JP3656895B2 - Biological treatment method and apparatus for exhaust gas - Google Patents

Biological treatment method and apparatus for exhaust gas Download PDF

Info

Publication number
JP3656895B2
JP3656895B2 JP2000033518A JP2000033518A JP3656895B2 JP 3656895 B2 JP3656895 B2 JP 3656895B2 JP 2000033518 A JP2000033518 A JP 2000033518A JP 2000033518 A JP2000033518 A JP 2000033518A JP 3656895 B2 JP3656895 B2 JP 3656895B2
Authority
JP
Japan
Prior art keywords
packed
exhaust gas
upstream
packed bed
biological treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000033518A
Other languages
Japanese (ja)
Other versions
JP2001219027A (en
Inventor
敏男 塚本
茂樹 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000033518A priority Critical patent/JP3656895B2/en
Publication of JP2001219027A publication Critical patent/JP2001219027A/en
Application granted granted Critical
Publication of JP3656895B2 publication Critical patent/JP3656895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、悪臭物質及び/又は揮発性有機化合物を含む排ガスの生物学的処理方法に係り、特に下水処理場、し尿処理場、各種工場等から発生する悪臭物質及び/又は揮発性有機化合物を含む排ガスを生物学的に処理する方法と装置に関する。
【0002】
【従来の技術】
微生物を付着させた充填層に、悪臭ガスを通気して生物学的に脱臭する方法は、充填塔式生物脱臭法として公知である。この方法の脱臭原理は、微生物による悪臭物質の分解であるから、脱臭処理の結果として、微生物が増殖して余剰汚泥が発生する。生物学的処理方法が広く適用されている水処理においては、このような余剰汚泥を排出する工程が設けられているのが普通である。しかし、従来の充填塔式生物脱臭装置は、悪臭物質の負荷が低い条件で運転される場合が主であり、しかも、充填層内の汚泥の一部は、散水により剥離・排出されることから、余剰汚泥の排出機能・排出工程を設けていないのが一般的であった。
本来、充填塔式の生物処理装置は、充填層内に微生物を多量に保持することができるため、これらの微生物活性に見合った高負荷処理が可能である。また、硫化水素に限らず、種々の揮発性有機化合物の除去も可能である。ところが、このような条件では、余剰汚泥の発生量がきわめて多く、また、高濃度の硫化水素を対象とした場合には、硫化水素の酸化反応の中間体である元素状硫黄の析出も顕著となるため、これらの汚泥が充填層内に蓄積し、その結果、長期間の連続処理を行うと充填層が目詰まりを起こして、運転不能になるといった問題が生じる。
【0003】
従来の装置で、充填層が目詰まりした場合、充填材を装置から取り出して新品と交換するか、あるいは取り出して洗浄する必要が生ずるが、この作業は、多大な時間と労力を要する。また、余剰汚泥と共に処理に必要な微生物も除去してしまうため、洗浄後は処理性能が低下する。
充填層を取り出さずに余剰汚泥を排出する方法としては、充填層を冠水して空気逆洗する方法が挙げられる。この方法では、充填材からの汚泥の剥離性能は極めて高いものの、次の問題点がある。
▲1▼充填層を冠水させるために、充填塔の強度を上げる必要がある。
▲2▼冠水用に大量の水が必要。
▲3▼洗浄中はガス処理を一時的に停止しなければならない。
▲4▼洗浄後に処理性能が低下する。
【0004】
このような問題点をかかえる空気逆洗法に代わる方法として、散水方法の調節で余剰汚泥を剥離・排出する方法が提案されている。例えば、散水量を調節して、意図的に充填層内でフラッディングを起こして、充填材から余剰汚泥を剥離する。また、充填層の上からの散水のみでなく、下部層にも散水を行って、充填層下部に蓄積する元素状硫黄を除去する。また、一時的に大量の水を散水して、充填材からの汚泥を剥離する等の方法が提案されている。
これらの散水量を調整する方式は、上記の逆洗方式の問題点を解決又は緩和できるものの、逆洗方式と同等以上の余剰汚泥排出性能を得るのは難しい。
【0005】
逆洗方式と同等以上の余剰汚泥排出性能を得られる方法としては、充填材と薬品を含む水とを接触させる方法がある。しかしながら、充填材に付着した汚泥の剥離・分解除去性能が高い薬品は、概して反応性の高い薬品であるため、微生物の活性に悪影響を与える。例えば、薬品の中でも比較的残留性の低い過酸化水素を用いることで、洗浄後の性能低下を抑えることはできる。
上記の洗浄方法はいずれも、余剰汚泥を活性の高い微生物と共に強制的に剥離・排出するので、洗浄直後の処理性能の低下を抑えるのが難しい。
【0006】
強制的な汚泥排出を行わずに、充填材に析出する元素状硫黄を効率良く除去する方法としては、複数の処理区を設け、いずれかの処理区を一定期間休止することにより、停止期間中に硫黄を微生物分解させる。この方法では、付着物の主体が元素状硫黄である場合は、除去効果は高いものの、付着物の主体が微生物由来の汚泥である場合は、硫黄の微生物分解速度よりも、汚泥の自己消化速度が遅いために除去が困難である。
以上に示すとおり、排ガスの充填塔式生物処理装置には、処理性能を低下させることなく、充填層内に蓄積する余剰汚泥の排出を行うことができる実用的な手段がなかった。したがって、本来、高負荷脱臭処理や揮発性有機化合物処理に対しても、対象とする物質の高効率除去は可能であるにもかかわらず、長期間の運転の結果生ずる充填層の閉塞が障害となるために、このような条件への適用は困難と考えられていた。
【0007】
【発明が解決しようとする課題】
本発明は、上記の従来技術の問題点を解決し、効率良く余剰汚泥の排出・除去を行うと共に、余剰汚泥の排出・除去操作の結果として生じる処理性能の一時的な低下を防止し、半永久的に安定した処理性能を維持することができる排ガスの生物処理方法と装置を提供することを課題とする。
【0008】
【課題を解決するための手段】
上記の課題を解決するために、本発明では、直列多段に配備された充填塔の充填層に、悪臭物質及び/又は揮発性有機化合物を含む排ガスを通して、散水下に生物学的に酸化処理する排ガスの生物処理方法において、前記最上流の充填層における圧損が、1000Paを越えない時点で、少なくとも上流側2段の充填塔の充填層の通気順序及び通気方向を逆転させて通気し、最上流となった充填塔における処理性能が向上した後に、前記逆転通気において下流側となった充填塔の充填層に薬液を散水して、該充填層中の余剰微生物を除去することを特徴とする排ガスの生物処理方法としたものである。
また、本発明では、直列多段に配備された充填塔と、該充填塔に悪臭物質及び/又は揮発性有機化合物を含む排ガスを通す通路と、該充填塔の充填層に散水する散水手段とを有する排ガスの生物処理装置において、前記充填塔の少なくとも上流側の2段には、排ガスの通気順序及び通気方向を逆転可能にする手段を有すると共に、これらの充填塔には、圧力損失の検出手段と、処理能力検出手段と、循環水の水質測定手段と、薬品供給手段とを有することを特徴とする排ガスの生物処理装置としたものである。
【0009】
前記本発明において、前記最上流の充填塔における圧損は、1000Paを超えなく、好ましくは500Pa前後とするのがよく、また、前記処理性能の向上は、排ガス中の悪臭物質及び/又は揮発性有機化合物の除去率により判断し、該除去率が80%以上、好ましくは90%以上とするのがよく、さらに、処理性能の向上は、最上流の充填塔に設置されたマノメータにおける圧損によるか、又は最上流の充填塔の循環水槽に設置されたpH計又は導電率計における測定値により判断することができる。
また、前記本発明の排ガスの生物処理装置において、前記充填塔の少なくとも上流側の2段には、前記圧力損失の検出手段の変化を検出し、該検出した変化が1000Paを越えない時点で、通気順序及び通気方向を逆転可能にする手段が作動して逆転通気し、前記処理能力検出手段又は圧失検出手段又は水質測定手段の変化が、最上流となった充填塔の処理性能の向上を検出すると、前記逆転通気で下流側となった充填塔の薬品供給手段が作動して散水中に薬品が導入されるように制御する制御手段を有することとすることもできる。
【0010】
【発明の実施の形態】
本発明の充填塔式の排ガスの生物処理方法は、直列に接続された複数の充填塔を設けて、少なくとも上流側の2塔を排ガスダクトの切り替えにより、ガスの通気方向を定期的に逆転させるとともに、該逆転操作により上流側となった充填塔における処理性能が向上したのちに、下流側充填塔の充填層内の余剰汚泥の除去を、充填層と薬品を含む水とを接触させて行うこととした。
本発明で用いる充填塔において、充填層内の微生物分布は、悪臭物質や揮発性有機化合物の負荷に見合って、排ガスの流入部に近い部分では微生物量が多く、ガスの出口側に向かって微生物量が少なくなる。すなわち、被処理ガスの流入部に近い部分は、対象物質の大部分が酸化除去される極めて酸化分解活性の高い場所である。したがって、微生物の増殖がもっとも顕著であり、そのために余剰汚泥の蓄積による充填層の目詰まりが生じ易い場所でもある。
【0011】
また、高濃度の硫化水素含有臭気を処理する場合は、充填層の被処理ガスの流入部に近い部分は、微生物の増殖に加えて、硫化水素の酸化反応の中間体である元素状硫黄も析出しやすいので、極めて付着物の増加が顕著となる。
以上のように、充填塔式生物処理装置においては、対象物質の酸化分解除去を担う部分と、充填材付着物汚泥の増加が顕著な部分はほぼ一致しているので、この部分の余剰汚泥を除去することは、処理性能を低下させることにつながる。
本発明の方法によれば、上流側の少なくとも2塔の間で、ガスの通気方向を定期的に逆転させる。この環境の変化に追随して、微生物活性が高い部分が徐々に移行し、最終的に、ガスの流れ方向に対する微生物分布は、ガスの通気方向を逆転する前の分布に対して逆相となる。このように、ガスの通気方向の逆転操作により、微生物分布を移行させることができる。なお、この移行期においても、排ガスは必ず酸化分解活性の高い部分を通過するために、該逆転操作により処理性能が顕著に低下することはない。
【0012】
逆転操作前に排ガスの流入部に近い部分は、逆転操作によりガスの流れに対して下流側となる。したがって、より低負荷の条件となるため、例えば硫化水素の酸化で生じた元素状硫黄は、微生物により酸化分解される。また、微生物に由来する汚泥の一部は、自己消化する。しかし、微生物由来の汚泥は、分解性が悪いため、長期間にわたって充填層内に残留する。そこで、このような難分解性の汚泥の分解及び排出は、充填材と薬品を含む水とを接触させて行う。
以上のように、本発明では、排ガスの通気方向の逆転操作によって、充填層の微生物分布を意図的に移動させ、上流側充填塔における対象物質の酸化分解活性が向上した結果、下流側充填塔の充填層が、対象物質の酸化分解反応に寄与しなくなったのを見計らって、下流側の充填塔に対してのみ、充填層の薬液洗浄を実施するものである。したがって、複数の充填塔のうち、いずれかの充填塔の充填層内には常に活性の高い微生物が存在しているため、余剰汚泥排出工程後の処理性能の顕著な低下がない。また、余剰汚泥排出工程時も、継続してガス処理を行うことができる。さらに、従来の複数塔方式の装置に対しては、ダクト部分の改造を行うことで、本発明の方法が適用可能である。
【0013】
ガスの通気方向を逆転させるための排ガスダクトの切り替えは、充填層の圧力損失測定用に付設されているマノメーターの測定値を基にしてに行う。充填層の圧力損失が1000Pa以上まで上昇すると、排ガスの偏流や通気量の低下を招く場合が多いので、上流側の充填層の圧力損失が、1000Paを上回らないように運転するのが好ましい。本発明では、ガスの流れ方向を逆転させた後、上流側充填塔の処理性能が向上するまで、例えば除去率で80%以上、好ましくは90%以上、下流側充填塔の汚泥を排出しないまま、一定期間運転を継続するため、この期間にも下流側充填塔の圧力損失は上昇する。したがって、通気方向の逆転は、充填層の圧力損失が1000Paまで上昇する前に、好ましくは500Pa前後に余裕をもって実施するのが好ましい。
【0014】
通気方向の逆転の結果、通気方向に対して下流側になった充填層の洗浄は、上流側の充填塔の出口に付設された処理能力を検出する対象物質濃度の連続モニターの指示値を基にして行うとよい。また、ガス通気方向の逆転に伴う被処理物質の除去特性の変化は、最上流の充填塔に設置されたマノメーターにおける圧損に現れるから、これを用いることができる。
この場合、圧損の値は、50Pa以上500Pa以下とすることができる。その理由は、最上流の充填塔において悪臭物質及び/又は揮発性有機化合物が除去されはじめると、充填層内で微生物が増えて圧損が上昇してくるので、この時の圧損を50Pa以上とした。一方、500Pa以上となるまで放置しておくと、次の逆転通気までの時間が短くなるため好ましくない。
ガス通気方向の逆転に伴なう被処理物質の除去特性の変化が、循環水質の変化となって現れる場合は、循環水質の測定値、例えば、循環水槽に設置されたpH計又は導電率計を基にして、充填層の洗浄時期を判断することもできので、これらを指標値として用いることもできる。例えば、低pH条件で硫化水素の除去を行う場合、酸化反応の結果生じる硫酸イオンは、循環水のpHを低下させ、導電率を上昇させる。
【0015】
したがって、通気方向の逆転による複数塔間の硫化水素除去特性の変化は、循環水のpHあるいは導電率の変化となって現れるから、これらの値をもって洗浄時期を判断すれば良い。
この場合、所定値Bの値は、pHの場合は3以下、導電率の場合は5mS/cm以上とすることができる。
循環水質は、特に硫化水素(現状、主流の対象物質)除去の場合に重要な指標となり、最上流の充填塔において、硫化水素が酸化除去されはじめると、酸化生成物である硫酸が循環水に蓄積してくるため、pHが低下し導電率が上昇する。硫化水素に限りpH3以下、導電率5mS/cm以上の条件でも、十分除去が可能であることから、このような低pH条件で定常運転する。
それにより、循環水のpHを中和するためのアルカリ剤の使用量や、pH中性の水の供給量を節約できるし、また、低pHのほうがpHが安定性が良い、つまり微生物にとっての環境が安定し易いといった利点がある。
【0016】
以上に示したように、本発明の方法は、従来装置に条件確認のために付設されていたマノメーター、排ガス連続モニター、pH計、導電率計といった指示計器を、運転制御用に有効に活用できる。また、これらの計器を利用して、本発明の方法を自動制御で行うことも可能である。
充填層の洗浄のための薬液としては、硫酸、水酸化ナトリウム、水酸化カリウム、過酸化水素、次亜塩素酸ナトリウム、オゾン等といった薬剤を含んだ水が挙げられる。オゾンを利用する場合はオゾンガスを直接導入してもよい。また、洗浄効率を上げるために、薬剤を組み合わせたり、異なる薬液による複数回の洗浄を実施しても良い。ただし、充填層洗浄を行う充填塔よりも、さらに下流側に充填塔が接続されている場合は、下流側充填塔に与える影響を考慮して、不揮発性の薬剤や、反応性の高いガスを発生しない薬剤を用いるのが良い。
薬液の濃度は、汚泥の剥離・分解性能をビーカーテスト等で事前に確認して決定しても良いし、実際に充填層を洗浄しながら調整しても良いが、洗浄酸性水溶液はpH2以下になる酸濃度、アルカリ水溶液は、pH10以上になる濃度、次亜塩素酸ナトリウムは有効塩素濃度で300mg/L以上、過酸化水素水は300mg/L以上で用いるのが洗浄効率が高い。また、洗浄時間は、充填層からの汚泥の剥離状況、充填層の圧力損失の低下を基に決めればよい。
【0017】
上記の薬剤のうち、アルカリ剤と酸化剤を組み合わせると、汚泥の剥離・分解性能が高くなる場合が多い。また、これらの薬品の場合、初期濃度が上記の濃度となるように、循環水槽に投入して充填層に連続散水すると、汚泥の分解等によって、薬液中のアルカリ分や酸化剤の大部分は消費される。また、洗浄後も引き続き排ガスを導入しながらこの薬液を散布することによって、薬液中の残留アルカリ分は、ガス中の二酸化炭素等の酸性ガスによって中和され、また、残留酸化剤は、排ガス中に含まれる還元性物質等によって除去される。さらに、ガス処理の生物処理装置では、不溶性の無機成分の流入量が極めて少ないため、余剰汚泥に占める有機性成分の割合が高い。したがって、酸化剤による汚泥の可溶化率が高く、洗浄廃液中に残留する不溶性成分が極めて少ない。以上のことから、洗浄廃液を付設の水処理工程に排出しても、水処理に与える負荷は低く、また、排水を排出できない場合は、そのまま循環水として利用することもできる。以上のことから、本発明の方法に酸化剤、又はアルカリ剤と酸化剤とを組み合わせた薬液を利用する価値は大きい。
【0018】
本発明の方法では、充填層の洗浄のための条件は、現在一般的に行われている薬液洗浄脱臭法の条件に近い。従来の充填塔式生物脱臭装置は、この薬液洗浄脱臭装置の仕様を基に設計されている場合が多いため、装置の薬品に対する耐性は十分であることから、従来の装置についても、そのまま本発明の方法を適用できる。また、充填材として、薬品耐性のものを使用する必要があるが、現在充填塔式生物脱臭装置に適用されている充填材は、薬品耐性のものも多いため、本発明の方法を採用するために、充填材の種類が大幅に限定されることはない。
【0019】
次に、本発明を図面を参照して詳細に説明する。
図1は、本発明の方法に用いる装置の概略構成図である。
充填塔3、4は、微生物を担持させるための充填材を充填した充填層5、6と、充填層5、6に散水するための散水部11、12と、散水するための循環ポンプ9、10と、循環水を貯留するための循環水槽7、8と、循環水槽に洗浄用薬液を導入する配管17、18とを備える。また、充填塔3、4には充填層5、6をはさんでマノメータ22、23が設けられ、循環水槽7、8にはpH計24、25が備えられ、排ガスの導入路、連通路には濃度計26、27が設置されている。
充填塔3と充填塔4とは、連通ダクト19で接続され、各塔ごとに排ガス1が導入するダクトと、処理ガス2を排出するダクトが並列に接続されている。排ガス1を導入するダクトには、充填塔3側にダンパ13が、充填塔4側にダンパ14がそれぞれ設置され、処理ガス2を排出するダクトには、充填塔3側にダンパ15が、充填塔4側にはダンパ16がそれぞれ設置されている。
【0020】
充填塔3から充填塔4の順に直列にガスを流す場合は、ダンパ13、16を開いてダンパ14、15を閉じる。充填塔4から充填塔3の順に直列にガスを流す場合は、ダンパ14、15を開けてダンパ13、16を閉じる。
運転開始時には、循環水槽7、8に微生物を含む活性汚泥等の種汚泥を添加し、循環水ポンプ9、10で散水部11、12から充填層5、6に対して循環散水する。同時に排ガス1を充填塔3から充填塔4の順に直列に導入し、対象物質を除去するための運転を行う。長期間の処理運転後、充填層5内の微生物が増殖して充填層5の圧力損失が上昇した時、上記ダンパの開閉操作により、排ガス1を充填塔4から充填塔3の順に直列に導入し、処理運転を行う。充填塔4の処理性能が向上した後、薬液導入配管17より洗浄用薬液を循環水槽7に導入して充填層5内の余剰汚泥を剥離・分解除去する。必要に応じて、循環水槽内の洗浄廃液を排出して、新しい水と入れ替え、処理運転を継続する。長期間の処理運転後、充填層6内の微生物が増殖して充填層6の圧力損失が上昇した時、上記工程を繰り返す。
【0021】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこの実施例に限定されない。
実施例1
図1に示す構造の実験装置を用いて実験した。
実験条件は次のとおりである。

Figure 0003656895
【0022】
循環水槽に汚泥濃度約12000mg/Lの硝化槽汚泥10Lを投入後、循環水を連続的に散水しながら、排ガスを連続的に通気した。通気開始時の充填層の圧力損失は、上流側充填塔50Pa以下、下流側充填塔50Pa以下であった。通気開始7目目から、上流側充填塔の硫化水素除去率は90%以上となった。以後安定した除去率を示したものの、上流側充填塔のみ、充填層の圧力損失が徐々に上昇し、実験開始から120日目に、上流側充填塔の圧力損失が500Paとなった。この時点で、排ガスの流れ方向を逆転した。逆転直後の硫化水素除去率は、上流側充填塔3%、下流側充填塔90%であった。ガスの流れ方向逆転から6日後、上流側充填塔の硫化水素除去率は90%以上となり、充填層の圧力損失は、上流側充填塔50Pa以下、下流側充填塔450Paであった。
【0023】
ここで、下流側充填塔の循環水槽に、初期のpHが11となるように25%水酸化ナトリウム水溶液を導入し、次いで、初期の有効塩素濃度が0.5%となるように、有効塩素濃度12%の次亜塩素酸ナトリウム水溶液を導入して、充填層に散水した。この薬液洗浄を12時間継続した結果、下流側充填層の圧力損失が50Paまで低下した。引き続き薬液を充填層に散水した結果、2日間経過時の循環水質はpH6.7、有効塩素濃度1mg/L以下、SS濃度30mg/Lとなった。また、洗浄時及び洗浄直後の上流側+下流側充填塔の硫化水素除去率は90%以上であった。以後、充填層の圧力損失の上昇時に同様の工程を繰り返した。
【0024】
比較例1
比較例に用いる実験装置を図2に示す。図2は、従来法に用いる装置の概略構成図である。
充填塔3、4は、微生物を担持させるための充填材を充填した充填層5、6と、充填層5、6に散水するための散水部11、12と、散水するための循環ポンプ9、10と、循環水を貯留するための循環水槽7、8を備える。
循環水槽7、8に微生物を含む活性汚泥等の種汚泥を添加し、循環水ポンプ9、10で散水部11、12から充填層5、6に対して循環散水する。同時に排ガス1を脱臭塔3から脱臭塔4の順に直列に導入し、被処理物質を除去するための運転を行う。
【0025】
図2に示す構造の実験装置を用いて実験した。
実験条件は次のとおりである。
排ガスの種類 :し尿処理場から発生する高濃度臭気
排ガス中の硫化水素濃度 :100〜200ppm
排ガス温度 :15〜25℃
処理風量 :4.8m3/min
空塔速度 :720h-1
空塔線速度 :0.4m/s
散水量(単位処理ガス量あたりの散水量):3リットル/m3
循環水のpH :1〜2
充填材の種類 :直径2cmのポリプロピレン製充填材
充填層高さ :1m
【0026】
循環水槽に汚泥濃度約12000mg/Lの硝化槽汚泥10Lを投入後、循環水を連続的に散水しながら、排ガスを連続的に通気した。通気開始時の充填層の圧力損失は、上流側充填塔50Pa以下、下流側充填塔50Pa以下であった。通気開始7目目から、上流側充填塔の硫化水素除去率は90%以上となった。以後安定した除去率を示したものの、上流側充填塔のみ充填層の圧力損失が徐々に上昇し、実験開始から120日目に500Pa、200目目に1000Paとなった。この時の処理風量は4m3/min(設定条件の83%)であり、圧力損失の上昇にともなう処理風量の低下が見られた。
【0027】
比較例2
図2に示す構造の実験装置を用いて、ガス通気方向の逆転を行わずに、充填層洗浄を実施した。
実験条件は次のとおりである。
Figure 0003656895
【0028】
循環水槽に汚泥濃度約12000mg/Lの硝化槽汚泥10Lを投入後、循環水を連続的に散水しながら、排ガスを連続的に通気した。通気開始時の充填層の圧力損失は、上流側充填塔50Pa以下、下流側充填塔50Pa以下であった。通気開始7目目から、上流側充填塔の硫化水素除去率は90%以上となった。以後安定した除去率を示したものの、上流側充填塔のみ、充填層の圧力損失が徐々に上昇し、実験開始から120日目に上流側充填塔500Paとなった。この時点で上流側充填塔の循環水槽に、初期のpHが11となるように、25%水酸化ナトリウム水溶液を導入し、次いで初期の有効塩素濃度が0.5%となるように、有効塩素濃度12%の次亜塩素酸ナトリウム水溶液を導入して、充填層に散水した。この薬液洗浄を12時間継続した結果、上流側充填層の圧力損失50Paまで低下した。引き続き薬液を充填層に散水した結果、4日間経過時の循環水質はpH6.7、有効塩素濃度1mg/L以下、SS濃度30mg/Lとなった。また、洗浄時及び洗浄直後の上流側+下流側の硫化水素除去率は90%以上であったものの、洗浄から4日間経過時の硫化水素除去率は2%であった。以後処理運転を継続し、硫化水素除去性能が90%以上に回復するまでに、洗浄から9日間を要した。
【0029】
【発明の効果】
本発明の排ガスの生物処理方法及び装置は、直列に接続された複数の充填塔において、少なくとも上流側の2塔を排ガスダクトの切り替えにより、ガスの通気方向を定期的に逆転させるとともに、該逆転操作により、ガスの通気方向に対して、上流側となった充填塔における対象物質の除去性能が向上したのちに、下流側充填塔の充填層内に残留する余剰汚泥の除去を、充填層と薬品を含む水とを接触させて行うことにより、処理に必要な微生物を排出することなく、充填層内の余剰汚泥のみを効率良く排出できるため、半永久的に、充填層の圧力損失を低く維持し、安定した処理性能を得ることができる。
したがって、充填塔式の生物処理装置を余剰汚泥生成量の多い、高負荷処理や揮発性有機化合物の処理まで適用拡大することが可能である。
【図面の簡単な説明】
【図1】本発明の生物処理装置の一例を示す概略構成図。
【図2】比較例に用いた従来の一般的な生物処理装置の概略構成図。
【符号の説明】
1:排ガス、2:処理ガス、3、4:充填塔、5、6:充填層、7、8:循環水槽、9、10:循環ポンプ、11、12:散水部、13、14、15、16:ダンパ、17、18:洗浄用薬液注入管、19:連通ダクト、20、21:排泥管、22、23:マノメータ、24、25:pH計、26、27:悪臭物質及び/又は揮発性有機化合物濃度計[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biological treatment method of exhaust gas containing malodorous substances and / or volatile organic compounds, in particular, malodorous substances and / or volatile organic compounds generated from sewage treatment plants, human waste treatment plants, various factories and the like. The present invention relates to a method and apparatus for biological treatment of exhaust gas containing it.
[0002]
[Prior art]
A method of biologically deodorizing a odor gas by aeration through a packed bed to which microorganisms are attached is known as a packed tower type biological deodorization method. Since the deodorization principle of this method is decomposition of malodorous substances by microorganisms, microorganisms grow and surplus sludge is generated as a result of the deodorization treatment. In a water treatment to which a biological treatment method is widely applied, a process for discharging such excess sludge is usually provided. However, the conventional packed tower type biological deodorization device is mainly operated under a condition where the load of malodorous substances is low, and part of the sludge in the packed bed is peeled off and discharged by watering. In general, there is no surplus sludge discharge function / discharge process.
Originally, a packed tower type biological treatment apparatus can retain a large amount of microorganisms in the packed bed, and therefore can perform a high-load treatment corresponding to these microorganism activities. Further, not only hydrogen sulfide but also various volatile organic compounds can be removed. However, under such conditions, the amount of excess sludge generated is extremely large, and when high concentration hydrogen sulfide is targeted, precipitation of elemental sulfur, which is an intermediate of the oxidation reaction of hydrogen sulfide, is significant. Therefore, these sludges accumulate in the packed bed, and as a result, when a long-term continuous treatment is performed, the packed bed is clogged, resulting in a problem that the operation becomes impossible.
[0003]
When the packed bed is clogged with a conventional apparatus, it is necessary to take out the filler from the apparatus and replace it with a new one, or to take out and clean it. However, this operation requires a lot of time and labor. Moreover, since the microorganisms necessary for the treatment are removed together with the excess sludge, the treatment performance deteriorates after washing.
As a method for discharging the excess sludge without taking out the packed bed, there is a method in which the packed bed is submerged and air is back-washed. This method has the following problems although the sludge peeling performance from the filler is extremely high.
(1) In order to flood the packed bed, it is necessary to increase the strength of the packed tower.
(2) A large amount of water is required for flooding.
(3) Gas treatment must be temporarily stopped during cleaning.
(4) Processing performance decreases after washing.
[0004]
As a method of replacing the air backwash method with such problems, a method of peeling and discharging excess sludge by adjusting the watering method has been proposed. For example, the amount of water spray is adjusted to intentionally cause flooding in the packed bed, and excess sludge is peeled off from the filler. Further, water is sprayed not only on the packed bed but also on the lower layer to remove elemental sulfur accumulated at the bottom of the packed bed. In addition, a method has been proposed in which a large amount of water is sprinkled temporarily to remove sludge from the filler.
Although these methods of adjusting the amount of water spray can solve or alleviate the problems of the above-described backwashing method, it is difficult to obtain excess sludge discharge performance equal to or higher than that of the backwashing method.
[0005]
As a method for obtaining surplus sludge discharge performance equivalent to or higher than that of the backwashing method, there is a method of bringing a filler and water containing chemicals into contact with each other. However, chemicals with high performance for removing and decomposing sludge adhering to the filler are generally highly reactive chemicals, which adversely affect the activity of microorganisms. For example, by using hydrogen peroxide having a relatively low persistence among chemicals, it is possible to suppress a decrease in performance after cleaning.
In any of the above-described cleaning methods, excess sludge is forcibly separated and discharged together with highly active microorganisms, so that it is difficult to suppress a decrease in processing performance immediately after cleaning.
[0006]
As a method of efficiently removing elemental sulfur deposited on the filler without forcibly discharging sludge, a plurality of treatment zones are provided, and one of the treatment zones is suspended for a certain period, thereby stopping the suspension period. Microbial decomposition of sulfur. In this method, when the main component of the deposit is elemental sulfur, the removal effect is high, but when the main component of the deposit is microbial sludge, the self-digestion rate of sludge is higher than the microbial decomposition rate of sulfur. Is slow and difficult to remove.
As described above, the exhaust gas packed tower biological treatment apparatus has no practical means capable of discharging excess sludge accumulated in the packed bed without degrading the treatment performance. Therefore, even though high-efficiency deodorization treatment and volatile organic compound treatment are inherently possible, high-efficiency removal of the target substance is possible, but clogging of the packed bed resulting from long-term operation is an obstacle. Therefore, application to such conditions was considered difficult.
[0007]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, efficiently discharges / removes excess sludge, and prevents a temporary decrease in processing performance resulting from the discharge / removal operation of excess sludge, making it semi-permanent. It is an object of the present invention to provide a biological treatment method and apparatus for exhaust gas that can maintain stable treatment performance.
[0008]
[Means for Solving the Problems]
  In order to solve the above-described problems, in the present invention, biological oxidation treatment is performed under sprinkling through exhaust gas containing malodorous substances and / or volatile organic compounds through packed beds of packed towers arranged in series in stages. In the biological treatment method of exhaust gas, when the pressure loss in the uppermost packed bed does not exceed 1000 Pa, at least the upstream two-stage packed tower packed bed is vented by reversing the order and direction of the packed bed. In the packed towerImproved processing performanceThen, a chemical treatment method for exhaust gas is characterized in that a chemical solution is sprinkled into the packed bed of the packed tower that is located downstream in the reverse aeration to remove surplus microorganisms in the packed bed.
  Further, in the present invention, a packed tower arranged in multiple stages in series, a passage for passing an exhaust gas containing malodorous substances and / or volatile organic compounds through the packed tower, and watering means for sprinkling water in the packed bed of the packed tower. In the biological treatment apparatus for exhaust gas, the at least two upstream stages of the packed tower have means for enabling the flow order and direction of the exhaust gas to be reversed, and these packed towers have pressure loss detecting means. And a biological treatment apparatus for exhaust gas, characterized in that it has processing capacity detection means, circulating water quality measurement means, and chemical supply means.
[0009]
  In the present invention, the pressure in the uppermost packed columnLoss is, Not exceeding 1000 Pa, preferably around 500 Pa,Improved processing performanceIs the removal rate of malodorous substances and / or volatile organic compounds in the exhaust gasThe removal rate determined byIs 80% or more, preferably 90% or more, and, Improve processing performanceIs the pressure loss in the manometer installed in the uppermost packed tower.AccordingOr,Measured value with pH meter or conductivity meter installed in circulating water tank of uppermost packed towerJudged bycan do.
  In the biological treatment apparatus for exhaust gas according to the present invention, the pressure loss detecting means is provided in at least two upstream stages of the packed tower.change ofDetectWhen the detected change does not exceed 1000 PaThe means for enabling the reversal of the aeration sequence and the aeration direction is activated to reverse the aeration, and the processing capacity detection means or pressurePowerlossMissing detection meansOr water quality measuring meansImprovement in processing performance of packed tower, which has become the most upstreamIt is also possible to have control means for controlling the chemical supply means of the packed tower that has become the downstream side by the reverse aeration to operate so that the chemical is introduced into the sprinkling water.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the packed tower type exhaust gas biological treatment method of the present invention, a plurality of packed towers connected in series are provided, and at least two upstream towers are periodically reversed by switching the exhaust gas duct. At the same time, after the processing performance of the packed tower on the upstream side is improved by the reverse operation, the excess sludge in the packed bed of the downstream packed tower is removed by bringing the packed bed and water containing chemicals into contact with each other. It was decided.
In the packed tower used in the present invention, the distribution of microorganisms in the packed bed corresponds to the load of malodorous substances and volatile organic compounds, and the amount of microorganisms is large near the exhaust gas inflow part, and the microorganisms move toward the gas outlet side. The amount is reduced. That is, the portion close to the inflow portion of the gas to be treated is a place having a very high oxidative decomposition activity where most of the target substance is removed by oxidation. Therefore, the growth of microorganisms is most remarkable, and therefore, it is also a place where clogging of the packed bed is likely to occur due to accumulation of excess sludge.
[0011]
In addition, when processing high-concentration hydrogen sulfide-containing odors, the portion close to the inflow portion of the gas to be treated in the packed bed contains elemental sulfur, which is an intermediate in the oxidation reaction of hydrogen sulfide, in addition to the growth of microorganisms. Since it is easy to precipitate, the increase in deposits is extremely remarkable.
As described above, in the packed tower type biological treatment apparatus, the portion responsible for oxidative decomposition removal of the target substance and the portion where the increase in the amount of filler deposit sludge is substantially coincided with each other. The removal leads to a decrease in processing performance.
According to the method of the present invention, the gas aeration direction is periodically reversed between at least two upstream columns. Following this environmental change, the part with high microbial activity gradually shifts, and finally the microbial distribution with respect to the gas flow direction is in reverse phase to the distribution before the gas flow direction is reversed. . Thus, the microorganism distribution can be shifted by the reversal operation of the gas aeration direction. Even in this transition period, the exhaust gas always passes through a portion having a high oxidative decomposition activity, so that the processing performance is not significantly reduced by the reverse operation.
[0012]
A portion close to the inflow portion of the exhaust gas before the reverse operation becomes downstream with respect to the gas flow by the reverse operation. Therefore, since the load becomes lower, elemental sulfur generated by oxidation of hydrogen sulfide, for example, is oxidatively decomposed by microorganisms. Some of the sludge derived from microorganisms is self-digested. However, microorganism-derived sludge remains in the packed bed for a long period of time because of its poor degradability. Therefore, the decomposition and discharge of such hardly decomposable sludge is performed by bringing the filler and water containing chemicals into contact with each other.
As described above, in the present invention, the microbial distribution in the packed bed is intentionally moved by the reversal operation of the exhaust gas aeration direction, and the oxidative decomposition activity of the target substance in the upstream packed tower is improved. In view of the fact that the packed bed no longer contributes to the oxidative decomposition reaction of the target substance, chemical cleaning of the packed bed is performed only for the packed tower on the downstream side. Therefore, since microorganisms with high activity are always present in the packed bed of any packed tower among the plurality of packed towers, there is no significant decrease in processing performance after the excess sludge discharging step. Further, gas treatment can be continuously performed during the excess sludge discharging step. Furthermore, the method of the present invention can be applied to a conventional multi-column system by modifying the duct portion.
[0013]
Switching of the exhaust gas duct for reversing the gas flow direction is performed based on the measured value of a manometer attached for measuring the pressure loss of the packed bed. When the pressure loss of the packed bed rises to 1000 Pa or more, there are many cases where the drift of exhaust gas and the reduction of the air flow rate are often caused. Therefore, it is preferable to operate so that the pressure loss of the upstream packed bed does not exceed 1000 Pa. In the present invention, after the gas flow direction is reversed, until the treatment performance of the upstream packed tower is improved, for example, the removal rate is 80% or more, preferably 90% or more, without discharging the sludge of the downstream packed tower. Since the operation is continued for a certain period, the pressure loss of the downstream packed tower rises also during this period. Therefore, the reversal of the aeration direction is preferably performed with a margin of preferably around 500 Pa before the pressure loss of the packed bed rises to 1000 Pa.
[0014]
  As a result of the reversal of the aeration direction, the cleaning of the packed bed downstream of the aeration direction is based on the indication value of the continuous monitor of the target substance concentration that detects the processing capacity attached to the outlet of the upstream packed tower. It is good to do it. In addition, the change in the removal characteristics of the material to be treated due to the reversal of the gas flow direction appears in the pressure loss in the manometer installed in the uppermost packed tower.ForCan be.
  in this case,Pressure lossThe value of can be 50 Pa or more and 500 Pa or less. The reason for this is that when malodorous substances and / or volatile organic compounds begin to be removed in the uppermost packed tower, microorganisms increase in the packed bed and the pressure loss rises. . On the other hand, it is not preferable to leave it until it reaches 500 Pa or more because the time until the next reverse ventilation is shortened.
  If the change in the removal characteristics of the substance to be treated due to the reversal of the gas flow direction appears as a change in the circulating water quality, the measured value of the circulating water quality, for example, a pH meter or conductivity meter installed in the circulating water tank Based on the above, it is possible to determine the cleaning time of the packed bed, and these can also be used as index values. For example, when removing hydrogen sulfide under low pH conditions, sulfate ions generated as a result of the oxidation reaction lower the pH of the circulating water and increase the conductivity.
[0015]
Therefore, since the change in the hydrogen sulfide removal characteristics between the plurality of columns due to the reversal of the aeration direction appears as a change in the pH or conductivity of the circulating water, the washing time may be determined based on these values.
In this case, the value of the predetermined value B can be 3 or less for pH and 5 mS / cm or more for conductivity.
Circulating water quality is an important indicator, especially when removing hydrogen sulfide (currently the mainstream target substance). When hydrogen sulfide begins to be oxidized and removed in the uppermost packed tower, sulfuric acid, which is an oxidation product, is added to the circulating water. Since it accumulates, the pH decreases and the conductivity increases. Only hydrogen sulfide can be sufficiently removed even under conditions of pH 3 or lower and conductivity 5 mS / cm or higher, and thus steady operation is performed under such low pH conditions.
As a result, the amount of alkaline agent used to neutralize the pH of the circulating water and the supply amount of neutral water in the pH can be saved, and the pH is more stable at low pH, that is, for microorganisms. There is an advantage that the environment is easy to stabilize.
[0016]
As described above, the method of the present invention can effectively use indicator instruments, such as manometers, exhaust gas continuous monitors, pH meters, and conductivity meters, which have been attached to conventional devices for condition confirmation, for operation control. . Moreover, it is also possible to perform the method of this invention by automatic control using these measuring instruments.
Examples of the chemical solution for cleaning the packed bed include water containing chemicals such as sulfuric acid, sodium hydroxide, potassium hydroxide, hydrogen peroxide, sodium hypochlorite, ozone, and the like. When using ozone, ozone gas may be introduced directly. Moreover, in order to raise cleaning efficiency, you may combine a chemical | medical agent or implement multiple washing | cleaning by a different chemical | medical solution. However, if the packed tower is connected further downstream than the packed tower that performs packed bed cleaning, in consideration of the effect on the downstream packed tower, a non-volatile chemical or highly reactive gas should be added. It is better to use drugs that do not occur.
The concentration of the chemical solution may be determined by confirming the sludge stripping / decomposing performance in advance with a beaker test or the like, or may be adjusted while actually cleaning the packed bed. The cleaning efficiency is high when the acid concentration and the aqueous alkali solution are adjusted to pH 10 or higher, sodium hypochlorite is used at an effective chlorine concentration of 300 mg / L or higher, and hydrogen peroxide is used at 300 mg / L or higher. The cleaning time may be determined based on the state of sludge peeling from the packed bed and the decrease in pressure loss of the packed bed.
[0017]
Of the above chemicals, when an alkaline agent and an oxidizing agent are combined, the sludge peeling / decomposing performance often increases. In addition, in the case of these chemicals, when the initial concentration is the above-mentioned concentration, when the water is poured into the circulating water tank and the packed bed is continuously sprinkled, most of the alkali and oxidant in the chemical solution are decomposed due to sludge decomposition, Is consumed. In addition, by spraying this chemical solution while introducing exhaust gas after washing, the residual alkali content in the chemical solution is neutralized by an acidic gas such as carbon dioxide in the gas, and the residual oxidant is contained in the exhaust gas. It is removed by reducing substances contained in. Furthermore, in the biological treatment apparatus for gas treatment, since the inflow amount of insoluble inorganic components is extremely small, the proportion of organic components in the excess sludge is high. Therefore, the sludge solubilization rate by the oxidizing agent is high, and the insoluble components remaining in the washing waste liquid are extremely small. From the above, even if the cleaning waste liquid is discharged to the attached water treatment step, the load applied to the water treatment is low, and if the waste water cannot be discharged, it can be used as circulating water as it is. From the above, the value of using a chemical solution in which an oxidizing agent or an alkaline agent and an oxidizing agent are combined in the method of the present invention is great.
[0018]
In the method of the present invention, the conditions for cleaning the packed bed are close to the conditions of a chemical cleaning and deodorizing method that is currently generally performed. Since the conventional packed tower type biological deodorization apparatus is often designed based on the specifications of the chemical liquid cleaning deodorization apparatus, the resistance of the apparatus to chemicals is sufficient. Can be applied. In addition, it is necessary to use a chemical-resistant filler as the filler, but since many of the fillers currently applied to the packed tower type biological deodorization apparatus are chemical-resistant, the method of the present invention is employed. Furthermore, the type of filler is not greatly limited.
[0019]
Next, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an apparatus used in the method of the present invention.
The packed towers 3 and 4 include packed layers 5 and 6 filled with a filler for supporting microorganisms, sprinkling units 11 and 12 for sprinkling the packed layers 5 and 6, and a circulation pump 9 for sprinkling water. 10, circulating water tanks 7 and 8 for storing the circulating water, and pipes 17 and 18 for introducing a cleaning chemical into the circulating water tank. The packed towers 3 and 4 are provided with manometers 22 and 23 across the packed beds 5 and 6, the circulating water tanks 7 and 8 are provided with pH meters 24 and 25, and the exhaust gas introduction path and the communication path are provided. Densitometers 26 and 27 are installed.
The packed tower 3 and the packed tower 4 are connected by a communication duct 19, and a duct for introducing the exhaust gas 1 and a duct for discharging the processing gas 2 are connected in parallel for each tower. The duct for introducing the exhaust gas 1 is provided with a damper 13 on the packed tower 3 side and the damper 14 on the packed tower 4 side, and the duct for discharging the processing gas 2 is filled with a damper 15 on the packed tower 3 side. Dampers 16 are respectively installed on the tower 4 side.
[0020]
When the gas flows in series from the packed tower 3 to the packed tower 4, the dampers 13 and 16 are opened and the dampers 14 and 15 are closed. When flowing gas in series from the packed tower 4 to the packed tower 3, the dampers 14 and 15 are opened and the dampers 13 and 16 are closed.
At the start of operation, seed sludge such as activated sludge containing microorganisms is added to the circulating water tanks 7 and 8, and the circulating water pumps 9 and 10 circulate water from the sprinkling parts 11 and 12 to the packed beds 5 and 6. At the same time, the exhaust gas 1 is introduced in series from the packed tower 3 to the packed tower 4 in order, and an operation for removing the target substance is performed. After a long period of treatment operation, when the microorganisms in the packed bed 5 grow and the pressure loss in the packed bed 5 increases, the exhaust gas 1 is introduced in series from the packed tower 4 to the packed tower 3 by opening and closing the damper. Then, processing operation is performed. After the treatment performance of the packed tower 4 is improved, a cleaning chemical solution is introduced into the circulating water tank 7 through the chemical solution introduction pipe 17 to remove / decompose and remove excess sludge in the packed bed 5. If necessary, drain the washing waste liquid in the circulating water tank, replace it with new water, and continue the treatment operation. After the treatment operation for a long time, when the microorganisms in the packed bed 6 grow and the pressure loss of the packed bed 6 increases, the above process is repeated.
[0021]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to this Example.
Example 1
Experiments were performed using an experimental apparatus having the structure shown in FIG.
The experimental conditions are as follows.
Figure 0003656895
[0022]
After introducing 10 L of nitrification tank sludge having a sludge concentration of about 12000 mg / L into the circulating water tank, exhaust gas was continuously ventilated while continuously circulating the circulating water. The pressure loss of the packed bed at the start of aeration was 50 Pa or less for the upstream packed tower and 50 Pa or less for the downstream packed tower. From the seventh start of ventilation, the hydrogen sulfide removal rate of the upstream packed column was 90% or more. Thereafter, a stable removal rate was exhibited, but the pressure loss of the packed bed gradually increased only in the upstream packed column, and the pressure loss of the upstream packed column became 500 Pa on the 120th day from the start of the experiment. At this point, the flow direction of the exhaust gas was reversed. The removal rate of hydrogen sulfide immediately after the reverse rotation was 3% in the upstream packed column and 90% in the downstream packed column. Six days after the reversal of the gas flow direction, the hydrogen sulfide removal rate of the upstream packed column was 90% or more, and the pressure loss of the packed bed was 50 Pa or less for the upstream packed column and 450 Pa for the downstream packed column.
[0023]
Here, a 25% aqueous sodium hydroxide solution was introduced into the circulating water tank of the downstream packed tower so that the initial pH was 11, and then the effective chlorine concentration was adjusted so that the initial effective chlorine concentration was 0.5%. A sodium hypochlorite aqueous solution having a concentration of 12% was introduced and sprinkled into the packed bed. As a result of continuing this chemical | medical solution washing | cleaning for 12 hours, the pressure loss of the downstream packed bed fell to 50 Pa. As a result of continuously spraying the chemical solution into the packed bed, the circulating water quality after 2 days was pH 6.7, effective chlorine concentration 1 mg / L or less, and SS concentration 30 mg / L. Moreover, the hydrogen sulfide removal rate of the upstream side + downstream side packed column immediately after the cleaning was 90% or more. Thereafter, the same process was repeated when the pressure loss of the packed bed increased.
[0024]
Comparative Example 1
An experimental apparatus used in the comparative example is shown in FIG. FIG. 2 is a schematic configuration diagram of an apparatus used in the conventional method.
The packed towers 3 and 4 include packed layers 5 and 6 filled with a filler for supporting microorganisms, sprinkling units 11 and 12 for sprinkling the packed layers 5 and 6, and a circulation pump 9 for sprinkling water. 10 and circulating water tanks 7 and 8 for storing the circulating water.
Seed sludge such as activated sludge containing microorganisms is added to the circulating water tanks 7 and 8, and the circulating water pumps 9 and 10 circulate water from the sprinkling units 11 and 12 to the packed beds 5 and 6. At the same time, the exhaust gas 1 is introduced in series in the order of the deodorization tower 3 to the deodorization tower 4, and an operation for removing the substance to be treated is performed.
[0025]
Experiments were performed using an experimental apparatus having the structure shown in FIG.
The experimental conditions are as follows.
Type of exhaust gas: High concentration odor generated from human waste treatment plant
Hydrogen sulfide concentration in exhaust gas: 100-200 ppm
Exhaust gas temperature: 15-25 ° C
Treatment air volume: 4.8mThree/ Min
Sky speed: 720h-1
Empty line speed: 0.4 m / s
Water sprinkling amount (water sprinkling amount per unit processing gas amount): 3 liters / mThree
Circulating water pH: 1-2
Type of filler: Polypropylene filler with a diameter of 2 cm
Packing layer height: 1m
[0026]
After introducing 10 L of nitrification tank sludge having a sludge concentration of about 12000 mg / L into the circulating water tank, exhaust gas was continuously ventilated while continuously circulating the circulating water. The pressure loss of the packed bed at the start of aeration was 50 Pa or less for the upstream packed tower and 50 Pa or less for the downstream packed tower. From the seventh start of ventilation, the hydrogen sulfide removal rate of the upstream packed column was 90% or more. After that, although a stable removal rate was exhibited, the pressure loss of the packed bed gradually increased only in the upstream packed tower, and became 500 Pa on the 120th day from the start of the experiment and 1000 Pa on the 200th day. The processing air volume at this time is 4mThree/ Min (83% of the set condition), and a decrease in the processing air volume accompanying an increase in pressure loss was observed.
[0027]
Comparative Example 2
The packed bed cleaning was performed using the experimental apparatus having the structure shown in FIG. 2 without reversing the gas aeration direction.
The experimental conditions are as follows.
Figure 0003656895
[0028]
After 10 L of nitrification tank sludge having a sludge concentration of about 12000 mg / L was charged into the circulating water tank, exhaust gas was continuously ventilated while continuously circulating the circulating water. The pressure loss of the packed bed at the start of aeration was 50 Pa or less for the upstream packed tower and 50 Pa or less for the downstream packed tower. From the seventh start of ventilation, the hydrogen sulfide removal rate of the upstream packed tower was 90% or more. After that, although a stable removal rate was exhibited, the pressure loss of the packed bed gradually increased only in the upstream packed column, and reached the upstream packed column 500 Pa on the 120th day from the start of the experiment. At this point, a 25% sodium hydroxide aqueous solution is introduced into the circulating water tank of the upstream packed tower so that the initial pH is 11, and then the effective chlorine concentration is 0.5% so that the initial effective chlorine concentration is 0.5%. A sodium hypochlorite aqueous solution having a concentration of 12% was introduced and sprinkled on the packed bed. As a result of continuing this chemical cleaning for 12 hours, the pressure loss of the upstream packed bed was reduced to 50 Pa. As a result of continuously spraying the chemical solution into the packed bed, the circulating water quality after 4 days was pH 6.7, effective chlorine concentration 1 mg / L or less, and SS concentration 30 mg / L. Further, the hydrogen sulfide removal rate at the upstream side and the downstream side immediately after washing was 90% or more, but the hydrogen sulfide removal rate after 4 days from the washing was 2%. Thereafter, the treatment operation was continued, and it took 9 days from the cleaning until the hydrogen sulfide removal performance recovered to 90% or more.
[0029]
【The invention's effect】
The exhaust gas biological treatment method and apparatus of the present invention periodically reverses the gas aeration direction by switching exhaust gas ducts in at least two upstream towers in a plurality of packed towers connected in series. After the operation improves the removal performance of the target substance in the packed tower on the upstream side with respect to the gas flow direction, the excess sludge remaining in the packed bed of the downstream packed tower is removed with the packed bed. By contacting with water containing chemicals, only the excess sludge in the packed bed can be discharged efficiently without discharging the microorganisms required for treatment, so the pressure loss in the packed bed is kept low permanently. In addition, stable processing performance can be obtained.
Therefore, it is possible to expand the application of the packed tower type biological treatment apparatus to a high load treatment and a treatment of a volatile organic compound that generate a large amount of excess sludge.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a biological treatment apparatus of the present invention.
FIG. 2 is a schematic configuration diagram of a conventional general biological treatment apparatus used in a comparative example.
[Explanation of symbols]
1: exhaust gas, 2: treatment gas, 3, 4: packed tower, 5, 6: packed bed, 7, 8: circulating water tank, 9, 10: circulating pump, 11, 12: sprinkling unit, 13, 14, 15, 16: Damper, 17, 18: Cleaning chemical injection pipe, 19: Communication duct, 20, 21: Mud pipe, 22, 23: Manometer, 24, 25: pH meter, 26, 27: Malodorous substance and / or volatilization Organic compound concentration meter

Claims (5)

直列多段に配備された充填塔の充填層に、悪臭物質及び/又は揮発性有機化合物を含む排ガスを通して、散水下に生物学的に酸化処理する排ガスの生物処理方法において、前記最上流の充填層における圧損が、1000Paを越えない時点で、少なくとも上流側2段の充填塔の充填層の通気順序及び通気方向を逆転させて通気し、最上流となった充填塔における処理性能が向上した後に、前記逆転通気において下流側となった充填塔の充填層に薬液を散水して、該充填層中の余剰微生物を除去することを特徴とする排ガスの生物処理方法。In the biological treatment method of exhaust gas, in which the exhaust gas containing malodorous substances and / or volatile organic compounds is passed through the packed bed of the packed tower arranged in series in the stage and biologically oxidized under watering, the uppermost packed bed After the pressure loss in the air does not exceed 1000 Pa, at least the upstream two-stage packed tower of the packed bed is vented by reversing the aeration sequence and the aeration direction of the packed bed, and the processing performance in the packed tower which is the most upstream is improved A method for biological treatment of exhaust gas, characterized in that a chemical solution is sprinkled into a packed bed of a packed tower on the downstream side in the reverse aeration to remove surplus microorganisms in the packed bed. 前記処理性能の向上は、排ガス中の悪臭物質及び/又は揮発性有機化合物の除去率が80%以上となったときであることを特徴とする請求項1記載の排ガスの生物処理方法。 Improvement of the processing performance, biological treatment method of exhaust gas according to claim 1, wherein the removal rate of malodorous substances and / or volatile organic compounds in the exhaust gas is when it becomes 80% or more. 前記処理性能の向上は、最上流の充填塔に設置されたマノメータにおける圧損によるか、又は最上流の充填塔の循環水槽に設置されたpH計又は導電率計における測定値により判断することを特徴とする請求項1記載の排ガスの生物処理方法。 Improvement of the processing performance, you judged by measurements in the most upstream Luke by the pressure loss in the installed manometer in packed column, or most upstream pH meter installed in the circulation water tank packed column or conductivity meter The biological treatment method for exhaust gas according to claim 1. 直列多段に配備された充填塔と、該充填塔に悪臭物質及び/又は揮発性有機化合物を含む排ガスを通す通路と、該充填塔の充填層に散水する散水手段とを有する排ガスの生物処理装置において、前記充填塔の少なくとも上流側の2段には、排ガスの通気順序及び通気方向を逆転可能にする手段を有すると共に、これらの充填塔には、圧力損失の検出手段と、処理能力検出手段と、循環水の水質測定手段と、薬品供給手段とを有することを特徴とする排ガスの生物処理装置。  Biological treatment apparatus for exhaust gas having packed towers arranged in multiple stages in series, a passage through which exhaust gas containing malodorous substances and / or volatile organic compounds is passed, and water sprinkling means for sprinkling the packed bed of the packed tower In addition, at least two stages upstream of the packed tower have means for enabling the flow order and direction of the exhaust gas to be reversed, and these packed towers include pressure loss detecting means and processing capacity detecting means. And a biological treatment apparatus for exhaust gas, comprising: water quality measuring means for circulating water; and chemical supply means. 請求項4記載の排ガスの生物処理装置において、前記充填塔の少なくとも上流側の2段には、前記圧力損失検出手段の変化を検出し、該検出した変化が1000Paを越えない時点で通気順序及び通気方向を逆転可能にする手段が作動して逆転通気し、前記処理能力検出手段又は圧失検出手段又は水質測定手段の変化が、最上流となった充填塔の処理性能の向上を検出すると、前記逆転通気で下流側となった充填塔の薬品供給手段が作動して散水中に薬品が導入されるように制御する制御手段を有することを特徴とする排ガスの生物処理装置。The biological treatment apparatus for exhaust gas according to claim 4, wherein a change in the pressure loss detection means is detected at least in the two upstream stages of the packed tower, and when the detected change does not exceed 1000 Pa, the ventilation sequence and operating means for the reversible ventilation direction reversed aeration, change of the capacity detecting means or pressure loss detecting means or water measuring means detects the improvement of the processing performance of the packed column became the most upstream Then, the biological treatment apparatus for exhaust gas, characterized by comprising control means for controlling the chemical supply means of the packed tower that has become the downstream side by the reverse aeration to operate so that the chemical is introduced into the sprinkling water.
JP2000033518A 2000-02-10 2000-02-10 Biological treatment method and apparatus for exhaust gas Expired - Fee Related JP3656895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000033518A JP3656895B2 (en) 2000-02-10 2000-02-10 Biological treatment method and apparatus for exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000033518A JP3656895B2 (en) 2000-02-10 2000-02-10 Biological treatment method and apparatus for exhaust gas

Publications (2)

Publication Number Publication Date
JP2001219027A JP2001219027A (en) 2001-08-14
JP3656895B2 true JP3656895B2 (en) 2005-06-08

Family

ID=18557989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000033518A Expired - Fee Related JP3656895B2 (en) 2000-02-10 2000-02-10 Biological treatment method and apparatus for exhaust gas

Country Status (1)

Country Link
JP (1) JP3656895B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160142A (en) * 2005-12-09 2007-06-28 Mitsui Eng & Shipbuild Co Ltd Deodorizing device
JP2009006290A (en) * 2007-06-29 2009-01-15 Hitachi Plant Technologies Ltd Voc gas treatment method
KR100949745B1 (en) * 2008-07-21 2010-03-25 (주)현보산업 A multi step wet scrubber
EP2987549A4 (en) * 2013-04-17 2016-11-23 Fuji Electric Co Ltd Exhaust gas treatment device, vessel, and exhaust gas treatment method
CN115253596B (en) * 2022-08-30 2023-08-25 萍乡市石化填料有限责任公司 Molecular sieve concentration rotating wheel for high-temperature flue gas energy-saving environment-friendly treatment

Also Published As

Publication number Publication date
JP2001219027A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
US20220362710A1 (en) Rotating Spray Device for Water Distribution on Media Bed of a Biofilter
JP5326187B2 (en) Gas processing apparatus provided with gas pretreatment apparatus and cleaning method
NL8100401A (en) METHOD FOR THE PURIFICATION OF WASTE WATER AND ORGANIC FILTER FOR USE IN THE PURIFICATION OF WASTE WATER.
JP3656895B2 (en) Biological treatment method and apparatus for exhaust gas
KR100725967B1 (en) Offensive odor treatment apparatus and deodoring in liquid fertilizer producing system
KR101300234B1 (en) Apparatus and Method for Removing Livestock Excrement Odor Using Photo-Oxidation Process
CN108002517B (en) Bioelectrochemical coupling system for purifying drinking water and purifying method thereof
JPWO2007023749A1 (en) Deodorizing device and deodorizing method
KR100288474B1 (en) Modular biofilter for filtering air comprising a bad smell and VOCs
JP3698356B2 (en) Biological deodorization method and apparatus
JP2008238118A (en) Pretreatment unit of organism deodorization plant
KR100949696B1 (en) The intermittent media steeping type of biofiltration for deodorization
JP3942331B2 (en) Exhaust gas treatment method and equipment
CN211799954U (en) Be used for effluent water sump and refuse disposal to cover waste gas deodorization clean system
JP2589042B2 (en) Operation control method of biological deodorizing device
JP2007283192A (en) Method and apparatus for deodorizing biomass
JP4305727B2 (en) Biological deodorization method and apparatus
JP3410505B2 (en) Biological deodorizing method and device
JP4010405B2 (en) Biological deodorization method and apparatus
JP2002079050A (en) Deodorizing method and apparatus
CN219072559U (en) Treatment system for reducing sulfide mixed waste gas
JP4614875B2 (en) Biological deodorization equipment
JP3271552B2 (en) Biological deodorization method
JP4660298B2 (en) Deodorizing apparatus and deodorizing method
JP2004077169A (en) Method for calculating residual substance in liquid, treatment method using the same, and medicine injection control apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees