JP2007283192A - Method and apparatus for deodorizing biomass - Google Patents

Method and apparatus for deodorizing biomass Download PDF

Info

Publication number
JP2007283192A
JP2007283192A JP2006112222A JP2006112222A JP2007283192A JP 2007283192 A JP2007283192 A JP 2007283192A JP 2006112222 A JP2006112222 A JP 2006112222A JP 2006112222 A JP2006112222 A JP 2006112222A JP 2007283192 A JP2007283192 A JP 2007283192A
Authority
JP
Japan
Prior art keywords
water
concentration
packed bed
less
hydrogen sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006112222A
Other languages
Japanese (ja)
Other versions
JP4883766B2 (en
Inventor
Shigeru Yonehisa
滋 米久
Toshio Tsukamoto
敏男 塚本
Sachi Miyashita
才知 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006112222A priority Critical patent/JP4883766B2/en
Publication of JP2007283192A publication Critical patent/JP2007283192A/en
Application granted granted Critical
Publication of JP4883766B2 publication Critical patent/JP4883766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for deodorizing biomass by neither clogging its packed bed nor requiring a long period of acclimation. <P>SOLUTION: The method for deodorizing biomass by allowing an odorous gas 1 to pass through a packed bed 4 filled with a filler comprises steps of first spraying water 10 having a total phosphorous concentration of 0.2 mg/L or higher onto the packed bed 4 and thereafter, switching the spray water to water having a floating matter concentration of lower than 10 mg/L based on a pressure drop across the packed bed 4 or a removal rate of hydrogen sulfide concentration. The switching of the spray water from the water 10 having a total phosphorous concentration of 0.2 mg/L or higher to the water having a floating matter concentration of lower than 10 mg/L is carried out when a pressure drop across the packed bed 4 reaches 0.3 kPa or higher. The water 10 having a total phosphorous concentration of 0.2 mg/L or higher is prepared by adding nutrition salts to water obtained from a secondary treatment of sewage, to industrial water, or to city water. Industrial water or city water may be used for the spray water having a floating matter concentration of lower than 10 mg/L. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、臭気ガスの生物学的脱臭方法及び装置に係り、特に下水処理場から発生する臭気ガスを生物学的に脱臭する方法及び装置に関する。   The present invention relates to a method and apparatus for biological deodorization of odor gas, and more particularly to a method and apparatus for biological deodorization of odor gas generated from a sewage treatment plant.

微生物を付着させた担体を充填した充填層に、臭気ガスを通気して生物学的に脱臭する充填塔式生物脱臭法は、低ランニングコストで維持管理性が良いことが評価され、硫黄系悪臭物質を含む臭気が発生する下水処理場等で、脱臭対策における中心的役割を担っている。
充填塔式生物脱臭法においては、充填材に生物を馴養するために、散水用水が必要となる。従来、散水用水には、下水二次処理水や下水二次処理水の砂ろ過水を用いて、有効利用を図ったり(特許文献1)、下水処理施設内の工業用水(工水)や水道水を用いていた(特許文献2)。
ここで、下水二次処理水とは、下水を生物処理(二次処理)した水で、最終沈殿池を流出した水をいう。また、工業用水とは、工業用水道又は水道から調達する用水のことであり、一般的な使用の形態としては、原料用水、洗浄用水、ボイラー用水、冷却用水、調温用水、製品用水などがある(非特許文献1)。
The packed tower type biological deodorization method, in which odor gas is passed through a packed bed packed with a carrier to which microorganisms are attached, for biological deodorization, is evaluated for its low running cost and good maintainability. It plays a central role in deodorizing measures at sewage treatment plants where odors containing substances are generated.
In the packed tower type biological deodorization method, water for sprinkling is required in order to acclimate the organism to the filler. Conventionally, as water for watering, the sewage secondary treated water and the sand filtered water of the sewage secondary treated water are used effectively (Patent Document 1), industrial water (industrial water) or water supply in sewage treatment facilities. Water was used (Patent Document 2).
Here, the sewage secondary treated water refers to water that has been biologically treated (secondary treated) with sewage and has flowed out of the final sedimentation basin. In addition, industrial water refers to industrial water or water procured from tap water, and common usage forms include raw material water, cleaning water, boiler water, cooling water, temperature control water, product water, etc. Yes (Non-Patent Document 1).

しかし、下水二次処理水を散水用水に使用した場合には、浮遊物質(SS)由来の固形分が多いため、充填層内に蓄積し、担体の有効表面積の減少によって悪臭物質除去性能が低下するばかりでなく、充填層の空隙部分が閉塞してしまう問題があった。一方、砂ろ過水は、SS由来の固形分は少なく散水用水には適するが、砂ろ過設備を有しない下水処理施設もある。また、使用量に制限があり「脱臭用」に使用できない場合もある。
一方、工業用水や水道水は、SS分が少ないが、工業用水や水道水中に微生物の増殖に必要なリンや窒素等の栄養塩含量が少ないため、馴致に長期間を要したり、脱臭性能が低下するといった問題がある。また、工業用水や水道水に溶解促進剤を添加する方法もあるが(特許文献3)、ランニングコストや設備費用がかかるという問題がある。
特開2002−126771号公報 特開平2−172519号公報 特開平10−328号公報 水道用語辞典第ニ版(日本水道協会)第256頁
However, when sewage secondary treatment water is used as water for sprinkling, there is a lot of solid matter derived from suspended solids (SS), so it accumulates in the packed bed and the malodorous substance removal performance decreases due to a decrease in the effective surface area of the carrier In addition to this, there is a problem that the void portion of the packed bed is blocked. On the other hand, sand filtration water has a small solid content derived from SS and is suitable for watering water, but there are some sewage treatment facilities that do not have sand filtration equipment. In addition, there are cases where the amount used is limited and cannot be used for “deodorizing”.
Industrial water and tap water, on the other hand, have a small amount of SS, but because of the low content of nutrient salts such as phosphorus and nitrogen necessary for the growth of microorganisms in industrial water and tap water, it takes a long time to acclimatize or deodorizing performance. There is a problem that decreases. In addition, there is a method of adding a dissolution accelerator to industrial water or tap water (Patent Document 3), but there is a problem that running cost and equipment cost are required.
JP 2002-126791 A Japanese Patent Laid-Open No. 2-172519 Japanese Patent Laid-Open No. 10-328 Waterworks Dictionary 2nd Edition (Japan Waterworks Association), page 256

本発明は、上記従来技術の問題点を解消し、充填層が閉塞せず、かつ、馴致に長期間を要することのない生物脱臭方法及びその装置を提供することを課題とする。   An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a biological deodorization method and an apparatus therefor in which the packed bed does not block and does not require a long period of acclimatization.

上記課題を解決するために、鋭意研究を重ねた結果、馴致段階で散水用水に下水二次処理水を用い、馴致後は散水用水に工業用水又は水道水からなる水を用いることにより、充填層が閉塞せず、短期間で馴致でき、悪臭物質除去性能も充分に満足できることを見出し、本発明を完成させた。
本発明では、充填材を充填した充填層に、臭気ガスを通気して脱臭を行う生物脱臭方法において、前記充填層に、まず全リン濃度が0.2mg/L以上の水を散水させた後、該充填層の圧力損失に基づいて、浮遊物質濃度が10mg/L未満の水に切替えて散水することを特徴とする生物脱臭方法としたものである。
前記脱臭方法において、充填層に散水する水の切替えは、充填層の圧力損失が0.3kPa以上となった場合に、全リン濃度0.2mg/L以上の水から浮遊物質濃度10mg/L未満の水に切替えることができる。
In order to solve the above-mentioned problems, as a result of intensive research, the secondary treatment water was used as the water for sprinkling at the acclimatization stage, and after acclimatization, water consisting of industrial water or tap water was used as the water for sprinkling. The present invention was completed by finding that it was not clogged, could be acclimatized in a short period of time, and sufficiently satisfied the malodorous substance removal performance.
In the present invention, in a biological deodorization method in which odor gas is passed through a packed bed filled with a filler to perform deodorization, water having a total phosphorus concentration of 0.2 mg / L or more is first sprinkled into the packed bed. The biological deodorization method is characterized in that, based on the pressure loss of the packed bed, the water is switched to water having a suspended solid concentration of less than 10 mg / L and sprayed.
In the deodorization method, switching of water sprayed to the packed bed is performed when the pressure loss of the packed bed is 0.3 kPa or more, and the suspended matter concentration is less than 10 mg / L from water having a total phosphorus concentration of 0.2 mg / L or more. Can be switched to water.

また、本発明では、充填材を充填した充填層に、臭気ガスを通気して脱臭を行う生物脱臭方法において、前記充填層に、まず全リン濃度が0.2mg/L以上の水を散水させた後、硫化水素濃度除去率に基づいて、浮遊物質濃度が10mg/L未満の水に切替えて散水することを特徴とする生物脱臭方法としたものである。
前記脱臭方法において、全リン濃度が0.2mg/L以上の水は、下水二次処理水、又は、工業用水又は水道水に栄養塩を添加して調整した水であり、浮遊物質濃度が10mg/L未満の水は、工業用水又は水道水とすることができる。
Further, in the present invention, in the biological deodorization method in which odor gas is passed through a packed bed filled with a filler to perform deodorization, water having a total phosphorus concentration of 0.2 mg / L or more is first sprinkled into the packed bed. Then, based on the hydrogen sulfide concentration removal rate, the biological deodorization method is characterized in that water is switched to water with a suspended solid concentration of less than 10 mg / L.
In the deodorization method, the water having a total phosphorus concentration of 0.2 mg / L or more is sewage secondary treated water, or water prepared by adding nutrient salt to industrial water or tap water, and the suspended solid concentration is 10 mg. Water less than / L can be industrial water or tap water.

さらに、本発明では、充填材を充填した充填層に、臭気ガスを通気して脱臭を行う生物脱臭装置において、該生物脱臭装置は、該臭気ガスを導入する導入口と、該充填層に散水をするための散水部と、該充填層の圧力損失を測定する圧力センサと、該圧力センサの測定値により、前記散水部に送水する全リン濃度0.2mg/L以上の水と浮遊物質濃度10mg/L未満の水を切替える切替手段とを具備することを特徴とする生物脱臭装置としたものである。
前記脱臭装置において、切替手段は、充填層の圧力損失が0.3kPa以上となった場合に、全リン濃度0.2mg/L以上の水から浮遊物質濃度10mg/L未満の水に切替える制御部を具備することができる。
Furthermore, in the present invention, in a biological deodorization apparatus that performs deodorization by aeration of odor gas through a packed bed filled with a filler, the biological deodorization apparatus includes an inlet for introducing the odor gas, and water sprayed into the packed bed. A watering part for measuring the pressure loss of the packed bed, and a measured value of the pressure sensor, the total phosphorous concentration of 0.2 mg / L or more and the suspended solids concentration sent to the watering part The biological deodorizing apparatus is characterized by comprising switching means for switching water of less than 10 mg / L.
In the deodorization apparatus, the switching unit is configured to switch from water having a total phosphorus concentration of 0.2 mg / L or more to water having a suspended substance concentration of less than 10 mg / L when the pressure loss of the packed bed becomes 0.3 kPa or more. Can be provided.

また、本発明では、充填材を充填した充填層に、臭気ガスを通気して脱臭を行う生物脱臭装置において、該生物脱臭装置は、該臭気ガスを導入する導入口と、該充填層に散水をするための散水部と、該臭気がスと処理ガスの硫化水素濃度を測定する硫化水素濃度計と、該硫化水素濃度計の測定値により硫化水素濃度除去率を算出する演算部と、該演算部の算出値により、前記散水部に送水する全リン濃度0.2mg/L以上の水と浮遊物質濃度10mg/L未満の水を切替える切替手段とを具備することを特徴とする生物脱臭装置としたものである。
本発明においては、充填層を充填した充填層の圧力損失を測定して、圧力損失の変化傾向を算出し、圧力損失が上昇傾向にある場合に、下水二次処理水から工業用水又は水道水に切替えて散水することができ、その際、工業用水又は水道水に、栄養塩又は下水二次処理水を添加することができ、栄養塩又は下水二次処理水を添加した後のリン酸濃度は0.1mg/L以上とすることができる。
Further, in the present invention, in a biological deodorization apparatus that performs deodorization by aeration of odor gas through a packed bed filled with a filler, the biological deodorization apparatus includes an inlet for introducing the odor gas, and water sprayed into the packed bed. A watering unit for measuring the hydrogen sulfide concentration of the treatment gas and the odor, a calculation unit for calculating a hydrogen sulfide concentration removal rate based on the measured value of the hydrogen sulfide concentration meter, A biological deodorizing apparatus comprising switching means for switching between water having a total phosphorus concentration of 0.2 mg / L or higher and water having a suspended solids concentration of less than 10 mg / L to be sent to the watering unit according to a calculated value of the arithmetic unit It is what.
In the present invention, the pressure loss of the packed bed filled with the packed bed is measured, the change tendency of the pressure loss is calculated, and when the pressure loss is increasing, the industrial water or tap water is treated from the secondary sewage treatment water. In this case, nutrient salt or sewage secondary treated water can be added to industrial water or tap water, and phosphoric acid concentration after adding nutrient salt or sewage secondary treated water Can be 0.1 mg / L or more.

本発明により、散水用水を馴致終了後に下水二次処理水から工業用水や水道水に切替えるという極めて簡便な方法により、充填層へのSSの閉塞を解消でき、悪臭物質除去性能を充分に満足できる。また、砂ろ過設備がなく下水二次処理水しか得られない下水処理施設においては、調達が容易な工業用水や水道水を利用することができる。   According to the present invention, the clogging of the SS in the packed bed can be eliminated by an extremely simple method of switching from sewage secondary treated water to industrial water or tap water after the irrigation water has been adapted, and the malodorous substance removal performance can be sufficiently satisfied. . In a sewage treatment facility where there is no sand filtration facility and only sewage secondary treated water can be obtained, industrial water and tap water that can be easily procured can be used.

以下に、本発明を図面を参照して詳細に説明する。
図1は、本発明の生物脱臭装置の概略構成図である。
図1において、脱臭塔3は、微生物を担持させるための充填材を充填した充填層4と、充填層4に散水用水を散水するための散水部5と、散水した後の水を排水するための排水管6を備える。充填層に用いる充填材としては、ポリビニルアルコール(PVA)、ポリウレタン、ポリスチレン、ポリプロピレン、ポリエチレン又はポリアセタールの発泡成形物、多孔質セラミック、ゼオライト又はピートのような天然材料、破砕炭、成形炭等あるが、特にこれらに限定されない。また、散水用水として、下水二次処理水10と工業用水又は水道水11を給水槽7に貯水し、散水部5に送水する。また、下水二次処理水切替バルブ8と工業用水又は水道水切替バルブ9により、給水槽7に送る水を、下水二次処理水10と工業用水又は水道水11とを切替えることができる。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of the biological deodorization apparatus of the present invention.
In FIG. 1, a deodorizing tower 3 includes a packed bed 4 filled with a filler for supporting microorganisms, a sprinkling unit 5 for spraying water for spraying into the packed bed 4, and draining the water after spraying. The drain pipe 6 is provided. Examples of the filler used for the packed bed include polyvinyl alcohol (PVA), polyurethane, polystyrene, polypropylene, polyethylene or polyacetal foamed molding, porous ceramics, natural materials such as zeolite or peat, crushed charcoal, and charcoal. However, it is not particularly limited to these. Moreover, the sewage secondary treated water 10 and the industrial water or tap water 11 are stored in the water tank 7 as the water for watering, and are sent to the watering part 5. Moreover, the sewage secondary treated water 10 and the industrial water or tap water 11 can be switched by the sewage secondary treated water switching valve 8 and the industrial water or tap water switching valve 9.

切替えた後の水は、浮遊物質濃度が10mg/L未満であることが好ましい。10mg/L以上であると、充填層へ浮遊物質の付着し、圧力損失が上昇する。さらに、工業用水又は水道水10に下水二次処理水9を一部混合することもできる。この場合、下水二次処理水を添加した後の全窒素濃度は0.1mg/L以上、全リン濃度は0.2mg/L以上であることが好ましい。全リン濃度が0.2mg/L以下の場合は、馴致が不十分になったり、馴致期間が極めて長くなる。圧力センサ12により、充填層の圧力損失を測定する。制御部13から、圧力損失が0.3kPa以上となった場合に、下水二次処理水10から工業用水又は水道水11に切替えるよう下水二次処理水切替バルブ8を閉じ、工業用水又は水道水切替バルブ9を開くように信号をだす。充填層の圧力損失は、一般には0.01〜0.2kPa程度であるが、充填層へのSS分や汚泥の蓄積等により徐々に増え、ある時点より急激に上昇することが知られている。そのため、0.3kPaとなったときが圧力損失が上昇傾向にあるかを知る上での一つの目安となる。   The water after switching preferably has a suspended solid concentration of less than 10 mg / L. When it is 10 mg / L or more, floating substances adhere to the packed bed and pressure loss increases. Furthermore, the sewage secondary treated water 9 can be partially mixed with the industrial water or tap water 10. In this case, it is preferable that the total nitrogen concentration after adding the sewage secondary treated water is 0.1 mg / L or more and the total phosphorus concentration is 0.2 mg / L or more. When the total phosphorus concentration is 0.2 mg / L or less, the adaptation becomes insufficient or the adaptation period becomes extremely long. The pressure loss of the packed bed is measured by the pressure sensor 12. When the pressure loss becomes 0.3 kPa or more from the control unit 13, the sewage secondary treated water switching valve 8 is closed so as to switch from the sewage secondary treated water 10 to the industrial water or tap water 11, and industrial water or tap water. A signal is sent to open the switching valve 9. The pressure loss of the packed bed is generally about 0.01 to 0.2 kPa, but it is known that the pressure loss gradually increases due to the SS content and sludge accumulation in the packed bed, and increases rapidly from a certain point. . Therefore, when it becomes 0.3 kPa, it becomes one standard for knowing whether the pressure loss tends to increase.

図2は、本発明の別の生物脱臭装置の概略構成図である。
図2において、脱臭塔3は、微生物を担持させるための充填材を充填した充填層4と、充填層4に散水用水を散水するための散水部5と、散水した後の水を排水するための排水管6を備える。散水用水として、工業用水又は水道水と下水二次処理水を給水槽7に貯水する。また、栄養塩添加装置14を備えており、栄養塩添加装置11から給水槽7に栄養塩を添加する。栄養塩としては、尿素、リン酸カリウム(KH2PO4、K2HPO4)等がある。給水槽7の水を散水部5に送水する。散水用水の水質監視や制御にSS計、全窒素測定計、全リン測定計を用いても良い。また、下水二次処理水切替バルブ8と工業用水又は水道水切替バルブ9により、給水槽7に送る水を、下水二次処理水10と工業用水又は水道水11とを切替えることができる。さらに、工業用水又は水道水10に下水二次処理水9を一部混合することもできる。この場合、下水二次処理水を添加した後の全窒素濃度は0.1mg/L以上、全リン濃度は0.2mg/L以上であることが好ましい。圧力センサ12により、充填層の圧力損失を測定する。制御部13から、圧力損失が0.3kPa以上となった場合に、下水二次処理水10から工業用水又は水道水11に切替えるよう下水二次処理水切替バルブ8を閉じ、工業用水又は水道水切替バルブ9を開くように信号をだす。
FIG. 2 is a schematic configuration diagram of another biological deodorization apparatus of the present invention.
In FIG. 2, the deodorization tower 3 includes a packed bed 4 filled with a filler for supporting microorganisms, a sprinkling unit 5 for spraying water for spraying into the packed bed 4, and draining the water after spraying. The drain pipe 6 is provided. Industrial water or tap water and sewage secondary treated water are stored in the water tank 7 as water for watering. Moreover, the nutrient salt addition apparatus 14 is provided and a nutrient salt is added to the water supply tank 7 from the nutrient salt addition apparatus 11. Nutrient salts include urea, potassium phosphate (KH 2 PO 4 , K 2 HPO 4 ) and the like. Water from the water tank 7 is sent to the watering part 5. An SS meter, a total nitrogen meter, and a total phosphorus meter may be used for water quality monitoring and control of water for sprinkling. Moreover, the sewage secondary treated water 10 and the industrial water or tap water 11 can be switched by the sewage secondary treated water switching valve 8 and the industrial water or tap water switching valve 9. Furthermore, the sewage secondary treated water 9 can be partially mixed with the industrial water or tap water 10. In this case, the total nitrogen concentration after adding sewage secondary treated water is preferably 0.1 mg / L or more, and the total phosphorus concentration is preferably 0.2 mg / L or more. The pressure loss of the packed bed is measured by the pressure sensor 12. When the pressure loss becomes 0.3 kPa or more from the control unit 13, the sewage secondary treated water switching valve 8 is closed so as to switch from the sewage secondary treated water 10 to the industrial water or tap water 11, and industrial water or tap water. A signal is sent to open the switching valve 9.

図3は、本発明の別の生物脱臭装置の概略構成図である。
図3において、脱臭塔3は、微生物を担持させるための充填材を充填した充填層4と、充填層4に散水用水を散水するための散水部5と、散水した後の水を排水するための排水管6を備える。散水用水として、工業用水又は水道水と下水二次処理水を給水槽7に貯水する。給水槽7の水を散水部5に送水する。また、下水二次処理水切替バルブ8と工業用水又は水道水切替バルブ9により、給水槽7に送る水を、下水二次処理水10と工業用水又は水道水11とを切替えることができる。この場合、下水二次処理水を添加した後の全窒素濃度は0.1mg/L以上、全リン濃度は0.2mg/L以上であることが好ましい。原ガス硫化水素濃度計15及び処理ガス硫化水素濃度計16により、原ガスと処理ガスの硫化水素濃度を測定する。測定した硫化水素濃度より演算部17にて硫化水素除去率を算出する。硫化水素除去率に基づいて、下水二次処理水10から工業用水又は水道水11に切替えるよう下水二次処理水切替バルブ8を閉じ、工業用水又は水道水切替バルブ9を開くように信号をだす。充填層にSS分が付着し圧力損失が上昇すると、硫化水素除去率が悪くなることが知られており、散水用水を切替えるのは、硫化水素除去率が70〜90%以下となったときがよい。
FIG. 3 is a schematic configuration diagram of another biological deodorization apparatus of the present invention.
In FIG. 3, the deodorization tower 3 includes a packed bed 4 filled with a filler for supporting microorganisms, a sprinkling unit 5 for spraying water for spraying into the packed bed 4, and draining the water after spraying. The drain pipe 6 is provided. Industrial water or tap water and sewage secondary treated water are stored in the water tank 7 as water for watering. Water from the water tank 7 is sent to the watering part 5. Moreover, the sewage secondary treated water 10 and the industrial water or tap water 11 can be switched by the sewage secondary treated water switching valve 8 and the industrial water or tap water switching valve 9. In this case, the total nitrogen concentration after adding sewage secondary treated water is preferably 0.1 mg / L or more, and the total phosphorus concentration is preferably 0.2 mg / L or more. The raw gas hydrogen sulfide concentration meter 15 and the processing gas hydrogen sulfide concentration meter 16 measure the hydrogen sulfide concentration of the raw gas and the processing gas. The calculation unit 17 calculates the hydrogen sulfide removal rate from the measured hydrogen sulfide concentration. Based on the hydrogen sulfide removal rate, a signal is issued to close the sewage secondary treated water switching valve 8 to switch from the sewage secondary treated water 10 to the industrial water or tap water 11 and open the industrial water or tap water switching valve 9. . It is known that when the SS component adheres to the packed bed and the pressure loss increases, the hydrogen sulfide removal rate is known to deteriorate. The reason for switching the water for spraying is when the hydrogen sulfide removal rate is 70 to 90% or less. Good.

以下、本発明を実施例により具体的に説明する。
実施例1
図1に示す脱臭塔3の充填層5にポリビニルアセタール(PVA)を充填し、下水汚泥集約処理施設から発生する臭気を、原ガス1として脱臭処理した。運転条件は次のとおりである。
原ガス性状 硫化水素濃度 :24ppm
メチルメルカプタン濃度 : 2.0ppm
硫化メチル濃度 : 0.079ppm
二硫化メチル濃度 : 0.036ppm
温度 :20℃
空塔速度 :180hr−1
空塔線速度 : 0.11m/sec
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
The packed bed 5 of the deodorization tower 3 shown in FIG. 1 was filled with polyvinyl acetal (PVA), and the odor generated from the sewage sludge concentration treatment facility was deodorized as the raw gas 1. The operating conditions are as follows.
Raw gas properties Hydrogen sulfide concentration: 24ppm
Methyl mercaptan concentration: 2.0ppm
Methyl sulfide concentration: 0.079ppm
Methyl disulfide concentration: 0.036ppm
Temperature: 20 ° C
Superficial velocity: 180 hr -1
Empty line speed: 0.11 m / sec

脱臭処理開始から60日経過後の脱臭成績を表1に示す。下水二次処理水を30日間散水したところ、圧力損失が0.3kPa以上となった。また、このときの硫化水素の除去率は89%であった。その後、散水用水を工業用水に切替えた。工業用水に切替えてから30日後の処理ガスの悪臭物質濃度は、硫化水素0.001ppm以下、メチルメルカプタン0.001ppm以下、硫化メチル0.001ppm以下、二硫化メチル0.001ppm以下となった。また、脱臭処理開始より60日後の圧力損失は0.16kPaであった。
なお、散水用水のSS濃度、全窒素濃度、全リン濃度を表2に示す。下水二次処理水のSS濃度は10mg/L、全窒素濃度は13mg/L、全リン濃度は2.1mg/Lであった。工業用水のSS濃度は1mg/L、全窒素濃度は0.5mg/L、全リン濃度は1.0mg/Lであった。
Table 1 shows the deodorization results after 60 days from the start of the deodorization treatment. When the sewage secondary treated water was sprinkled for 30 days, the pressure loss became 0.3 kPa or more. At this time, the removal rate of hydrogen sulfide was 89%. Thereafter, the water for watering was switched to industrial water. The malodorous substance concentration of the treatment gas 30 days after switching to industrial water was 0.001 ppm or less of hydrogen sulfide, 0.001 ppm or less of methyl mercaptan, 0.001 ppm or less of methyl sulfide, and 0.001 ppm or less of methyl disulfide. Moreover, the pressure loss 60 days after the start of the deodorization treatment was 0.16 kPa.
In addition, Table 2 shows SS concentration, total nitrogen concentration, and total phosphorus concentration of water for watering. The SS concentration of sewage secondary treated water was 10 mg / L, the total nitrogen concentration was 13 mg / L, and the total phosphorus concentration was 2.1 mg / L. The SS concentration of industrial water was 1 mg / L, the total nitrogen concentration was 0.5 mg / L, and the total phosphorus concentration was 1.0 mg / L.

実施例2
図1に示す脱臭塔3の充填層5にPVAを充填し、下水汚泥集約処理施設から発生する臭気を原ガス1として、脱臭処理した。運転条件は次のとおりである。
原ガス性状 硫化水素濃度 :29ppm
メチルメルカプタン濃度 : 1.7ppm
硫化メチル濃度 : 0.069ppm
二硫化メチル濃度 : 0.039ppm
温度 :21℃
空塔速度 :180hr−1
空塔線速度 : 0.11m/sec
Example 2
The packed bed 5 of the deodorizing tower 3 shown in FIG. 1 was filled with PVA, and deodorized using the odor generated from the sewage sludge concentration treatment facility as the raw gas 1. The operating conditions are as follows.
Raw gas properties Hydrogen sulfide concentration: 29ppm
Methyl mercaptan concentration: 1.7 ppm
Methyl sulfide concentration: 0.069ppm
Methyl disulfide concentration: 0.039 ppm
Temperature: 21 ° C
Superficial velocity: 180 hr -1
Empty line speed: 0.11 m / sec

脱臭処理開始から60日経過後の脱臭成績を表1に示す。下水二次処理水を30日間散水したところ圧力損失が0.3kPa以上となった。また、このときの硫化水素の除去率は89%であった。その後、散水用水を水道水に切替えた。上水に切替えてから30日後の処理ガスの悪臭物質濃度は、硫化水素0.001ppm以下、メチルメルカプタン0.001ppm以下、硫化メチル0.001ppm以下、二硫化メチル0.001ppm以下となった。また、脱臭処理開始より60日後の圧力損失は0.15kPaであった。
なお、散水用水のSS濃度、全窒素濃度、全リン濃度を表2に示す。下水二次処理水のSS濃度は11mg/L、全窒素濃度は12mg/L、全リン濃度は2.7mg/Lであった。水道水のSS濃度は1mg/L、全窒素濃度は2.0mg/L、全リン濃度は0.1mg/L以下であった。
Table 1 shows the deodorization results after 60 days from the start of the deodorization treatment. When the sewage secondary treated water was sprinkled for 30 days, the pressure loss became 0.3 kPa or more. At this time, the removal rate of hydrogen sulfide was 89%. Thereafter, the water for watering was switched to tap water. The malodorous substance concentration of the treatment gas 30 days after switching to clean water was 0.001 ppm or less of hydrogen sulfide, 0.001 ppm or less of methyl mercaptan, 0.001 ppm or less of methyl sulfide, and 0.001 ppm or less of methyl disulfide. Moreover, the pressure loss 60 days after the start of the deodorizing treatment was 0.15 kPa.
In addition, Table 2 shows SS concentration, total nitrogen concentration, and total phosphorus concentration of water for watering. The SS concentration of sewage secondary treated water was 11 mg / L, the total nitrogen concentration was 12 mg / L, and the total phosphorus concentration was 2.7 mg / L. The SS concentration of tap water was 1 mg / L, the total nitrogen concentration was 2.0 mg / L, and the total phosphorus concentration was 0.1 mg / L or less.

実施例3
図1に示す脱臭塔3の充填層5にポリビニルアセタール(PVA)を充填し、下水汚泥集約処理施設から発生する臭気を、原ガス1として脱臭処理した。運転条件は次のとおりである。
原ガス性状 硫化水素濃度 :28ppm
メチルメルカプタン濃度 : 2.5ppm
硫化メチル濃度 : 0.090ppm
二硫化メチル濃度 : 0.035ppm
温度 :20℃
空塔速度 :180hr−1
空塔線速度 : 0.11m/sec
Example 3
The packed bed 5 of the deodorization tower 3 shown in FIG. 1 was filled with polyvinyl acetal (PVA), and the odor generated from the sewage sludge concentration treatment facility was deodorized as the raw gas 1. The operating conditions are as follows.
Raw gas properties Hydrogen sulfide concentration: 28ppm
Methyl mercaptan concentration: 2.5ppm
Methyl sulfide concentration: 0.090ppm
Methyl disulfide concentration: 0.035ppm
Temperature: 20 ° C
Superficial velocity: 180 hr -1
Empty line speed: 0.11 m / sec

脱臭処理開始から60日経過後の脱臭成績を表1に示す。下水二次処理水を35日間散水したところ、硫化水素の除去率がそれまでは90%以上であったものが、89%となった。このときの圧力損失が0.35kPaであった。その後、散水用水を工業用水に切替えた。工業用水に切替えてから25日後の処理ガスの悪臭物質濃度は、硫化水素0.001ppm以下、メチルメルカプタン0.001ppm以下、硫化メチル0.001ppm以下、二硫化メチル0.001ppm以下となった。また、脱臭処理開始より60日後の圧力損失は0.19kPaであった。
なお、散水用水のSS濃度、全窒素濃度、全リン濃度を表2に示す。下水二次処理水のSS濃度は10mg/L、全窒素濃度は13mg/L、全リン濃度は2.1mg/Lであった。工業用水のSS濃度は1mg/L、全窒素濃度は0.5mg/L、全リン濃度は1.0mg/Lであった。
Table 1 shows the deodorization results after 60 days from the start of the deodorization treatment. When the sewage secondary treated water was sprinkled for 35 days, the removal rate of hydrogen sulfide was 89%, which was 90% or more. The pressure loss at this time was 0.35 kPa. Thereafter, the water for watering was switched to industrial water. The malodorous substance concentration of the treatment gas 25 days after switching to industrial water was 0.001 ppm or less of hydrogen sulfide, 0.001 ppm or less of methyl mercaptan, 0.001 ppm or less of methyl sulfide, and 0.001 ppm or less of methyl disulfide. Moreover, the pressure loss 60 days after the start of the deodorizing treatment was 0.19 kPa.
In addition, Table 2 shows SS concentration, total nitrogen concentration, and total phosphorus concentration of water for watering. The SS concentration of sewage secondary treated water was 10 mg / L, the total nitrogen concentration was 13 mg / L, and the total phosphorus concentration was 2.1 mg / L. The SS concentration of industrial water was 1 mg / L, the total nitrogen concentration was 0.5 mg / L, and the total phosphorus concentration was 1.0 mg / L.

実施例4
図1に示す脱臭塔3の充填層5にポリビニルアセタール(PVA)を充填し、下水汚泥集約処理施設から発生する臭気を、原ガス1として脱臭処理した。運転条件は次のとおりである。
原ガス性状 硫化水素濃度 :25ppm
メチルメルカプタン濃度 : 1.9ppm
硫化メチル濃度 : 0.065ppm
二硫化メチル濃度 : 0.040ppm
温度 :20℃
空塔速度 :180hr−1
空塔線速度 : 0.11m/sec
Example 4
The packed bed 5 of the deodorization tower 3 shown in FIG. 1 was filled with polyvinyl acetal (PVA), and the odor generated from the sewage sludge concentration treatment facility was deodorized as the raw gas 1. The operating conditions are as follows.
Raw gas properties Hydrogen sulfide concentration: 25ppm
Methyl mercaptan concentration: 1.9ppm
Methyl sulfide concentration: 0.065ppm
Methyl disulfide concentration: 0.040 ppm
Temperature: 20 ° C
Superficial velocity: 180 hr -1
Empty line speed: 0.11 m / sec

脱臭処理開始から60日経過後の脱臭成績を表1に示す。下水二次処理水を35日間散水したところ、硫化水素の除去率がそれまでは90%以上であったものが、89%となった。このときの圧力損失が0.35kPaであった。その後、散水用水を水道水に切替えた。水道水に切替えてから25日後の処理ガスの悪臭物質濃度は、硫化水素0.001ppm以下、メチルメルカプタン0.001ppm以下、硫化メチル0.001ppm以下、二硫化メチル0.001ppm以下となった。また、脱臭処理開始より60日後の圧力損失は0.18kPaであった。
なお、散水用水のSS濃度、全窒素濃度、全リン濃度を表2に示す。下水二次処理水のSS濃度は11mg/L、全窒素濃度は12mg/L、全リン濃度は2.7mg/Lであった。水道水のSS濃度は1mg/L、全窒素濃度は2.0mg/L、全リン濃度は0.1mg/L以下であった。
Table 1 shows the deodorization results after 60 days from the start of the deodorization treatment. When the sewage secondary treated water was sprinkled for 35 days, the removal rate of hydrogen sulfide was 89%, which was 90% or more. The pressure loss at this time was 0.35 kPa. Thereafter, the water for watering was switched to tap water. The malodorous substance concentration of the treatment gas 25 days after switching to tap water was 0.001 ppm or less of hydrogen sulfide, 0.001 ppm or less of methyl mercaptan, 0.001 ppm or less of methyl sulfide, and 0.001 ppm or less of methyl disulfide. Moreover, the pressure loss 60 days after the start of the deodorization treatment was 0.18 kPa.
In addition, Table 2 shows SS concentration, total nitrogen concentration, and total phosphorus concentration of water for watering. The SS concentration of sewage secondary treated water was 11 mg / L, the total nitrogen concentration was 12 mg / L, and the total phosphorus concentration was 2.7 mg / L. The SS concentration of tap water was 1 mg / L, the total nitrogen concentration was 2.0 mg / L, and the total phosphorus concentration was 0.1 mg / L or less.

比較例1
図1に示す脱臭塔3の充填層5にPVAを充填し、下水汚泥集約処理施設から発生する臭気を原ガス1として、脱臭処理した。運転条件は次のとおりである。
原ガス性状 硫化水素濃度 :28ppm
メチルメルカプタン濃度 : 1.6ppm
硫化メチル濃度 : 0.079ppm
二硫化メチル濃度 : 0.039ppm
温度 :20℃
空塔速度 :180hr−1
空塔線速度 : 0.11m/sec
Comparative Example 1
The packed bed 5 of the deodorizing tower 3 shown in FIG. 1 was filled with PVA, and deodorized using the odor generated from the sewage sludge concentration treatment facility as the raw gas 1. The operating conditions are as follows.
Raw gas properties Hydrogen sulfide concentration: 28ppm
Methyl mercaptan concentration: 1.6ppm
Methyl sulfide concentration: 0.079ppm
Methyl disulfide concentration: 0.039ppm
Temperature: 20 ° C
Superficial velocity: 180 hr -1
Empty line speed: 0.11 m / sec

脱臭処理開始から60日経過後の脱臭成績を表1に示す。試験開始時より散水用水には下水二次処理水を使用した。脱臭処理開始より60日後の処理ガスの悪臭物質濃度は、硫化水素5.1ppm、メチルメルカプタン0.010ppm、硫化メチル0.004ppm、二硫化メチル0.001ppm以下であり、実施例1及び実施例2に比して脱臭性能が悪くなった。このときの硫化水素除去率は、82%であった。また、脱臭処理開始より60日後の圧力損失も0.5kPaと実施例1及び実施例2に比して高かった。
なお、散水用水のSS濃度、アンモニア態窒素濃度、リン酸濃度を表2に示す。下水二次処理水のSS濃度は11mg/L、アンモニア態窒素濃度は13mg/L、リン酸濃度は2.5mg/Lであった。
Table 1 shows the deodorization results after 60 days from the start of the deodorization treatment. Sewage secondary treated water was used for watering from the start of the test. The malodorous substance concentration of the treatment gas 60 days after the start of the deodorization treatment is 5.1 ppm or less of hydrogen sulfide, 0.010 ppm of methyl mercaptan, 0.004 ppm of methyl sulfide, and 0.001 ppm of methyl disulfide. Deodorization performance was worse than that. At this time, the removal rate of hydrogen sulfide was 82%. Moreover, the pressure loss 60 days after the start of the deodorizing treatment was 0.5 kPa, which was higher than those in Examples 1 and 2.
In addition, Table 2 shows the SS concentration, ammonia nitrogen concentration, and phosphoric acid concentration of water for watering. The SS concentration of the sewage secondary treated water was 11 mg / L, the ammonia nitrogen concentration was 13 mg / L, and the phosphoric acid concentration was 2.5 mg / L.

比較例2
図1に示す脱臭塔3の充填層5にPVAを充填し、下水汚泥集約処理施設から発生する臭気を原ガス1として、脱臭処理した。運転条件は次のとおりである。
原ガス性状 硫化水素濃度 :22ppm
メチルメルカプタン濃度 : 1.9ppm
硫化メチル濃度 : 0.086ppm
二硫化メチル濃度 : 0.043ppm
温度 :22℃
空塔速度 :180hr−1
空塔線速度 : 0.11m/sec
Comparative Example 2
The packed bed 5 of the deodorizing tower 3 shown in FIG. 1 was filled with PVA, and deodorized using the odor generated from the sewage sludge concentration treatment facility as the raw gas 1. The operating conditions are as follows.
Raw gas properties Hydrogen sulfide concentration: 22ppm
Methyl mercaptan concentration: 1.9ppm
Methyl sulfide concentration: 0.086ppm
Methyl disulfide concentration: 0.043ppm
Temperature: 22 ° C
Superficial velocity: 180 hr -1
Empty line speed: 0.11 m / sec

脱臭処理開始から60日経過後の脱臭成績を表1に示す。試験開始時より散水用水には工業用水を使用した。脱臭処理開始より60日後の処理ガスの悪臭物質濃度は、硫化水素0.002ppm以下、メチルメルカプタン0.064ppm、硫化メチル0.016ppm、二硫化メチル0.015ppm以下であり、実施例1及び実施例2に比して脱臭性能が悪くなった。また、脱臭処理開始より60日後の圧力損失は0.02kPaであった。
なお、散水用水のSS濃度、全窒素濃度、全リン濃度を表2に示す。工業用水のSS濃度は1mg/L、全窒素濃度は0.5mg/L、全リン濃度は1.0mg/L以下であった。
Table 1 shows the deodorization results after 60 days from the start of the deodorization treatment. Industrial water was used for watering from the start of the test. The malodorous substance concentration of the treatment gas 60 days after the start of the deodorization treatment is 0.002 ppm or less of hydrogen sulfide, 0.064 ppm of methyl mercaptan, 0.016 ppm of methyl sulfide, and 0.015 ppm or less of methyl disulfide. Deodorizing performance was worse than 2. Moreover, the pressure loss 60 days after the start of the deodorizing treatment was 0.02 kPa.
In addition, Table 2 shows SS concentration, total nitrogen concentration, and total phosphorus concentration of water for watering. The SS concentration of industrial water was 1 mg / L, the total nitrogen concentration was 0.5 mg / L, and the total phosphorus concentration was 1.0 mg / L or less.

比較例3
図1に示す脱臭塔3の充填層5にPVAを充填し、下水汚泥集約処理施設から発生する臭気を原ガス1として、脱臭処理した。運転条件は次のとおりである。
原ガス性状 硫化水素濃度 :28ppm
メチルメルカプタン濃度 : 2.1ppm
硫化メチル濃度 : 0.072ppm
二硫化メチル濃度 : 0.035ppm
温度 :21℃
空塔速度 :180hr−1
空塔線速度 : 0.11m/sec
Comparative Example 3
The packed bed 5 of the deodorizing tower 3 shown in FIG. 1 was filled with PVA, and deodorized using the odor generated from the sewage sludge concentration treatment facility as the raw gas 1. The operating conditions are as follows.
Raw gas properties Hydrogen sulfide concentration: 28ppm
Methyl mercaptan concentration: 2.1ppm
Methyl sulfide concentration: 0.072ppm
Methyl disulfide concentration: 0.035ppm
Temperature: 21 ° C
Superficial velocity: 180 hr -1
Empty line speed: 0.11 m / sec

脱臭処理開始から60日経過後の脱臭成績を表1に示す。試験開始時より散水用水には水道水を使用した。脱臭処理開始より60日後の処理ガスの悪臭物質濃度は、硫化水素0.003ppm以下、メチルメルカプタン0.056ppm、硫化メチル0.012ppm、二硫化メチル0.020ppm以下であり、実施例1及び実施例2に比して脱臭性能が悪くなった。また、脱臭処理開始より60日後の圧力損失は0.02kPaであった。
なお、散水用水のSS濃度、全窒素濃度、全リン濃度を表2に示す。水道水のSS濃度は1mg/L、全窒素濃度は2.0mg/L以下、全リン濃度は0.1mg/L以下であった。
Table 1 shows the deodorization results after 60 days from the start of the deodorization treatment. Tap water was used for watering from the start of the test. The malodorous substance concentration of the treatment gas 60 days after the start of the deodorization treatment is 0.003 ppm or less of hydrogen sulfide, 0.056 ppm of methyl mercaptan, 0.012 ppm of methyl sulfide, and 0.020 ppm or less of methyl disulfide. Deodorizing performance was worse than 2. Moreover, the pressure loss 60 days after the start of the deodorizing treatment was 0.02 kPa.
In addition, Table 2 shows SS concentration, total nitrogen concentration, and total phosphorus concentration of water for watering. The SS concentration of tap water was 1 mg / L, the total nitrogen concentration was 2.0 mg / L or less, and the total phosphorus concentration was 0.1 mg / L or less.

Figure 2007283192
Figure 2007283192

Figure 2007283192
Figure 2007283192

本発明の生物脱臭装置の一例を示す概略構成図。The schematic block diagram which shows an example of the biological deodorizing apparatus of this invention. 本発明の生物脱臭装置の別の例を示す概略構成図。The schematic block diagram which shows another example of the biological deodorizing apparatus of this invention. 本発明の生物脱臭装置の他の例を示す概略構成図。The schematic block diagram which shows the other example of the biological deodorizing apparatus of this invention.

符号の説明Explanation of symbols

1:原ガス、2:処理ガス、3:脱臭塔、4充填層、5:散水部、6:排水、7:給水槽、8:下水二次処理水切替バルブ、9:工業用水又は水道水切替バルブ、10:下水二次処理水、11:工業用水又は水道水、12:圧力センサ、13:制御部、14:栄養塩添加装置、15,16:硫化水素濃度計、17:演算部   1: raw gas, 2: treatment gas, 3: deodorization tower, 4 packed bed, 5: sprinkling section, 6: drainage, 7: water tank, 8: sewage secondary treatment water switching valve, 9: industrial water or tap water Switching valve, 10: Sewage secondary treated water, 11: Industrial water or tap water, 12: Pressure sensor, 13: Control unit, 14: Nutrient addition device, 15, 16: Hydrogen sulfide concentration meter, 17: Calculation unit

Claims (7)

充填材を充填した充填層に、臭気ガスを通気して脱臭を行う生物脱臭方法において、前記充填層に、まず全リン濃度が0.2mg/L以上の水を散水させた後、該充填層の圧力損失に基づいて、浮遊物質濃度が10mg/L未満の水に切替えて散水することを特徴とする生物脱臭方法。   In the biological deodorization method in which odor gas is passed through a packed bed filled with a filler to deodorize, the packed bed is first sprinkled with water having a total phosphorus concentration of 0.2 mg / L or more, and then the packed bed A biological deodorization method characterized by switching to water having a suspended solids concentration of less than 10 mg / L and sprinkling water based on the pressure loss. 前記充填層に散水する水の切替えは、充填層の圧力損失が0.3kPa以上となった場合に、全リン濃度0.2mg/L以上の水から浮遊物質濃度10mg/L未満の水に切替えることを特徴とする請求項1に記載の生物脱臭方法。   The water sprayed to the packed bed is switched from water having a total phosphorus concentration of 0.2 mg / L or more to water having a suspended substance concentration of less than 10 mg / L when the pressure loss of the packed bed becomes 0.3 kPa or more. The biological deodorization method according to claim 1. 充填材を充填した充填層に、臭気ガスを通気して脱臭を行う生物脱臭方法において、前記充填層に、まず全リン濃度が0.2mg/L以上の水を散水させた後、硫化水素濃度除去率に基づいて、浮遊物質濃度が10mg/L未満の水に切替えて散水することを特徴とする生物脱臭方法。   In a biological deodorization method in which odor gas is passed through a packed bed filled with a filler to perform deodorization, first, water having a total phosphorus concentration of 0.2 mg / L or more is sprinkled into the packed bed, and then a hydrogen sulfide concentration A biological deodorization method comprising switching to water having a suspended solids concentration of less than 10 mg / L and sprinkling water based on the removal rate. 前記全リン濃度が0.2mg/L以上の水は、下水二次処理水、又は、工業用水又は水道水に栄養塩を添加して調整した水であり、浮遊物質濃度が10mg/L未満の水は、工業用水又は水道水であることを特徴とする請求項1、2又は3記載の生物脱臭方法。   The water having a total phosphorus concentration of 0.2 mg / L or more is sewage secondary treated water, or water prepared by adding nutrient salts to industrial water or tap water, and has a suspended solid concentration of less than 10 mg / L. 4. The biological deodorization method according to claim 1, wherein the water is industrial water or tap water. 充填材を充填した充填層に、臭気ガスを通気して脱臭を行う生物脱臭装置において、該生物脱臭装置は、該臭気ガスを導入する導入口と、該充填層に散水をするための散水部と、該充填層の圧力損失を測定する圧力センサと、該圧力センサの測定値により、前記散水部に送水する全リン濃度0.2mg/L以上の水と浮遊物質濃度10mg/L未満の水を切替える切替手段とを具備することを特徴とする生物脱臭装置。   In a biological deodorization apparatus that performs deodorization by ventilating odor gas through a packed bed filled with a filler, the biological deodorization apparatus includes an inlet for introducing the odor gas, and a watering unit for spraying water into the packed bed A pressure sensor for measuring the pressure loss of the packed bed, and water having a total phosphorus concentration of 0.2 mg / L or more and water having a suspended solids concentration of less than 10 mg / L to be sent to the sprinkling unit according to the measured value of the pressure sensor. A biological deodorizing device comprising switching means for switching between the two. 前記切替手段は、充填層の圧力損失が0.3kPa以上となった場合に、全リン濃度0.2mg/L以上の水から浮遊物質濃度10mg/L未満の水に切替える制御部を具備することを特徴とする請求項5に記載の生物脱臭装置。   The switching means includes a control unit that switches from water having a total phosphorus concentration of 0.2 mg / L or more to water having a suspended matter concentration of less than 10 mg / L when the pressure loss of the packed bed becomes 0.3 kPa or more. The biological deodorization apparatus according to claim 5, wherein: 充填材を充填した充填層に、臭気ガスを通気して脱臭を行う生物脱臭装置において、該生物脱臭装置は、該臭気ガスを導入する導入口と、該充填層に散水をするための散水部と、該臭気がスと処理ガスの硫化水素濃度を測定する硫化水素濃度計と、該硫化水素濃度計の測定値により硫化水素濃度除去率を算出する演算部と、該演算部の算出値により、前記散水部に送水する全リン濃度0.2mg/L以上の水と浮遊物質濃度10mg/L未満の水を切替える切替手段とを具備することを特徴とする生物脱臭装置。   In a biological deodorization apparatus that performs deodorization by ventilating odor gas through a packed bed filled with a filler, the biological deodorization apparatus includes an inlet for introducing the odor gas, and a watering unit for spraying water into the packed bed A hydrogen sulfide concentration meter that measures the hydrogen sulfide concentration of the odor and the processing gas, a calculation unit that calculates a hydrogen sulfide concentration removal rate from the measurement value of the hydrogen sulfide concentration meter, and a calculated value of the calculation unit A biological deodorizing apparatus comprising: switching means for switching between water having a total phosphorus concentration of 0.2 mg / L or higher and water having a suspended solids concentration of less than 10 mg / L to be sent to the watering unit.
JP2006112222A 2006-04-14 2006-04-14 Biological deodorization method and apparatus Active JP4883766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006112222A JP4883766B2 (en) 2006-04-14 2006-04-14 Biological deodorization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006112222A JP4883766B2 (en) 2006-04-14 2006-04-14 Biological deodorization method and apparatus

Publications (2)

Publication Number Publication Date
JP2007283192A true JP2007283192A (en) 2007-11-01
JP4883766B2 JP4883766B2 (en) 2012-02-22

Family

ID=38755457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006112222A Active JP4883766B2 (en) 2006-04-14 2006-04-14 Biological deodorization method and apparatus

Country Status (1)

Country Link
JP (1) JP4883766B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090833A1 (en) * 2008-01-16 2009-07-23 Kabushiki Kaisha Toshiba Biological desulfurization apparatus
JP2012154441A (en) * 2011-01-27 2012-08-16 Jfe Steel Corp Method for manufacturing inner surface coated steel pipe for water piping
CN108421368A (en) * 2018-03-27 2018-08-21 苏州巨联环保有限公司 The recovery method of air separator of oxygenerator and organic exhaust gas
FR3112967A1 (en) * 2020-08-03 2022-02-04 Veolia Water Solutions & Technologies Support Process for the purification and deodorization of a gaseous effluent and installation for the implementation of such a process.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172519A (en) * 1988-12-27 1990-07-04 Ebara Infilco Co Ltd Malodor deodorization and its apparatus
JPH03296415A (en) * 1990-04-17 1991-12-27 Ebara Infilco Co Ltd Deodorization of foul-smelling gas
JPH06226034A (en) * 1993-02-08 1994-08-16 Ngk Insulators Ltd Method for controlling operation of biological deodorizing device
JPH10328A (en) * 1996-06-14 1998-01-06 Ngk Insulators Ltd Biological deodorization method
JP2000225314A (en) * 1999-02-02 2000-08-15 Ebara Corp Method for decomposing volatile organic compound or inorganic odoriferous substance and method for treating exhaust gas using the former method
JP2001034876A (en) * 1999-07-22 2001-02-09 Ngk Insulators Ltd Device for remotely monitoring smell and method for acclimatization operating and designing biological deodorizing facility while using the same
JP2001252341A (en) * 2000-03-09 2001-09-18 Toshiba Corp Biological deodorization device
JP2004113893A (en) * 2002-09-25 2004-04-15 Ebara Corp Packing material for biologically deodorizing malodorous gas, method and apparatus for biologically deodorizing malodorous gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172519A (en) * 1988-12-27 1990-07-04 Ebara Infilco Co Ltd Malodor deodorization and its apparatus
JPH03296415A (en) * 1990-04-17 1991-12-27 Ebara Infilco Co Ltd Deodorization of foul-smelling gas
JPH06226034A (en) * 1993-02-08 1994-08-16 Ngk Insulators Ltd Method for controlling operation of biological deodorizing device
JPH10328A (en) * 1996-06-14 1998-01-06 Ngk Insulators Ltd Biological deodorization method
JP2000225314A (en) * 1999-02-02 2000-08-15 Ebara Corp Method for decomposing volatile organic compound or inorganic odoriferous substance and method for treating exhaust gas using the former method
JP2001034876A (en) * 1999-07-22 2001-02-09 Ngk Insulators Ltd Device for remotely monitoring smell and method for acclimatization operating and designing biological deodorizing facility while using the same
JP2001252341A (en) * 2000-03-09 2001-09-18 Toshiba Corp Biological deodorization device
JP2004113893A (en) * 2002-09-25 2004-04-15 Ebara Corp Packing material for biologically deodorizing malodorous gas, method and apparatus for biologically deodorizing malodorous gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090833A1 (en) * 2008-01-16 2009-07-23 Kabushiki Kaisha Toshiba Biological desulfurization apparatus
JP2009167300A (en) * 2008-01-16 2009-07-30 Toshiba Corp Biological desulfurization apparatus and start-up method thereof
JP2012154441A (en) * 2011-01-27 2012-08-16 Jfe Steel Corp Method for manufacturing inner surface coated steel pipe for water piping
CN108421368A (en) * 2018-03-27 2018-08-21 苏州巨联环保有限公司 The recovery method of air separator of oxygenerator and organic exhaust gas
FR3112967A1 (en) * 2020-08-03 2022-02-04 Veolia Water Solutions & Technologies Support Process for the purification and deodorization of a gaseous effluent and installation for the implementation of such a process.

Also Published As

Publication number Publication date
JP4883766B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
US7276366B2 (en) Biological scrubber odor control system and method
US8318476B2 (en) Gas treatment systems and methods
JP5326187B2 (en) Gas processing apparatus provided with gas pretreatment apparatus and cleaning method
JP4883766B2 (en) Biological deodorization method and apparatus
CN104190245B (en) Biological deodorization device taking slow release carbon as filling
CN110523243A (en) A kind of Optimal Operation Strategies based on real-time control and the device and method for preventing sewage treatment plant&#39;s deodoration system from collapsing
CN204848444U (en) Be applicable to regional constructed wetland sewage treatment plant in north
KR101340353B1 (en) Sewage treatment facility using biofilter with purification waterweed
JP3698356B2 (en) Biological deodorization method and apparatus
JP2004275949A (en) Excreta decomposing treating agent and decomposing treating method for excreta by activation of microorganism
JP3942331B2 (en) Exhaust gas treatment method and equipment
CN202823167U (en) Deodorization member and deodorization device
JP3656895B2 (en) Biological treatment method and apparatus for exhaust gas
JP4614875B2 (en) Biological deodorization equipment
JPH04371213A (en) Deodorizing method for malodorous gas containing hydrogen sulfide of high concentration
JPH05168849A (en) Deodorizer
JP4026256B2 (en) How to acclimatize biological deodorization equipment
Bowers et al. Phosphorus removal by struvite crystallization in various livestock wastewaters
JPH1076139A (en) Treatment of waste gas containing volatile organic material and treating device therefor
Bermudez Biofiltration for control of H2S from Wastewater treatment plant gases
JP2002263439A (en) Deodorizing method and deodorizing apparatus
WO2012106443A1 (en) Compositions for wet air scrubbers and methods for operating and cleaning wet air scrubbers using the same
JP4424702B2 (en) Deodorizing method of compost odor
CA2605358A1 (en) Biofilter media and systems and methods of using same to remove odour causing compounds from waste gas streams
JP2000233114A (en) Biological deodorization apparatus, biological deodorization method, and culture method of biological deodorization apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250