JP2007283714A - Method and apparatus for manufacturing resin molded product - Google Patents

Method and apparatus for manufacturing resin molded product Download PDF

Info

Publication number
JP2007283714A
JP2007283714A JP2006115966A JP2006115966A JP2007283714A JP 2007283714 A JP2007283714 A JP 2007283714A JP 2006115966 A JP2006115966 A JP 2006115966A JP 2006115966 A JP2006115966 A JP 2006115966A JP 2007283714 A JP2007283714 A JP 2007283714A
Authority
JP
Japan
Prior art keywords
mold
resin
molded body
resin molded
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006115966A
Other languages
Japanese (ja)
Other versions
JP4335225B2 (en
Inventor
Akihiro Naito
章弘 内藤
Kazutoshi Yakimoto
数利 焼本
Tsukasa Shiroganeya
司 白銀屋
Hiroshi Ito
伊東  宏
Takashi Ochiiwa
崇 落岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2006115966A priority Critical patent/JP4335225B2/en
Publication of JP2007283714A publication Critical patent/JP2007283714A/en
Application granted granted Critical
Publication of JP4335225B2 publication Critical patent/JP4335225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To release a resin molded product having minute uneven parts on the surface from a mold having a minute uneven shape promptly, easily and surely, while the uneven shape is satisfactorily maintained. <P>SOLUTION: In a method for manufacturing a resin molded product using molds 11 and 12 constituted of two or more parts assembled, the resin contact face 111 of at least one mold part is partially or wholly subjected to a treatment for enhancing the adhesiveness to resin in advance by a treating means 10, and the mold is opened with the resin molded product adhered on the mold face having been subjected to the treatment, to selectively release the resin molded product from the mold face having been not subjected to the treatment and an apparatus for practising the method is also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、樹脂成形体の製造方法および装置に関するものであり、詳しくは、表面に微細な凹凸部を有する樹脂成形体を、その凹凸形状を良好に維持しながら、金型から迅速に、容易に、かつ確実に離型することのできる樹脂成形体の製造方法および装置に関するものである。   The present invention relates to a method and apparatus for producing a resin molded body, and more specifically, a resin molded body having fine irregularities on the surface can be quickly and easily maintained from a mold while maintaining its irregular shape satisfactorily. In addition, the present invention relates to a method and an apparatus for producing a resin molded body that can be reliably released.

現在、数十nmから数百μmの微細な凹凸形状を表面に有するとともに、三次元、薄肉、かつ大面積の形状を有する成形体が、マイクロレンズ・アレイのような電子ディスプレイ用光学部品、マルチモード光導波路のような光情報通信用部品、マイクロ化学チップのようなライフサイエンス部品等として求められている。
従来、微細な凹凸形状を有する製品は、ガラスやシリコンの基板上に、機械加工により、形成されていたが、加工時間が長くコストが高いなどの問題があり、近年、安価で大量生産に適している樹脂への転換が図られている。
一般にこのような成形体は、少なくとも一方の表面に微細な凹凸部を有する上金型および下金型を用い、この下金型上(もしくは下金型と上金型の間)に熱可塑性樹脂を設置し、金型を閉鎖させてプレスし、その後、得られた成形体を金型から離型することによって製造されている。
しかしながら、このようにして製造された表面に微細な凹凸形状を有する成形体は、特に微細な凹凸形状のアスペクト比(深さ/幅)が高い場合に顕著であるが、転写率が高いと、金型の微細凹凸部と強固に付着し、離型できない;無理に離型した場合、微細凹凸部を損傷させたり、成形体を破損してしまう;特に、抜き勾配のない成形体の場合、金型を微細凹凸面に対し、厳密に垂直に引抜かなければ、微細凹凸を損傷させてしまう;という問題点を有する。
At present, molded products having fine irregularities of several tens of nanometers to several hundreds of micrometers on the surface and three-dimensional, thin, and large-area shapes are used for optical components for electronic displays such as microlens arrays. There is a demand for optical information communication components such as mode optical waveguides, life science components such as microchemical chips, and the like.
Conventionally, products with fine irregularities have been formed on glass and silicon substrates by machining, but there are problems such as long processing time and high cost. In recent years, they are inexpensive and suitable for mass production. Conversion to a new resin is being made.
In general, such a molded body uses an upper mold and a lower mold having fine uneven portions on at least one surface, and a thermoplastic resin is formed on the lower mold (or between the lower mold and the upper mold). The mold is closed and pressed, and then the obtained molded body is released from the mold.
However, the molded article having a fine uneven shape on the surface thus produced is particularly remarkable when the aspect ratio (depth / width) of the fine uneven shape is high, but when the transfer rate is high, It adheres firmly to the fine irregularities of the mold and cannot be released; if it is forcibly released, the fine irregularities will be damaged or the molded body will be damaged; If the mold is not pulled out strictly perpendicular to the fine irregular surface, the fine irregularities will be damaged.

特許文献1(特開2002−59440号公報)には、成形型より光学部品を離型するに際し、両者の接合部に局所的な温度差を与えて接合部を局所的に剥離し、該局所的な温度差による剥離域を順次拡大させて全域の離型を行う光学部品の製造方法および装置が開示されている。しかしこの技術は、成形型と光学部品の温度差によるソリを利用するため、光学部品が成形型から斜め方向に離型することになり、微細な凹凸形状が損傷するという問題点がある。この問題点は、微細な凹凸形状が円柱や角柱等の形状を有する場合に顕著であり、これにより微細な凹凸形状によっては適用できないものがある。また、微細な凹凸形状のアスペクト比(深さ/幅)が大きい場合には、特に円滑な垂直方向への離型が困難となる。装置についても冷却用のエアー配管や押上部(機械式イジェクタ部)を設置する必要があり、装置構成が複雑になり、コストが増加するという問題点もある。
特許文献2(特開2003−154573号公報)には、固定側金型と可動側金型とで形成される微細な凹凸を有するキャビティ内に成形原料を充填し、両金型を加熱し、両金型のいずれか一方もしくは両方に設けられた超音波振動子によって超音波振動させながら加圧、及び離型するエンボス加工成形方法および装置が開示されている。超音波振動子を使用することにより、成形体の離型は可能であるが、金型に超音波振動子を設置する必要があり、この場合も前記特許文献1と同様に装置構成が複雑になり、コストが増加するという問題点がある。また、超音波振動が原因で微細な凹凸が損傷する可能性がある。
なお、離型剤を金型表面に塗布することも考えられるが、例えば微細な流路形状を有するチップなどでは、後加工のときにカバーが接着できなくなるなど、離型剤が樹脂製品に悪影響を及ぼす場合があり、根本的な解決にはならない。
これに対し、微細凹凸部の反対側の面(鏡面側)に成形体を付着させたまま、微細凹凸面に対し垂直方向に金型を引き離せば、不良のない成形体が得られる。このような方法として、真空吸引により、鏡面側に成形体を付着させる方法が考えられるが、下記に示すような問題がある。すなわち、図9に示すように、真空力を利用して成形体90を微細な凹凸部911を有する金型91から剥離する場合、成形体90を真空吸引するための真空ポート92の周辺に力が大きく働き、面内の剥離力の分布が不安定となるため、微細な凹凸部911と成形体90が強固に付着している場合、剥離が真空ポート92を中心とした同心円状に広がっていき、微視的には垂直に引き抜くことができない。さらに、成形時に溶融樹脂が真空ポート92に侵入し、成形品の外観を損なうという問題がある。
In Patent Document 1 (Japanese Patent Laid-Open No. 2002-59440), when the optical component is released from the mold, a local temperature difference is given to the joint between the two, and the joint is locally peeled off. A method and apparatus for manufacturing an optical component in which a release region due to a typical temperature difference is sequentially expanded to release the entire region is disclosed. However, since this technique uses a warp due to a temperature difference between the mold and the optical component, the optical component is released from the mold in an oblique direction, and there is a problem that the fine uneven shape is damaged. This problem is conspicuous when the fine uneven shape has a shape such as a cylinder or a prism, and there are cases where this is not applicable depending on the fine uneven shape. In addition, when the aspect ratio (depth / width) of the fine uneven shape is large, it is difficult to release in a particularly smooth vertical direction. Also for the device, it is necessary to install an air pipe for cooling and a push-up portion (mechanical ejector portion), and there is a problem that the device configuration becomes complicated and the cost increases.
In Patent Document 2 (Japanese Patent Laid-Open No. 2003-154573), a molding material is filled in a cavity having fine irregularities formed by a fixed side mold and a movable side mold, and both molds are heated, There is disclosed an embossing molding method and apparatus for pressurizing and releasing while ultrasonically oscillating with an ultrasonic vibrator provided on one or both of both molds. Although it is possible to release the molded body by using the ultrasonic vibrator, it is necessary to install the ultrasonic vibrator in the mold, and in this case as well, the apparatus configuration is complicated as in Patent Document 1. Therefore, there is a problem that the cost increases. In addition, fine unevenness may be damaged due to ultrasonic vibration.
Although it is conceivable to apply a mold release agent to the mold surface, the mold release agent has an adverse effect on the resin product, for example, a chip having a fine channel shape cannot be bonded to the cover during post-processing. May not be a fundamental solution.
On the other hand, if the mold is pulled away in a direction perpendicular to the fine irregular surface while the molded article is adhered to the surface opposite to the fine irregularities (mirror side), a defective article can be obtained. As such a method, a method of adhering the molded body to the mirror surface side by vacuum suction can be considered, but there are problems as described below. That is, as shown in FIG. 9, when the molded body 90 is peeled off from the mold 91 having the fine uneven portions 911 using a vacuum force, a force is applied around the vacuum port 92 for vacuum suction of the molded body 90. Since the distribution of the in-plane peeling force becomes unstable, when the fine uneven portion 911 and the molded body 90 are firmly attached, the peeling spreads concentrically around the vacuum port 92. It cannot be pulled out vertically microscopically. Furthermore, there is a problem that the molten resin enters the vacuum port 92 during molding and impairs the appearance of the molded product.

特開2002−59440号公報JP 2002-59440 A 特開2003−154573号公報JP 2003-154573 A

したがって本発明の目的は、離型しにくい樹脂成形体、とくに表面に微細な凹凸部を有する樹脂成形体を、その凹凸形状を良好に維持しながら、金型から迅速に、容易に、かつ確実に離型することのできる樹脂成形体の製造方法および装置を提供することにある。   Accordingly, an object of the present invention is to quickly, easily and reliably remove a resin molded body that is difficult to release, particularly a resin molded body having fine uneven portions on its surface, while maintaining its uneven shape well. Another object of the present invention is to provide a method and an apparatus for producing a resin molded body that can be released from the mold.

請求項1に記載の発明は、二つ以上の部分を組み合せることにより構成される金型を用いて樹脂成形体を製造する方法において、少なくとも一つの金型部分の樹脂接触面の一部または全体にあらかじめ樹脂との付着性を高める処理を行い、当該処理を行った金型面に樹脂成形体を付着させたまま金型を開放することで、当該処理を行っていない金型面から前記樹脂成形体を選択的に離型する工程を含むことを特徴とする樹脂成形体の製造方法である。   The invention according to claim 1 is a method of manufacturing a resin molded body using a mold constituted by combining two or more parts, and a part of a resin contact surface of at least one mold part or The entire process is performed to increase the adhesion to the resin in advance, and the mold is opened while the resin molded body is adhered to the mold surface that has been subjected to the treatment, so that the mold surface is not subjected to the treatment. It is a manufacturing method of the resin molding characterized by including the process of selectively releasing a resin molding.

請求項2に記載の発明は、前記付着性を高める処理が、放電照射処理であることを特徴とする請求項1に記載の樹脂成形体の製造方法である。   Invention of Claim 2 is a manufacturing method of the resin molding of Claim 1 characterized by the process which improves the said adhesiveness being discharge irradiation treatment.

請求項3に記載の発明は、前記放電照射処理が、プラズマ放電照射処理であることを特徴とする請求項2に記載の樹脂成形体の製造方法である。   Invention of Claim 3 is a manufacturing method of the resin molding of Claim 2 whose said discharge irradiation process is a plasma discharge irradiation process.

請求項4に記載の発明は、前記プラズマ放電照射処理が、大気圧条件下で使用可能なプラズマ放電照射装置による処理であることを特徴とする請求項3に記載の樹脂成形体の製造方法である。   According to a fourth aspect of the present invention, in the method for producing a resin molded body according to the third aspect, the plasma discharge irradiation treatment is a treatment by a plasma discharge irradiation apparatus that can be used under atmospheric pressure conditions. is there.

請求項5に記載の発明は、前記プラズマ放電照射処理が、コロナ放電照射処理であることを特徴とする請求項3または4に記載の樹脂成形体の製造方法である。   The invention according to claim 5 is the method for producing a resin molded body according to claim 3 or 4, wherein the plasma discharge irradiation treatment is a corona discharge irradiation treatment.

請求項6に記載の発明は、前記付着性を高める処理が光オゾン法処理であり、酸素存在条件下で金型に光を照射し、生成したオゾンで処理することを特徴とする請求項1に記載の樹脂成形体の製造方法である。   According to a sixth aspect of the present invention, the treatment for improving the adhesion is a photo-ozone method treatment, wherein the mold is irradiated with light in the presence of oxygen and treated with the generated ozone. It is a manufacturing method of the resin molding of description.

請求項7に記載の発明は、前記光オゾン法処理が、低圧水銀ランプもしくはキセノンエキシマランプによる処理であることを特徴とする請求項6に記載の樹脂成形体の製造方法である。   The invention according to claim 7 is the method for producing a resin molded body according to claim 6, wherein the photo-ozone method treatment is treatment with a low-pressure mercury lamp or a xenon excimer lamp.

請求項8に記載の発明は、前記プラズマ放電照射処理が、プラズマ放電照射装置を金型内に挿入し、プラズマ放電照射処理を行うことを特徴とする請求項3〜5のいずれかに記載の樹脂成形体の製造方法である。   The invention according to claim 8 is characterized in that the plasma discharge irradiation treatment is performed by inserting a plasma discharge irradiation apparatus into a mold and performing the plasma discharge irradiation treatment. It is a manufacturing method of a resin molding.

請求項9に記載の発明は、前記光オゾン法処理が、低圧水銀ランプもしくはキセノンエキシマランプを金型内に挿入し、光オゾン法処理を行うことを特徴とする請求項6に記載の樹脂成形体の製造方法である。   The invention according to claim 9 is the resin molding according to claim 6, wherein the optical ozone method treatment is performed by inserting a low-pressure mercury lamp or a xenon excimer lamp into a mold and performing the optical ozone method treatment. It is a manufacturing method of a body.

請求項10に記載の発明は、前記金型が、第一型および第二型より構成される金型であり、少なくとも前記第二型の樹脂接触面の一部もしくは全体が微細な凹凸部であり、前記第一型の樹脂接触面の一部または全体にあらかじめ前記樹脂との付着性を高める処理を行い、前記付着性を高める処理を行った前記第一型に樹脂成形体を付着させたまま前記金型を開放することで、選択的に前記第二型の微細な凹凸部を有する金型面から前記樹脂成形体を離型することを特徴とする請求項1〜9のいずれかに記載の樹脂成形体の製造方法である。   According to a tenth aspect of the present invention, the mold is a mold composed of a first mold and a second mold, and at least a part or the whole of the resin contact surface of the second mold is a fine uneven part. Yes, a part of or the entire resin contact surface of the first mold was previously subjected to a treatment for increasing the adhesion with the resin, and the resin molded body was adhered to the first mold subjected to the treatment for enhancing the adhesion The resin molded body is selectively released from the mold surface of the second mold having the fine irregularities by opening the mold as it is. It is a manufacturing method of the resin molding as described.

請求項11に記載の発明は、前記第二型の微細な凹凸部が、微細な凹凸部を有するスタンパを金型に装着することで前記第二型上に形成されることを特徴とする請求項10に記載の樹脂成形体の製造方法である。   The invention according to claim 11 is characterized in that the fine uneven portion of the second mold is formed on the second mold by mounting a stamper having the fine uneven portion on the mold. Item 11. A method for producing a resin molded article according to Item 10.

請求項12に記載の発明は、前記付着性を高める処理を行った前記第一型に樹脂成形体を付着させたまま前記金型を開放し、前記第二型の微細な凹凸部を有する金型面から前記樹脂成形体を離型する工程において、前記金型を微細な凹凸部を有する金型面に対して垂直に開放することを特徴とする請求項10または11に記載の樹脂成形体の製造方法である。   According to a twelfth aspect of the present invention, the mold is opened while the resin molded body is adhered to the first mold that has been subjected to the treatment for improving the adhesion, and the second mold has a fine uneven portion. The resin molded body according to claim 10 or 11, wherein, in the step of releasing the resin molded body from the mold surface, the mold is opened perpendicularly to the mold surface having fine uneven portions. It is a manufacturing method.

請求項13に記載の発明は、前記第一型に熱可塑性樹脂との付着性を高める処理を施す工程と、
前記第一型と前記第二型の間に前記熱可塑性樹脂を装填する工程と、
前記第一型と前記第二型とを閉鎖し、前記第一型と前記第二型との間に装填された熱可塑性樹脂に圧力を加え、圧力もしくは圧力と温度を調整しながら、前記熱可塑性樹脂に前記第二型の微細な凹凸部の形状を転写し、樹脂成形体を成形する工程と、
前記処理により、前記第一型に前記樹脂成形体を付着させたまま、前記第一型あるいは前記第二型を前記微細な凹凸部に対して垂直に開放することで、前記樹脂成形体を前記第二型の微細な凹凸部から選択的に離型する工程とを有することを特徴とする請求項10〜12のいずれかに記載の樹脂成形体の製造方法である。
The invention according to claim 13 is a step of subjecting the first mold to a treatment for improving adhesion to a thermoplastic resin;
Loading the thermoplastic resin between the first mold and the second mold;
The first mold and the second mold are closed, pressure is applied to the thermoplastic resin loaded between the first mold and the second mold, and the heat or the pressure is adjusted while adjusting the pressure or pressure and temperature. Transferring the shape of the fine irregularities of the second mold to a plastic resin, and molding a resin molded body;
By the treatment, the first mold or the second mold is opened perpendicularly with respect to the fine irregularities while the resin molded body is adhered to the first mold. The method for producing a resin molded body according to any one of claims 10 to 12, further comprising a step of selectively releasing the fine irregularities of the second mold.

請求項14に記載の発明は、前記第一型と前記第二型の間に熱可塑性樹脂を装填する工程が、前記第二型の微細な凹凸部上に溶融した熱可塑性樹脂を、吐出手段を移動させながら塗布する工程であることを特徴とする請求項13に記載の樹脂成形体の製造方法である。   According to a fourteenth aspect of the present invention, in the step of loading the thermoplastic resin between the first mold and the second mold, the thermoplastic resin melted on the fine irregularities of the second mold is discharged by means of discharging. It is the process of apply | coating while moving, The manufacturing method of the resin molding of Claim 13 characterized by the above-mentioned.

請求項15に記載の発明は、前記金型が圧縮成形装置に使用される金型であり、
前記第一型と前記第二型の間に熱可塑性樹脂を装填する工程が、溶融状態もしくは半溶融状態の熱可塑性樹脂を前記金型内に設置する工程であることを特徴とする請求項13に記載の樹脂成形体の製造方法である。
Invention of Claim 15 is a metal mold | die with which the said metal mold | die is used for a compression molding apparatus,
14. The step of loading a thermoplastic resin between the first mold and the second mold is a step of placing a molten or semi-molten thermoplastic resin in the mold. It is a manufacturing method of the resin molding of description.

請求項16に記載の発明は、前記金型がホットエンボス装置もしくはナノインプリント装置に使用される金型であり、
前記第一型と前記第二型の間に熱可塑性樹脂を装填する工程が、フィルム状もしくは板状の熱可塑性樹脂を前記金型内に設置する工程であることを特徴とする請求項13に記載の樹脂成形体の製造方法である。
The invention according to claim 16 is a mold used in a hot embossing device or a nanoimprinting device.
The step of loading a thermoplastic resin between the first mold and the second mold is a process of installing a film-like or plate-like thermoplastic resin in the mold. It is a manufacturing method of the resin molding as described.

請求項17に記載の発明は、前記金型が射出成形に使用される金型であり、
前記金型に熱可塑性樹脂を装填する工程および前記熱可塑性樹脂に前記金型の微細な凹凸部の形状を転写し、樹脂成形体を成形する工程が、
(1)完全に閉鎖した状態の金型内に溶融した熱可塑性樹脂を射出充填する工程と、
前記第一型と前記第二型との間に射出充填された熱可塑性樹脂に圧力を加え、圧力もしくは圧力と温度を調整しながら、前記熱可塑性樹脂に前記第二型の微細な凹凸部の形状を転写し、樹脂成形体を成形する工程
または、
(2)わずかに開いた略閉鎖状態の金型内に溶融した熱可塑性樹脂を射出充填する工程と、
略閉鎖状態の前記第一型と前記第二型とを完全に閉鎖することにより射出充填された熱可塑性樹脂に圧力を加えるとともに、圧力もしくは圧力と温度を調整しながら、前記熱可塑性樹脂に前記第二型の微細な凹凸部の形状を転写し、樹脂成形体を成形する工程
であることを特徴とする請求項13に記載の樹脂成形体の製造方法である。
The invention according to claim 17 is a mold in which the mold is used for injection molding,
The step of loading a thermoplastic resin into the mold and the step of transferring the shape of the fine irregularities of the mold to the thermoplastic resin and molding a resin molded body,
(1) injection-filling a molten thermoplastic resin into a completely closed mold;
Applying pressure to the thermoplastic resin injected and filled between the first mold and the second mold, and adjusting the pressure or pressure and temperature, the fine irregularities of the second mold on the thermoplastic resin A process of transferring the shape and molding a resin molded body, or
(2) a step of injecting and filling a molten thermoplastic resin into a mold that is slightly open and in a substantially closed state;
Applying pressure to the injection-filled thermoplastic resin by completely closing the first mold and the second mold in a substantially closed state, and adjusting the pressure or pressure and temperature to the thermoplastic resin The method for producing a resin molded body according to claim 13, wherein the method is a step of forming a resin molded body by transferring the shape of the fine irregularities of the second mold.

請求項18に記載の発明は、前記樹脂との付着性を高める処理を行った前記金型の少なくとも一つの金型部分もしくは前記第一型に樹脂成形体を付着させたまま金型を開放することで、当該処理を行っていない前記金型面もしくは前記第二型から前記樹脂成形体を選択的に離型した後、前記金型の少なくとも一つの金型部分もしくは前記第一型から前記樹脂成形体を離型する工程を有することを特徴とする請求項1〜17のいずれかに記載の樹脂成形体の製造方法である。   According to an eighteenth aspect of the present invention, the mold is opened while the resin molded body is adhered to at least one mold portion of the mold or the first mold which has been subjected to the treatment for improving the adhesion to the resin. Then, after selectively releasing the resin molded body from the mold surface or the second mold that has not been subjected to the treatment, the resin from at least one mold portion of the mold or the first mold It is a manufacturing method of the resin molding in any one of Claims 1-17 which has the process of releasing a molding.

請求項19に記載の発明は、前記樹脂との付着性を高める処理を行った前記金型の少なくとも一つの金型部分もしくは前記第一型から前記樹脂成形体を離型する工程において、前記金型の少なくとも一つの金型部分もしくは前記第一型を冷却することを特徴とする請求項18に記載の樹脂成形体の製造方法である。   According to a nineteenth aspect of the present invention, in the step of releasing the resin molded body from at least one mold portion of the mold or the first mold that has been subjected to a treatment for improving adhesion to the resin, 19. The method for producing a resin molded body according to claim 18, wherein at least one mold portion of the mold or the first mold is cooled.

請求項20に記載の発明は、前記樹脂との付着性を高める処理を行った前記金型の少なくとも一つの金型部分もしくは前記第一型から前記樹脂成形体を離型する工程において、非接触搬送体を使用して樹脂成形体を離型し、前記金型の外部に搬送することを特徴とする請求項18または19に記載の樹脂成形体の製造方法である。   The invention according to claim 20 is characterized in that, in the step of releasing the resin molded body from at least one mold portion of the mold or the first mold subjected to a treatment for improving adhesion to the resin, non-contact is performed. 20. The method for producing a resin molded body according to claim 18, wherein the molded resin is released using a transport body and transported to the outside of the mold.

請求項21に記載の発明は、前記金型は温度調節機能を有し、金型形状を転写する際および金型から樹脂成形体を離型する際に、前記金型の加熱および冷却が各々行われることを特徴とする請求項1〜20のいずれかに記載の樹脂成形体の製造方法である。   The invention according to claim 21 is characterized in that the mold has a temperature adjusting function, and when the mold shape is transferred and the resin molded body is released from the mold, the mold is heated and cooled respectively. It is performed, The method for producing a resin molded body according to any one of claims 1 to 20.

請求項22に記載の発明は、請求項1〜21のいずれかに記載の製造方法により製造されたことを特徴とする樹脂成形体である。   The invention according to claim 22 is a resin molded body manufactured by the manufacturing method according to any one of claims 1 to 21.

請求項23に記載の発明は、請求項1に記載の樹脂成形体の製造方法を実施するための樹脂成形体の製造装置であって、
前記樹脂成形体の製造装置は、対向して配置される一組の第一型および第二型から構成される金型と、
前記一組の金型部分の少なくとも樹脂接触面の温度を調節する温度調節手段と、
前記第一型と前記第二型の開放・閉鎖および前記第一型と前記第二型との間の熱可塑性樹脂の加圧を行なう駆動手段と、
熱可塑性樹脂に対する金型の付着性を高める処理を行う手段とを有し、
前記付着性を高める処理を行う手段によって前記第一型の樹脂接触面の一部もしくは全体に前記熱可塑性樹脂との付着性を高める処理を行い、
前記第一型と前記第二型の内部もしくは前記第一型と前記第二型との間に前記熱可塑性樹脂を装填し、前記温度調節手段および駆動手段によって閉鎖状態の前記第一型および前記第二型間に圧力を加え、圧力もしくは圧力と温度を調整しながら、前記熱可塑性樹脂に金型形状を転写して樹脂成形体を成形し、続いて、前記付着性を高める処理を行った前記第一型に前記樹脂成形体を付着させたまま金型を開放することで、前記付着性を高める処理を行っていない第二型から前記樹脂成形体を選択的に離型し、その後、前記樹脂成形体の付着した第一型を冷却し、前記第一型から前記樹脂成形体を離型するように構成したことを特徴とする樹脂成形体の製造装置である。
Invention of Claim 23 is the manufacturing apparatus of the resin molding for enforcing the manufacturing method of the resin molding of Claim 1, Comprising:
The apparatus for producing a resin molded body includes a mold composed of a pair of a first mold and a second mold that are arranged to face each other,
Temperature adjusting means for adjusting the temperature of at least the resin contact surface of the set of mold parts;
Drive means for performing opening / closing of the first mold and the second mold and pressurization of the thermoplastic resin between the first mold and the second mold;
A means for performing a treatment for increasing the adhesion of the mold to the thermoplastic resin,
Performing a process of increasing the adhesion with the thermoplastic resin to a part or the whole of the resin contact surface of the first type by means for performing the process of increasing the adhesion;
The thermoplastic resin is loaded into the first mold and the second mold or between the first mold and the second mold, and the first mold and the closed mold are closed by the temperature adjusting means and the driving means. While applying pressure between the second molds and adjusting the pressure or pressure and temperature, the mold shape was transferred to the thermoplastic resin to form a resin molded body, followed by a treatment for increasing the adhesion. By releasing the mold while the resin molded body is attached to the first mold, the resin molded body is selectively released from the second mold that has not been subjected to the treatment for improving the adhesion, and then, The apparatus for producing a resin molded body is characterized in that the first mold to which the resin molded body is adhered is cooled and the resin molded body is released from the first mold.

請求項24に記載の発明は、請求項10に記載の樹脂成形体の製造方法を実施するための樹脂成形体の製造装置であって、
前記樹脂成形体の製造装置は、樹脂接触面の一部もしくは全体が微細な凹凸部である第二型と、対向して配置される第一型から構成される金型とを備え、
前記一組の金型部分の少なくとも樹脂接触面の温度を調節する温度調節手段と、
前記第一型と前記第二型の開放・閉鎖および前記第一型と前記第二型との間の熱可塑性樹脂を加圧を行なう駆動手段と、
熱可塑性樹脂に対する金型の付着力を高める処理を行う手段とを有し、
前記付着性を高める処理を行う手段によって前記第一型の樹脂接触面の一部もしくは全体に前記熱可塑性樹脂との付着性を高める処理を行い、
前記第一型と前記第二型の内部もしくは前記第一型と前記第二型との間に前記熱可塑性樹脂を装填し、前記温度調節手段および駆動手段によって閉鎖状態の前記第一型および前記第二型間間に圧力を加え、圧力もしくは圧力と温度を調整しながら、前記熱可塑性樹脂に金型形状を転写して樹脂成形体を成形し、続いて、前記付着性を高める処理を行った前記第一型に前記樹脂成形体を付着させたまま、前記処理を行っていない前記第二型の微細な凹凸部から前記樹脂成形体を選択的に離型し、その後、前記樹脂成形体の付着した第一型を冷却し、前記第一型から前記樹脂成形体を離型するように構成したことを特徴とする樹脂成形体の製造装置である。
Invention of Claim 24 is the manufacturing apparatus of the resin molding for enforcing the manufacturing method of the resin molding of Claim 10, Comprising:
The apparatus for manufacturing a resin molded body includes a second mold in which a part or the whole of a resin contact surface is a fine uneven portion, and a mold composed of a first mold disposed to face the second mold.
Temperature adjusting means for adjusting the temperature of at least the resin contact surface of the set of mold parts;
Drive means for opening and closing the first mold and the second mold and pressurizing the thermoplastic resin between the first mold and the second mold;
Having a means for increasing the adhesion of the mold to the thermoplastic resin,
Performing a process for increasing the adhesion with the thermoplastic resin on a part or the whole of the resin contact surface of the first type by means for performing the process for increasing the adhesion;
The thermoplastic resin is loaded into the first mold and the second mold or between the first mold and the second mold, and the first mold and the closed mold are closed by the temperature adjusting means and the driving means. While applying pressure between the second molds and adjusting the pressure or pressure and temperature, the mold shape is transferred to the thermoplastic resin to form a resin molded body, and then the adhesion is increased. In addition, the resin molded body is selectively released from the fine uneven portions of the second mold that is not subjected to the treatment while the resin molded body is adhered to the first mold, and then the resin molded body It is the manufacturing apparatus of the resin molding characterized by cooling the 1st type | mold to which this was adhered, and releasing the said resin molding from the said 1st type | mold.

請求項25に記載の発明は、前記熱可塑性樹脂に対する金型の付着性を高める処理を行う手段が、大気圧条件下で使用可能なプラズマ放電照射処理装置、大気圧条件下で使用可能なコロナ放電照射処理装置、低圧水銀ランプ、キセノンエキシマランプのいずれかであることを特徴とする請求項23または24に記載の樹脂成形体の製造装置である。   The invention according to claim 25 is characterized in that the means for performing the treatment for enhancing the adhesion of the mold to the thermoplastic resin is a plasma discharge irradiation treatment apparatus that can be used under atmospheric pressure conditions, and a corona that can be used under atmospheric pressure conditions. The apparatus for producing a resin molded body according to claim 23 or 24, wherein the apparatus is a discharge irradiation treatment apparatus, a low-pressure mercury lamp, or a xenon excimer lamp.

本発明によれば、離型しにくい樹脂成形体、とくに表面に微細な凹凸部を有する樹脂成形体を、その凹凸形状を良好に維持しながら、金型から迅速に、容易に、かつ確実に離型することのできる樹脂成形体の製造方法および装置を提供することができる。本発明は、樹脂成形体側の制約などにより離型剤などが使用できない場合に特に有効であるが、離型剤などを使用した場合には、さらに離型が容易となり、より大きな効果を得ることができる。また、射出成形、圧縮成形、ホットエンボス法では、従来、金型の微細な凹凸部を100%転写すると離型が困難なため、離型が難しいパターンでは、意図的に転写率を低くする、大きな抜き勾配を取るなどの方法が取られている場合があるが、本発明では、100%転写した場合や抜き勾配のない状態でも樹脂成形体を金型から良好に離型することが可能となる。また、従来技術では大面積の成形体を良好に離型することは困難であったが、本発明では、金型と樹脂との付着性を高める処理を行った金型の各部で樹脂と金型との付着力が強固かつ均一になるので、大面積の金型であっても、全域で樹脂成形体が均一に付着し、付着性を高める処理を行っていない側の金型表面の微細な凹凸部からも均一に離型することが可能となり、大面積の製品でも微細な凹凸部の変形、損傷のない樹脂成形体を得ることができる。   According to the present invention, a resin molded body that is difficult to release, particularly a resin molded body having fine uneven portions on the surface, can be quickly, easily and reliably removed from the mold while maintaining the uneven shape well. The manufacturing method and apparatus of the resin molding which can be released can be provided. The present invention is particularly effective when a release agent or the like cannot be used due to restrictions on the resin molded body side, but when a release agent or the like is used, the release becomes easier and a greater effect can be obtained. Can do. In addition, in injection molding, compression molding, and hot embossing methods, conventionally, mold release is difficult when 100% of the fine irregularities of the mold are transferred, so in patterns that are difficult to release, the transfer rate is intentionally lowered. There are cases where a method such as taking a large draft is taken, but in the present invention, it is possible to release the resin molded body from the mold well even when 100% is transferred or there is no draft. Become. In addition, in the prior art, it has been difficult to release a molded article having a large area satisfactorily. Since the adhesion to the mold is strong and uniform, even if the mold has a large area, the resin molded body adheres uniformly throughout the entire area, and the mold surface on the side that has not been treated to improve the adhesion is fine. It is possible to release even from uneven portions, and a resin molded body having no deformation and damage of fine uneven portions can be obtained even in a large-area product.

本発明は、二つ以上の部分を組み合せることにより構成される金型から樹脂成形体を製造する方法および装置において、少なくとも一つの金型部分の樹脂接触面の一部または全体にあらかじめ樹脂との付着性を高める処理が行われており、当該処理を行った金型面に樹脂成形体を付着させたまま金型を開放し、当該処理を行っていない金型面と樹脂成形体とを選択的に離型することを特徴としている。特に、少なくとも一つの金型部分の樹脂接触面の一部または全体にあらかじめ熱可塑性樹脂に対する付着性を高める処理が行われていることを特徴としている。当該処理には、プラズマ放電照射処理、光オゾン法処理などを利用することができ、樹脂成形体の製造後は当該処理を行った金型に樹脂成形体を付着させ、当該処理を施していない金型から樹脂成形体を剥離することを特徴としている。   The present invention relates to a method and an apparatus for producing a resin molded body from a mold constituted by combining two or more parts, and a resin is previously applied to a part or the whole of a resin contact surface of at least one mold part. The mold is opened with the resin molded body attached to the mold surface subjected to the treatment, and the mold surface not subjected to the treatment and the resin molded body are processed. It is characterized by selective release. In particular, the resin contact surface of at least one mold part is preliminarily subjected to a treatment for improving adhesion to a thermoplastic resin. For the treatment, plasma discharge irradiation treatment, photo-ozone method treatment, or the like can be used. After the resin molded body is manufactured, the resin molded body is attached to the mold subjected to the treatment, and the treatment is not performed. It is characterized in that the resin molded body is peeled from the mold.

熱可塑性樹脂としてはとくに制限されないが、例えばポリメチルメタクリレート樹脂(PMMA)、ポリカーボネート(PC)、シクロオレフィン(COP)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアリレート(PAR)、ポリイミド(PI)、ポリスチレン(PS)、ポリプロピレン(PP)、ポリアミド(PA)、ポリエチレン(PE)、ポリアセタール(POM)、エチレン-酢酸ビニル共重合樹脂(EVA)、アクリロニトリルブタジエンスチレン(ABS)、ポリ塩化ビニル(PVC)、ポリフェニレンオキサイド(PPO)、メチルメタクリレート・スチレン樹脂(MS)、メチルメタクリレート・ブタジエン・スチレン樹脂(MBS)またはこれらの混合物などが挙げられる。また、樹脂成形体に求められる性能にあわせて、特別に製造された熱可塑性樹脂でもよい。なお、本発明は上記樹脂に限定されない。例えば、熱可塑性樹脂が光硬化性樹脂、熱硬化性樹脂、放射線硬化樹脂やその他の重合性樹脂であっても同様の効果を得ることができる。   Although not particularly limited as a thermoplastic resin, for example, polymethyl methacrylate resin (PMMA), polycarbonate (PC), cycloolefin (COP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyarylate (PAR), polyimide (PI), polystyrene (PS), polypropylene (PP), polyamide (PA), polyethylene (PE), polyacetal (POM), ethylene-vinyl acetate copolymer resin (EVA), acrylonitrile butadiene styrene (ABS), polyvinyl chloride (PVC), polyphenylene oxide (PPO), methyl methacrylate / styrene resin (MS), methyl methacrylate / butadiene / styrene resin (MBS), or a mixture thereof. Further, a thermoplastic resin specially manufactured in accordance with the performance required for the resin molded body may be used. In addition, this invention is not limited to the said resin. For example, the same effect can be obtained even if the thermoplastic resin is a photocurable resin, a thermosetting resin, a radiation curable resin, or another polymerizable resin.

本発明で使用される金型の材料に特に制限はないが、鋼材、ステンレスなどの金属、あるいはガラス、セラミック等の無機物が挙げられる。望ましくは樹脂成形用金型によく用いられるステンレス系の材料がよい。   Although there is no restriction | limiting in particular in the material of the metal mold | die used by this invention, Metals, such as steel materials and stainless steel, or inorganic substances, such as glass and a ceramic, are mentioned. Desirably, a stainless steel material often used for a resin molding die is preferable.

以下、図面を参照しながら本発明の製造方法および製造装置をさらに詳細に説明する。
図1は本発明における製造装置の一実施形態の概略断面図であり、一方の金型(第一型)表面が鏡面を有し、他方の金型(第二型)表面が数十nm〜数百μmの微細な凹凸部を有する形態である。以下の説明において、第一型および第二型は、それぞれ上金型および下金型である。なお、本発明は下記の形態に制限されない。転写すべき金型形状は、微細な凹凸形状に制限されず、任意である。上金型および下金型の両方の表面に所望の形状を賦形してもよい。
Hereinafter, the manufacturing method and manufacturing apparatus of the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of an embodiment of a production apparatus according to the present invention, in which one mold (first mold) surface has a mirror surface and the other mold (second mold) surface has several tens of nanometers. It is the form which has a fine uneven part of several hundred micrometers. In the following description, the first mold and the second mold are an upper mold and a lower mold, respectively. In addition, this invention is not restrict | limited to the following form. The mold shape to be transferred is not limited to a fine uneven shape and is arbitrary. A desired shape may be formed on the surfaces of both the upper mold and the lower mold.

図1において、製造装置1は、対向して配置される一対の上金型11および下金型12を備えてなる。上金型11および下金型12は嵌合可能であり、可動金型としての上金型11には、駆動手段としての加力発生器13が設置されている。加力発生器13は、上金型11および下金型12の型開閉と上金型11および下金型12のキャビティ面間の樹脂層の加圧を可能にするとともに、金型の精密な位置・速度および圧力制御機能を有する。
図1の形態では、上金型11のキャビティ面が鏡面111を有し、下金型12のキャビティ面が微細な凹凸部121を有する。
なお、本発明は上記形態に限定されない。前記上金型および下金型は金型の開閉および加圧が可能であれば、必ずしも嵌合させる必要はないし、前記金型を90°回転させて使用してもよい。また、前記金型は3つ以上の金型部分を組み合せることにより構成される金型であってもよい。
In FIG. 1, the manufacturing apparatus 1 includes a pair of an upper mold 11 and a lower mold 12 that are arranged to face each other. The upper mold 11 and the lower mold 12 can be fitted to each other, and a force generator 13 as a driving unit is installed in the upper mold 11 as a movable mold. The force generator 13 enables the mold opening and closing of the upper mold 11 and the lower mold 12 and pressurization of the resin layer between the cavity surfaces of the upper mold 11 and the lower mold 12, and the precision of the mold. It has position / speed and pressure control functions.
In the form of FIG. 1, the cavity surface of the upper mold 11 has a mirror surface 111, and the cavity surface of the lower mold 12 has fine uneven portions 121.
In addition, this invention is not limited to the said form. The upper mold and the lower mold do not necessarily need to be fitted as long as the mold can be opened and closed and pressed, and the mold may be rotated 90 degrees. The mold may be a mold configured by combining three or more mold parts.

上金型11の鏡面111はRaが2.0μm以下の鏡面であることが好ましく、0.2μm以下の鏡面であることがさらに好ましい。本明細書でいうRaとはJIS B0601-1994に規定された算術平均粗さを意味する。
下金型12は、微細な凹凸部121を有する。微細な凹凸部121は、例えば10nm〜1mmの幅または直径を有するとともに、10nm〜1mmの深さまたは高さを有する。
また、上金型11および下金型12には、図1に示したように、加熱手段と、冷却手段を設置するのが好ましい。加熱手段は、例えば加熱ヒータ15から構成され、冷却手段は、冷却水が流れる冷却管16から構成されている。また、上金型11および下金型12には、図示しない温度センサおよび温度制御手段が設けられ、これらにより両金型の温度制御が可能となっている。なお上金型11および下金型12の温度制御は、PID制御などにより行うことができる。上記温度制御手段は、上金型11と下金型12で別々に備えることが望ましく、加熱速度、冷却速度の調節を行えることがさらに望ましい。加熱速度の制御は前記PID制御などにより、冷却速度の制御は冷却水量調節などにより容易に行うことができる。
The mirror surface 111 of the upper mold 11 is preferably a mirror surface with Ra of 2.0 μm or less, and more preferably a mirror surface of 0.2 μm or less. Ra in the present specification means the arithmetic average roughness defined in JIS B0601-1994.
The lower mold 12 has fine uneven portions 121. The fine uneven portion 121 has, for example, a width or diameter of 10 nm to 1 mm and a depth or height of 10 nm to 1 mm.
Moreover, as shown in FIG. 1, it is preferable to install a heating means and a cooling means in the upper mold 11 and the lower mold 12. The heating means is constituted by a heater 15, for example, and the cooling means is constituted by a cooling pipe 16 through which cooling water flows. Further, the upper mold 11 and the lower mold 12 are provided with a temperature sensor and a temperature control means (not shown), thereby enabling temperature control of both molds. The temperature control of the upper mold 11 and the lower mold 12 can be performed by PID control or the like. The temperature control means is desirably provided separately for the upper mold 11 and the lower mold 12, and more preferably capable of adjusting the heating rate and the cooling rate. The heating rate can be easily controlled by the PID control or the like, and the cooling rate can be easily controlled by adjusting the amount of cooling water.

また本発明の製造装置1は、金型の一方に熱可塑性樹脂の付着性を高める処理を行う処理手段10を有する。該処理手段10は、図示しない移動手段によって、金型内への進入、金型外への移動が可能である。
当該処理を行うタイミングとしては特に制限されないが、前記上金型11と下金型12の間に熱可塑性樹脂を装填する前に行うことが望ましい。このときの金型温度はとくに制限はない。また、当該処理は成形サイクルごとに毎回行っても良いが、本発明者らは上記付着性の高める処理の効果が通常、数時間から1日程度は持続することを見出しており、前記付着性の向上の効果がなくなる前に前記処理を行うならば、数時間に1回程度の頻度でも良好な樹脂成形体を連続して製造することができる。
Moreover, the manufacturing apparatus 1 of this invention has the process means 10 which performs the process which improves the adhesiveness of a thermoplastic resin to one side of a metal mold | die. The processing means 10 can be moved into and out of the mold by a moving means (not shown).
The timing for performing the treatment is not particularly limited, but it is preferable to perform the treatment before the thermoplastic resin is loaded between the upper mold 11 and the lower mold 12. The mold temperature at this time is not particularly limited. In addition, the treatment may be performed every molding cycle, but the present inventors have found that the effect of the treatment for improving the adhesion usually lasts for several hours to about 1 day, and the adhesion If the treatment is carried out before the effect of improvement is lost, a good resin molded article can be continuously produced even at a frequency of about once every several hours.

処理手段10は、熱可塑性樹脂に対する金型の付着性を高めることができれば、とくに制限されないが、放電照射処理が可能な装置であるのが好ましい。放電照射処理装置としては、プラズマ放電照射処理装置、その中でもとくにコロナ放電照射処理が挙げられ、これらは取り扱い性、生産性の観点から大気圧条件下で使用可能なものが好ましい。
図1に示すように処理手段10は、金型が開放している状態で金型内に進入する。図1の形態では、処理手段10は、移動しながら上金型11の樹脂接触面である鏡面111に、矢印に示したような放電照射処理を行う。鏡面111の面積が放電照射の面積以下の場合、処理手段10は固定された状態でも良いが、鏡面111の面積が放電照射の面積より大きい場合、処理手段10が移動しながら、樹脂接触面全体に均一に放電照射処理を行うことが望ましく、また、このとき、処理手段10と鏡面111との距離が一定に保たれることがさらに望ましい。放電照射処理完了後、処理手段10は金型外に移動する。前記放電照射処理により、鏡面111上の油膜などの汚染物が除去されると同時に、鏡面111が活性化し、極性基が形成され、熱可塑性樹脂との濡れ性が向上する。上記濡れ性の向上は面内に均一に作用し、樹脂成形体と鏡面111との付着力が増大するため、その結果、下記で説明するように、上金型11および下金型12を垂直方向に開放したときに、樹脂成形体を鏡面111に付着させたまま、従来は離型が困難であった、微細な凹凸部121を有する下金型12からの円滑な離型を達成できる。
なお、本発明は上記形態に限定されない。例えば、下金型が樹脂接触面の一部のみに微細な凹凸部を有する場合、前記放電照射処理を上金型の樹脂接触面の一部にのみ行ってもよい。この場合、少なくとも下金型の微細な凹凸部に対応する上金型の鏡面部分に対して放電照射処理を行えば、上金型の樹脂接触面である鏡面全体に対して放電照射処理を行ったときと同様に、微細な凹凸部を有する下金型からの円滑な離型を達成できる。
Although the processing means 10 will not be restrict | limited especially if the adhesiveness of the metal mold | die with respect to a thermoplastic resin can be improved, It is preferable that it is an apparatus in which discharge irradiation processing is possible. Examples of the discharge irradiation treatment apparatus include a plasma discharge irradiation treatment apparatus, and among them, a corona discharge irradiation treatment, among which those that can be used under atmospheric pressure are preferable from the viewpoints of handleability and productivity.
As shown in FIG. 1, the processing means 10 enters the mold while the mold is open. In the form of FIG. 1, the processing means 10 performs a discharge irradiation process as indicated by an arrow on the mirror surface 111 that is the resin contact surface of the upper mold 11 while moving. When the area of the mirror surface 111 is less than or equal to the area of the discharge irradiation, the processing means 10 may be fixed. However, when the area of the mirror surface 111 is larger than the area of the discharge irradiation, the processing means 10 moves and the entire resin contact surface is moved. It is desirable to uniformly perform the discharge irradiation process, and at this time, it is more desirable to keep the distance between the processing means 10 and the mirror surface 111 constant. After completion of the discharge irradiation process, the processing means 10 moves out of the mold. By the discharge irradiation treatment, contaminants such as an oil film on the mirror surface 111 are removed, and at the same time, the mirror surface 111 is activated, polar groups are formed, and wettability with the thermoplastic resin is improved. The improvement of the wettability acts uniformly in the plane and the adhesion force between the resin molded body and the mirror surface 111 is increased. As a result, as described below, the upper mold 11 and the lower mold 12 are placed vertically. When released in the direction, it is possible to achieve a smooth release from the lower mold 12 having the fine concavo-convex portions 121, which has been difficult to release in the related art while the resin molded body is adhered to the mirror surface 111.
In addition, this invention is not limited to the said form. For example, when the lower mold has fine uneven portions only on a part of the resin contact surface, the discharge irradiation treatment may be performed only on a part of the resin contact surface of the upper mold. In this case, if the discharge irradiation treatment is performed on at least the mirror surface portion of the upper mold corresponding to the fine irregularities of the lower mold, the discharge irradiation treatment is performed on the entire mirror surface which is the resin contact surface of the upper mold. Similarly to the above, smooth release from the lower mold having fine uneven portions can be achieved.

なお、本発明は上記形態に限定されない。ロータリー金型など金型が移動手段を有する装置では、鏡面111が処理手段10の方向に移動してくれば、上記処理手段10が固定された状態でも、鏡面111に放電照射処理を行うことが可能である。また、あらかじめ装置外で付着性を高める処理を施した金型を装置に組付けて使用することも可能である。   In addition, this invention is not limited to the said form. In an apparatus having a moving means such as a rotary mold, if the mirror surface 111 moves in the direction of the processing means 10, the discharge irradiation process can be performed on the mirror surface 111 even when the processing means 10 is fixed. Is possible. It is also possible to use a mold that has been subjected to a treatment for improving adhesion outside the apparatus in advance.

プラズマ放電照射処理には、溶接等を目的としたアーク放電を利用する高温プラズマ処理や、改質や洗浄等を目的とした低温プラズマ処理が知られているが、本発明では、後者の低温プラズマ処理が好ましい。低温プラズマ処理装置は、大気圧条件下(760torr)でも処理可能な装置が市販されており、例えば春日電機(株)製、大気圧中プラズマ照射表面改質装置が挙げられる。
プラズマ放電照射処理条件としては、金型の表面形状や、材質、熱可塑性樹脂の種類などによって適宜決定すればよいが、例えばプラズマ処理量として1〜20W・s/cm2が例示される。
As the plasma discharge irradiation treatment, there are known a high-temperature plasma treatment using arc discharge for welding and the like, and a low-temperature plasma treatment for reforming and cleaning. In the present invention, the latter low-temperature plasma treatment is known. Treatment is preferred. As the low-temperature plasma processing apparatus, apparatuses that can be processed under atmospheric pressure conditions (760 torr) are commercially available, and examples thereof include an atmospheric pressure plasma irradiation surface modification apparatus manufactured by Kasuga Electric Co., Ltd.
The plasma discharge irradiation treatment conditions may be appropriately determined depending on the surface shape of the mold, the material, the type of the thermoplastic resin, and the like, and for example, 1 to 20 W · s / cm 2 is exemplified as the plasma treatment amount.

またこれとは別に、処理手段10は、光オゾン法処理を利用した手段であってもよい。このような手段としては酸素条件下で光を照射し、生成したオゾンで前記金型の樹脂接触面である鏡面111を処理するものが挙げられる。上記手段に用いる光としては酸素条件下でオゾンを生成させることができる光であれば特に制限はないが、波長240nm以下のエネルギー値の高い光が酸素を分解し、オゾンを生成するとされていることから、例えば、波長240nm以下の光を照射可能な光源が望ましく、波長200nm以下の光を照射可能な光源がより望ましい。
上記処理に用いられる光源としては、例えば水銀ランプやエキシマランプなどが挙げられるが、特に、主に波長185nmおよび波長254nmの光を照射する低圧水銀ランプ、波長172nmの光を照射するキセノンエキシマランプなどが望ましい。また、レーザー光、電子線などを利用することもできる。
Alternatively, the processing means 10 may be a means utilizing photo-ozone method processing. As such a means, there is one that irradiates light under oxygen conditions and treats the mirror surface 111 that is the resin contact surface of the mold with the generated ozone. The light used in the above means is not particularly limited as long as it can generate ozone under oxygen conditions, but light having a high energy value with a wavelength of 240 nm or less decomposes oxygen and generates ozone. Therefore, for example, a light source capable of irradiating light with a wavelength of 240 nm or less is desirable, and a light source capable of irradiating light with a wavelength of 200 nm or less is more desirable.
Examples of the light source used in the above processing include a mercury lamp and an excimer lamp. In particular, a low-pressure mercury lamp that mainly emits light with a wavelength of 185 nm and a wavelength of 254 nm, a xenon excimer lamp that emits light with a wavelength of 172 nm, and the like. Is desirable. Laser light, electron beam, etc. can also be used.

図2は本発明の製造方法の第一型と第二型の間に熱可塑性樹脂を装填する工程を説明するための図である。なお本形態では金型内に装填された熱可塑性樹脂は、微細な凹凸部121上で樹脂層となっている。
図2において、下金型12上の微細な凹凸部121上に、樹脂層21が形成される。樹脂層21の形成方法はとくに制限されないが、吐出口22を備えた塗布装置23に熱可塑性樹脂を供給し、塗布装置23を矢印24方向に移動させながら、微細な凹凸部121の上方から熱可塑性樹脂を吐出し、微細な凹凸部121に熱可塑性樹脂を充填するのが好ましい。このようにすれば、高い寸法精度、低残留応力、低複屈折、高光透過性、優れた機械的強度を有する樹脂成形体を、超低圧の成形プロセスでありながら、三次元、薄肉、かつ大面積の形状でもって提供することができる。なお、前記第一型と第二型の間に熱可塑性樹脂を装填する方法が、熱可塑性樹脂の吐出以外の方法であってもよい。
FIG. 2 is a view for explaining a process of loading a thermoplastic resin between the first mold and the second mold of the manufacturing method of the present invention. In this embodiment, the thermoplastic resin loaded in the mold is a resin layer on the fine uneven portion 121.
In FIG. 2, the resin layer 21 is formed on the fine uneven portion 121 on the lower mold 12. The method for forming the resin layer 21 is not particularly limited, but the thermoplastic resin is supplied to the coating device 23 provided with the discharge ports 22, and the coating device 23 is moved in the direction of the arrow 24 while the heat is applied from above the fine uneven portion 121. It is preferable to discharge the plastic resin and fill the fine uneven portion 121 with the thermoplastic resin. In this way, a resin molded body having high dimensional accuracy, low residual stress, low birefringence, high light transmission, and excellent mechanical strength can be obtained in a three-dimensional, thin-walled, It can be provided in the form of an area. Note that the method of loading the thermoplastic resin between the first mold and the second mold may be a method other than the discharge of the thermoplastic resin.

図3は、金型を閉鎖し、前記熱可塑性樹脂に圧力もしくは熱と圧力を加え、前記熱可塑性樹脂に金型形状(微細な凹凸形状)を転写する工程を説明するための図である。
図3において、加力発生器13を用い、上金型11と下金型12とを嵌合(閉鎖)させ、上金型11の鏡面111と下金型12の微細な凹凸部121との間に存在する樹脂層21をプレスする。プレスの際、上金型11および下金型12は、ヒータ15の稼動によって所望の温度(通常は熱可塑性樹脂のTg以上の温度、好ましくは該Tgより20℃以上高い温度)に加熱されている。このときのプレス圧力は、とくに制限されないが、例えば前記塗布装置を用いた場合には、10MPa以下の低圧プレスを採用することができる。この操作により、樹脂層21に微細な凹凸部121の形状が転写される。転写完了後、圧力および金型温度を調整しながら、樹脂層21を冷却固化して樹脂成形体を製造する。
FIG. 3 is a view for explaining a process of closing a mold, applying pressure or heat and pressure to the thermoplastic resin, and transferring a mold shape (fine uneven shape) to the thermoplastic resin.
In FIG. 3, the force generator 13 is used to fit (close) the upper mold 11 and the lower mold 12, and the mirror surface 111 of the upper mold 11 and the fine uneven portion 121 of the lower mold 12 The resin layer 21 existing therebetween is pressed. During pressing, the upper mold 11 and the lower mold 12 are heated to a desired temperature (usually a temperature higher than the Tg of the thermoplastic resin, preferably a temperature higher than the Tg by 20 ° C.) by the operation of the heater 15. Yes. Although the press pressure at this time is not particularly limited, for example, when the coating apparatus is used, a low pressure press of 10 MPa or less can be employed. By this operation, the shape of the fine uneven portion 121 is transferred to the resin layer 21. After the transfer is completed, the resin layer 21 is cooled and solidified while adjusting the pressure and the mold temperature to produce a resin molded body.

続いて、前記金型を開放し、製造された樹脂成形体を金型から離型する。
鏡面111には熱可塑性樹脂との付着性を高める処理を行っているので、鏡面111と樹脂成形体との間に強い付着力が発生する。
Subsequently, the mold is opened, and the manufactured resin molded body is released from the mold.
Since the mirror surface 111 is subjected to a process for improving the adhesion to the thermoplastic resin, a strong adhesion force is generated between the mirror surface 111 and the resin molded body.

この状態で、プレス力を印加したまま所望の温度になるまで樹脂層21を冷却し固化させると、樹脂層21の体積収縮が生じるとともに、下金型12の金属と樹脂の界面で線膨張率の差による相対的なズリ変形が生じる。   In this state, when the resin layer 21 is cooled and solidified to a desired temperature while applying the pressing force, the resin layer 21 shrinks in volume and the linear expansion coefficient at the metal-resin interface of the lower mold 12. Relative displacement due to the difference between the two occurs.

図4は、微細な凹凸部121に充填された樹脂層21の体積収縮およびズリ変形を説明するための、微細な凹凸部121と樹脂層21の拡大断面図である。
図4(a)のように、微細な凹凸部121に熱可塑性樹脂からなる樹脂層21が充填され、続いて矢印41方向のプレス力を印加したまま樹脂層21を冷却し固化させると、図4(b)に示すように樹脂層21が微細な凹凸部121の内側方向(矢印42方向)に向かって体積収縮が生じる。同時に、下金型12の金属と樹脂層21の界面で両者の線膨張率の差による相対的なズリ変形が、矢印43方向で生じる。これらの理由から、製造された転写体が微細な凹凸部121から離型しやすくなる。
一方、樹脂層21は平面方向にも収縮する。図5は、微細な凹凸部121に充填された樹脂層21の平面方向の収縮を説明するための、微細な凹凸部121と樹脂層21の拡大断面図である。図5(a)のように、樹脂層21は平面方向にも収縮するため、線膨張の差により、樹脂層21は微細な凹凸部121の中央方向(矢印方向)に向かって押し付けられる。これに対して、本発明の実施形態では、図5(b)のように、金型に放電照射処理を施しており、樹脂層21が上金型11の鏡面111に完全に付着し固定されているため、樹脂層21が平面方向へ収縮しようとしても、樹脂成形体の平面方向(縦、横、高さの内、縦と横方向)への収縮が抑制される。その結果、樹脂層21が微細な凹凸部121の中央方向(矢印方向)に向かって押し付けられなくなるため、摩擦力が減少する。同時に樹脂成形体は鏡面111側に完全に付着しているため、金型を微細な凹凸部に対して垂直に開放することで鏡面111に樹脂成形体を付着させたまま、金型の微細な凹凸部と樹脂成形体の微細凹凸部を接触させることなく、垂直に離型することが可能になる。
FIG. 4 is an enlarged cross-sectional view of the fine concavo-convex portion 121 and the resin layer 21 for explaining volume shrinkage and shear deformation of the resin layer 21 filled in the fine concavo-convex portion 121.
As shown in FIG. 4A, when the resin layer 21 made of a thermoplastic resin is filled in the fine concavo-convex portion 121, and then the resin layer 21 is cooled and solidified while the pressing force in the direction of the arrow 41 is applied, As shown in FIG. 4B, the resin layer 21 shrinks in volume toward the inner side (arrow 42 direction) of the fine uneven portion 121. At the same time, relative slip deformation due to the difference in linear expansion coefficient between the metal of the lower mold 12 and the resin layer 21 occurs in the direction of the arrow 43. For these reasons, the manufactured transfer body is easily released from the fine uneven portion 121.
On the other hand, the resin layer 21 also shrinks in the planar direction. FIG. 5 is an enlarged cross-sectional view of the fine uneven portion 121 and the resin layer 21 for explaining the shrinkage in the planar direction of the resin layer 21 filled in the fine uneven portion 121. As shown in FIG. 5A, since the resin layer 21 also contracts in the planar direction, the resin layer 21 is pressed toward the center direction (arrow direction) of the fine uneven portion 121 due to the difference in linear expansion. In contrast, in the embodiment of the present invention, as shown in FIG. 5B, the mold is subjected to discharge irradiation treatment, and the resin layer 21 is completely attached and fixed to the mirror surface 111 of the upper mold 11. Therefore, even if the resin layer 21 tends to shrink in the planar direction, the shrinkage of the resin molded body in the planar direction (longitudinal, lateral, height, longitudinal and lateral directions) is suppressed. As a result, the resin layer 21 cannot be pressed toward the center direction (arrow direction) of the fine uneven portion 121, and the frictional force is reduced. At the same time, since the resin molding is completely attached to the mirror surface 111 side, by opening the mold perpendicularly to the fine irregularities, the resin molding is adhered to the mirror surface 111 and the fine mold It is possible to release the mold vertically without bringing the concavo-convex part into contact with the fine concavo-convex part of the resin molding.

図6は、上金型11に樹脂成形体を付着させたまま微細な凹凸部121から樹脂成形体を離型する工程を説明するための図である。
前述のように、上金型11の鏡面111と樹脂層21とが完全に付着していることから、加力発生器13を稼動して上金型11および下金型12を微細な凹凸部の面に対し垂直方向(矢印方向)に開放すると、図6に示すように、樹脂成形体51は上金型11の鏡面111に付着したまま微細な凹凸部121から離型される。上金型11の鏡面111に付着した樹脂成形体51は、上金型11の鏡面111を冷却する、望ましくは鏡面111を10℃以上、さらに望ましくは20℃以上冷却することにより上金型11の鏡面111から容易に離型することができる。
FIG. 6 is a view for explaining a process of releasing the resin molded body from the fine uneven portion 121 while the resin molded body is adhered to the upper mold 11.
As described above, since the mirror surface 111 and the resin layer 21 of the upper mold 11 are completely attached, the force generator 13 is operated to make the upper mold 11 and the lower mold 12 have fine uneven portions. When opened in the direction perpendicular to the surface (arrow direction), as shown in FIG. 6, the resin molded body 51 is released from the fine irregularities 121 while adhering to the mirror surface 111 of the upper mold 11. The resin molding 51 adhering to the mirror surface 111 of the upper mold 11 cools the mirror surface 111 of the upper mold 11, preferably by cooling the mirror surface 111 at 10 ° C. or higher, more preferably at 20 ° C. or higher. It can be easily released from the mirror surface 111.

なお、本発明は上記形態に限定されず、例えば、図1の形態において、上金型11が凹凸形状あるいは曲面形状などを有していてもよい。この場合は離型が比較的容易な当該凹凸形状あるいは曲面形状に熱可塑性樹脂との付着性を高める処理を施すことで、前記上型が鏡面の場合と同様に、付着性を高める処理を施した金型に樹脂成形体を付着させたまま、付着性を高める処理を行っていない金型から樹脂成形体を離型することができる。離型の容易な側は、例えば、凹凸部の表面積が少ない側や微細凹凸のアスペクト比(深さ/幅)が小さい側、あるいは抜き勾配の大きい側とすればよい。   In addition, this invention is not limited to the said form, For example, in the form of FIG. 1, the upper metal mold | die 11 may have uneven | corrugated shape or curved surface shape. In this case, the unevenness or curved surface shape that is relatively easy to release is subjected to a treatment for improving the adhesion to the thermoplastic resin, so that the adhesion is increased as in the case where the upper die is a mirror surface. The resin molded body can be released from the mold that has not been subjected to the treatment for improving the adhesion while the resin molded body is adhered to the mold. The side where mold release is easy may be, for example, the side where the surface area of the concavo-convex part is small, the side where the aspect ratio (depth / width) of the fine concavo-convex part is small, or the side where the draft angle is large.

また、樹脂成形体を離型して製造装置から得られた樹脂成形体を搬送する際に、非接触搬送体を使用することが好ましい。図7は、非接触搬送体の一例を示す断面図である。非接触搬送体81は、圧縮空気を図示しない噴出口から噴出させ、空気エジェクタの原理を利用して負圧を発生させる装置であり、この負圧により上金型11からの樹脂成形体51の離型をさらに容易にしている。また、非接触搬送体81の凹部812によって、樹脂成形体51に転写された金型形状に接触することなく、離型された樹脂成形体を矢印方向に金型の外部に搬送することができる。当該装置は公知であって、例えば特開平10−181879号公報、特開2005−219922号公報に開示されている。これにより、樹脂成形体に形成された微細な凹凸部を損傷することがなく、樹脂成形体を金型外部に搬送することができる。   Moreover, it is preferable to use a non-contact conveyance body when releasing the resin molding and conveying the resin molding obtained from the manufacturing apparatus. FIG. 7 is a cross-sectional view illustrating an example of a non-contact conveyance body. The non-contact conveyance body 81 is a device that ejects compressed air from a jet port (not shown) and generates a negative pressure using the principle of an air ejector. The negative pressure causes the resin molded body 51 from the upper mold 11 to move. It makes mold release easier. Further, the released resin molded body can be transported to the outside of the mold in the direction of the arrow without contacting the mold shape transferred to the resin molded body 51 by the recess 812 of the non-contact transport body 81. . This apparatus is known and disclosed in, for example, Japanese Patent Laid-Open Nos. 10-181879 and 2005-219922. Thereby, a resin molding can be conveyed outside a metal mold | die, without damaging the fine uneven | corrugated part formed in the resin molding.

前述の樹脂成形体の製造プロセスは、
(1)開放状態の金型内に前記金型と樹脂との付着性を高める処理を行うための処理手段10を進入させ、上金型11の樹脂接触面である鏡面111に前記処理を行う工程と、
(2)前記金型の上金型11の樹脂接触面である鏡面111および下金型12の樹脂接触面である微細な凹凸部121を前記温度調節手段により樹脂の成形を行うための所定の温度に加熱する工程と、
(3)塗布装置23により前記下金型12の微細な凹凸部121上に樹脂を塗布し、樹脂層21を形成する工程と、
(4)前記上金型11と前記下金型12を閉鎖し、前記上金型11と下金型12との間の樹脂層21に圧力を加え、圧力もしくは圧力と温度を調整しながら、樹脂に前記金型の形状を転写し、樹脂成形体51を成形する工程と、
(5)前記金型を前記微細な凹凸部121に対して垂直に開放し、前記処理を行った前記上金型11の鏡面111に樹脂成形体51を付着させたまま、当該処理を行っていない前記下金型12の微細な凹凸部121から樹脂成形体51を選択的に離型する工程と、
(6)前記上金型11の鏡面111に付着した樹脂成形体51を離型するために、前記上金型11の鏡面111を冷却する工程と、
(7)開放状態の前記金型間に非接触搬体を進入させた後、非接触搬送体により発生させた負圧により、前記上金型11の鏡面111に付着した樹脂成形体51を離型する工程とを有する樹脂成形体の製造方法である。
なお、本発明は上記形態に限定されるものではなく、前記プロセスの一部を変更したり、あるいは全く別の方法を用いてもよい。
The manufacturing process of the aforementioned resin molded body is as follows:
(1) The processing means 10 for performing a process for improving the adhesion between the mold and the resin is inserted into the open mold, and the process is performed on the mirror surface 111 which is the resin contact surface of the upper mold 11. Process,
(2) Predetermined portions for molding the resin with the mirror surface 111 which is the resin contact surface of the upper mold 11 and the fine uneven portion 121 which is the resin contact surface of the lower mold 12 by the temperature adjusting means. Heating to temperature,
(3) A step of applying a resin on the fine irregularities 121 of the lower mold 12 by the coating device 23 to form the resin layer 21;
(4) The upper mold 11 and the lower mold 12 are closed, pressure is applied to the resin layer 21 between the upper mold 11 and the lower mold 12, and the pressure or pressure and temperature are adjusted, Transferring the shape of the mold to the resin, and molding the resin molded body 51;
(5) The mold is opened perpendicularly to the fine irregularities 121, and the treatment is performed with the resin molded body 51 attached to the mirror surface 111 of the upper mold 11 subjected to the treatment. A step of selectively releasing the resin molded body 51 from the fine uneven portion 121 of the lower mold 12 that is not,
(6) a step of cooling the mirror surface 111 of the upper mold 11 in order to release the resin molded body 51 attached to the mirror surface 111 of the upper mold 11;
(7) After the non-contact carrier has entered between the opened molds, the resin molded body 51 attached to the mirror surface 111 of the upper mold 11 is separated by the negative pressure generated by the non-contact carrier. And a step of molding the resin molded body.
In addition, this invention is not limited to the said form, You may change a part of said process, or may use a completely different method.

また、図1の形態では、下金型12に直接微細な凹凸部121が設けられているが、これとは別に、表面に微細な凹凸部を有するスタンパーを上金型11または下金型12の上に設置してもよい。スタンパーを用いる場合は、上金型11または下金型12に該スタンパーを固定する手段を設けるのが好ましい。   In the form of FIG. 1, the fine uneven portion 121 is provided directly on the lower mold 12. Separately, however, a stamper having fine uneven portions on the surface is used as the upper mold 11 or the lower mold 12. You may install on top of. When using a stamper, it is preferable to provide means for fixing the stamper to the upper mold 11 or the lower mold 12.

本発明では、上記の樹脂成形体の製造方法以外に、金型が、射出成形装置に使用される金型であってもよい。一般的に射出成形装置は、金型の開閉と加圧のための手段を有し、樹脂溶融装置からの樹脂の流路を有する金型および樹脂を溶融し、金型内に射出する機構を有する。わずかに開いた金型内に溶融樹脂を射出・充填し、金型を閉鎖した後、もしくは、閉鎖状態の金型に溶融樹脂を射出・充填した後、圧力および温度を調整しながら、熱可塑性樹脂を冷却・固化させ、金型を開放し、樹脂成形体を金型から離型するものである。
また、本発明では、金型が圧縮成形装置に使用される金型であってもよい。一般的に圧縮成形装置は、金型内に溶融樹脂もしくは軟化状態の樹脂を配置し、樹脂に圧力、熱を加え、加圧・附形し、金型を冷却し、樹脂を冷却・固化させた後、金型を開放し、樹脂成形体を金型から離型するものである。
さらに、本発明では、金型がホットエンボス装置もしくはナノインプリント装置に使用される金型であってもよい。一般的にホットエンボス装置もしくはナノインプリント装置は、金型上に熱可塑性樹脂基板もしくは熱可塑性樹脂フィルムを設置した状態で金型を閉鎖し、圧力を加えながら金型表面の温度を樹脂のガラス転移温度付近もしくはそれ以上に加熱し、樹脂基板もしくは樹脂フィルムに金型の微細な凹凸部を転写した後、金型を冷却し、樹脂を冷却・固化させ、金型を開放して微細な凹凸部から樹脂成形体を離型するものである。
上記いずれの成形方法においても、金型と熱可塑性樹脂との付着性を高める処理を、予め前記金型の一方に施すことにより、樹脂成形体を付着性を高める処理を行った前記一方の金型に付着させ、前述と同様に、離型が困難な他方の金型から樹脂成形体を円滑に離型することができる。付着性を十分に発揮させるためには金型温度をガラス転移温度付近もしくはそれ以上の温度に加熱することが望ましく、より好ましくは、ガラス転移温度以上とすることが望ましい。
In the present invention, in addition to the above method for producing a resin molded body, the mold may be a mold used in an injection molding apparatus. In general, an injection molding apparatus has means for opening and closing and pressurizing a mold, a mold having a resin flow path from a resin melting apparatus, and a mechanism for melting the resin and injecting it into the mold. Have. After injecting and filling molten resin into a slightly open mold and closing the mold, or after injecting and filling molten resin into a closed mold, thermoplasticity while adjusting pressure and temperature The resin is cooled and solidified, the mold is opened, and the resin molded body is released from the mold.
Moreover, in this invention, the metal mold | die used for a compression molding apparatus may be sufficient as a metal mold | die. In general, compression molding equipment places molten or softened resin in a mold, applies pressure and heat to the resin, pressurizes and molds, cools the mold, and cools and solidifies the resin. After that, the mold is opened, and the resin molding is released from the mold.
Furthermore, in this invention, the metal mold | die used for a hot embossing apparatus or a nanoimprint apparatus may be sufficient. Generally, a hot embossing device or nanoimprinting device closes a mold with a thermoplastic resin substrate or a thermoplastic resin film placed on the mold, and applies the pressure to the temperature of the mold surface to the glass transition temperature of the resin. Heat to the vicinity or higher, transfer the fine irregularities of the mold to the resin substrate or resin film, then cool the mold, cool and solidify the resin, open the mold from the fine irregularities The resin molded body is released.
In any of the above-described molding methods, the one mold that has been subjected to the treatment for improving the adhesion of the resin molded body by applying the treatment for enhancing the adhesion between the mold and the thermoplastic resin to one of the molds in advance. As described above, the resin molded body can be smoothly released from the other mold that is difficult to release, as described above. In order to sufficiently exhibit the adhesiveness, it is desirable to heat the mold temperature to a temperature near or above the glass transition temperature, and more preferably to the glass transition temperature or higher.

本発明の製造方法および装置により得られた樹脂成形体は、(a)マイクロレンズアレイ、液晶用導光板、フレキシブルディスプレイ基板、波長板、反射板、位相差板、自由曲面ミラー、LED発光パネル、フレネルレンズなどの電子ディスプレイ分野の基幹部品、(b)フレキシブルポリマー製光導波路、自由曲面回折格子、二次元イメージセンサアレイ、ピックアップレンズ、ホログラム、フレキシブル導波路型照明板などの光情報通信分野の基幹部品、(c)次世代DVD(ブルーレイディスク)、ブルーレイディスクのカバー層、DVD、CD、超薄肉ICカードなどの光記録媒体分野の基幹部品、(d)集積化学チップ、DNAチップ、バイオチップ、プロテインチップ、マイクロ流体デバイス、環境分析チップなどライフサイエンス分野の基幹部品、(e)燃料電池セパレータ、携帯電話超薄肉バッテリーケース、太陽光集光フレネルレンズなど新エネルギー分野の基幹部品などに好適に用いられる。
本発明は、とくに上記製品の中でも、微細な凹凸部を形成するなどして、離型が極端に難しい成形品、特に微細凹凸のアスペクト比(深さ/幅)が大きい樹脂成形体や微細な凹凸部を有する大面積の樹脂成形体、製品の外観上および機能上の制約により機械式イジェクタ、離型剤、真空吸着等が利用できない製品などに有効である。
The resin molded body obtained by the production method and apparatus of the present invention includes (a) a microlens array, a light guide plate for liquid crystal, a flexible display substrate, a wave plate, a reflector, a retardation plate, a free-form mirror, an LED light-emitting panel, Core components in the field of electronic displays such as Fresnel lenses, (b) Cores in the field of optical information communications such as flexible polymer optical waveguides, free-form curved diffraction gratings, two-dimensional image sensor arrays, pickup lenses, holograms, and flexible waveguide illumination plates. Components, (c) Next-generation DVD (Blu-ray Disc), Blu-ray Disc cover layer, DVD, CD, key components in the field of optical recording media such as ultra-thin IC cards, (d) Integrated chemical chips, DNA chips, biochips Key components in life science fields such as protein chips, microfluidic devices, environmental analysis chips, (e) fuel cell separators Mobile phone ultra-thin battery case, is preferably used, such as in the key components of new energy fields such as solar concentrator Fresnel lens.
The present invention is a molded product that is extremely difficult to release, particularly a resin molded body having a large aspect ratio (depth / width) of fine irregularities, and the like among the above products, by forming fine irregularities. It is effective for large-area resin moldings having irregularities, products that cannot be used with mechanical ejectors, mold release agents, vacuum adsorption, etc. due to restrictions on the appearance and function of the product.

以下、本発明を実施例によってさらに説明する。下記例で使用した製造装置はいずれも、図1に示す装置である。   The invention is further illustrated by the following examples. All the manufacturing apparatuses used in the following examples are the apparatuses shown in FIG.

実施例1
熱可塑性樹脂を加熱溶融させるための押出機、熱可塑性樹脂を計量・吐出するためのアキュムレータ、フィルム状の樹脂を吐出するためのTダイ、および、それらを金型に塗布するための駆動機構を有する塗布装置を準備した。
下金型12上に、縦、横、深さ、凹凸部の間隔がいずれも50μmである微細な凹凸部121を有するNi製のスタンパを固定した。上金型11は、Ra0.20μm以下の鏡面111を有する。上金型11および下金型12は、材質がステンレスである。
上金型11と下金型12を開放した状態で、金型内部に大気圧条件下で使用可能なプラズマ放電照射装置を進入させ、下記表1に示す照射処理条件で、上金型11の鏡面111全面に約10mmの距離からプラズマ放電照射処理を行った。続いて、ヒータ15を稼動して上金型11および下金型12を150℃に加熱した後、前記塗布装置によって微細な凹凸部121上に250℃に加熱した溶融状態のシクロオレフィンポリマーを塗布し、厚さ150μmの樹脂層21を形成した。
次に上金型11と下金型12を閉鎖し、樹脂層21に5MPaの圧力を加えて、溶融樹脂を附形し、微細な凹凸部121の形状を転写した後、金型を70℃に冷却した。
続いて、金型を開放し、得られた製品を微細な凹凸部121から離型した。プラズマ放電照射処理を行ったことで上金型11の鏡面111と樹脂層21との付着性が向上し、付着力が増すため、金型を開放し、上金型11を垂直に移動させることで、上金型11に樹脂成形体51を付着させたまま、微細な凹凸部121から簡単に剥離することができた。
上金型11に付着した樹脂成形体51は、上金型11を50℃まで冷却し、付着力を低減させた後、図7に示すような非接触搬送体を樹脂成形体51に近づけることで、容易に金型から離型することができた。
Example 1
An extruder for heating and melting thermoplastic resin, an accumulator for measuring and discharging thermoplastic resin, a T-die for discharging film-like resin, and a drive mechanism for applying them to a mold The coating apparatus which has was prepared.
On the lower mold 12, a Ni stamper having a fine uneven portion 121 having a vertical, horizontal, depth, and uneven portion interval of 50 μm was fixed. The upper mold 11 has a mirror surface 111 with a Ra of 0.20 μm or less. The upper mold 11 and the lower mold 12 are made of stainless steel.
With the upper mold 11 and the lower mold 12 opened, a plasma discharge irradiation apparatus that can be used under atmospheric pressure conditions is introduced into the mold, and the upper mold 11 is exposed under the irradiation treatment conditions shown in Table 1 below. Plasma discharge irradiation treatment was performed on the entire mirror surface 111 from a distance of about 10 mm. Subsequently, the heater 15 is operated to heat the upper mold 11 and the lower mold 12 to 150 ° C., and then the molten cycloolefin polymer heated to 250 ° C. is applied onto the fine irregularities 121 by the coating device. Then, a resin layer 21 having a thickness of 150 μm was formed.
Next, the upper mold 11 and the lower mold 12 are closed, a pressure of 5 MPa is applied to the resin layer 21, a molten resin is formed, and the shape of the fine irregularities 121 is transferred, and then the mold is placed at 70 ° C. Cooled to.
Subsequently, the mold was opened, and the obtained product was released from the fine irregularities 121. Since the adhesion between the mirror surface 111 of the upper mold 11 and the resin layer 21 is improved and the adhesion force is increased by performing the plasma discharge irradiation treatment, the mold is opened and the upper mold 11 is moved vertically. Thus, it was possible to easily peel off the fine uneven portion 121 while the resin molded body 51 was adhered to the upper mold 11.
The resin molded body 51 attached to the upper mold 11 cools the upper mold 11 to 50 ° C. and reduces the adhesive force, and then brings the non-contact conveyance body as shown in FIG. 7 closer to the resin molded body 51. Thus, the mold could be easily released from the mold.

なお、本発明者らは熱可塑性樹脂として上記のシクロオレフィンポリマーに替えて、アクリル樹脂(PMMA)を使用し、前記と同様の試験を行った。結果を表1に示す。   In addition, the present inventors used acrylic resin (PMMA) instead of the above cycloolefin polymer as the thermoplastic resin, and performed the same test as described above. The results are shown in Table 1.

また、付着性を向上させる方法として、大気圧条件で使用可能なプラズマ放電照射処理装置に替えて、市販の大気圧条件で使用可能なコロナ放電照射処理装置、光オゾン法処理(低圧水銀ランプまたはキセノンエキシマランプを用いた処理)を用い、下記表1に示す照射処理条件で、実施例1と同様に試験を行った。
なお、プラズマ放電照射処理は、金型のサイズを変えて試験を行った。すなわち、樹脂成形体のサイズが縦×横それぞれ50mm(以下、50mm角という)、縦×横それぞれ200mm(以下、200 mm角という)、縦×横それぞれ1000mm(以下、1000 mm角という)となる金型にそれぞれプラズマ放電照射照射をした後、試験を行い、大面積化に対する本発明の方法の効果を検証した。
結果を表1に示す。
In addition, as a method for improving adhesion, instead of a plasma discharge irradiation treatment apparatus that can be used under atmospheric pressure conditions, a corona discharge irradiation treatment apparatus that can be used under commercial atmospheric pressure conditions, a photo-ozone method treatment (low pressure mercury lamp or A test using a xenon excimer lamp was performed in the same manner as in Example 1 under the irradiation processing conditions shown in Table 1 below.
Note that the plasma discharge irradiation treatment was tested by changing the size of the mold. That is, the size of the resin molded body is 50 mm in length and width (hereinafter referred to as 50 mm square), 200 mm in length and width (hereinafter referred to as 200 mm square), and 1000 mm in length and width (hereinafter referred to as 1000 mm square). Each mold was irradiated with plasma discharge and then tested to verify the effect of the method of the present invention on increasing the area.
The results are shown in Table 1.

比較例1
前記実施例1と同様の塗布装置を準備した。
下金型12上に縦、横、深さ、凹凸部の間隔がいずれも50μmである微細な凹凸部121を加工した。上金型11はRa0.20μm以下の鏡面111を有する。なお、上金型11および下金型12は材質がステンレスであり、有効面積が100×100mmである。この下金型12の有効面の外縁部に12本のイジェクタピンおよびイジェクタピンを突き出すための機構を設置した。
プラズマ放電照射装置を使用しない以外は前記実施例1と同じ条件で樹脂成形体に微細な凹凸部121の形状を転写した後、金型を70℃まで冷却し、微細な凹凸部121に樹脂成形体51を付着させたまま型開を行った。その後、イジェクタピンで微細な凹凸部121側から樹脂成形体51を押し上げて、樹脂成形体51を微細な凹凸部121から剥離した。
結果を表1に示す。
Comparative Example 1
A coating apparatus similar to that in Example 1 was prepared.
On the lower mold 12, a fine uneven portion 121 having a vertical, horizontal, depth, and uneven portion interval of 50 μm was processed. The upper mold 11 has a mirror surface 111 with a Ra of 0.20 μm or less. The upper mold 11 and the lower mold 12 are made of stainless steel and have an effective area of 100 × 100 mm. Twelve ejector pins and a mechanism for projecting the ejector pins were installed on the outer edge of the effective surface of the lower mold 12.
Except for not using the plasma discharge irradiation apparatus, after transferring the shape of the fine irregularities 121 to the resin molding under the same conditions as in Example 1, the mold was cooled to 70 ° C. and resin molding was performed on the fine irregularities 121. The mold was opened with the body 51 attached. Thereafter, the resin molded body 51 was pushed up from the fine uneven portion 121 side by an ejector pin, and the resin molded body 51 was peeled from the fine uneven portion 121.
The results are shown in Table 1.

比較例2
前記実施例1と同様の塗布装置を準備した。
下金型12上に縦、横、深さ、凹凸部の間隔がいずれも50μmである微細な凹凸部121を加工した。上金型11はRa0.20μm以下の鏡面111を有する。なお、上金型11および下金型12は材質がステンレスであり、有効面積が100×100mmである。
プラズマ放電照射装置を使用しない以外は前記実施例1と同じ条件で熱可塑性樹脂に金型の微細な凹凸部121の形状を転写した後、金型を70℃まで冷却し、金型の微細な凹凸部121に樹脂成形体51を付着させたまま、金型を開放した。その後、有効吸着面積が直径95mmの真空吸着パッドを樹脂成形体51の鏡面側に付着させ、真空引きを行いながら真空吸着パッドを微細な凹凸部121と垂直方向に持上げて、樹脂成形体51を金型の微細な凹凸部121から離型した。
試験結果を表1に示す。
Comparative Example 2
A coating apparatus similar to that in Example 1 was prepared.
On the lower mold 12, a fine uneven portion 121 having a vertical, horizontal, depth, and uneven portion interval of 50 μm was processed. The upper mold 11 has a mirror surface 111 with a Ra of 0.20 μm or less. The upper mold 11 and the lower mold 12 are made of stainless steel and have an effective area of 100 × 100 mm.
Except for not using the plasma discharge irradiation apparatus, after transferring the shape of the fine irregularities 121 of the mold to the thermoplastic resin under the same conditions as in Example 1, the mold was cooled to 70 ° C. The mold was opened while the resin molded body 51 was adhered to the concavo-convex portion 121. Thereafter, a vacuum suction pad having an effective suction area of 95 mm in diameter is attached to the mirror surface side of the resin molded body 51, and the vacuum suction pad is lifted in a direction perpendicular to the fine concavo-convex portion 121 while evacuating the resin molded body 51. The mold was released from the fine uneven portion 121 of the mold.
The test results are shown in Table 1.

Figure 2007283714
Figure 2007283714

本発明の方法により得られた樹脂成形体は微細な凹凸部の形状が忠実に転写されており、微細な凹凸部の形状の崩れやバリなどの不良は認められなかった。これに対し、プラズマ放電照射処理を行わない場合(上記の機械式イジェクタ、真空吸着パッドを用いた方法)は、微細な凹凸部の形状の崩れやバリなどの不良が認められた。また、ピール剥離では離型時に樹脂成形体に割れが生じ、樹脂成形体を得ることができなかった。なお、「バリ」は樹脂成形体の微細な凹凸部が金型との摩擦により変形した部分を、また、「崩れ」とは離型時に樹脂成形体の微細な凹凸部が金型の微細な凹凸内から剥離されず、金型の微細な凹凸部に残留して破損した部分を表す。   In the resin molded product obtained by the method of the present invention, the shape of the fine concavo-convex part was faithfully transferred, and no defects such as collapse of the fine concavo-convex part and burrs were observed. In contrast, when the plasma discharge irradiation treatment was not performed (the method using the mechanical ejector and the vacuum suction pad described above), defects such as the collapse of the shape of the fine irregularities and burrs were recognized. Further, in peel peeling, the resin molded body was cracked at the time of release, and the resin molded body could not be obtained. “Burr” refers to the portion where the fine irregularities of the resin molding are deformed by friction with the mold, and “collapse” refers to the fine irregularities of the resin molding when the mold is released. It represents a portion that is not peeled off from the inside of the unevenness but remains on the fine unevenness of the mold and is damaged.

前記実験結果の、樹脂成形体51の微細な凹凸部のレーザー顕微鏡写真を図8に示す。図8の(a)は、前記比較例1に記載の従来法であり、樹脂成形体に転写された微細な凹凸部に、離型時の金型との摩擦で変形したバリが生じていることが分かる。これに対し、図10(b)に示される本発明の方法により製造された樹脂成形体51は、微細な凹凸部121の形状が忠実に転写されていることが分かる。   FIG. 8 shows a laser micrograph of the fine irregularities of the resin molded body 51 as a result of the experiment. (A) of FIG. 8 is the conventional method described in the comparative example 1, and burrs deformed due to friction with the mold at the time of release are formed on the fine uneven portions transferred to the resin molded body. I understand that. In contrast, in the resin molded body 51 manufactured by the method of the present invention shown in FIG. 10B, it can be seen that the shape of the fine uneven portion 121 is faithfully transferred.

照射処理条件(実施例)
プラズマ放電処理装置 処理時間:30秒(50mm角)、1分(200 mm角)、5分(1000 mm角)
照射距離:10mm
コロナ放電処理装置 処理時間:1分(200 mm角)
照射距離:10mm
低圧水銀ランプ 処理時間:1分(200 mm角)
照射距離:10mm
キセノンエキシマランプ 処理時間:1分(200 mm角)
照射距離:3mm
Irradiation treatment conditions (Example)
Plasma discharge treatment system Processing time: 30 seconds (50 mm square), 1 minute (200 mm square), 5 minutes (1000 mm square)
Irradiation distance: 10mm
Corona discharge treatment equipment Treatment time: 1 minute (200 mm square)
Irradiation distance: 10mm
Low pressure mercury lamp Treatment time: 1 minute (200 mm square)
Irradiation distance: 10mm
Xenon excimer lamp Processing time: 1 minute (200 mm square)
Irradiation distance: 3mm

実施例2
熱可塑性樹脂として、アクリル樹脂を使用し、射出成形機において成形試験を行った。
上金型および下金型は、図1に示した構成および射出ノズルから溶融樹脂を射出するための図示しない流路を有する。
下金型12の表面に、縦、横、深さ、凹凸部の間隔がいずれも50μmである微細な凹凸部121を加工した。上金型11は、Ra0.20μm以下の鏡面111を有する。なお、上金型11および下金型12は、材質がステンレスであり、有効面積が50mm角である。
上金型11と下金型12を開放した状態で、金型内部に大気圧条件下で使用可能なプラズマ放電照射装置を進入させ、実施例1と同じ照射処理条件で上金型11に対し、プラズマ放電照射処理を行った。照射処理時間は30秒とした。
樹脂成形体の厚みを1mmとした。微細な凹凸部121を100%転写するため、樹脂温度を280℃、金型温度を130℃に設定し、上金型11および下金型12がわずかに開いた状態で金型内に溶融樹脂を射出した後、金型を完全に閉鎖し、型内圧で50MPaの圧力を加え、微細な凹凸部121の形状を樹脂に転写・附形しながら、金型温度を70℃まで冷却し、樹脂成形体51を製造した。
続いて、上金型11と下金型12を垂直方向に開放し、上金型11に樹脂成形体51を付着させたまま、樹脂成形体51を微細な凹凸部121から離型した。
この後、金型をさらに50℃まで冷却し、図7に示すような非接触搬送体により金型から樹脂成形体51を離型した。
得られた樹脂成形体51は、微細な凹凸部121が忠実に転写されており、バリや微細な凹凸部の崩れなどの不良は認められなかった。
一方、プラズマ放電照射処理を行わなかった場合は、樹脂成形体51の微細な凹凸部121からの離型が困難で、型開き時に微細な凹凸部121側から離型できず、樹脂成形体51を得ることができなかった。
Example 2
An acrylic resin was used as the thermoplastic resin, and a molding test was performed on an injection molding machine.
The upper mold and the lower mold have a flow path (not shown) for injecting molten resin from the configuration and injection nozzle shown in FIG.
On the surface of the lower mold 12, a fine uneven portion 121 having a vertical, horizontal, depth, and uneven portion interval of 50 μm was processed. The upper mold 11 has a mirror surface 111 with a Ra of 0.20 μm or less. The upper mold 11 and the lower mold 12 are made of stainless steel and have an effective area of 50 mm square.
With the upper mold 11 and the lower mold 12 open, a plasma discharge irradiation apparatus that can be used under atmospheric pressure conditions is inserted into the mold, and the upper mold 11 is applied to the upper mold 11 under the same irradiation processing conditions as in the first embodiment. Then, plasma discharge irradiation treatment was performed. The irradiation processing time was 30 seconds.
The thickness of the resin molding was 1 mm. In order to transfer 100% of the fine irregularities 121, the resin temperature is set to 280 ° C, the mold temperature is set to 130 ° C, and the upper mold 11 and the lower mold 12 are slightly opened, and the molten resin is put into the mold. After injecting the mold, the mold is completely closed, the pressure of 50MPa is applied as the mold internal pressure, and the mold temperature is cooled to 70 ° C while the shape of the fine irregularities 121 is transferred to the resin and molded. A molded body 51 was produced.
Subsequently, the upper mold 11 and the lower mold 12 were opened in the vertical direction, and the resin molded body 51 was released from the fine uneven portion 121 while the resin molded body 51 was adhered to the upper mold 11.
Thereafter, the mold was further cooled to 50 ° C., and the resin molded body 51 was released from the mold by a non-contact transfer body as shown in FIG.
In the obtained resin molded body 51, the fine uneven portions 121 were faithfully transferred, and no defects such as burrs or collapse of the fine uneven portions were observed.
On the other hand, when the plasma discharge irradiation treatment is not performed, it is difficult to release the resin molded body 51 from the fine uneven portion 121, and the mold cannot be released from the fine uneven portion 121 side when the mold is opened. Could not get.

実施例3
熱可塑性樹脂として、アクリル樹脂を使用し、圧縮成形法により成形試験を行った。
試験に用いた装置および金型は実施例1とほぼ同じであるが、押出機先端のTダイが厚さ3mmのシート状の樹脂を押し出すためのダイであることが異なる。また、下金型12には、下記の微細な凹凸部121が設けられている。
上金型11と下金型12を開放した状態で、金型内部に大気圧条件下で使用可能なプラズマ放電照射装置を進入させ、実施例1と同じ照射処理条件で上金型12に対し、プラズマ放電照射処理を行った。照射処理時間は30秒とした。その後、金型温度を150℃に昇温した。
押出機により押し出された樹脂温度250℃、厚さ3mmの熱可塑性樹脂を、縦、横、深さ、凹凸部の間隔がいずれも50μmである微細な凹凸部121を設けた下金型12上に設置した後、金型を閉鎖し、20MPaの圧力を加えて、溶融樹脂を附形し、微細な凹凸部121の形状を転写した後、金型を70℃に冷却した。
続いて、上金型11と下金型12を微細な凹凸部121に対して垂直方向に開放し、上金型11に樹脂成形体51を付着させたまま、樹脂成形体51を微細な凹凸部121から離型した。
上金型11に付着した樹脂成形体51は、上金型11を50℃まで冷却し、付着力を低減させた後、図7に示すように非接触搬送体を樹脂成形体51に近づけることで、上金型11から容易に離型することができた。
得られた樹脂成形体51は微細な凹凸部121の形状が忠実に転写されており、微細な凹凸部121の形状の崩れやバリなどの不良は認められなかった。
一方プラズマ照射を行わない場合、金型開放時に樹脂成形体51が下金型12に付着し、樹脂成形体51を離型することができなかった。
Example 3
An acrylic resin was used as the thermoplastic resin, and a molding test was conducted by a compression molding method.
The apparatus and the mold used for the test are almost the same as in Example 1, except that the T die at the tip of the extruder is a die for extruding a sheet-like resin having a thickness of 3 mm. The lower mold 12 is provided with the following fine irregularities 121.
With the upper mold 11 and the lower mold 12 opened, a plasma discharge irradiation apparatus that can be used under atmospheric pressure conditions is inserted into the mold, and the upper mold 12 is applied to the upper mold 12 under the same irradiation treatment conditions as in Example 1. Then, plasma discharge irradiation treatment was performed. The irradiation processing time was 30 seconds. Thereafter, the mold temperature was raised to 150 ° C.
On a lower mold 12 provided with a fine uneven part 121 having a resin temperature of 250 ° C. extruded by an extruder and a thickness of 3 mm and a vertical, horizontal, depth, and uneven part interval of 50 μm. Then, the mold was closed, a pressure of 20 MPa was applied, a molten resin was formed, the shape of the fine irregularities 121 was transferred, and the mold was cooled to 70 ° C.
Subsequently, the upper mold 11 and the lower mold 12 are opened in the vertical direction with respect to the fine irregularities 121, and the resin molding 51 is finely irregular with the resin molding 51 attached to the upper mold 11. The mold was released from the part 121.
The resin molded body 51 attached to the upper mold 11 cools the upper mold 11 to 50 ° C. and reduces the adhesion force, and then brings the non-contact conveyance body closer to the resin molded body 51 as shown in FIG. Thus, the mold could be easily released from the upper mold 11.
In the obtained resin molded body 51, the shape of the fine uneven portion 121 was faithfully transferred, and the shape of the fine uneven portion 121 was not broken and defects such as burrs were not recognized.
On the other hand, when plasma irradiation was not performed, the resin molded body 51 adhered to the lower mold 12 when the mold was opened, and the resin molded body 51 could not be released.

実施例4
熱可塑性樹脂として、アクリル樹脂を使用し、ホットエンボス法により成形試験を行った。
試験に用いた装置および金型は実施例1とほぼ同じであるが、溶融した樹脂を金型上に吐出するための前記塗布装置を持たない点と、有効面積200mm角の金型を用いた点が実施例1の装置と異なる。また、下金型12には、下記の微細な凹凸部121が設けられている。
上金型11と下金型12を開放した状態で、金型内部に大気圧条件下で使用可能なプラズマ放電照射装置を進入させ、実施例1と同じ照射処理条件で上金型12に対し、プラズマ放電照射処理を行った。照射処理時間は30秒とした。
続いて、厚さ0.5mmのアクリル樹脂基板を、縦、横、深さ、凹凸部の間隔がいずれも50μmである微細な凹凸部121を設けた下金型12上に設置し、上金型11と下金型12を閉鎖し、圧力を1MPa加えた状態で金型温度を110℃まで上昇させた後、10MPaの圧力を加えて微細な凹凸部121の形状を樹脂基板に転写させ、上金型11と下金型12の温度を70℃まで冷却した。
この後、上金型11と下金型12とを微細な凹凸部121に対して垂直に開放し、上金型11に樹脂成形体51を付着させたまま、樹脂成形体51を微細な凹凸部121から離型した。
上金型11に付着した樹脂成形体51は、上金型11を50℃まで冷却し、付着力を低減させた後、図7に示すように非接触搬送体を樹脂成形体に近づけることで、上金型11から容易に離型することができた。
得られた樹脂成形体51は微細な凹凸部121の形状が忠実に転写されており、微細な凹凸部121の形状の崩れやバリなどの不良は認められなかった。
一方プラズマ照射を行わない場合、金型開放時に樹脂成形体51が下金型12に付着し、樹脂成形体51を離型することができなかった。
Example 4
An acrylic resin was used as the thermoplastic resin, and a molding test was conducted by a hot embossing method.
The apparatus and the mold used for the test are almost the same as those in Example 1, except that the coating apparatus for discharging the molten resin onto the mold is not provided, and a mold having an effective area of 200 mm square is used. The point is different from the apparatus of the first embodiment. The lower mold 12 is provided with the following fine irregularities 121.
With the upper mold 11 and the lower mold 12 opened, a plasma discharge irradiation apparatus that can be used under atmospheric pressure conditions is inserted into the mold, and the upper mold 12 is applied to the upper mold 12 under the same irradiation treatment conditions as in Example 1. Then, plasma discharge irradiation treatment was performed. The irradiation processing time was 30 seconds.
Subsequently, an acrylic resin substrate having a thickness of 0.5 mm was placed on the lower mold 12 provided with fine uneven portions 121 each having a vertical, horizontal, depth, and uneven portion interval of 50 μm, and the upper mold After closing the mold 11 and the lower mold 12 and increasing the mold temperature to 110 ° C. while applying a pressure of 1 MPa, the pressure of 10 MPa is applied to transfer the shape of the fine irregularities 121 to the resin substrate, The temperature of the upper mold 11 and the lower mold 12 was cooled to 70 ° C.
Thereafter, the upper mold 11 and the lower mold 12 are opened perpendicularly to the fine concavo-convex portion 121, and the resin molded body 51 is made fine concavo-convex while the resin molded body 51 is attached to the upper mold 11. The mold was released from the part 121.
The resin molded body 51 attached to the upper mold 11 is obtained by cooling the upper mold 11 to 50 ° C. and reducing the adhesion force, and then bringing the non-contact conveyance body closer to the resin molded body as shown in FIG. The upper mold 11 could be easily released from the mold.
In the obtained resin molded body 51, the shape of the fine uneven portion 121 was faithfully transferred, and the shape of the fine uneven portion 121 was not broken and defects such as burrs were not recognized.
On the other hand, when plasma irradiation was not performed, the resin molded body 51 adhered to the lower mold 12 when the mold was opened, and the resin molded body 51 could not be released.

本発明によれば、装置構成が複雑で特殊な金型を必要とせず、表面に微細な凹凸部を有する樹脂成形体を、その凹凸形状を良好に維持しながら、微細な凹凸形状を有する金型から迅速に、容易に、かつ確実に離型することのできる樹脂成形体の製造方法および製造装置を提供することができる。
本発明の製造方法および製造装置により得られた樹脂成形体は、(a)マイクロレンズアレイ、液晶用導光板、フレキシブルディスプレイ基板、波長板、反射板、位相差板、自由曲面ミラー、LED発光パネル、フレネルレンズなどの電子ディスプレイ分野の基幹部品、(b)フレキシブルポリマー製光導波路、自由曲面回折格子、二次元イメージセンサアレイ、ピックアップレンズ、ホログラム、フレキシブル導波路型照明板などの光情報通信分野の基幹部品、(c)次世代DVD(ブルーレイディスク)、ブルーレイディスクのカバー層、DVD、CD、超薄肉ICカードなどの光記録媒体分野の基幹部品、(d)集積化学チップ、DNAチップ、バイオチップ、プロテインチップ、マイクロ流体デバイス、環境分析チップなどライフサイエンス分野の基幹部品、(e)燃料電池セパレータ、携帯電話超薄肉バッテリーケース、太陽光集光フレネルレンズなど新エネルギー分野の基幹部品などに好適に用いられる。
本発明は、とくに上記製品の中でも、微細な凹凸部を形成するなどして、離型が極端に難しい成形品、特に微細凹凸のアスペクト比(深さ/幅)が大きい樹脂成形体や微細な凹凸部を有する大面積の樹脂成形体、製品の外観上および機能上の制約により機械式イジェクタ、離型剤、真空吸着等が利用できない製品などに有効である。
According to the present invention, a mold having a fine concavo-convex shape is obtained while maintaining a good concavo-convex shape of a resin molded body having a fine concavo-convex portion on the surface without requiring a special mold with a complicated apparatus configuration. It is possible to provide a method and an apparatus for producing a resin molded body that can be quickly and easily and reliably released from a mold.
The resin molded body obtained by the production method and production apparatus of the present invention includes: (a) a microlens array, a liquid crystal light guide plate, a flexible display substrate, a wave plate, a reflector, a retardation plate, a free-form curved mirror, and an LED light-emitting panel. Key components in the field of electronic displays such as Fresnel lenses, (b) optical polymer communication waveguides such as flexible polymer optical waveguides, free-form curved gratings, two-dimensional image sensor arrays, pickup lenses, holograms, and flexible waveguide illumination plates Core parts, (c) Next-generation DVD (Blu-ray Disc), Blu-ray Disc cover layer, DVD, CD, key components in the field of optical recording media such as ultra-thin IC cards, (d) Integrated chemical chips, DNA chips, biotechnology Life science field key components such as chips, protein chips, microfluidic devices, environmental analysis chips, (e) Fuel cell separation Data, mobile phone ultra-thin battery case, is preferably used, such as in the key components of new energy fields such as solar concentrator Fresnel lens.
The present invention is a molded product that is extremely difficult to release, particularly a resin molded body having a large aspect ratio (depth / width) of fine irregularities, and the like among the above products, by forming fine irregularities. It is effective for large-area resin moldings having irregularities, products that cannot be used with mechanical ejectors, mold release agents, vacuum adsorption, etc. due to restrictions on the appearance and function of the product.

本発明における製造装置の一実施形態の概略断面図である。It is a schematic sectional drawing of one Embodiment of the manufacturing apparatus in this invention. 本発明の製造方法の第一型と第二型の間に熱可塑性樹脂を装填する工程を説明するための図である。It is a figure for demonstrating the process of loading a thermoplastic resin between the 1st type | mold and 2nd type | mold of the manufacturing method of this invention. 金型を閉鎖し、前記熱可塑性樹脂に熱および/または圧力を加え、前記熱可塑性樹脂に金型形状(微細な凹凸形状)を転写する工程を説明するための図である。It is a figure for demonstrating the process of closing a metal mold | die, applying a heat | fever and / or pressure to the said thermoplastic resin, and transferring a metal mold | die shape (fine uneven | corrugated shape) to the said thermoplastic resin. 微細な凹凸部に充填された樹脂層の体積収縮およびズリ変形を説明するための、微細な凹凸部と樹脂層の拡大断面図である。It is an expanded sectional view of a fine uneven | corrugated | grooved part and a resin layer for demonstrating volume shrinkage | contraction and shear deformation | transformation of the resin layer with which the fine uneven | corrugated | grooved part was filled. 微細な凹凸部に充填された樹脂層の平面方向の収縮を説明するための、微細な凹凸部と樹脂層の拡大断面図である。It is an expanded sectional view of a fine uneven part and a resin layer for explaining contraction of a plane direction of a resin layer with which the fine uneven part was filled. 上金型に樹脂成形体を付着させたまま微細な凹凸部から樹脂成形体を離型する工程を説明するための図である。It is a figure for demonstrating the process of releasing a resin molding from a fine uneven | corrugated | grooved part, with a resin molding adhered to an upper metal mold | die. 非接触搬送体の一例を示す断面図である。It is sectional drawing which shows an example of a non-contact conveyance body. (a)は、従来法により製造された樹脂成形体の微細な凹凸形状のレーザー顕微鏡写真、(b)は、本発明の方法により製造された樹脂成形体の微細な凹凸形状のレーザー顕微鏡写真である。(A) is a laser micrograph of a fine concavo-convex shape of a resin molded body produced by a conventional method, and (b) is a laser micrograph of a fine concavo-convex shape of a resin molded body produced by the method of the present invention. is there. 真空力を利用して樹脂成形体を微細な凹凸部を有する金型から剥離する場合を説明するための断面図である。It is sectional drawing for demonstrating the case where a resin molding is peeled from the metal mold | die which has a fine uneven part using a vacuum force.

符号の説明Explanation of symbols

1 製造装置
10 処理手段
11 上金型
111 鏡面
12 下金型
121 微細な凹凸部
13 加力発生器
15 加熱ヒータ
16 冷却管
21 樹脂層
23 塗布装置
51 樹脂成形体
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 10 Processing means 11 Upper metal mold | die 111 Mirror surface 12 Lower metal mold | die 121 Fine uneven | corrugated | grooved part 13 Force generator 15 Heater 16 Cooling pipe 21 Resin layer 23 Coating apparatus 51 Resin molding

Claims (25)

二つ以上の部分を組み合せることにより構成される金型を用いて樹脂成形体を製造する方法において、少なくとも一つの金型部分の樹脂接触面の一部または全体にあらかじめ樹脂との付着性を高める処理を行い、当該処理を行った金型面に樹脂成形体を付着させたまま金型を開放することで、当該処理を行っていない金型面から前記樹脂成形体を選択的に離型する工程を含むことを特徴とする樹脂成形体の製造方法。   In a method for producing a resin molded body using a mold constituted by combining two or more parts, a part or the whole of the resin contact surface of at least one mold part is previously adhered to the resin. The mold is selectively released from the mold surface not subjected to the treatment by opening the mold while the resin mold is attached to the mold surface subjected to the treatment. The manufacturing method of the resin molding characterized by including the process to do. 前記付着性を高める処理が、放電照射処理であることを特徴とする請求項1に記載の樹脂成形体の製造方法。   The method for producing a resin molded body according to claim 1, wherein the treatment for improving adhesion is a discharge irradiation treatment. 前記放電照射処理が、プラズマ放電照射処理であることを特徴とする請求項2に記載の樹脂成形体の製造方法。   The method for producing a resin molded body according to claim 2, wherein the discharge irradiation treatment is a plasma discharge irradiation treatment. 前記プラズマ放電照射処理が、大気圧条件下で使用可能なプラズマ放電照射装置による処理であることを特徴とする請求項3に記載の樹脂成形体の製造方法。   The method for producing a resin molded product according to claim 3, wherein the plasma discharge irradiation treatment is a treatment by a plasma discharge irradiation apparatus that can be used under atmospheric pressure conditions. 前記プラズマ放電照射処理が、コロナ放電照射処理であることを特徴とする請求項3または4に記載の樹脂成形体の製造方法。   The method for producing a resin molded body according to claim 3 or 4, wherein the plasma discharge irradiation treatment is a corona discharge irradiation treatment. 前記付着性を高める処理が光オゾン法処理であり、酸素存在条件下で金型に光を照射し、生成したオゾンで処理することを特徴とする請求項1に記載の樹脂成形体の製造方法。   The method for producing a resin molded body according to claim 1, wherein the treatment for improving the adhesion is a photo-ozone method treatment, wherein the mold is irradiated with light in the presence of oxygen and treated with generated ozone. . 前記光オゾン法処理が、低圧水銀ランプもしくはキセノンエキシマランプによる処理であることを特徴とする請求項6に記載の樹脂成形体の製造方法。   The method for producing a resin molded product according to claim 6, wherein the photo-ozone method treatment is treatment with a low-pressure mercury lamp or a xenon excimer lamp. 前記プラズマ放電照射処理が、プラズマ放電照射装置を金型内に挿入し、プラズマ放電照射処理を行うことを特徴とする請求項3〜5のいずれかに記載の樹脂成形体の製造方法。   The said plasma discharge irradiation process inserts a plasma discharge irradiation apparatus in a metal mold | die, and performs the plasma discharge irradiation process, The manufacturing method of the resin molding in any one of Claims 3-5 characterized by the above-mentioned. 前記光オゾン法処理が、低圧水銀ランプもしくはキセノンエキシマランプを金型内に挿入し、光オゾン法処理を行うことを特徴とする請求項6に記載の樹脂成形体の製造方法。   The method for producing a resin molded body according to claim 6, wherein the photo-ozone method treatment is performed by inserting a low-pressure mercury lamp or a xenon excimer lamp into a mold and performing the photo-ozone method treatment. 前記金型が、第一型および第二型より構成される金型であり、少なくとも前記第二型の樹脂接触面の一部もしくは全体が微細な凹凸部であり、前記第一型の樹脂接触面の一部または全体にあらかじめ前記樹脂との付着性を高める処理を行い、前記付着性を高める処理を行った前記第一型に樹脂成形体を付着させたまま前記金型を開放することで、選択的に前記第二型の微細な凹凸部を有する金型面から前記樹脂成形体を離型することを特徴とする請求項1〜9のいずれかに記載の樹脂成形体の製造方法。   The mold is a mold composed of a first mold and a second mold, and at least a part or the whole of the resin contact surface of the second mold is a fine uneven part, and the resin contact of the first mold By performing a process for increasing the adhesion with the resin in advance on a part or the whole of the surface, and opening the mold while the resin molded body is adhered to the first mold subjected to the process for increasing the adhesion The method for producing a resin molded body according to any one of claims 1 to 9, wherein the resin molded body is selectively released from a mold surface having fine irregularities of the second mold. 前記第二型の微細な凹凸部が、微細な凹凸部を有するスタンパを金型に装着することで前記第二型上に形成されることを特徴とする請求項10に記載の樹脂成形体の製造方法。   11. The resin molded body according to claim 10, wherein the fine uneven portion of the second mold is formed on the second mold by mounting a stamper having the fine uneven portion on the mold. Production method. 前記付着性を高める処理を行った前記第一型に樹脂成形体を付着させたまま前記金型を開放し、前記第二型の微細な凹凸部を有する金型面から前記樹脂成形体を離型する工程において、前記金型を微細な凹凸部を有する金型面に対して垂直に開放することを特徴とする請求項10または11に記載の樹脂成形体の製造方法。   The mold is opened while the resin mold is adhered to the first mold that has been subjected to the treatment for improving the adhesion, and the resin mold is separated from the mold surface of the second mold having the fine irregularities. The method for producing a resin molded body according to claim 10 or 11, wherein, in the step of molding, the mold is opened perpendicularly to a mold surface having fine uneven portions. 前記第一型に熱可塑性樹脂との付着性を高める処理を施す工程と、
前記第一型と前記第二型の間に前記熱可塑性樹脂を装填する工程と、
前記第一型と前記第二型とを閉鎖し、前記第一型と前記第二型との間に装填された熱可塑性樹脂に圧力を加え、圧力もしくは圧力と温度を調整しながら、前記熱可塑性樹脂に前記第二型の微細な凹凸部の形状を転写し、樹脂成形体を成形する工程と、
前記処理により、前記第一型に前記樹脂成形体を付着させたまま、前記第一型あるいは前記第二型を前記微細な凹凸部に対して垂直に開放することで、前記樹脂成形体を前記第二型の微細な凹凸部から選択的に離型する工程とを有することを特徴とする請求項10〜12のいずれかに記載の樹脂成形体の製造方法。
Applying a treatment to the first mold to enhance adhesion with the thermoplastic resin;
Loading the thermoplastic resin between the first mold and the second mold;
The first mold and the second mold are closed, pressure is applied to the thermoplastic resin loaded between the first mold and the second mold, and the heat or the pressure is adjusted while adjusting the pressure or pressure and temperature. Transferring the shape of the fine irregularities of the second mold to a plastic resin, and molding a resin molded body;
By the treatment, the first mold or the second mold is opened perpendicularly with respect to the fine irregularities while the resin molded body is adhered to the first mold. The method for producing a resin molded body according to any one of claims 10 to 12, further comprising a step of selectively releasing the fine irregularities of the second mold.
前記第一型と前記第二型の間に熱可塑性樹脂を装填する工程が、前記第二型の微細な凹凸部上に溶融した熱可塑性樹脂を、吐出手段を移動させながら塗布する工程であることを特徴とする請求項13に記載の樹脂成形体の製造方法。   The step of loading the thermoplastic resin between the first mold and the second mold is a process of applying the molten thermoplastic resin on the fine irregularities of the second mold while moving the discharge means. The method for producing a resin molded body according to claim 13. 前記金型が圧縮成形装置に使用される金型であり、
前記第一型と前記第二型の間に熱可塑性樹脂を装填する工程が、溶融状態もしくは半溶融状態の熱可塑性樹脂を前記金型内に設置する工程であることを特徴とする請求項13に記載の樹脂成形体の製造方法。
The mold is a mold used in a compression molding apparatus,
14. The step of loading a thermoplastic resin between the first mold and the second mold is a step of placing a molten or semi-molten thermoplastic resin in the mold. The manufacturing method of the resin molding of description.
前記金型がホットエンボス装置もしくはナノインプリント装置に使用される金型であり、
前記第一型と前記第二型の間に熱可塑性樹脂を装填する工程が、フィルム状もしくは板状の熱可塑性樹脂を前記金型内に設置する工程であることを特徴とする請求項13に記載の樹脂成形体の製造方法。
The mold is a mold used for a hot embossing device or a nanoimprinting device,
The step of loading a thermoplastic resin between the first mold and the second mold is a process of installing a film-like or plate-like thermoplastic resin in the mold. The manufacturing method of the resin molding of description.
前記金型が射出成形に使用される金型であり、
前記金型に熱可塑性樹脂を装填する工程および前記熱可塑性樹脂に前記金型の微細な凹凸部の形状を転写し、樹脂成形体を成形する工程が、
(1)完全に閉鎖した状態の金型内に溶融した熱可塑性樹脂を射出充填する工程と、
前記第一型と前記第二型との間に射出充填された熱可塑性樹脂に圧力を加え、圧力もしくは圧力と温度を調整しながら、前記熱可塑性樹脂に前記第二型の微細な凹凸部の形状を転写し、樹脂成形体を成形する工程
または、
(2)わずかに開いた略閉鎖状態の金型内に溶融した熱可塑性樹脂を射出充填する工程と、
略閉鎖状態の前記第一型と前記第二型とを完全に閉鎖することにより射出充填された熱可塑性樹脂に圧力を加えるとともに、圧力もしくは圧力と温度を調整しながら、前記熱可塑性樹脂に前記第二型の微細な凹凸部の形状を転写し、樹脂成形体を成形する工程
であることを特徴とする請求項13に記載の樹脂成形体の製造方法。
The mold is a mold used for injection molding,
The step of loading a thermoplastic resin into the mold and the step of transferring the shape of the fine irregularities of the mold to the thermoplastic resin and molding a resin molded body,
(1) injection-filling a molten thermoplastic resin into a completely closed mold;
Applying pressure to the thermoplastic resin injected and filled between the first mold and the second mold, and adjusting the pressure or pressure and temperature, the fine irregularities of the second mold on the thermoplastic resin A process of transferring the shape and molding a resin molded body, or
(2) a step of injecting and filling a molten thermoplastic resin into a mold that is slightly open and in a substantially closed state;
Applying pressure to the injection-filled thermoplastic resin by completely closing the first mold and the second mold in a substantially closed state, and adjusting the pressure or pressure and temperature to the thermoplastic resin The method for producing a resin molded body according to claim 13, which is a step of transferring the shape of the fine irregularities of the second mold and molding the resin molded body.
前記樹脂との付着性を高める処理を行った前記金型の少なくとも一つの金型部分もしくは前記第一型に樹脂成形体を付着させたまま金型を開放することで、当該処理を行っていない前記金型面もしくは前記第二型から前記樹脂成形体を選択的に離型した後、前記金型の少なくとも一つの金型部分もしくは前記第一型から前記樹脂成形体を離型する工程を有することを特徴とする請求項1〜17のいずれかに記載の樹脂成形体の製造方法。   The process is not performed by opening the mold with the resin molded body attached to at least one mold part of the mold or the first mold that has been subjected to the process for improving the adhesion to the resin. After selectively releasing the resin molded body from the mold surface or the second mold, there is a step of releasing the resin molded body from at least one mold portion of the mold or the first mold. The manufacturing method of the resin molding in any one of Claims 1-17 characterized by the above-mentioned. 前記樹脂との付着性を高める処理を行った前記金型の少なくとも一つの金型部分もしくは前記第一型から前記樹脂成形体を離型する工程において、前記金型の少なくとも一つの金型部分もしくは前記第一型を冷却することを特徴とする請求項18に記載の樹脂成形体の製造方法。   In the step of releasing the resin molded body from the at least one mold part of the mold or the first mold that has been subjected to the treatment for improving the adhesion to the resin, at least one mold part of the mold or The method for producing a resin molded body according to claim 18, wherein the first mold is cooled. 前記樹脂との付着性を高める処理を行った前記金型の少なくとも一つの金型部分もしくは前記第一型から前記樹脂成形体を離型する工程において、非接触搬送体を使用して樹脂成形体を離型し、前記金型の外部に搬送することを特徴とする請求項18または19に記載の樹脂成形体の製造方法。   In the step of releasing the resin molded body from at least one mold part of the mold or the first mold subjected to the treatment for improving the adhesion to the resin, the resin molded body is used by using a non-contact conveying body. The method for producing a resin molded body according to claim 18 or 19, wherein the mold is released and conveyed to the outside of the mold. 前記金型は温度調節機能を有し、金型形状を転写する際および金型から樹脂成形体を離型する際に、前記金型の加熱および冷却が各々行われることを特徴とする請求項1〜20のいずれかに記載の樹脂成形体の製造方法。   The mold has a temperature control function, and the mold is heated and cooled when transferring the mold shape and releasing the resin molded body from the mold, respectively. The manufacturing method of the resin molding in any one of 1-20. 請求項1〜21のいずれかに記載の製造方法により製造されたことを特徴とする樹脂成形体。   A resin molded article produced by the production method according to claim 1. 請求項1に記載の樹脂成形体の製造方法を実施するための樹脂成形体の製造装置であって、
前記樹脂成形体の製造装置は、対向して配置される一組の第一型および第二型から構成される金型と、
前記一組の金型部分の少なくとも樹脂接触面の温度を調節する温度調節手段と、
前記第一型と前記第二型の開放・閉鎖および前記第一型と前記第二型との間の熱可塑性樹脂の加圧を行なう駆動手段と、
熱可塑性樹脂に対する金型の付着性を高める処理を行う手段とを有し、
前記付着性を高める処理を行う手段によって前記第一型の樹脂接触面の一部もしくは全体に前記熱可塑性樹脂との付着性を高める処理を行い、
前記第一型と前記第二型の内部もしくは前記第一型と前記第二型との間に前記熱可塑性樹脂を装填し、前記温度調節手段および駆動手段によって閉鎖状態の前記第一型および前記第二型間に圧力を加え、圧力もしくは圧力と温度を調整しながら、前記熱可塑性樹脂に金型形状を転写して樹脂成形体を成形し、続いて、前記付着性を高める処理を行った前記第一型に前記樹脂成形体を付着させたまま金型を開放することで、前記付着性を高める処理を行っていない第二型から前記樹脂成形体を選択的に離型し、その後、前記樹脂成形体の付着した第一型を冷却し、前記第一型から前記樹脂成形体を離型するように構成したことを特徴とする樹脂成形体の製造装置。
An apparatus for manufacturing a resin molded body for carrying out the method for manufacturing a resin molded body according to claim 1,
The apparatus for producing a resin molded body includes a mold composed of a set of a first mold and a second mold that are arranged to face each other,
Temperature adjusting means for adjusting the temperature of at least the resin contact surface of the set of mold parts;
Driving means for performing opening / closing of the first mold and the second mold and pressurization of the thermoplastic resin between the first mold and the second mold;
A means for performing a treatment for increasing the adhesion of the mold to the thermoplastic resin,
Performing a process for increasing the adhesion with the thermoplastic resin on a part or the whole of the resin contact surface of the first type by means for performing the process for increasing the adhesion;
The thermoplastic resin is loaded into the first mold and the second mold or between the first mold and the second mold, and the first mold and the closed mold are closed by the temperature adjusting means and the driving means. While applying pressure between the second molds and adjusting the pressure or pressure and temperature, the mold shape was transferred to the thermoplastic resin to form a resin molded body, and then the treatment for improving the adhesion was performed. By releasing the mold while the resin molded body is attached to the first mold, the resin molded body is selectively released from the second mold that has not been subjected to the treatment for improving the adhesion, and then, An apparatus for producing a resin molded body, wherein the first mold to which the resin molded body is adhered is cooled and the resin molded body is released from the first mold.
請求項10に記載の樹脂成形体の製造方法を実施するための樹脂成形体の製造装置であって、
前記樹脂成形体の製造装置は、樹脂接触面の一部もしくは全体が微細な凹凸部である第二型と、対向して配置される第一型から構成される金型とを備え、
前記一組の金型部分の少なくとも樹脂接触面の温度を調節する温度調節手段と、
前記第一型と前記第二型の開放・閉鎖および前記第一型と前記第二型との間の熱可塑性樹脂を加圧を行なう駆動手段と、
熱可塑性樹脂に対する金型の付着力を高める処理を行う手段とを有し、
前記付着性を高める処理を行う手段によって前記第一型の樹脂接触面の一部もしくは全体に前記熱可塑性樹脂との付着性を高める処理を行い、
前記第一型と前記第二型の内部もしくは前記第一型と前記第二型との間に前記熱可塑性樹脂を装填し、前記温度調節手段および駆動手段によって閉鎖状態の前記第一型および前記第二型間間に圧力を加え、圧力もしくは圧力と温度を調整しながら、前記熱可塑性樹脂に金型形状を転写して樹脂成形体を成形し、続いて、前記付着性を高める処理を行った前記第一型に前記樹脂成形体を付着させたまま、前記処理を行っていない前記第二型の微細な凹凸部から前記樹脂成形体を選択的に離型し、その後、前記樹脂成形体の付着した第一型を冷却し、前記第一型から前記樹脂成形体を離型するように構成したことを特徴とする樹脂成形体の製造装置。
A resin molded body manufacturing apparatus for carrying out the method of manufacturing a resin molded body according to claim 10,
The apparatus for manufacturing a resin molded body includes a second mold in which a part or the whole of a resin contact surface is a fine uneven portion, and a mold composed of a first mold disposed to face the second mold.
Temperature adjusting means for adjusting the temperature of at least the resin contact surface of the set of mold parts;
Drive means for opening and closing the first mold and the second mold and pressurizing the thermoplastic resin between the first mold and the second mold;
Having a means for increasing the adhesion of the mold to the thermoplastic resin,
Performing a process for increasing the adhesion with the thermoplastic resin on a part or the whole of the resin contact surface of the first type by means for performing the process for increasing the adhesion;
The thermoplastic resin is loaded into the first mold and the second mold or between the first mold and the second mold, and the first mold and the closed mold are closed by the temperature adjusting means and the driving means. While applying pressure between the second molds and adjusting the pressure or pressure and temperature, the mold shape is transferred to the thermoplastic resin to form a resin molded body, and then the adhesion is increased. In addition, the resin molded body is selectively released from the fine uneven portions of the second mold that is not subjected to the treatment while the resin molded body is adhered to the first mold, and then the resin molded body The apparatus for producing a resin molded body is characterized in that the first mold to which is adhered is cooled and the resin molded body is released from the first mold.
前記熱可塑性樹脂に対する金型の付着性を高める処理を行う手段が、大気圧条件下で使用可能なプラズマ放電照射処理装置、大気圧条件下で使用可能なコロナ放電照射処理装置、低圧水銀ランプ、キセノンエキシマランプのいずれかであることを特徴とする請求項23または24に記載の樹脂成形体の製造装置。   The means for performing the treatment for enhancing the adhesion of the mold to the thermoplastic resin is a plasma discharge irradiation treatment apparatus usable under atmospheric pressure conditions, a corona discharge irradiation treatment apparatus usable under atmospheric pressure conditions, a low pressure mercury lamp, The apparatus for producing a resin molded body according to claim 23 or 24, wherein the apparatus is a xenon excimer lamp.
JP2006115966A 2006-04-19 2006-04-19 Method and apparatus for manufacturing resin molded body Expired - Fee Related JP4335225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115966A JP4335225B2 (en) 2006-04-19 2006-04-19 Method and apparatus for manufacturing resin molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115966A JP4335225B2 (en) 2006-04-19 2006-04-19 Method and apparatus for manufacturing resin molded body

Publications (2)

Publication Number Publication Date
JP2007283714A true JP2007283714A (en) 2007-11-01
JP4335225B2 JP4335225B2 (en) 2009-09-30

Family

ID=38755919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115966A Expired - Fee Related JP4335225B2 (en) 2006-04-19 2006-04-19 Method and apparatus for manufacturing resin molded body

Country Status (1)

Country Link
JP (1) JP4335225B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194871A (en) * 2009-02-25 2010-09-09 Japan Steel Works Ltd:The Peeling jig, fine structure transfer molding apparatus, and method for peeling molded body
CN102069564A (en) * 2010-11-12 2011-05-25 中南大学 Rotary multi-station injection molding mould for manufacturing microfluidic chip
JP2012245745A (en) * 2011-05-30 2012-12-13 Japan Steel Works Ltd:The Melt fine-transfer molding method, and melt fine-transfer molding device
JP2013028150A (en) * 2011-06-22 2013-02-07 Teijin Chem Ltd Method for molding molded article
JP2016022603A (en) * 2014-07-16 2016-02-08 株式会社日本製鋼所 Molding die and molding method of microstructure
CN106746531A (en) * 2017-03-03 2017-05-31 东莞恩特贝斯智能技术有限公司 3D bend glass hot-press equipments
CN110406026A (en) * 2019-07-01 2019-11-05 合肥高科科技股份有限公司 A kind of refrigerator drawer injection mold
WO2022191548A1 (en) * 2021-03-09 2022-09-15 주식회사 엘지화학 Injection mold
WO2022191549A1 (en) * 2021-03-09 2022-09-15 주식회사 엘지화학 Injection mold
GB2615378A (en) * 2022-02-03 2023-08-09 Toshiba Kk Injection molding apparatus and injection molding method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170857A (en) * 1992-12-03 1994-06-21 Seiko Epson Corp Production of contact lens and mold therefor
JPH0740114U (en) * 1993-12-27 1995-07-18 しなのポリマー株式会社 Mold for silicone rubber molding
JPH07195558A (en) * 1993-12-13 1995-08-01 Ciba Geigy Ag Method and device for producing contact lens
JP2001138347A (en) * 1999-08-27 2001-05-22 Menicon Co Ltd Mold for ophthalmic lens article and method of manufacturing ophthalmic lens article
JP2002240061A (en) * 2001-02-16 2002-08-28 Menicon Co Ltd Mold for ophthalmic lens article and method for manufacturing the same
JP2002326260A (en) * 2001-05-07 2002-11-12 Ricoh Co Ltd Method and mold for molding plastic molded product
JP2006015522A (en) * 2004-06-30 2006-01-19 Konica Minolta Holdings Inc Molding machine and optical element
JP2006095901A (en) * 2004-09-30 2006-04-13 Ricoh Co Ltd Plastic molding method, plastic molding device, and molding die
JP2007073712A (en) * 2005-09-06 2007-03-22 Nippon Telegr & Teleph Corp <Ntt> Nano-imprint method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170857A (en) * 1992-12-03 1994-06-21 Seiko Epson Corp Production of contact lens and mold therefor
JPH07195558A (en) * 1993-12-13 1995-08-01 Ciba Geigy Ag Method and device for producing contact lens
JPH0740114U (en) * 1993-12-27 1995-07-18 しなのポリマー株式会社 Mold for silicone rubber molding
JP2001138347A (en) * 1999-08-27 2001-05-22 Menicon Co Ltd Mold for ophthalmic lens article and method of manufacturing ophthalmic lens article
JP2002240061A (en) * 2001-02-16 2002-08-28 Menicon Co Ltd Mold for ophthalmic lens article and method for manufacturing the same
JP2002326260A (en) * 2001-05-07 2002-11-12 Ricoh Co Ltd Method and mold for molding plastic molded product
JP2006015522A (en) * 2004-06-30 2006-01-19 Konica Minolta Holdings Inc Molding machine and optical element
JP2006095901A (en) * 2004-09-30 2006-04-13 Ricoh Co Ltd Plastic molding method, plastic molding device, and molding die
JP2007073712A (en) * 2005-09-06 2007-03-22 Nippon Telegr & Teleph Corp <Ntt> Nano-imprint method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194871A (en) * 2009-02-25 2010-09-09 Japan Steel Works Ltd:The Peeling jig, fine structure transfer molding apparatus, and method for peeling molded body
CN102069564A (en) * 2010-11-12 2011-05-25 中南大学 Rotary multi-station injection molding mould for manufacturing microfluidic chip
JP2012245745A (en) * 2011-05-30 2012-12-13 Japan Steel Works Ltd:The Melt fine-transfer molding method, and melt fine-transfer molding device
JP2013028150A (en) * 2011-06-22 2013-02-07 Teijin Chem Ltd Method for molding molded article
JP2016022603A (en) * 2014-07-16 2016-02-08 株式会社日本製鋼所 Molding die and molding method of microstructure
CN106746531A (en) * 2017-03-03 2017-05-31 东莞恩特贝斯智能技术有限公司 3D bend glass hot-press equipments
CN110406026A (en) * 2019-07-01 2019-11-05 合肥高科科技股份有限公司 A kind of refrigerator drawer injection mold
WO2022191548A1 (en) * 2021-03-09 2022-09-15 주식회사 엘지화학 Injection mold
WO2022191549A1 (en) * 2021-03-09 2022-09-15 주식회사 엘지화학 Injection mold
US20230321879A1 (en) * 2021-03-09 2023-10-12 Lg Chem, Ltd. Injection mold
EP4186676A4 (en) * 2021-03-09 2024-03-13 Lg Chem, Ltd. Injection mold
GB2615378A (en) * 2022-02-03 2023-08-09 Toshiba Kk Injection molding apparatus and injection molding method

Also Published As

Publication number Publication date
JP4335225B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP4335225B2 (en) Method and apparatus for manufacturing resin molded body
JP3857703B2 (en) Manufacturing method and manufacturing apparatus of molded body
US9511525B2 (en) Web with molded articles on both sides
JP5117901B2 (en) Imprint jig and imprint apparatus
JP4444980B2 (en) Mold for molding molded body and method for producing molded body using the same
JP4444982B2 (en) Manufacturing method of molded body
JP4109234B2 (en) Fine transfer method and apparatus
JP4177379B2 (en) Method and apparatus for producing molded body
Melentiev et al. Large-scale hot embossing of 1 µm high-aspect-ratio textures on ABS polymer
JP4699492B2 (en) Molded body manufacturing apparatus and manufacturing method
JP4312675B2 (en) Method and apparatus for producing molded body
JP4224052B2 (en) Molded body manufacturing equipment
JP4595000B2 (en) Manufacturing method of molded body
JP4224048B2 (en) Molded body manufacturing apparatus and manufacturing method
JP2003094495A (en) Method for producing precision molding made of thermoplastic resin
CN106799830B (en) A kind of polymer surfaces micro-structure thermal marking method of plasmaassisted
JPWO2010095402A1 (en) Manufacturing method of optical member with surface shape and manufacturing apparatus thereof
JPH09201874A (en) Method and apparatus for forming article with embossed design pressed on surface thereof, in particular, optical disc
JP2010089317A (en) Mold apparatus, thermal transfer pressing apparatus, and method for manufacturing thermal transfer molded article
Cui et al. Fabrication of polymer optical diffusers by buffer-assisted ultrasonic embossing
CN114008746A (en) Method for manufacturing bonded body, and method for forming fine structure
JP2005305899A (en) Molding die and molded object

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4335225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees