in FIG. 1, the roller packing 16 having a high load resistance is disposed directly under the column 48 where the shared load is large, and the base 50 and the base 50 are located at a position near the column 48. A damper anchor 14 fixed to the foundation beam 56 is disposed. Thereby, the operational stability of the roller packing 16 is ensured while preventing the strength deterioration of the base 50 directly under the pillar 48.

このように固定されるダンパーアンカ14の複数が、土台50と布基礎46の間の所定の位置、例えば建築物12の矩形状の外周領域に位置する土台50と布基礎46の対向面間における一又は二以上の辺において、水平方向に所定距離を隔てて設けられている。それらダンパーアンカ14のうちの一又は二以上が鉛や銅、鉄鋼等を用いて形成されたものが採用されていると共に、ダンパーアンカ14のうちの別の一又は二以上が鉄鋼やばね鋼等で形成されたものが採用されている。   A plurality of damper anchors 14 fixed in this way are located at a predetermined position between the base 50 and the cloth foundation 46, for example, between the opposing surfaces of the base 50 and the cloth foundation 46 located in the rectangular outer peripheral region of the building 12. One or two or more sides are provided at a predetermined distance in the horizontal direction. While one or more of the damper anchors 14 are formed using lead, copper, steel, or the like, another one or more of the damper anchors 14 are steel, spring steel, or the like. The one formed by is adopted.

そこにおいて、ダンパーアンカ14の湾曲部20が、ボルト部18および固定板部22から左右方向の一方(図2中、右)に凸となる形態で略弓形状に湾曲していることから、湾曲部20の自由長:L1が、湾曲部20の一方(図1,2中、上)の端部と接続されるボルト部18の一方の端部(図2中、右)と、湾曲部20の他方(図1,2中、下)の端部と接続される固定板部22の中央部分との間の直線的な離隔距離:L2に比して大きくされている。   In this case, the curved portion 20 of the damper anchor 14 is curved in a substantially arcuate shape so as to protrude from the bolt portion 18 and the fixing plate portion 22 in one of the left and right directions (right in FIG. 2). Free length of the portion 20: L1 is one end (right in FIG. 2) of the bolt 18 connected to one end (upper in FIGS. 1 and 2) of the bending portion 20, and the bending portion 20. The distance between the other end (lower in FIGS. 1 and 2) and the central portion of the fixed plate portion 22 connected is larger than the linear separation distance L2.

これにより、ボルト部18の一方の端部が押さえナット68で土台50に固定されて建築物12の内側(図2中、右)の土台50の側部に位置せしめられた部位をダンパーアンカ14の土台側固定部72とすると共に、固定板部22がアンカープレート24に固定されて建築物12の内側の基礎梁56の側部に位置せしめられた部位をダンパーアンカ14の基礎側固定部74とすると、ダンパーアンカ14の湾曲部14が土台側固定部72と基礎側固定部74から建築物12の内側に向かって湾曲状に延び出した形態で、ダンパーアンカ14が建築物12に装着されて、土台50と基礎梁56を固定しており、湾曲部20の自由長:L1が、略鉛直方向で対向位置せしめられた土台側固定部72と基礎側固定部74の直線的な離隔距離(L2)よりも大きくされている。なお、上記離隔距離:L2は、ローラーパッキン16を介して重ね合わされた土台50と基礎梁56の上下方向対向面間距離:L0よりも大きな長さ寸法を有していることは明らかである。また、本実施形態では、ダンパーアンカ14の湾曲部20が建築物12の内側における木造家屋44の床下に延び出している。   Accordingly, the damper anchor 14 is configured such that one end portion of the bolt portion 18 is fixed to the base 50 with the presser nut 68 and positioned on the side of the base 50 inside the building 12 (right in FIG. 2). The base-side fixing portion 74 of the damper anchor 14 is a portion where the fixing plate portion 22 is fixed to the anchor plate 24 and positioned on the side of the foundation beam 56 inside the building 12. Then, the damper anchor 14 is mounted on the building 12 in a form in which the curved portion 14 of the damper anchor 14 extends in a curved shape from the base side fixing portion 72 and the foundation side fixing portion 74 toward the inside of the building 12. The base 50 and the base beam 56 are fixed, and the linear separation distance between the base-side fixing portion 72 and the base-side fixing portion 74 in which the free length L1 of the bending portion 20 is opposed to each other in a substantially vertical direction. (L2 It is greater than. It is obvious that the separation distance L2 has a length dimension larger than the distance L0 between the vertically opposed surfaces of the base 50 and the foundation beam 56 that are overlapped via the roller packing 16. In the present embodiment, the curved portion 20 of the damper anchor 14 extends under the floor of the wooden house 44 inside the building 12.

上述の如き構造とされた免震構造10を採用した建築物12においては、ダンパーアンカ14の一部を構成する湾曲部20が土台50と基礎梁56の側方に延び出して、ダンパーアンカ14の自由長が大きく確保されている。   In the building 12 adopting the seismic isolation structure 10 having the above-described structure, the curved portion 20 constituting a part of the damper anchor 14 extends to the side of the base 50 and the foundation beam 56, and the damper anchor 14. Has a large free length.

従って、地震等の大きな外力が布基礎46から木造家屋44に伝わる際に、図13〜14にも示されているように、ローラーパッキン16による布基礎46と木造家屋44の水平方向の相対変位が、ダンパーアンカ14の湾曲部20の変形に基づいて十分なストロークで許容されることとなる。そして、布基礎46と木造家屋44の水平方向の相対変位に伴って、特に鉛や銅、鉄鋼等からなるダンパーアンカ14が塑性変形することとなり、この塑性変形履歴によって減衰効果が発揮される。これにより、木造家屋44における揺れが速やかに抑えられて、優れた免振効果が発揮されることとなる。また、直下型地震等の縦揺れに際しても、布基礎46と木造家屋44の上下方向の相対変位に伴って、ダンパーアンカ14が塑性変形せしめられ、同様の減衰効果が発揮され得る。   Therefore, when a large external force such as an earthquake is transmitted from the cloth foundation 46 to the wooden house 44, the horizontal displacement of the cloth foundation 46 and the wooden house 44 by the roller packing 16 is also shown in FIGS. However, a sufficient stroke is allowed based on the deformation of the bending portion 20 of the damper anchor 14. And with the relative displacement of the cloth foundation 46 and the wooden house 44 in the horizontal direction, the damper anchor 14 made of lead, copper, steel or the like is plastically deformed, and a damping effect is exhibited by this plastic deformation history. Thereby, the shaking in the wooden house 44 is quickly suppressed, and an excellent vibration isolation effect is exhibited. In addition, even when the vertical shaking such as a direct earthquake occurs, the damper anchor 14 is plastically deformed with the relative displacement of the fabric foundation 46 and the wooden house 44 in the vertical direction, and the same damping effect can be exhibited.

また、布基礎46と木造家屋44の相対変位量が小さい場合には、ダンパーアンカ14が弾性変形領域で変形されることから、ローパーパッキン16の水平方向の柔軟な往復変形によって、布基礎46から木造家屋44に伝わる振動が、有効に減衰せしめられる。また、特に鉄鋼やばね鋼等からなるダンパーアンカ14の弾性によりローラーパッキン16の初期位置への返戻作動が一層速やかに且つ自動的に発現される。   When the relative displacement between the fabric foundation 46 and the wooden house 44 is small, the damper anchor 14 is deformed in the elastic deformation region. The vibration transmitted to the wooden house 44 is effectively damped. Further, the return operation of the roller packing 16 to the initial position is more rapidly and automatically manifested by the elasticity of the damper anchor 14 made of steel or spring steel.

しかも、ダンパーアンカー14の剛性に基づき、台風等の地震時の振動に比して小さな外力の作用時には、土台50と布基礎46が強固に固定された状態が保持されることとなり、いわゆるアンカー機能を発揮して、土台50を布基礎46に対して安定して支持することが可能となる。   In addition, based on the rigidity of the damper anchor 14, the base 50 and the fabric foundation 46 are held firmly fixed when an external force is applied that is smaller than the vibration during an earthquake such as a typhoon. Thus, the base 50 can be stably supported with respect to the fabric foundation 46.

それ故、本実施形態に係る免震構造10を備えた建築物12においては、布基礎46と土台50のダンパーアンカ14による固定状態が保持されつつ、布基礎46と土台50の水平方向の相対変位の許容量が十分に確保されることによって、木造家屋44の布基礎46に対するアンカー効果と免震効果が両立して高度に達成され得るのである。   Therefore, in the building 12 including the seismic isolation structure 10 according to the present embodiment, the cloth foundation 46 and the base 50 are fixed relative to each other in the horizontal direction while the fixed state of the cloth foundation 46 and the base 50 by the damper anchor 14 is maintained. By securing a sufficient amount of displacement, the anchor effect and seismic isolation effect for the fabric foundation 46 of the wooden house 44 can be achieved at a high level.

加えて、本実施形態では、ローラーパッキン16の鋼球40が収容領域38で互いに湾曲した上下の表面を転がることで、土台50と布基礎46の水平方向変位が許容されるようになっており、収容領域38の中央部分において両面の離隔距離が最も大きくされていることから、土台50と布基礎46の水平方向変位に際して、中央部分から偏倚した位置にある鋼球40を(図12〜14、参照。)、木造家屋44の自重を鋼球40に及ぼして、鋼球40を中央部分に積極的に変位せしめることが可能となる。即ち、木造家屋44の自重や鋼球40、ローラーパッキン16の湾曲面を利用して、土台50の幅方向中央部分と基礎梁56の幅方向中央部分のセンタリング機能(帰心作用)を得ることが可能となる。それによって、揺れた木造家屋44を元の位置に戻す復元効果、延いては免震効果が一層有利に得られる。なお、本実施形態に係る初期位置復元手段は、鉄鋼やばね鋼等で形成されて土台50と布基礎46の水平方向の相対変位に伴い弾性変形するダンパーアンカ14や、鋼球40や第一及び第二の湾曲面41,43を備え、木造家屋44の自重を利用してセンタリング機能を得るローラーパッキン16を含んで構成される。   In addition, in this embodiment, the steel balls 40 of the roller packing 16 roll on the upper and lower surfaces that are curved with each other in the accommodation region 38, so that the horizontal displacement of the base 50 and the fabric foundation 46 is allowed. Since the separation distance between both surfaces is the largest in the central portion of the accommodating region 38, the steel ball 40 located at a position deviated from the central portion when the base 50 and the fabric base 46 are displaced in the horizontal direction (FIGS. 12 to 14). The weight of the wooden house 44 is exerted on the steel ball 40, and the steel ball 40 can be positively displaced to the central portion. That is, by using the weight of the wooden house 44, the steel ball 40, and the curved surface of the roller packing 16, a centering function (recentive action) of the center portion in the width direction of the base 50 and the center portion in the width direction of the foundation beam 56 is obtained. Is possible. As a result, the restoration effect of returning the swayed wooden house 44 to the original position, and the seismic isolation effect, can be obtained more advantageously. The initial position restoring means according to the present embodiment includes the damper anchor 14, the steel ball 40, and the first one that are made of steel, spring steel, and the like and elastically deform with the horizontal displacement of the base 50 and the cloth foundation 46. And the second curved surfaces 41 and 43, and includes the roller packing 16 that obtains a centering function using the weight of the wooden house 44.

以上、本発明の一実施形態について詳述してきたが、これはあくまでも例示であり、かかる実施形態における具体的な記載によって、本発明は、何等限定されるものでなく、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様で実施可能であり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   As mentioned above, although one embodiment of the present invention has been described in detail, this is merely an example, and the present invention is not limited to any specific description by this embodiment, and is based on the knowledge of those skilled in the art. The present invention can be implemented with various changes, modifications, improvements, etc., and all such embodiments are within the scope of the present invention without departing from the spirit of the present invention. Needless to say, there is.

例えば、ダンパーアンカ14やローラーパッキン16における形状や大きさ、構造、位置、範囲、数等の形態は例示の如きものに限定されるものでない。以下、前記実施形態と異なる具体例について図面を参照しつつ説明するが、前記実施形態と実質的に同一の構造とされた部材および部位については、前記実施形態と同一の符号を付することにより、それらの詳細な説明を省略する。   For example, the shapes of the damper anchor 14 and the roller packing 16 such as shape, size, structure, position, range, number, etc. are not limited to those illustrated. Hereinafter, specific examples different from the above-described embodiment will be described with reference to the drawings, but members and parts having substantially the same structure as the above-described embodiment are denoted by the same reference numerals as in the above-described embodiment. Detailed description thereof will be omitted.

具体的には、図15にも示されているように、ダンパーアンカ76を、土台側固定部72から水平方向に突出する上端側方突出部としての横ストレート部78および基礎側固定部74から水平方向に突出する下端側方突出部としての横ストレート部78と、各ストレート部78の突出先端部分に一体形成される比較的に大きな曲率の湾曲部80の一対と、鉛直方向で離隔して対向位置せしめられる湾曲部80の突出先端部分の間を鉛直方向に延びる中央部分としての縦ストレート部82とを含んで構成するようにしても良い。これにより、ダンパーアンカ76において土台50と布基礎46から側方に延び出す部分に湾曲部80を部分的に設けて、側方への過度の広がりを抑えてコンパクトな配設スペースを実現しつつ、自由長を有効に確保するようにしても良い。   Specifically, as shown in FIG. 15, the damper anchor 76 is separated from the lateral straight portion 78 and the base side fixing portion 74 as upper end side protruding portions that protrude horizontally from the base side fixing portion 72. A horizontal straight portion 78 as a lower side protrusion projecting in the horizontal direction and a pair of curved portions 80 having a relatively large curvature integrally formed at the protruding tip portion of each straight portion 78 are separated in the vertical direction. You may make it comprise including the vertical straight part 82 as a center part extended in the perpendicular direction between the protrusion front-end | tip parts of the curved part 80 made to oppose. As a result, a curved portion 80 is partially provided at a portion of the damper anchor 76 that extends laterally from the base 50 and the fabric foundation 46, while suppressing an excessive spread to the side and realizing a compact arrangement space. The free length may be effectively secured.

また、振動絶縁手段として、前記実施形態で示されたローラーパッキン16に加えて、分担荷重の少ない部位である柱48と柱48の間に、図16,17に示されるようなスライドパッキン84を補助的に採用することも可能である。スライドパッキン84は、上下方向で互いに重ね合わせられる上沓部材86と下沓部材88を含んで構成されており、下沓部材88の上沓部材86に対する対向面には、図18,19にも示されているように、円形凹状で浅底のすり鉢状凹所90を形成しており、すり鉢状凹所90の底面を含む下沓部材88の一方(図16,17中、上)の端面の全体に亘って鋼板36を被着する。すり鉢状凹所90の底面は下方に向かって全体に亘って湾曲しており、中央部分において深さ寸法が最も大きくされている。この底面に被着される鋼板36の表面が、底面と略同じ曲率で湾曲した凹状湾曲面89とされている。また、上沓部材86の下沓部材88に対する対向面には、下沓部材88のすり鉢状凹所90に対応した円形凸状の当接突部92を突設しており、当接突部92の突出先端面を含む上沓部材86の一方(図16,17中、下)の端面の全体に亘って鋼板36を被着する。この当接突部92の突出先端面に被着される鋼板36の表面が、底面と略同じ曲率で湾曲した凸状湾曲面91とされている。これにより、上下沓部材86,88の凹凸状湾曲面89,91を互いに重ね合わせて、図17にも示されているように、上下沓部材86,88が同一中心軸上に位置合わせされた平常時には、凹状湾曲面89の最深中央部に対して凸状湾曲面91の中央部分が位置せしめられるようにすると共に、図20にも示されているように、当接突部20の中央部分を凹状湾曲面89の外周部分に向かって乗り上げるように当接状態で移動させることで、上下沓部材86,88を滑り変位させつつ、水平方向に相対的に変位せしめることが可能となる。また、土台50と布基礎46の水平方向変位に際して、下沓部材88のすり鉢状凹所90の中央部分から偏倚した位置にある上沓部材86の当接突部92の中央部分を(図20、参照。)、木造家屋44の自重を上沓部材86に及ぼして、当接突部92の中央部分をすり鉢状凹所90の中央部分に積極的に滑り変位させても良く、それによって、木造家屋44の自重やスライドパッキン84の湾曲面を利用して、土台50の幅方向中央部分と基礎梁56の幅方向中央部分のセンタリング機能を得ることで、免震効果をより効果的に得ても良い。なお、鋼板36の表面に高粘性流体等を塗布して、滑り変位を調整したり、摩擦音を抑制することも出来る。また、前記実施形態におけるローラーパッキン16と同様、凹凸状湾曲面89,91は、全体に亘ってショットブラスト加工が施されていることによって粗面化されている。これにより、風等の振動加速度の小さな外力作用時におけるスライドパッキン84の軽動を抑制し得る。また、スライドパッキン84の初期状態においては、上下沓部材86,88の外周縁部が互いにシール状態で当接せしめられている。また、これらローラーパッキン16やスライドパッキン84は、性能発揮後の破損時には、容易に交換することが出来る。   Further, as vibration isolation means, in addition to the roller packing 16 shown in the above embodiment, a slide packing 84 as shown in FIGS. It is also possible to employ supplementary information. The slide packing 84 includes an upper collar member 86 and a lower collar member 88 that are overlapped with each other in the vertical direction, and the surface facing the upper collar member 86 of the lower collar member 88 is also shown in FIGS. As shown, one end surface (in FIG. 16, 17, upper) of a lower saddle member 88 that forms a circular concave and shallow mortar-shaped recess 90 and includes the bottom surface of the mortar-shaped recess 90. The steel plate 36 is applied over the whole. The bottom surface of the mortar-shaped recess 90 is curved over the whole downward, and the depth dimension is the largest in the central portion. The surface of the steel plate 36 attached to the bottom surface is a concave curved surface 89 that is curved with substantially the same curvature as the bottom surface. Further, on the surface facing the lower collar member 88 of the upper collar member 86, a circular convex contact protrusion 92 corresponding to the mortar-shaped recess 90 of the lower collar member 88 is provided, and the contact protrusion The steel plate 36 is attached over the entire end surface of one of the upper collar members 86 including the protruding front end surface 92 (in FIG. 16, 17, the lower side). The surface of the steel plate 36 to be attached to the protruding tip surface of the abutting protrusion 92 is a convex curved surface 91 that is curved with substantially the same curvature as the bottom surface. Thereby, the concave and convex curved surfaces 89 and 91 of the upper and lower saddle members 86 and 88 are overlapped with each other, and the upper and lower saddle members 86 and 88 are aligned on the same central axis as shown in FIG. In a normal state, the central portion of the convex curved surface 91 is positioned with respect to the deepest central portion of the concave curved surface 89, and as shown in FIG. Is moved in a contact state so as to ride on the outer peripheral portion of the concave curved surface 89, so that the upper and lower saddle members 86 and 88 can be displaced relatively in the horizontal direction while being slid. Further, when the base 50 and the fabric foundation 46 are displaced in the horizontal direction, the central portion of the contact protrusion 92 of the upper heel member 86 located at a position deviated from the central portion of the mortar-shaped recess 90 of the lower heel member 88 (FIG. 20). The weight of the wooden house 44 may be exerted on the upper eaves member 86 to positively slide and displace the central portion of the abutting protrusion 92 to the central portion of the mortar-shaped recess 90, thereby By using the weight of the wooden house 44 and the curved surface of the slide packing 84 to obtain the centering function of the center portion in the width direction of the base 50 and the center portion in the width direction of the foundation beam 56, the seismic isolation effect can be obtained more effectively. May be. In addition, a highly viscous fluid etc. can be apply | coated to the surface of the steel plate 36, a sliding displacement can be adjusted, and a friction sound can also be suppressed. Further, like the roller packing 16 in the above embodiment, the concave and convex curved surfaces 89 and 91 are roughened by performing shot blasting throughout. Thereby, the light motion of the slide packing 84 at the time of the external force effect | action with small vibration accelerations, such as a wind, can be suppressed. Further, in the initial state of the slide packing 84, the outer peripheral edge portions of the upper and lower flange members 86 and 88 are brought into contact with each other in a sealed state. Further, the roller packing 16 and the slide packing 84 can be easily replaced when damaged after the performance is exhibited.

なお、このようなスライドパッキン84をローラーパッキン16に代えて免震構造に採用することも可能である。この場合には、前記実施形態に係るローラーパッキン16のような鋼球40を採用する必要がなくなり、部品点数の削減に伴い低コスト化を図ることが可能となる。   Note that such a slide packing 84 can be used in the seismic isolation structure in place of the roller packing 16. In this case, it is not necessary to employ the steel balls 40 such as the roller packing 16 according to the above-described embodiment, and the cost can be reduced as the number of parts is reduced.

さらに、振動絶縁手段には、前述のローラーパッキン16やスライドパッキン84に代えて若しくは加えて、公知のアイソレータを採用することももちろん可能である。   Furthermore, it is of course possible to employ a known isolator as the vibration isolating means instead of or in addition to the roller packing 16 and the slide packing 84 described above.

また、前記実施形態に係るダンパーアンカ14の基礎側固定部74が、ダンパーアンカ14の一方の端部に形成された固定板部22が基礎梁56に埋設されたアンカープレート24に固定されることで構成されていたが、これに限定されるものでなく、例えば、ダンパーアンカが基礎梁の側方を延びるようにして、ダンパーアンカの端部を基礎梁に直接に埋入固着したり、或いは布基礎46のフーチング54に埋入固着することも可能である。   Further, the base side fixing portion 74 of the damper anchor 14 according to the embodiment is fixed to the anchor plate 24 in which the fixing plate portion 22 formed at one end portion of the damper anchor 14 is embedded in the base beam 56. However, the present invention is not limited to this. For example, the end of the damper anchor may be directly embedded and fixed to the foundation beam such that the damper anchor extends to the side of the foundation beam. It is also possible to embed and adhere to the footing 54 of the fabric foundation 46.

また、前記実施形態では、ダンパーアンカ14が土台50および布基礎56の一方の側方である建築物12の内側に延びだしていたが、他方の側方である建築物の外側(外観)に延びだしていても良い。   Moreover, in the said embodiment, although the damper anchor 14 was extended inside the building 12 which is one side of the base 50 and the fabric foundation 56, it was on the outer side (appearance) of the building which is the other side. It may be extended.

また、前記実施形態に係るローラーパッキン16の上下沓部材30,32のすり鉢状凹所34(鋼板36)の中央部分に設けられた第一の湾曲面41に代えて、例えば図21にも示されているように、円錐面形状の円錐面94を採用することにより、すり鉢状凹所34に被着された鋼板36の表面を、円錐面94と第二の湾曲面43を含んで構成しても良い。この円錐面94は、頂部がすり鉢状凹所34の中央部分に位置せしめられていると共に、外周部分が第二の湾曲面43の内周部分と滑らかに接続されており、円錐面94の頂部を備えた中央部分が、第二の湾曲面43の接線方向に延び出している。このような上下沓部材を備えたローラーパッキンを採用することによって、特に鋼球40を収容領域38の中央部分に位置せしめた際に、鋼球40が円錐面94の頂部付近の面と周方向の略全体に亘って線当たり状に当接せしめることが可能となり、鋼球40が収容領域38の中央部分に安定して支持せしめられることから、センタリング機能が一層有利に発揮され得る。   Further, instead of the first curved surface 41 provided in the central portion of the mortar-shaped recess 34 (steel plate 36) of the upper and lower flange members 30, 32 of the roller packing 16 according to the embodiment, for example, FIG. As shown in the figure, by adopting the conical surface 94 having a conical surface shape, the surface of the steel plate 36 applied to the mortar-shaped recess 34 is configured to include the conical surface 94 and the second curved surface 43. May be. The conical surface 94 is positioned at the central portion of the mortar-shaped recess 34, and the outer peripheral portion is smoothly connected to the inner peripheral portion of the second curved surface 43. The central portion provided with extends in the tangential direction of the second curved surface 43. By adopting such a roller packing provided with the upper and lower saddle members, particularly when the steel ball 40 is positioned at the central portion of the accommodation region 38, the steel ball 40 is circumferentially aligned with the surface near the top of the conical surface 94. Therefore, the steel ball 40 can be stably supported by the central portion of the accommodating region 38, and the centering function can be exhibited more advantageously.

また、この円錐面94を、上述の具体例に係るスライドパッキン84の下沓部材88のすり鉢状凹所34の略全体に亘って形成された凹状湾曲面89に代えて採用することも可能である。これにより、上沓部材86の凸状湾曲面91との当接面積を小さくして、上下沓部材の滑り変位を調節しても良い。   Further, the conical surface 94 can be used in place of the concave curved surface 89 formed over substantially the entire mortar-shaped recess 34 of the lower collar member 88 of the slide packing 84 according to the above-described specific example. is there. Thereby, the contact area of the upper collar member 86 with the convex curved surface 91 may be reduced to adjust the sliding displacement of the upper and lower collar members.

また、前記実施形態に係る建築物12では、土台50と布基礎46の固定部材にあって、全て本発明に従う構造とされたダンパーアンカ14が採用されていたが、例えば特許文献1,2に示されているような土台と布基礎の間を鉛直方向に延びて、一方の端部が土台を鉛直方向に貫通固定されると共に、他方の端部が布基礎に埋設される従来構造のアンカーボルトを、固定部材の一部に含む既設の建築物に対して、本発明を適用することも可能である。   Moreover, in the building 12 which concerns on the said embodiment, it was in the fixing member of the base 50 and the cloth foundation 46, and the damper anchor 14 made into the structure according to this invention was employ | adopted, for example, in patent documents 1, 2, A conventional anchor that extends vertically between the foundation and the fabric foundation as shown, with one end penetrating and fixed vertically through the foundation, and the other end embedded in the fabric foundation The present invention can also be applied to an existing building including a bolt as a part of a fixing member.

加えて、前記実施形態では、本発明に係る建築物の免震構造10が、木造家屋44と布基礎46を備えた建築物12に対して適用されるものの具体例が示されていたが、倉庫等、各種の小型建築物に有利に適用可能であることは勿論である。   In addition, in the said embodiment, although the seismic isolation structure 10 of the building which concerns on this invention was shown with respect to the building 12 provided with the wooden house 44 and the cloth foundation 46, the specific example was shown, Of course, it can be advantageously applied to various small buildings such as warehouses.

本発明の一実施形態としての免震構造を採用した建築物の要部を一部断面視した形態で示す斜視図。The perspective view shown in the form which carried out the partial cross section view of the principal part of the building which adopted the seismic isolation structure as one embodiment of the present invention. 同免震構造の一部を構成するダンパーアンカの正面図であって同建築物の縦断面視に相当する図。The figure which is a front view of the damper anchor which comprises some seismic isolation structures, and is equivalent to the longitudinal cross-sectional view of the building. 同ダンパーアンカの背面図。The rear view of the damper anchor. 同ダンパーアンカの左側面図。Left side view of the damper anchor. 同ダンパーアンカの右側面図。The right side view of the damper anchor. 同ダンパーアンカの平面図。The top view of the damper anchor. 同ダンパーアンカの底面図。The bottom view of the damper anchor. 同免震構造の一部を構成するローラーパッキンを一部断面視した形態で示す斜視図。The perspective view which shows the roller packing which comprises a part of the seismic isolation structure in the form which carried out the partial cross section view. 同ローラーパッキンの縦断面図。The longitudinal cross-sectional view of the roller packing. 同ローラーパッキンの一部を構成する下沓の平面図。The top view of the lower collar which comprises a part of the roller packing. 図10のXI−XI断面図。XI-XI sectional drawing of FIG. 同ローラーパッキンの一作動形態を示す縦断面図。The longitudinal cross-sectional view which shows one action | operation form of the roller packing. 同建築物の一形態を示す縦断面図。The longitudinal cross-sectional view which shows one form of the building. 同建築物の別の一形態を示す縦断面図。The longitudinal cross-sectional view which shows another one form of the building. 本発明の別の一具体例としての免震構造を採用した建築物の要部を一部断面視した形態で示す斜視図。The perspective view which shows the principal part of the building which employ | adopted the seismic isolation structure as another specific example of this invention in the form which carried out the partial cross section view. 本発明のまた別の一具体例としての免震構造の一部を構成するスライドパッキンを一部断面視した形態で示す斜視図。The perspective view which shows the slide packing which comprises a part of seismic isolation structure as another specific example of this invention with the form which carried out the partial cross section view. 同スライドパッキンの縦断面図。The longitudinal cross-sectional view of the slide packing. 同スライドパッキンの一部を構成する下沓部材の平面図。The top view of the lower collar member which comprises a part of the slide packing. 図18のXVIIII−XVIIII断面図。XVIIII-XVIIII sectional drawing of FIG. 同スライドパッキンの一作動形態を示す縦断面図。The longitudinal cross-sectional view which shows one action | operation form of the slide packing. 本発明の更にまた別の一具体例としての免震構造に用いられるローラーパッキンの一部を構成する下沓の縦断面図。The longitudinal cross-sectional view of the lower collar which comprises a part of roller packing used for the seismic isolation structure as another specific example of this invention. 本発明のまた別の一具体例としての免震構造に用いられるスライドパッキンの一部を構成する下沓の縦断面図。The longitudinal cross-sectional view of the lower collar which comprises a part of slide packing used for the seismic isolation structure as another specific example of this invention.

符号の説明Explanation of symbols

10:免震構造、12:建築物、14:ダンパーアンカ、16:ローラーパッキン、44:木造家屋、46:布基礎、50:土台、72:土台側固定部、74:基礎側固定部 10: seismic isolation structure, 12: building, 14: damper anchor, 16: roller packing, 44: wooden house, 46: fabric foundation, 50: foundation, 72: foundation side fixing part, 74: foundation side fixing part

Claims (15)

建築物の基礎と土台の間に振動絶縁手段を配して、該建築物における該土台を含む上部構造の荷重を該振動絶縁手段を介して該基礎に伝達支持せしめると共に、該振動絶縁手段によって該建築物の該上部構造の該基礎に対する水平方向の相対変位を許容せしめた建築物の免震構造において、
前記土台と前記基礎の側方に位置して上下方向に延びる金属製の連結部材を配設して、該連結部材の上端を該土台に固定する一方、該連結部材の下端を該基礎に固定することにより、前記振動絶縁手段を介して重ね合わされた該土台と該基礎との上下方向の対向面間距離よりも大きな長さ寸法を有する該連結部材によって該土台と該基礎を連結せしめて、前記建築物の前記上部構造が該基礎に対して水平方向に相対変位せしめられた際に該連結部材が変形せしめられるようにしたことを特徴とする建築物の免震構造。
A vibration isolation means is disposed between the foundation and the foundation of the building, and the load of the superstructure including the foundation in the building is transmitted and supported to the foundation via the vibration insulation means. In the seismic isolation structure of a building that allows relative displacement in the horizontal direction with respect to the foundation of the superstructure of the building,
A metal connecting member that is located on the side of the base and the base and extends in the vertical direction is disposed, and the upper end of the connecting member is fixed to the base, while the lower end of the connecting member is fixed to the base. By connecting the foundation and the foundation by the connecting member having a length dimension larger than the distance between the opposing surfaces in the vertical direction between the foundation and the foundation overlaid via the vibration isolation means, A seismic isolation structure for a building, wherein the connecting member is deformed when the upper structure of the building is displaced relative to the foundation in a horizontal direction.
前記連結部材が、
前記土台の側面から外方に延び出している上端側方突出部と、
前記基礎における基礎梁の側面から外方に延び出している下端側方突出部と、
それら上端側方突出部の突出先端部分と下端側方突出部の突出先端部分とを一体的に連結して上下方向に延びる中央部分と
を、含んだ一体構造とされている請求項1に記載の建築物の免震構造。
The connecting member is
An upper end lateral protrusion extending outward from the side surface of the base;
A lower end lateral protrusion that extends outward from the side of the foundation beam in the foundation;
The integrated structure including a projecting tip portion of the upper end side projecting portion and a projecting tip portion of the lower end side projecting portion integrally and a central portion extending in the vertical direction. Seismic isolation structure for buildings.
前記連結部材が、その全長に亘って、折れ曲がった部分を有しないで滑らかに連続した形状とされている請求項1又は2に記載の建築物の免震構造。   The seismic isolation structure for buildings according to claim 1 or 2, wherein the connecting member has a smoothly continuous shape without having a bent portion over its entire length. 前記土台と前記基礎を連結する前記連結部材が複数設けられており、該複数の連結部材のうち、少なくとも1つが他の連結部材に対して異なる弾性限度を有している請求項1乃至3の何れか一項に記載の建築物の免震構造。   The said connection member which connects the said foundation | substrate and the said foundation is provided with two or more, At least 1 has a different elastic limit with respect to another connection member among these connection members. A seismic isolation structure for a building according to any one of the above. 前記基礎に取付基台が固設されていると共に、該取付基台における該基礎の側部から露出する部分に対して前記連結部材の前記基礎側固定部が固定される請求項1乃至4の何れか一項に記載の建築物の免震構造。   The mounting base is fixed to the foundation, and the base-side fixing portion of the connecting member is fixed to a portion of the mounting base exposed from the side of the foundation. A seismic isolation structure for a building according to any one of the above. 前記連結部材が、既存の前記土台および前記基礎に対して固定されることにより、後付けで取り付けられるようになっている請求項1乃至5の何れか一項に記載の建築物の免震構造。   The seismic isolation structure for a building according to any one of claims 1 to 5, wherein the connecting member is attached to the base and the foundation so as to be attached later. 前記連結部材が、前記土台および前記基礎に対して着脱可能とされている請求項1乃至6の何れか一項に記載の建築物の免震構造。   The seismic isolation structure for a building according to any one of claims 1 to 6, wherein the connecting member is detachable from the base and the foundation. 前記土台が前記基礎に対して水平方向に相対変位せしめられた際に、初期位置へ返戻方向の復元力を及ぼす初期位置復元手段を設けた請求項1乃至7の何れか一項に記載の建築物の免震構造。   The building according to any one of claims 1 to 7, further comprising an initial position restoring unit that applies a restoring force in a returning direction to an initial position when the base is displaced relative to the foundation in a horizontal direction. Seismic isolation structure. 前記基礎に固定される下側支持部材と前記土台に固定される上側支持部材とを上下方向に重ね合わせて配すると共に、該下側支持部材と該上側支持部材の対向面にはそれぞれ他方に向かって開口するすり鉢状の凹所を形成して、それら下側支持部材と上側支持部材の両凹所の対向面間に球形状のころがり部材を組み込むことによって、前記振動絶縁手段を構成し、
該下側支持部材と該上側支持部材が同一中心軸上に位置合わせされた平常時には、該下側支持部材の該凹所と該上側支持部材の該凹所の各中央最深部間に該ころがり部材が位置せしめられるようにすると共に、
前記建築物の前記上部構造が該基礎に対して水平方向に相対変位せしめられた際には、該下側支持部材の該凹所と該上側支持部材の該凹所を乗り上げる方向に該ころがり部材が移動せしめられるようにした
請求項1乃至8の何れか一項に記載の建築物の免震構造。
A lower support member fixed to the foundation and an upper support member fixed to the base are arranged to overlap each other in the vertical direction, and the opposing surfaces of the lower support member and the upper support member are respectively arranged on the other side. Forming a mortar-shaped recess that opens toward the bottom, and incorporating the spherical rolling member between the opposing surfaces of both the recesses of the lower support member and the upper support member to constitute the vibration isolation means,
In a normal state in which the lower support member and the upper support member are aligned on the same central axis, the rolling is provided between the recesses of the lower support member and the central deepest portions of the recesses of the upper support member. Allow the member to be positioned,
When the upper structure of the building is displaced relative to the foundation in the horizontal direction, the rolling member extends in a direction to ride over the recess of the lower support member and the recess of the upper support member. The seismic isolation structure for a building according to any one of claims 1 to 8, which is adapted to be moved.
前記すり鉢状の凹所が、円錐面形状を有する中央部と、湾曲面形状を有する外周縁部から構成されており、該円錐面形状の中央部が、該湾曲面形状の外周縁部の接線方向に延び出している請求項9に記載の建築物の免震構造。   The mortar-shaped recess is composed of a central portion having a conical surface shape and an outer peripheral edge portion having a curved surface shape, and the central portion of the conical surface shape is a tangent to the outer peripheral edge portion of the curved surface shape. The seismic isolation structure for a building according to claim 9 extending in a direction. 前記基礎に固定される下側支持部材と前記土台に固定される上側支持部材とを上下方向に重ね合わせて配すると共に、該下側支持部材の上面には上方に向かって開口するすり鉢状の凹所を形成する一方、該上側支持部材の下面には該下方に向かって突出する当接突部を形成して、上側支持部材の該当接突部を該下側支持部材の該凹所内に突出位置せしめることによって、前記振動絶縁手段を構成し、
該下側支持部材と該上側支持部材が同一中心軸上に位置合わせされた平常時には、該下側支持部材の該凹所の中央最深部に対して該上側支持部材の該当接突部が突出位置せしめられるようにすると共に、
前記建築物の前記上部構造が該基礎に対して水平方向に相対変位せしめられた際には、該上側支持部材の該当接突部が該下側支持部材の該凹所の内面を乗り上げる方向に当接状態で移動せしめられるようにした
請求項1乃至8の何れか一項に記載の建築物の免震構造。
A lower support member fixed to the foundation and an upper support member fixed to the base are arranged to overlap in the vertical direction, and a mortar-like shape that opens upward on the upper surface of the lower support member While forming a recess, a contact protrusion protruding downward is formed on the lower surface of the upper support member, and the corresponding contact protrusion of the upper support member is placed in the recess of the lower support member. By constituting the protruding position, the vibration isolation means is configured,
In a normal state where the lower support member and the upper support member are aligned on the same central axis, the corresponding protrusion of the upper support member protrudes from the deepest central portion of the recess of the lower support member. To be positioned,
When the upper structure of the building is displaced relative to the foundation in the horizontal direction, the corresponding contact protrusion of the upper support member rides on the inner surface of the recess of the lower support member. The seismic isolation structure for a building according to any one of claims 1 to 8, wherein the structure is moved in a contact state.
前記すり鉢状の凹所が、全体として円錐面形状とされた請求項11に記載の建築物の免震構造。   The seismic isolation structure for a building according to claim 11, wherein the mortar-shaped recess has a conical shape as a whole. 前記下側支持部材の前記凹所には粘性材が収容されている請求項9乃至12の何れか一項に記載の建築物の免震構造。   The seismic isolation structure for a building according to any one of claims 9 to 12, wherein a viscous material is accommodated in the recess of the lower support member. 前記平常時において、前記下側支持部材と前記上側支持部材が、前記凹所の外周縁部において互いにシール状態で当接せしめられるようになっている請求項9乃至13の何れか一項に記載の建築物の免震構造。   14. The lower support member and the upper support member are brought into contact with each other in a sealed state at an outer peripheral edge portion of the recess in the normal state. Seismic isolation structure for buildings. 請求項1乃至14の何れか一項に記載の免震構造を採用したことを特徴とする建築物。   A building comprising the seismic isolation structure according to any one of claims 1 to 14.
JP2007128616A 2007-05-14 2007-05-14 Base isolation structure of building and building adopting the same Pending JP2008280818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007128616A JP2008280818A (en) 2007-05-14 2007-05-14 Base isolation structure of building and building adopting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007128616A JP2008280818A (en) 2007-05-14 2007-05-14 Base isolation structure of building and building adopting the same

Publications (1)

Publication Number Publication Date
JP2008280818A true JP2008280818A (en) 2008-11-20

Family

ID=40141868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128616A Pending JP2008280818A (en) 2007-05-14 2007-05-14 Base isolation structure of building and building adopting the same

Country Status (1)

Country Link
JP (1) JP2008280818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163216A (en) * 2013-02-27 2014-09-08 Joho Kagaku Kenkyusho:Kk Base isolation structure and base isolation raw material by plastic colloid of heavy construction
CN110284909A (en) * 2019-07-31 2019-09-27 中铁第四勘察设计院集团有限公司 A kind of the section of jurisdiction waterproof sealing gasket and shield duct piece waterproof construction of antifriction
CN115030319A (en) * 2022-06-22 2022-09-09 重庆第二师范学院 A antidetonation frame construction for building are built

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163216A (en) * 2013-02-27 2014-09-08 Joho Kagaku Kenkyusho:Kk Base isolation structure and base isolation raw material by plastic colloid of heavy construction
CN110284909A (en) * 2019-07-31 2019-09-27 中铁第四勘察设计院集团有限公司 A kind of the section of jurisdiction waterproof sealing gasket and shield duct piece waterproof construction of antifriction
CN115030319A (en) * 2022-06-22 2022-09-09 重庆第二师范学院 A antidetonation frame construction for building are built
CN115030319B (en) * 2022-06-22 2023-10-31 重庆第二师范学院 Anti-seismic frame structure for house building

Similar Documents

Publication Publication Date Title
US10619373B1 (en) Seismic damping systems and methods
CA2672314A1 (en) Seismic controller for friction bearing isolated structures
JP5314367B2 (en) Structure
KR100283782B1 (en) Friction dampening rubber feet for seismic isolation of structures
JP2008280818A (en) Base isolation structure of building and building adopting the same
US5660007A (en) Stiffness decoupler for base isolation of structures
JP3677712B2 (en) Seismic isolation and control building
JP2007138678A (en) Attenuation device
JP2000017889A (en) Vibration isolation device
JP2002070358A (en) Base isolation device
JP3713645B2 (en) Seismic isolation device using laminated rubber
JP3671317B2 (en) Seismic isolation mechanism
JP3825081B2 (en) Seismic isolation system and lift prevention device in the seismic isolation system
JP2001032368A (en) Energy absorption construction for column to beam jointing portion
JP3677706B2 (en) Seismic isolation and control structure
JP5348945B2 (en) Seismic isolation structure of building
JP2017043988A (en) Vibration control building
JP2007009450A (en) Base isolation device and base isolation structure of building of panel construction method
JP2007262833A (en) Viscous system vibration damper and base isolation building having this damper
JP4585987B2 (en) Building basic structure
JP2005256315A (en) Base isolation construction method and base isolation member used for this construction method
JP2001140497A (en) Earthquake-resistant house
JP3180347U (en) Retrofit seismic reinforcement structure and retrofit seismic reinforcement hardware unit
KR20070072979A (en) Building vibration reducing method using skybridge
JP5727690B2 (en) Long-period building