JP2007284777A - Steel material for ultrasonic shock treatment having excellent fatigue strength and ultrasonic shock treatment method - Google Patents

Steel material for ultrasonic shock treatment having excellent fatigue strength and ultrasonic shock treatment method Download PDF

Info

Publication number
JP2007284777A
JP2007284777A JP2006116927A JP2006116927A JP2007284777A JP 2007284777 A JP2007284777 A JP 2007284777A JP 2006116927 A JP2006116927 A JP 2006116927A JP 2006116927 A JP2006116927 A JP 2006116927A JP 2007284777 A JP2007284777 A JP 2007284777A
Authority
JP
Japan
Prior art keywords
steel material
soft layer
fatigue strength
layer
ultrasonic impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006116927A
Other languages
Japanese (ja)
Inventor
Koji Seto
厚司 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006116927A priority Critical patent/JP2007284777A/en
Publication of JP2007284777A publication Critical patent/JP2007284777A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel material for ultrasonic shock treatment having excellent fatigue strength, and to provide an ultrasonic shock treatment method. <P>SOLUTION: Regarding the multi-layer steel material in which a soft layer 6 is formed on the surface 1, the thickness of the soft layer 6 is controlled to 0.1 to <1.0 mm, and also, the Vickers hardness Hvs of the soft layer 6 and the Vickers hardness Hvi of an internal layer 7 other than the soft layer 6 are allowed to satisfy equation. Then, the steel material for ultrasonic shock treatment is subjected to ultrasonic shock treatment using a leading edge tool 5 with a width R of 2.0 to 5.0 mm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車、家電製品、建築構造物、船舶、橋梁、建設機械、各種プラント及びペンストック等で用いられる疲労強度に優れた超音波衝撃処理用鋼材及び超音波衝撃処理方法に関する。なお、本発明において、鋼材とは母材のみならず、溶接及び成形等の加工を受けた部分も含むものとする。   The present invention relates to a steel material for ultrasonic shock treatment and an ultrasonic shock treatment method excellent in fatigue strength used in automobiles, home appliances, building structures, ships, bridges, construction machines, various plants, penstocks, and the like. In the present invention, the steel material includes not only a base material but also a part subjected to processing such as welding and forming.

鋼材に、溶接・プレス・切断・打抜き等の加工が施され、その部材に繰返し荷重が作用すると、これらの加工部は、その形状に起因する応力集中及び引張残留応力の存在によって疲労き裂発生の起点となり、その結果、疲労強度が低下する。従って、これらの加工部の耐疲労特性が優れた鋼材及び加工部の耐疲労特性を向上させることができる処理方法が切望されている。   When steel materials are subjected to processing such as welding, pressing, cutting, and punching, and a repeated load is applied to the member, fatigue cracks are generated in these processed parts due to the stress concentration due to the shape and the presence of tensile residual stress. As a result, the fatigue strength decreases. Therefore, a steel material having excellent fatigue resistance characteristics of these processed parts and a processing method capable of improving the fatigue resistance characteristics of the processed parts are desired.

このような疲労問題に対して、近年、溶接部等の疲労強度向上を目的とした超音波衝撃処理が開発され、超音波衝撃処理を溶接部及び機械加工穴に適用することにより疲労強度を向上させる方法及び装置が開示されている(例えば、特許文献1及び2参照。)。また、溶接部及び塑性加工部に対して超音波衝撃処理及びその処理部の品質保証検査を行うことにより、疲労強度を向上させる方法も開示されている(例えば、特許文献3参照。)。   In recent years, an ultrasonic impact treatment aimed at improving the fatigue strength of welds and the like has been developed to deal with such fatigue problems, and the fatigue strength is improved by applying the ultrasonic impact treatment to welds and machined holes. A method and an apparatus are disclosed (for example, refer to Patent Documents 1 and 2). Also disclosed is a method for improving fatigue strength by performing ultrasonic impact treatment and quality assurance inspection of a welded portion and a plastic working portion (see, for example, Patent Document 3).

一方、本発明者は、継手疲労強度を向上させるために、表裏層が脱炭層からなる複合鋼材であり、この表裏層の硬さ、厚さ及びフェライト組織率を規定した複層鋼板を提案している(特許文献4参照)。また、従来、溶接止端部相当部分に予め軟質層を形成させてから溶接することにより、疲労強度の向上を図った発明も開示されている(例えば、特許文献5参照。)。   On the other hand, in order to improve the joint fatigue strength, the present inventor has proposed a multilayer steel sheet in which the front and back layers are decarburized layers and the hardness, thickness and ferrite structure ratio of the front and back layers are defined. (See Patent Document 4). Further, conventionally, an invention has also been disclosed in which fatigue strength is improved by forming a soft layer in advance in a portion corresponding to the weld toe portion before welding (see, for example, Patent Document 5).

なお、超音波衝撃処理とは、超音波発生機から発生した数十kHzの超音波振動をピン等の工具を介して対象物に押し当てて、塑性変形を与えることにより表面形状の改善及び残留応力の緩和・再配置等を行う処理である。   The ultrasonic impact treatment refers to the improvement of the surface shape and the residual by applying plastic deformation by pressing ultrasonic vibrations of several tens of kHz generated from an ultrasonic generator against an object through a tool such as a pin. This is a process for stress relaxation / relocation.

米国特許第6171415号明細書US Pat. No. 6,171,415 米国特許第6338765号明細書US Pat. No. 6,338,765 特開2003−113418号公報Japanese Patent Laid-Open No. 2003-113418 特開2003−239037号公報JP 2003-239037 A 特開昭56−50797号公報JP-A-56-50797

しかしながら、前述した従来の技術には以下に示す問題点がある。上述した従来の技術のうち、特許文献1には、溶接構造物の補修を目的として、溶接部への超音波衝撃処理の適用技術、及び疲労亀裂先端に開けたドリル穴縁への超音波衝撃処理の適用技術が開示されており、溶接部への適用に関しては、溶接の跡を後ろから追いかけるように溶接部全般の処理を行っているが、処理対象の金属材料については何ら検討されておらず、処理対象の金属材料に関する記載もない。また、特許文献2には、超音波エネルギーを振動に変換するトランスデューサーのヘッドに針状の工具を取り付けた装置、及びその装置によるドリル穴への処理方法を開示されているが、前述の特許文献1と同様に、処理対象の金属材料については何ら検討されておらず、処理対象の金属材料に関する記載もない。更に、特許文献3には、一般的な加工法として塑性加工・変形矯正・熱処理を前処理として施す超音波衝撃処理の方法が開示されているが、前述の特許文献1及び2と同様に、処理対象の金属材料については何ら検討されておらず、処理対象の金属材料に関する記載もない。このため、特許文献1〜3に記載の技術は、処理対象である金属材料の種類によっては、高い疲労強度を得ることができないという問題がある。   However, the conventional techniques described above have the following problems. Among the conventional techniques described above, Patent Document 1 discloses an application technique of ultrasonic shock treatment to a welded part and ultrasonic shock to a drill hole edge opened at a fatigue crack tip for the purpose of repairing a welded structure. The application technology of the treatment is disclosed, and with regard to the application to the welded part, the entire welded part is treated so as to follow the trace of the welding from behind, but the metal material to be treated has not been studied at all. In addition, there is no description regarding the metal material to be processed. Patent Document 2 discloses a device in which a needle-like tool is attached to the head of a transducer that converts ultrasonic energy into vibration, and a method for processing a drill hole by the device. Similar to Document 1, no study has been made on the metal material to be treated, and there is no description on the metal material to be treated. Furthermore, Patent Document 3 discloses a method of ultrasonic impact treatment in which plastic processing, deformation correction, and heat treatment are performed as a pretreatment as a general processing method, but as in Patent Documents 1 and 2 described above, No investigation has been made on the metal material to be treated, and there is no description on the metal material to be treated. For this reason, the techniques described in Patent Documents 1 to 3 have a problem that high fatigue strength cannot be obtained depending on the type of metal material to be processed.

更にまた、特許文献4には、表裏層の厚さと硬さとの関係を規定した疲労強度に優れた溶接構造用鋼板が開示されているが、超音波衝撃処理については何ら記載されていない。また、この特許文献4に記載の鋼板は、表層のビッカース硬さが140以下と規定されているため、超音波衝撃処理に適用しても、高い疲労強度を得ることができないという問題がある。   Furthermore, Patent Document 4 discloses a steel sheet for welded structure excellent in fatigue strength that defines the relationship between the thickness and hardness of the front and back layers, but does not describe any ultrasonic impact treatment. In addition, the steel sheet described in Patent Document 4 has a problem that a high fatigue strength cannot be obtained even when applied to ultrasonic impact treatment because the surface layer has a Vickers hardness of 140 or less.

更にまた、特許文献5には、表面に母材に比べて強さの低い軟質層を形成する溶接部疲労強度向上方法が開示されているが、超音波衝撃処理については何も記載されていない。また、この特許文献5の実施例に示されている鋼板は、表層の厚さが1.0mm以上と厚いため、溶接したままでは高い疲労強度を得ることができないという問題がある。   Furthermore, Patent Document 5 discloses a method for improving the fatigue strength of a welded portion in which a soft layer having a lower strength than the base material is formed on the surface, but nothing is described about ultrasonic impact treatment. . Moreover, since the steel plate shown in the Example of this patent document 5 has a surface layer thickness as thick as 1.0 mm or more, there exists a problem that high fatigue strength cannot be obtained as it is welded.

本発明は、上述した各問題点に鑑みてなされたものであって、疲労強度が優れた超音波衝撃処理用鋼材及び超音波衝撃処理方法を提供することを目的とする。   This invention is made | formed in view of each problem mentioned above, Comprising: It aims at providing the steel material for ultrasonic impact processing and the ultrasonic impact processing method which were excellent in fatigue strength.

本発明に係る疲労強度に優れた超音波衝撃処理用鋼材は、表面に軟質層が形成された複層鋼材であって、前記軟質層のビッカース硬さHvs及び前記軟質層を除く内層のビッカース硬さHviが下記数式1を満足し、前記軟質層の厚さが0.1mm以上1.0mm未満であることを特徴とする。   The steel material for ultrasonic impact treatment with excellent fatigue strength according to the present invention is a multi-layer steel material having a soft layer formed on the surface thereof, the Vickers hardness Hvs of the soft layer and the Vickers hardness of the inner layer excluding the soft layer. The thickness Hvi satisfies Formula 1 below, and the thickness of the soft layer is 0.1 mm or more and less than 1.0 mm.

Figure 2007284777
Figure 2007284777

前記軟質層は、前記内層よりもC含有量(質量%)が低くてもよい。   The soft layer may have a lower C content (% by mass) than the inner layer.

また、前記軟質層は、例えば、質量%で、C:0.0005〜0.25%、Si:0.01〜2.00%、Mn:0.01〜3.00%、S:0.050%以下及びAl:0.001〜0.1%を含有し、残部がFe及び不可避的不純物からなる組成を有していてもよく、前記内層は、例えば、C:0.003〜0.30%、Si:0.01〜2.00%、Mn:0.01〜3.00%、S:0.050%以下及びAl:0.001〜0.1%を含有し、残部がFe及び不可避的不純物からなる組成を有していてもよい。   Further, the soft layer is, for example, mass%, C: 0.0005 to 0.25%, Si: 0.01 to 2.00%, Mn: 0.01 to 3.00%, S: 0.00. It may contain 050% or less and Al: 0.001 to 0.1%, and the balance may be composed of Fe and inevitable impurities, and the inner layer may be, for example, C: 0.003 to 0.00. 30%, Si: 0.01 to 2.00%, Mn: 0.01 to 3.00%, S: 0.050% or less and Al: 0.001 to 0.1%, the balance being Fe And a composition comprising inevitable impurities.

その場合、前記軟質層及び前記内層は、更に、質量%で、P:0.02〜0.20%、Ti:0.005〜1.0%、B:0.0001〜0.01%、Ni:0.1〜5.0%、Cu:0.1〜2.0%、Mo:0.1〜4.0%、Nb:0.005〜1.0%及びV:0.005〜2.0%からなる群から選択された1種又は2種以上の元素を含有していてもよい。   In that case, the soft layer and the inner layer are further in mass%, P: 0.02 to 0.20%, Ti: 0.005 to 1.0%, B: 0.0001 to 0.01%, Ni: 0.1-5.0%, Cu: 0.1-2.0%, Mo: 0.1-4.0%, Nb: 0.005-1.0% and V: 0.005- One or more elements selected from the group consisting of 2.0% may be contained.

本発明に係る疲労強度に優れた超音波衝撃処理方法は、前述した超音波衝撃処理用鋼材に、幅が2.0〜5.0mmの先端工具を用いて超音波衝撃処理を行うことを特徴とする。   The ultrasonic impact treatment method with excellent fatigue strength according to the present invention is characterized in that the ultrasonic impact treatment is performed on the above-described steel for ultrasonic impact treatment using a tip tool having a width of 2.0 to 5.0 mm. And

本発明によれば、表面に厚さ及び硬さを適正化した軟質層を形成しているため、超音波衝撃処理による圧縮残留応力が、内層のみならず表層の軟質層でも大きく維持されるため、疲労強度を著しく向上させることができ、処理対象部材の種類によらず、高い疲労強度を得ることができる。   According to the present invention, since the soft layer with the appropriate thickness and hardness is formed on the surface, the compressive residual stress due to the ultrasonic impact treatment is maintained largely in the soft layer of the surface layer as well as the inner layer. The fatigue strength can be remarkably improved, and a high fatigue strength can be obtained regardless of the type of the member to be processed.

以下、本発明を実施するための最良の形態について、添付の図面を参照して詳細に説明する。図1は本発明の超音波衝撃処理用鋼材を超音波衝撃処理した場合の表面の形状、及び残留応力の厚さ方向における分布を示す図である。なお、図1においては、先端工具5の中心線の延長上に存在するy軸よりも紙面右側は圧縮残留応力を、紙面左側は引張残留応力を夫々示しており、以下の図においても同様とする。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing the surface shape and the distribution of residual stress in the thickness direction when the steel for ultrasonic shock treatment of the present invention is subjected to ultrasonic shock treatment. In FIG. 1, the compressive residual stress is shown on the right side of the drawing and the tensile residual stress is shown on the left side of the drawing from the y axis existing on the extension of the center line of the tip tool 5, and the same applies to the following drawings. To do.

本発明者は、超音波衝撃処理を施した鋼材の疲労特性をさらに向上させる方法について検討を行った。具体的には、先ず、表層と内層とで硬さ分布に差がない均質鋼材を使用して、超音波衝撃処理を施した部分の残留応力の厚さ方向における分布について検討した。図2は、硬さが均一な均質鋼材を超音波衝撃処理した場合の表面の形状、及び残留応力の厚さ方向における分布を示す図である。そして、検討の結果、図2に示すように、超音波衝撃処理により鋼材中に発生した圧縮残留応力3は、表面1よりも1mm以上内部で最大値をとることが判明した。また、圧縮残留応力分布と疲労強度との関係を検討した結果、圧縮残留応力3が最大値を示す位置4が表面1に近い程、即ち、圧縮残留応力3が最大となる位置4と表面1との距離Lが短い程、疲労強度の向上度合いが大きいことが判明した。更に、先端工具5の幅(直径)Rを変えて検討を行った結果、先端工具5aの幅(直径)Rを小さくすると、必然的に先端工具5aの曲率半径が小さくなり、鋼材の処理部2の曲率半径も小さくなるため、応力集中が大きなり、疲労強度向上効果が低減されることが判明した。   The present inventor has studied a method for further improving the fatigue characteristics of a steel material subjected to ultrasonic impact treatment. Specifically, first, using a homogeneous steel material having no difference in hardness distribution between the surface layer and the inner layer, the distribution in the thickness direction of the residual stress in the portion subjected to ultrasonic impact treatment was examined. FIG. 2 is a diagram showing the surface shape and the distribution of residual stress in the thickness direction when a homogeneous steel material with uniform hardness is subjected to ultrasonic impact treatment. As a result of the examination, as shown in FIG. 2, it was found that the compressive residual stress 3 generated in the steel material by the ultrasonic impact treatment takes a maximum value 1 mm or more inside the surface 1. Further, as a result of examining the relationship between the compressive residual stress distribution and the fatigue strength, the position 4 where the compressive residual stress 3 shows the maximum value is closer to the surface 1, that is, the position 4 where the compressive residual stress 3 becomes maximum and the surface 1 It was found that the shorter the distance L, the greater the degree of improvement in fatigue strength. Furthermore, as a result of studying by changing the width (diameter) R of the tip tool 5, if the width (diameter) R of the tip tool 5a is reduced, the radius of curvature of the tip tool 5a is inevitably reduced, and the steel material processing portion Since the curvature radius of 2 is also small, it has been found that stress concentration is large and the effect of improving fatigue strength is reduced.

そこで、本発明者は、これらの相反する現象の解決手段を鋭意検討した結果、表面1の近くの圧縮残留応力3を大きくするためには、鋼材の表層が十分な塑性変形を受けるように、この部分を内層よりも軟質にすること、即ち、図1に示すように、鋼材の表面に内層7よりも硬さが低い軟質層6を形成することが有効であるとの結論に至った。そして、これにより、超音波衝撃処理後の圧縮残留応力3の分布では、鋼材の表面1の近傍において、図2に示す均質鋼材を超音波衝撃処理した場合よりも大きな圧縮残留応力が得られることを見出した。また、本発明者は、軟質層6のビッカース硬さを140よりも大きくすることにより、塑性変形を受けた場合の圧縮残留応力を高くすることができ、疲労強度を高めることができることも見出した。更に、本発明者は、軟質層6の厚さについても検討を行い、軟質層6の厚さを0.1mm以上かつ1.0mm未満とすることが、疲労強度向上に必要であることも見出した。   Therefore, as a result of earnestly examining the means for solving these conflicting phenomena, the present inventor, in order to increase the compressive residual stress 3 near the surface 1, so that the surface layer of the steel material undergoes sufficient plastic deformation, It came to the conclusion that it is effective to make this part softer than the inner layer, that is, to form the soft layer 6 having a lower hardness than the inner layer 7 on the surface of the steel as shown in FIG. As a result, in the distribution of the compressive residual stress 3 after the ultrasonic impact treatment, a compressive residual stress larger than that obtained when the homogeneous steel material shown in FIG. 2 is subjected to the ultrasonic impact treatment is obtained in the vicinity of the surface 1 of the steel material. I found. The inventor has also found that by increasing the Vickers hardness of the soft layer 6 to be greater than 140, the compressive residual stress when subjected to plastic deformation can be increased and the fatigue strength can be increased. . Furthermore, the present inventor has also studied the thickness of the soft layer 6 and found that it is necessary to improve the fatigue strength that the thickness of the soft layer 6 is 0.1 mm or more and less than 1.0 mm. It was.

以上の検討結果に基づき、本発明の超音波衝撃処理用鋼材においては、表面に軟質層6が形成された複層鋼材において、この軟質層6の厚さを0.1mm以上1.0mm未満とし、かつ軟質層6のビッカース硬さHvsと軟質層6を除く内層7のビッカース硬さHviとが、下記数式2を満足するようにしている。   Based on the above examination results, in the steel for ultrasonic shock treatment of the present invention, in the multilayer steel material having the soft layer 6 formed on the surface, the thickness of the soft layer 6 is set to 0.1 mm or more and less than 1.0 mm. The Vickers hardness Hvs of the soft layer 6 and the Vickers hardness Hvi of the inner layer 7 excluding the soft layer 6 satisfy the following formula 2.

Figure 2007284777
Figure 2007284777

以下、本発明の超音波衝撃処理用鋼材における数値限定理由について説明する。   Hereinafter, the reason for the numerical limitation in the steel material for ultrasonic shock treatment of the present invention will be described.

ビッカース硬さ:140<Hvs<Hvi
軟質層6のビッカース硬さHvsが140以下の場合、表層(軟質層6)では超音波衝撃処理により容易に塑性変形が生じるが、圧縮残留応力は降伏応力のレベル以上には発生しないため、疲労強度向上効果はさほど大きくならない。一方、軟質層6のビッカース硬さHvsが140を超えるようにすると、降伏応力、更には圧縮残留応力の絶対値もより大きくなり、疲労強度の向上効果も大きくなる。なお、軟質層6のビッカース硬さHvsの上限は、内層7のビッカース硬さHviを超えない範囲であればよく、特に規定する必要はない。また、本発明においては、軟質層6のビッカース硬さは、JIS G0558「鋼の脱炭層深さ測定方法」で規定されている硬さ試験の測定方法に基づいて求められた軟質層6の硬さの平均値と定義し、内層7のビッカース硬さは、前述した軟質層6の場合と同じ方法によって求められた内層7の硬さの平均値と定義する。
Vickers hardness: 140 <Hvs <Hvi
When the Vickers hardness Hvs of the soft layer 6 is 140 or less, the surface layer (soft layer 6) is easily plastically deformed by ultrasonic impact treatment, but the compressive residual stress does not occur above the yield stress level. The strength improvement effect is not so great. On the other hand, when the Vickers hardness Hvs of the soft layer 6 exceeds 140, the absolute value of the yield stress and further the compressive residual stress increases, and the effect of improving the fatigue strength increases. In addition, the upper limit of the Vickers hardness Hvs of the soft layer 6 should just be a range which does not exceed the Vickers hardness Hvi of the inner layer 7, and does not need to prescribe | regulate in particular. In the present invention, the Vickers hardness of the soft layer 6 is determined based on the hardness test measurement method defined in JIS G0558 “Decarburization layer depth measurement method for steel”. The Vickers hardness of the inner layer 7 is defined as the average value of the hardness of the inner layer 7 obtained by the same method as that of the soft layer 6 described above.

軟質層の厚さ:0.1mm以上1.0mm未満
軟質層6の厚さが1.0mm以上の場合、幅(直径)Rが小さい先端工具5を使用して超音波衝撃処理したときに、圧縮残留応力の最大値の位置4が軟質層6内に含まれるため、圧縮残留応力は最大値も含めて全体的に小さくなり、疲労強度向上効果が極めて小さくなる。また、軟質層6の厚さが1.0mm以上になると、板厚が小さい場合には全厚での強度が低下するため、構造材として必要な機械的特性が得られなくなると共に、超音波衝撃処理を施した際に十分な疲労強度向上が得られないことがある。一方、軟質層6の厚さが0.1mmより小さいと、降伏応力レベルの圧縮残留応力が分布する厚さも小さくなり、また、塑性変形により軟質層6が周辺に引き伸ばされてさらに薄くなるため、疲労強度の向上効果が極めて小さくなる。よって、軟質層6の厚さは0.1mm以上1.0mm未満とする。
Soft layer thickness: 0.1 mm or more and less than 1.0 mm When the thickness of the soft layer 6 is 1.0 mm or more, when the ultrasonic impact treatment is performed using the tip tool 5 having a small width (diameter) R, Since the position 4 of the maximum value of the compressive residual stress is included in the soft layer 6, the compressive residual stress including the maximum value is reduced as a whole, and the effect of improving the fatigue strength is extremely reduced. When the thickness of the soft layer 6 is 1.0 mm or more, the strength of the entire thickness is reduced when the plate thickness is small, so that the mechanical characteristics necessary for the structural material cannot be obtained, and the ultrasonic shock is applied. When the treatment is performed, a sufficient improvement in fatigue strength may not be obtained. On the other hand, if the thickness of the soft layer 6 is smaller than 0.1 mm, the thickness at which the compressive residual stress at the yield stress level is distributed is also reduced, and the soft layer 6 is stretched to the periphery by plastic deformation, and thus becomes thinner. The effect of improving fatigue strength is extremely small. Therefore, the thickness of the soft layer 6 shall be 0.1 mm or more and less than 1.0 mm.

なお、本発明においては、軟質層6の厚さは、JIS G0558「鋼の脱炭層深さ測定方法」に記載されている顕微鏡による測定方法、硬さ試験による測定方法、又は炭素濃度による測定方法に基づいて測定された脱炭層深さの平均値と定義する。また、本発明の超音波衝撃処理用鋼材を複層鋳造により製造した場合、軟質層6の厚さは、顕微鏡による測定方法又は硬さ試験による測定方法に基づいて測定された脱炭層深さの平均値と定義する。   In the present invention, the thickness of the soft layer 6 is measured by a microscope, a hardness test, or a carbon concentration measurement method described in JIS G0558 “Decarburization layer depth measurement method of steel”. It is defined as the average value of the decarburized layer depth measured based on When the steel for ultrasonic shock treatment of the present invention is manufactured by multi-layer casting, the thickness of the soft layer 6 is the depth of the decarburized layer measured based on a measurement method using a microscope or a measurement method using a hardness test. It is defined as the average value.

上述の如く構成された本発明の超音波衝撃処理用鋼材における軟質層6は、例えば、鋼材の表層のC含有量を、内層のC含有量よりも低くすることにより、容易に形成することができる。なお、C含有量が低いと、延性が増した組織となるため、疲労亀裂の進展速度を低下させる効果も得られ、疲労強度向上に極めて有効である。   The soft layer 6 in the steel for ultrasonic shock treatment of the present invention configured as described above can be easily formed, for example, by making the C content of the surface layer of the steel material lower than the C content of the inner layer. it can. If the C content is low, a structure with increased ductility is obtained, so that an effect of reducing the progress rate of fatigue cracks can be obtained, which is extremely effective for improving fatigue strength.

また、表層のC含有量を低減する方法以外に、鋼材の表層のビッカース硬さを内層よりも小さくする方法としては、例えば、加熱による表面軟化、クラッド化及び複層鋳造法等が挙げられるが、本発明者が検討した結果、脱炭処理が特に効果的であるとの結論に至った。この脱炭処理の方法は、特に限定するものではないが、例えば、脱炭性である水蒸気、炭酸ガス、酸素ガス及びアンモニアガスのうちの1種又は2種以上のガスを含む雰囲気中で、550℃以上Ac1変態点以下の温度条件下で一定時間保持することにより、鋼材の表層に、脱炭されたフェライト層を生成させる方法を適用することができる。その際、処理雰囲気には、上述した脱炭性のガス以外に、不活性ガスであるアルゴン及び準不活性である窒素ガス等の酸化・還元反応に寄与しない成分を含んでいても構わない。また、鋼材中の炭素濃度よりも低い炭素ポテンシャルを維持できる程度までであれば、還元性である水素ガス及び一酸化炭素ガス等を含んでいても差し支えない。 In addition to the method for reducing the C content of the surface layer, examples of the method for reducing the Vickers hardness of the surface layer of the steel material compared to the inner layer include surface softening by heating, clad formation, and multilayer casting method. As a result of the study by the present inventors, it has been concluded that the decarburization treatment is particularly effective. Although the method of this decarburization treatment is not particularly limited, for example, in an atmosphere containing one or more gases of water vapor, carbon dioxide gas, oxygen gas and ammonia gas that are decarburized, A method of generating a decarburized ferrite layer on the surface layer of the steel material can be applied by holding for a certain period of time under a temperature condition of 550 ° C. or more and A c1 transformation point or less. At that time, the treatment atmosphere may contain components that do not contribute to the oxidation / reduction reaction, such as argon, which is an inert gas, and quasi-inert nitrogen gas, in addition to the decarburizing gas described above. Moreover, as long as the carbon potential lower than the carbon concentration in the steel material can be maintained, it may contain hydrogen gas and carbon monoxide gas which are reducible.

次に、本発明の超音波衝撃処理鋼材における鋼成分の好ましい範囲について説明する。なお、以下の説明においては、鋼組成における質量%は、単に%と記載する。   Next, the preferable range of the steel component in the ultrasonic shock-treated steel material of the present invention will be described. In the following description, mass% in the steel composition is simply expressed as%.

C:軟質層0.0005〜0.25%、内層0.003〜0.30%
Cは、鋼材の強度を確保するために必要な元素である。しかしながら、内層7のC含有量が多くなると、具体的には、内層7のC含有量が0.30%を超えると、溶接性が損なわれることがある。また、内層7のC含有量は、少なくすることが望ましいが、0.003%未満になると、鋼材全体の強度が確保できないことがある。よって、内層7のC含有量は0.003〜0.30%とすることが好適である。一方、軟質層7は、C含有量が0.25%を超えると、フェライト組織での延性が確保できなくなることがあり、また、C含有量が0.0005%未満の場合、鋼材全体の強度を確保できなくなることがある。よって、軟質層6のC含有量は、0.0005〜0.25%とすることが好適である。
C: Soft layer 0.0005 to 0.25%, inner layer 0.003 to 0.30%
C is an element necessary for ensuring the strength of the steel material. However, if the C content of the inner layer 7 increases, specifically, if the C content of the inner layer 7 exceeds 0.30%, weldability may be impaired. Moreover, although it is desirable to reduce C content of the inner layer 7, when it will be less than 0.003%, the intensity | strength of the whole steel materials may not be ensured. Therefore, the C content of the inner layer 7 is preferably 0.003 to 0.30%. On the other hand, if the C content exceeds 0.25%, the ductility in the ferrite structure may not be secured, and if the C content is less than 0.0005%, the strength of the entire steel material May not be secured. Therefore, the C content of the soft layer 6 is preferably 0.0005 to 0.25%.

なお、軟質層6のC含有量は連続的に変化しているため、本発明における軟質層6のC含有量は、軟質層6の中心部におけるC含有量と定義する。また、C含有量の測定は、JIS G0558で規定されている「鋼の脱炭層深さ測定方法」の付属書3「電子線マイクロアナリシスによる炭素濃度測定方法」に記載されている方法によって実施し、これにより得られた軟質層6の表面から内層7までの炭素濃度推移曲線における軟質層6中央部での炭素濃度を、軟質層6のC含有量とする。   In addition, since C content of the soft layer 6 is changing continuously, C content of the soft layer 6 in this invention is defined as C content in the center part of the soft layer 6. FIG. The C content is measured by the method described in Appendix 3 “Method for measuring carbon concentration by electron microanalysis” of “Method for measuring depth of steel decarburized layer” defined in JIS G0558. The carbon concentration at the center of the soft layer 6 in the carbon concentration transition curve from the surface of the soft layer 6 to the inner layer 7 thus obtained is defined as the C content of the soft layer 6.

次に、C以外の元素について説明する。以下に示す元素の含有量の好ましい範囲は、軟質層6及び内層7で共通である。   Next, elements other than C will be described. The preferred range of the element content shown below is common to the soft layer 6 and the inner layer 7.

Si:0.01〜2.00%
Siは、強度を確保するために有用な元素であるが、Si含有量が0.01%未満の場合、その効果が得られないことがある。一方、Si含有量が2.00%を超えると、溶接性が損なわれることがある。よって、軟質層6及び内層7におけるSi含有量は0.01〜2.00%とすることが好ましい。
Si: 0.01 to 2.00%
Si is an element useful for ensuring strength, but when the Si content is less than 0.01%, the effect may not be obtained. On the other hand, if the Si content exceeds 2.00%, weldability may be impaired. Therefore, the Si content in the soft layer 6 and the inner layer 7 is preferably 0.01 to 2.00%.

Mn:0.01〜3.00%
Mnは、安価に強度を向上させることができる元素として有用である。しかしながら、Mn含有量が0.01%未満の場合、十分な強度が確保できないことがある。一方、Mn含有量が3.00%を超えると、溶接性が損なわれることがある。よって、軟質層6及び内層7におけるMn含有量は、0.01〜3.00%とすることが好ましい。
Mn: 0.01 to 3.00%
Mn is useful as an element that can improve strength at low cost. However, when the Mn content is less than 0.01%, sufficient strength may not be ensured. On the other hand, if the Mn content exceeds 3.00%, weldability may be impaired. Therefore, the Mn content in the soft layer 6 and the inner layer 7 is preferably 0.01 to 3.00%.

S:0.050%以下
Sは、製鋼工程で不可避的に鋼材に含まれる不純物であり、S含有量が多すぎると、具体的には、S含有量が0.050%を超えると、溶接性及び靭性が損なわれることがある。よって、軟質層6及び内層7におけるS含有量は、0.050%以下に規制することが好ましい。
S: 0.050% or less S is an impurity inevitably contained in the steel material in the steelmaking process. When the S content is too much, specifically, when the S content exceeds 0.050%, welding is performed. And toughness may be impaired. Therefore, the S content in the soft layer 6 and the inner layer 7 is preferably regulated to 0.050% or less.

Al:0.001〜0.1%
Alは、脱酸元素であるが、その含有量が0.001%未満の場合、その効果が十分に得られないことがある。一方、Al含有量が0.1%を超えると、鋼中の介在物が多くなりすぎ、靭性を低下させることがある。よって、軟質層6及び内層7におけるAl含有量は、0.001〜0.1%とすることが好ましい。
Al: 0.001 to 0.1%
Al is a deoxidizing element, but if its content is less than 0.001%, the effect may not be sufficiently obtained. On the other hand, if the Al content exceeds 0.1%, the amount of inclusions in the steel becomes excessive and the toughness may be lowered. Therefore, the Al content in the soft layer 6 and the inner layer 7 is preferably 0.001 to 0.1%.

本発明の超音波衝撃処理鋼材における軟質層6及び内層7には、上記各成分に加えてP、Ti、B、Ni、Cu、Mo、Nb及びVからなる群から選択された1種又は2種以上の元素を含有していてもよい。   The soft layer 6 and the inner layer 7 in the ultrasonic shock-treated steel material of the present invention include one or two selected from the group consisting of P, Ti, B, Ni, Cu, Mo, Nb and V in addition to the above components. It may contain more than seed elements.

P、Ti、B、Ni、Cu、Mo、Nb及びVは、いずれも固溶強化機構又は析出強化機構により疲労強度を向上させる元素であり、この点でこれらの元素は同効成分である。しかしながら、P含有量が0.02%未満、Ti含有量が0.005%未満、B含有量が0.0001%未満、Ni含有量が0.1%未満、Cu含有量が0.1%未満、Mo含有量が0.1%未満、Nb含有量が0.005%未満、V含有量が0.005%未満の場合、前述した効果が得られない。一方、これらの元素を過剰に添加すると、具体的には、P含有量が0.20%を超えるか、Ti含有量が1.0%を超えるか、B含有量が0.01%を超えるか、Ni含有量が5.0%を超えるか、Cu含有量が2.0%を超えるか、Mo含有量が4.0%を超えるか、Nb含有量が1.0%を超えるか、又はV含有量が2.0%を超えると、材質が劣化する。よって、軟質層6及び内層7にこれらの元素を添加する場合は、夫々P:0.02〜0.20%、Ti:0.005〜1.0%、B:0.0001〜0.01%、Ni:0.1〜5.0%、Cu:0.1〜2.0%、Mo:0.1〜4.0%、Nb:0.005〜1.0%及びV:0.005〜2.0%とする。なお、Pは、通常の製鋼工程において不可避的に鋼材に含まれる元素であるが、疲労強度をより向上させるためにはP含有量を0.02%以上とすることが望ましい。   P, Ti, B, Ni, Cu, Mo, Nb and V are all elements that improve fatigue strength by a solid solution strengthening mechanism or a precipitation strengthening mechanism, and these elements are synergistic components in this respect. However, the P content is less than 0.02%, the Ti content is less than 0.005%, the B content is less than 0.0001%, the Ni content is less than 0.1%, and the Cu content is 0.1%. If the Mo content is less than 0.1%, the Nb content is less than 0.005%, and the V content is less than 0.005%, the above-described effects cannot be obtained. On the other hand, when these elements are added excessively, specifically, the P content exceeds 0.20%, the Ti content exceeds 1.0%, or the B content exceeds 0.01%. Or whether the Ni content exceeds 5.0%, the Cu content exceeds 2.0%, the Mo content exceeds 4.0%, or the Nb content exceeds 1.0%, Or when V content exceeds 2.0%, a material will deteriorate. Therefore, when these elements are added to the soft layer 6 and the inner layer 7, P: 0.02 to 0.20%, Ti: 0.005 to 1.0%, B: 0.0001 to 0.01, respectively. %, Ni: 0.1-5.0%, Cu: 0.1-2.0%, Mo: 0.1-4.0%, Nb: 0.005-1.0% and V: 0.00. 005 to 2.0%. Note that P is an element inevitably contained in the steel material in a normal steelmaking process, but it is desirable that the P content be 0.02% or more in order to further improve the fatigue strength.

本発明の超音波衝撃処理鋼材の軟質層6及び内層7における上記各元素以外の成分、即ち、残部は、Fe及び不可避的不純物である。また、本発明の超音波衝撃処理鋼材において、Nは、疲労強度に及ぼす影響が小さいのため、その成分範囲は特に限定するものではない。   Components other than the above-described elements in the soft layer 6 and the inner layer 7 of the ultrasonic shock-treated steel material of the present invention, that is, the balance, are Fe and inevitable impurities. Moreover, in the ultrasonic impact-treated steel material of the present invention, N has no particular effect on the fatigue strength, so the component range is not particularly limited.

更に、本発明の超音波衝撃処理鋼材の形状は、特に限定するものではなく、板状、棒状、管状及び形材、並びに複雑な形状の部材について、疲労破壊が問題になる鋼材に適用することが可能である。   Furthermore, the shape of the ultrasonic shock-treated steel material of the present invention is not particularly limited, and plate-shaped, rod-shaped, tubular and shaped materials, and complicated-shaped members are applied to steel materials in which fatigue failure is a problem. Is possible.

次に、本発明の超音波衝撃処理鋼材を使用した超音波衝撃処理方法について説明する。本発明者は、超音波衝撃処理における先端工具の幅(直径)Rについて検討を行った。図3は、本発明の超音波衝撃処理鋼材を幅が狭い先端工具を使用して超音波衝撃処理した場合の表面の形状、及び残留応力の厚さ方向における分布を示す図であり、図4は、幅が広い先端工具を使用して超音波衝撃処理した場合の表面の形状、及び残留応力の厚さ方向における分布を示す図である。その結果、図3に示すように、先端工具5aの幅(直径)Rを2.0mmよりも小さくすると、圧縮残留応力の最大値の位置4が軟質層6内に存在してしまい、表面1からの距離Lが1.0mm以上の部分では圧縮残留応力が小さくなってしまうこと、一方、図4に示すように、先端工具5bの幅(直径)Rが5.0mmよりも大きいと、表層(軟質層6)で十分な塑性変形が得られない場合があり、同様に十分な圧縮残留応力が得られないことが判明した。そこで、本発明の超音波衝撃処理方法においては、使用する先端工具の幅(直径)Rを2.0〜5.0mmとする。   Next, an ultrasonic impact treatment method using the ultrasonic impact treated steel material of the present invention will be described. The inventor examined the width (diameter) R of the tip tool in the ultrasonic impact treatment. FIG. 3 is a diagram showing the shape of the surface and the distribution of residual stress in the thickness direction when the ultrasonic impact-treated steel material of the present invention is subjected to ultrasonic impact treatment using a narrow tip tool. These are figures which show the shape of the surface at the time of performing an ultrasonic impact process using a wide tip tool, and distribution in the thickness direction of residual stress. As a result, as shown in FIG. 3, when the width (diameter) R of the tip tool 5a is smaller than 2.0 mm, the position 4 of the maximum value of the compressive residual stress exists in the soft layer 6, and the surface 1 When the distance L from the portion is 1.0 mm or more, the compressive residual stress becomes small. On the other hand, when the width (diameter) R of the tip tool 5b is larger than 5.0 mm as shown in FIG. It has been found that sufficient plastic deformation may not be obtained with (soft layer 6), and similarly sufficient compressive residual stress cannot be obtained. Therefore, in the ultrasonic impact treatment method of the present invention, the width (diameter) R of the tip tool used is set to 2.0 to 5.0 mm.

なお、本発明の超音波衝撃処理方法は、付与する超音波を20〜32kHz、ピン振幅を25〜35μmとし、塑性変形量(変形深さ)は20〜30μmとすることが好ましい。   In the ultrasonic impact treatment method of the present invention, it is preferable that the applied ultrasonic wave is 20 to 32 kHz, the pin amplitude is 25 to 35 μm, and the plastic deformation amount (deformation depth) is 20 to 30 μm.

以下、本発明の効果を、実施例及び比較例を挙げて具体的に説明する。本実施例においては、下記表1に示す各処理を行い、下記表2に示す鋼組成で、下記表3に示す機械的性質及び板厚の熱延鋼板を製作した。即ち、No.A、No.B及びNo.Dの処理では、下記表1に示す各条件で、均質鋼板の脱炭処理を行った。その際、脱炭雰囲気ガスは、炭酸ガス:14体積%、一酸化炭素ガス:2体積%、水蒸気:2体積%、水素ガス:2体積%を含有し、残部が窒素ガスからなる組成とした。また、No.Cの処理では、溶鋼の内側にSi及びMnを含有する鉄合金からなるワイヤを挿入した後、引き抜き速度を調整することにより複層鋳片を製造し、熱間圧延により厚さが3.2mmの鋼板を製造した。なお、下記表2に示す鋼組成における残部は、Fe及び不純物である。また、下記表3に示す軟質層及び内層のビッカース硬さは、荷重を0.98Nとして、JIS G0558で規定している「鋼の脱炭層深さ測定方法」に記載されている方法により求めた値である。更に、下記表3における下線は、本発明の範囲外であることを示す。   Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples. In this example, each treatment shown in the following Table 1 was performed, and hot-rolled steel sheets having the mechanical properties and thickness shown in Table 3 below were manufactured with the steel compositions shown in Table 2 below. That is, no. A, No. B and No. In the process of D, the decarburization process of the homogeneous steel plate was performed on each condition shown in the following Table 1. At that time, the decarburizing atmosphere gas contains carbon dioxide gas: 14% by volume, carbon monoxide gas: 2% by volume, water vapor: 2% by volume, hydrogen gas: 2% by volume, and the balance is composed of nitrogen gas. . No. In the process of C, after inserting a wire made of an iron alloy containing Si and Mn into the molten steel, a multi-layer slab is manufactured by adjusting the drawing speed, and the thickness is 3.2 mm by hot rolling. The steel plate was manufactured. The balance in the steel composition shown in Table 2 below is Fe and impurities. In addition, the Vickers hardness of the soft layer and the inner layer shown in Table 3 below was determined by the method described in “Method for measuring depth of decarburized layer of steel” defined in JIS G0558, assuming that the load is 0.98N. Value. Furthermore, the underline in the following Table 3 indicates that it is outside the scope of the present invention.

Figure 2007284777
Figure 2007284777

Figure 2007284777
Figure 2007284777

Figure 2007284777
Figure 2007284777

図5は、本発明の実施例における疲労試験片を示す図である。次に、これら実施例及び比較例の鋼板をTIG溶接して、図5に示す重ね隅肉溶接継手を製作した後、上記表3に示す幅の先端工具を使用して、試験片中央にある溶接止端に対して超音波衝撃処理を行った。この超音波衝撃処理は1パスとした。そして、超音波衝撃処理後の試料片について疲労試験を行った。疲労試験方法としては、応力比(=最小荷重/最大荷重)を−1とする平面曲げ機構による両振り荷重制御疲労試験を採用し、室温・大気中で行った。その結果、荷重の制御が困難となる寿命を破断寿命として、破断寿命が200万回となる表面応力振幅を疲労強度として比較した。その結果を上記表3に併せて示す。   FIG. 5 is a view showing a fatigue test piece in the example of the present invention. Next, after steel plates of these examples and comparative examples were TIG welded to produce the lap fillet welded joint shown in FIG. 5, the tip tool having the width shown in Table 3 above was used, and it was in the center of the test piece. Ultrasonic impact treatment was performed on the weld toe. This ultrasonic impact treatment was one pass. And the fatigue test was done about the sample piece after ultrasonic impact treatment. As a fatigue test method, a double swing load control fatigue test using a plane bending mechanism with a stress ratio (= minimum load / maximum load) of −1 was adopted and performed in room temperature and in the atmosphere. As a result, the life that makes it difficult to control the load was defined as the rupture life, and the surface stress amplitude at which the rupture life was 2 million times was compared as the fatigue strength. The results are also shown in Table 3 above.

上記表2及び表3に示すように、実施例No.1〜No.6の鋼板は、特別な添加元素を含まない厚さが2.3mmの厚鋼板であり、軟質層の厚さ及びビッカース固さHvsが本発明の範囲にある例である。これに対して、比較例No.27の鋼板は、同じく特別な添加元素を含まない厚さが2.3mmの厚鋼板であるが、軟質層のビッカース硬さHvsが140未満の場合の例である。そして、疲労試験の結果、実施例No.1〜No.6の鋼板は、比較例No.27の鋼板に比べて、30%以上の疲労強度向上効果が認められ、本発明の超音波衝撃処理用鋼板が疲労強度向上に有効であることが確認された。   As shown in Table 2 and Table 3 above, Example No. 1-No. The steel plate No. 6 is a thick steel plate having a thickness of 2.3 mm that does not contain a special additive element, and is an example in which the thickness of the soft layer and the Vickers hardness Hvs are within the scope of the present invention. In contrast, Comparative Example No. The steel plate No. 27 is a steel plate having a thickness of 2.3 mm that does not contain any special additive element, but is an example in which the soft layer has a Vickers hardness Hvs of less than 140. As a result of the fatigue test, Example No. 1-No. The steel plate of No. 6 is Comparative Example No. Compared with 27 steel plates, a fatigue strength improvement effect of 30% or more was recognized, and it was confirmed that the steel plate for ultrasonic shock treatment of the present invention was effective in improving fatigue strength.

また、No.7〜No.10の鋼板は、同じく板厚が2.3mmで、本発明の請求項4で規定している添加元素を含む実施例であり、前述の実施例No.1〜No.6の鋼板よりもさらに10%程度の疲労強度向上が認められた。更に、No.11〜No.24の鋼板は、板厚が3.2mmの鋼材に関する実施例であり、これらの鋼板のうち、No.11〜No.16の鋼板は、複層鋳造により作製した鋼材、No.17〜No.24の鋼板は、脱炭により作製した鋼材に関する実施例である。そして、実施例No.11〜No.24の鋼板は、軟質層及び内層のC含有量は同じであるが、内層にSi及びMnが添加されているため、内層は軟質層よりも大きなビッカース硬度を示した。また、実施例No.11〜No.16の鋼板は、同じ板厚の複層鋳造による鋼材であり、軟質層のビッカース硬さが本発明の範囲外である比較例No.29の鋼板と比べて、40%程度の疲労強度向上効果が認められた。また、同じ板厚の複層鋳造による鋼材であり、表層の厚さが大きい比較例No.30及びNo.31の鋼板と比べて、50%程度の疲労強度向上効果が認められた。これにより、本発明の超音波衝撃処理鋼板は、疲労強度向上に有効であることが確認された。   No. 7-No. The steel plate No. 10 is an example having the same plate thickness of 2.3 mm and containing the additive element defined in claim 4 of the present invention. 1-No. A fatigue strength improvement of about 10% was observed compared with the steel plate No. 6. Furthermore, no. 11-No. Steel plate No. 24 is an example relating to a steel material having a plate thickness of 3.2 mm. 11-No. Steel plate No. 16 is a steel material produced by multi-layer casting, No. 17-No. The steel plate of 24 is an Example regarding the steel materials produced by decarburization. And Example No. 11-No. The steel plate No. 24 had the same C content in the soft layer and the inner layer, but Si and Mn were added to the inner layer, so that the inner layer exhibited a Vickers hardness greater than that of the soft layer. In addition, Example No. 11-No. Steel plate No. 16 is a steel material by multi-layer casting having the same plate thickness, and the soft layer has a Vickers hardness outside the scope of the present invention. Compared with 29 steel plates, a fatigue strength improvement effect of about 40% was observed. Moreover, it is a steel material by multi-layer casting with the same plate thickness, and the comparative example No. having a large surface layer thickness. 30 and no. Compared with 31 steel plates, a fatigue strength improvement effect of about 50% was recognized. Thereby, it was confirmed that the ultrasonic impact-treated steel sheet of the present invention is effective in improving fatigue strength.

脱炭により作製した鋼材の実施例であるNo.17〜No.24の鋼板は、板厚が同じで、脱炭により作製した鋼材であるが、軟質層のビッカース硬さHvsが本発明の範囲外にある比較例No.28の鋼板と比べて、40%以上の疲労強度向上効果が認められた。また、軟質層の厚さが、本発明の範囲よりも薄い比較例No.32の鋼板と比べて、40%以上の疲労強度向上効果が認められた。更に、本発明の請求項2に係る発明の実施例であるNo.17〜No.24の鋼板は、軟質層のC含有量が内層よりも低く、延性の改善された組織となって疲労亀裂の進展速度を遅らせる効果があるため、複層鋳造により作製した鋼材に関する実施例のNo.11〜No.16の鋼板に比べて、20%程度高い疲労強度を示した。   No. which is an example of steel material produced by decarburization. 17-No. The steel plate No. 24 has the same thickness and is produced by decarburization, but the soft layer has a Vickers hardness Hvs outside the scope of the present invention. Compared to 28 steel plates, a fatigue strength improvement effect of 40% or more was recognized. In addition, Comparative Example No. in which the thickness of the soft layer is thinner than the range of the present invention. Compared to 32 steel plates, a fatigue strength improvement effect of 40% or more was recognized. Furthermore, No. 2 which is an embodiment of the invention according to claim 2 of the present invention. 17-No. The steel plate No. 24 has a C content of the soft layer lower than that of the inner layer, and has an effect of delaying the fatigue crack growth rate with a structure with improved ductility. . 11-No. Compared to 16 steel plates, the fatigue strength was about 20% higher.

実施例No.25及びNo.26の鋼板は、鋼板自体は本発明の範囲内であるが、超音波衝撃処理で使用した先端工具の幅が本発明の請求項5に係る発明で規定している範囲から外れている。このため、比較例No.29の鋼板と比べると、30%以上の疲労強度向上効果が認められるが、板厚が同じで、脱炭により作製した実施例No.17〜No.24の鋼板と比べると、疲労強度が20%程度低かった。   Example No. 25 and no. In the steel plate 26, the steel plate itself is within the scope of the present invention, but the width of the tip tool used in the ultrasonic impact treatment is out of the range defined in the invention according to claim 5 of the present invention. For this reason, Comparative Example No. Compared with the steel plate of No. 29, an effect of improving the fatigue strength by 30% or more is recognized, but the plate thickness is the same and Example No. 17-No. Compared with 24 steel plates, the fatigue strength was about 20% lower.

上述した結果から、本発明の超音波衝撃処理用鋼材及び超音波衝撃処理方法は、鋼材の疲労強度向上に極めて有効であることが判明した。   From the results described above, it was found that the steel material for ultrasonic impact treatment and the ultrasonic impact treatment method of the present invention are extremely effective in improving the fatigue strength of the steel material.

本発明の超音波衝撃処理用鋼材を超音波衝撃処理した場合の表面の形状、及び残留応力の厚さ方向における分布を示す図である。It is a figure which shows the shape of the surface at the time of ultrasonic impact treatment of the steel material for ultrasonic impact treatment of this invention, and distribution in the thickness direction of a residual stress. 硬さが均一な均質鋼材を超音波衝撃処理した場合の表面の形状及び残留応力の厚さ方向における分布を示す図である。It is a figure which shows the distribution in the thickness direction of the surface shape at the time of carrying out ultrasonic impact treatment of the homogeneous steel material with uniform hardness. 本発明の超音波衝撃処理鋼材を、幅が狭い先端工具を使用して超音波衝撃処理した場合の表面の形状、及び残留応力の厚さ方向における分布を示す図である。It is a figure which shows the surface shape at the time of carrying out the ultrasonic impact process of the ultrasonic impact-treated steel material of this invention using the narrow tool with a narrow width | variety, and distribution in the thickness direction of a residual stress. 本発明の超音波衝撃処理鋼材を、幅が広い先端工具を使用して超音波衝撃処理した場合の表面の形状、及び残留応力の厚さ方向における分布を示す図である。It is a figure which shows the shape of the surface at the time of carrying out the ultrasonic impact process of the ultrasonic impact-treated steel material of this invention using a wide tip tool, and distribution in the thickness direction of a residual stress. 本発明の実施例における疲労試験片を示す図である。It is a figure which shows the fatigue test piece in the Example of this invention.

符号の説明Explanation of symbols

1 鋼材表面
2 超音波衝撃処理部分
3 圧縮残留応力
3a 引張残留応力
4 圧縮残留応力が最大となる位置
5,5a,5b 先端工具
6 軟質層
7 内層
L 表面1と圧縮残留応力が最大となる位置4との距離
R 先端工具5,5aの幅(直径)
DESCRIPTION OF SYMBOLS 1 Steel material surface 2 Ultrasonic impact process part 3 Compressive residual stress 3a Tensile residual stress 4 Position where compression residual stress becomes the maximum 5,5a, 5b Tip tool 6 Soft layer 7 Inner layer L Surface 1 and position where compression residual stress becomes the maximum Distance from 4 R Width (diameter) of tip tool 5, 5a

Claims (5)

表面に軟質層が形成された複層鋼材であって、
前記軟質層のビッカース硬さHvs及び前記軟質層を除く内層のビッカース硬さHviが下記数式を満足し、
前記軟質層の厚さが0.1mm以上1.0mm未満であることを特徴とする疲労強度に優れた超音波衝撃処理用鋼材。
Figure 2007284777
A multilayer steel material having a soft layer formed on the surface,
The Vickers hardness Hvs of the soft layer and the Vickers hardness Hvi of the inner layer excluding the soft layer satisfy the following formula,
A steel material for ultrasonic impact treatment excellent in fatigue strength, wherein the soft layer has a thickness of 0.1 mm or more and less than 1.0 mm.
Figure 2007284777
前記軟質層は、前記内層よりもC含有量(質量%)が低いことを特徴とする疲労強度に優れた請求項1に記載の超音波衝撃処理用鋼材。   The steel material for ultrasonic impact treatment according to claim 1, wherein the soft layer has a lower C content (mass%) than the inner layer, and is excellent in fatigue strength. 前記軟質層は、質量%で、C:0.0005〜0.25%、Si:0.01〜2.00%、Mn:0.01〜3.00%、S:0.050%以下及びAl:0.001〜0.1%を含有し、残部がFe及び不可避的不純物からなる組成を有し、
前記内層は、C:0.003〜0.30%、Si:0.01〜2.00%、Mn:0.01〜3.00%、S:0.050%以下及びAl:0.001〜0.1%を含有し、残部がFe及び不可避的不純物からなる組成を有することを特徴とする請求項1又は2に記載の疲労強度に優れた超音波衝撃処理用鋼材。
The soft layer is, in mass%, C: 0.0005 to 0.25%, Si: 0.01 to 2.00%, Mn: 0.01 to 3.00%, S: 0.050% or less and Al: 0.001 to 0.1% is contained, the balance has a composition consisting of Fe and inevitable impurities,
The inner layer is composed of C: 0.003 to 0.30%, Si: 0.01 to 2.00%, Mn: 0.01 to 3.00%, S: 0.050% or less, and Al: 0.001. The steel material for ultrasonic impact treatment with excellent fatigue strength according to claim 1 or 2, wherein the steel material contains ~ 0.1%, and the balance is composed of Fe and inevitable impurities.
前記軟質層及び前記内層は、更に、質量%で、P:0.02〜0.20%、Ti:0.005〜1.0%、B:0.0001〜0.01%、Ni:0.1〜5.0%、Cu:0.1〜2.0%、Mo:0.1〜4.0%、Nb:0.005〜1.0%及びV:0.005〜2.0%からなる群から選択された1種又は2種以上の元素を含有することを特徴とする請求項3に記載の疲労強度に優れた超音波衝撃処理用鋼材。   The soft layer and the inner layer are further in mass%, P: 0.02 to 0.20%, Ti: 0.005 to 1.0%, B: 0.0001 to 0.01%, Ni: 0. 0.1-5.0%, Cu: 0.1-2.0%, Mo: 0.1-4.0%, Nb: 0.005-1.0% and V: 0.005-2.0 The steel material for ultrasonic impact treatment with excellent fatigue strength according to claim 3, comprising one or more elements selected from the group consisting of%. 請求項1〜4の何れか1項に記載の鋼材に、幅が2.0〜5.0mmの先端工具を用いて超音波衝撃処理を行うことを特徴とする疲労強度に優れた超音波衝撃処理方法。   An ultrasonic impact excellent in fatigue strength, wherein the steel material according to any one of claims 1 to 4 is subjected to an ultrasonic impact treatment using a tip tool having a width of 2.0 to 5.0 mm. Processing method.
JP2006116927A 2006-04-20 2006-04-20 Steel material for ultrasonic shock treatment having excellent fatigue strength and ultrasonic shock treatment method Withdrawn JP2007284777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006116927A JP2007284777A (en) 2006-04-20 2006-04-20 Steel material for ultrasonic shock treatment having excellent fatigue strength and ultrasonic shock treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006116927A JP2007284777A (en) 2006-04-20 2006-04-20 Steel material for ultrasonic shock treatment having excellent fatigue strength and ultrasonic shock treatment method

Publications (1)

Publication Number Publication Date
JP2007284777A true JP2007284777A (en) 2007-11-01

Family

ID=38756836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006116927A Withdrawn JP2007284777A (en) 2006-04-20 2006-04-20 Steel material for ultrasonic shock treatment having excellent fatigue strength and ultrasonic shock treatment method

Country Status (1)

Country Link
JP (1) JP2007284777A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110172566A (en) * 2019-05-10 2019-08-27 北京理工大学 A kind of device and method cut down and be homogenized for complex component residual stress
CN114137070A (en) * 2021-10-25 2022-03-04 湖南工学院 Method for identifying ultrasonic softening coefficient in ultrasonic vibration cutting of pipe threads of ore-raising

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110172566A (en) * 2019-05-10 2019-08-27 北京理工大学 A kind of device and method cut down and be homogenized for complex component residual stress
CN114137070A (en) * 2021-10-25 2022-03-04 湖南工学院 Method for identifying ultrasonic softening coefficient in ultrasonic vibration cutting of pipe threads of ore-raising
CN114137070B (en) * 2021-10-25 2023-10-10 湖南工学院 Method for identifying ultrasonic softening coefficient in ultrasonic vibration cutting of mine raising pipe threads

Similar Documents

Publication Publication Date Title
KR101584235B1 (en) Thick steel plate having thickness of 50mm or more with excellent long brittle crack arrestability, method for manufacturing the same and method and testing apparatus for evaluating long brittle crack arresting performance
JP5218200B2 (en) Weld metal and weld material
EP1930461A1 (en) Ferritic stainless steel for automobile exhaust gas passage components and welded steel pipe
JP5870665B2 (en) High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking
JP5109233B2 (en) Ferritic / austenitic stainless steel with excellent corrosion resistance at welds
JP5751013B2 (en) Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance
Saravanan et al. Effect of process parameters in microstructural and mechanical properties of Nd: YAG laser welded super duplex stainless steel
KR19980703593A (en) Welding coefficient with excellent fatigue strength
JP5171327B2 (en) Steel plate for skin plate excellent in thickness direction toughness of heat-affected zone with large heat input and manufacturing method thereof
JP3896031B2 (en) Manufacturing method of high strength UOE steel pipe
JP4319886B2 (en) Large heat input butt weld joint with brittle fracture resistance
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP2007284777A (en) Steel material for ultrasonic shock treatment having excellent fatigue strength and ultrasonic shock treatment method
JP4923968B2 (en) Steel material with excellent fatigue crack propagation resistance
JP3924235B2 (en) High fatigue strength fillet welding method for thin steel sheet
JP2010023106A (en) Weld metal for stainless steel welded joint, and method for evaluating corrosion resistance thereof
JP5171006B2 (en) Welded joints with excellent brittle fracture resistance
JP5870664B2 (en) High strength welded steel pipe and manufacturing method thereof
JP5919650B2 (en) ERW steel pipe excellent in HIC resistance and low temperature toughness of ERW welded part and method for manufacturing the same
Mohammadijoo Development of a welding process to improve welded microalloyed steel characteristics
JP6248545B2 (en) Steel plate, steel slab using the same, and method for producing them
JP2004136311A (en) Welded joint having high fatigue strength, and method for improving fatigue strength of welded joint
Devakumar et al. Experimental investigation of DSS/HRS GTAW weldments
JP5870561B2 (en) High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking
JP3705171B2 (en) Laser welded steel structural member and steel material used for the steel structural member

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707