JP2007283154A - Boron-containing waste water treatment method - Google Patents

Boron-containing waste water treatment method Download PDF

Info

Publication number
JP2007283154A
JP2007283154A JP2006109587A JP2006109587A JP2007283154A JP 2007283154 A JP2007283154 A JP 2007283154A JP 2006109587 A JP2006109587 A JP 2006109587A JP 2006109587 A JP2006109587 A JP 2006109587A JP 2007283154 A JP2007283154 A JP 2007283154A
Authority
JP
Japan
Prior art keywords
boron
calcium
waste water
wastewater
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006109587A
Other languages
Japanese (ja)
Other versions
JP4696017B2 (en
Inventor
Hiroshi Nagasawa
博司 長澤
Masayuki Ishihara
正行 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okutama Kogyo Co Ltd
Original Assignee
Okutama Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okutama Kogyo Co Ltd filed Critical Okutama Kogyo Co Ltd
Priority to JP2006109587A priority Critical patent/JP4696017B2/en
Publication of JP2007283154A publication Critical patent/JP2007283154A/en
Application granted granted Critical
Publication of JP4696017B2 publication Critical patent/JP4696017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boron-containing waste water treatment method which can satisfy an effluent standard of 10 ppm or lower by a simple treatment, and can suppress an amount of generated sludge. <P>SOLUTION: Calcium chloride and sodium carbonate are added to the boron-containing waste water, and the waste water is agitated. Reaction between the calcium chloride and the sodium carbonate generates calcium carbonate to reduce the concentration of boron in the waste water. Alternatively, calcium hydroxide and/or calcium oxide are/is added to the boron-containing waste water, and further carbon dioxide is added to react with the calcium hydroxide in a treating agent, which generates calcium carbonate to reduce the concentration of boron in the waste water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ホウ素を含有する廃水を処理し、ホウ素濃度を低下させる方法に係り、特にリン酸塩析出を利用した新規なホウ素含有廃水処理方法に関する。   The present invention relates to a method for treating wastewater containing boron and reducing the boron concentration, and more particularly to a novel method for treating boron-containing wastewater using phosphate precipitation.

ホウ砂、ホウ酸、ホウ酸亜鉛、ホウ酸アンモニウムなどのホウ素化合物は、医薬品、防腐剤、化粧品、熱処理剤、写真、顔料、乾燥剤、ガラス、メッキなど多種の分野で用いられており、これらの製造工程やホウ素化合物を用いた製品の製造工程から排出される廃水中にはホウ素化合物が含まれている。また、原子力発電所から発生する放射性廃液や地熱発電水、石炭火力発電所の排煙脱硫廃水、ごみ焼却洗煙廃水等にもホウ素化合物が含まれている。   Boron compounds such as borax, boric acid, zinc borate and ammonium borate are used in various fields such as pharmaceuticals, preservatives, cosmetics, heat treatment agents, photographs, pigments, desiccants, glass, plating, etc. Boron compounds are contained in the wastewater discharged from the manufacturing process and the manufacturing process of products using boron compounds. Further, boron compounds are also contained in radioactive liquid waste generated from nuclear power plants, geothermal power generation water, flue gas desulfurization waste water from coal-fired power plants, waste incineration smoke waste water, and the like.

ホウ素は大量に摂取すると中枢および末梢神経障害、消化器異常などの毒性が認められていることから、10ppm以下の排出基準が設定されており、低コストで効率よく廃水中のホウ素を除去する技術が求められている。   Boron ingests large amounts of toxicity, including central and peripheral neuropathy and gastrointestinal abnormalities. Emission standards of 10 ppm or less have been established, and this technology removes boron in wastewater efficiently at low cost. Is required.

一般的なホウ素除去方法として、ホウ素選択吸着樹脂を用いたイオン交換法、キレート剤やアルミニウム塩を用いた凝集沈殿法、溶媒抽出法などがある。例えば、特許文献1には、ホウ素含有廃水に、アルミニウム化合物とカルシウム化合物とをpHを調整しながら段階的に添加しホウ素を除去する方法が記載されている。しかし、いずれの方法も運転費用などのコスト面の問題に加え、イオン交換法ではイオン交換樹脂の再生時に溶出させたホウ素を処理する問題があり、また凝集沈殿法では発生汚泥量の問題がある。
特開2002−346574号公報
As a general boron removal method, there are an ion exchange method using a boron selective adsorption resin, an aggregation precipitation method using a chelating agent or an aluminum salt, a solvent extraction method and the like. For example, Patent Document 1 describes a method of removing boron by stepwise adding an aluminum compound and a calcium compound to a boron-containing wastewater while adjusting the pH. However, in addition to cost problems such as operating costs, each method has a problem of treating boron eluted during the regeneration of the ion exchange resin in the ion exchange method, and a problem of the amount of generated sludge in the coagulation sedimentation method. .
JP 2002-346574 A

そこで本発明は、簡便な処理で10ppm以下の排出基準をクリアでき、発生汚泥量を抑制できるホウ素含有廃水の処理方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for treating boron-containing wastewater that can clear an emission standard of 10 ppm or less by a simple treatment and can suppress the amount of generated sludge.

本発明者らは、難溶性塩の析出反応を用いたホウ素含有廃水の処理方法について鋭意検討した結果、ホウ素含有廃水中で炭酸カルシウムを生成させることにより、炭酸カルシウム内にホウ素が取り込まれ、効率よく廃水中のホウ素を除去できることを見出し本発明に至ったものである。   As a result of earnestly examining the method for treating boron-containing wastewater using a precipitation reaction of a hardly soluble salt, the present inventors have incorporated boron into calcium carbonate by generating calcium carbonate in the boron-containing wastewater, and the efficiency The present inventors have found that boron in wastewater can be removed well and have reached the present invention.

すなわち本発明の第1の態様は、ホウ素含有廃水に塩化カルシウム及び炭酸ナトリウムを添加、撹拌し、塩化カルシウムと炭酸ナトリウムとの反応により炭酸カルシウムを生成させ、前記廃水中のホウ素濃度を低下させることを特徴とするホウ素含有廃水の処理方法である。   That is, in the first aspect of the present invention, calcium chloride and sodium carbonate are added to and stirred in a boron-containing wastewater, and calcium carbonate is generated by a reaction between calcium chloride and sodium carbonate, thereby reducing the boron concentration in the wastewater. Is a method for treating boron-containing wastewater.

また本発明の第2の態様は、ホウ素含有廃水に水酸化カルシウム及び/又は酸化カルシウムを添加し、さらに二酸化炭素を加え、前記処理剤中の水酸化カルシウムと反応させて炭酸カルシウムを生成させ、前記廃水中のホウ素濃度を低下させることを特徴とするホウ素含有廃水の処理方法である。   Further, in the second aspect of the present invention, calcium hydroxide and / or calcium oxide is added to the boron-containing wastewater, carbon dioxide is further added, and reacted with calcium hydroxide in the treatment agent to generate calcium carbonate. A method for treating boron-containing wastewater, wherein the boron concentration in the wastewater is reduced.

以下、各態様の処理方法について詳述する。
本発明の処理方法で対象とする廃水は、各種製造工場から排出される廃水、発電所の廃水、ゴミ焼却場の洗煙廃水など、ホウ素を含む廃水であれば特に限定されない。ホウ素濃度も特に限定されないが、ホウ素濃度が20ppm(廃水1L中のホウ素の重量含有量、以下同じ)以下であれば、1回の処理で10ppm以下の排出基準を満たすことが可能である。
Hereinafter, the processing method of each aspect is explained in full detail.
The waste water targeted by the treatment method of the present invention is not particularly limited as long as it is waste water containing boron, such as waste water discharged from various manufacturing factories, power plant waste water, and waste incineration smoke cleaning waste water. The boron concentration is not particularly limited, but if the boron concentration is 20 ppm or less (the weight content of boron in 1 L of wastewater, the same shall apply hereinafter), it is possible to satisfy the emission standard of 10 ppm or less in one treatment.

本発明の第1の態様では、このようなホウ素含有廃水に塩化カルシウムと炭酸ナトリウムを添加し、下式の反応により炭酸カルシウムを生成させる。
CaCl2+Na2CO3→CaCO3
塩化カルシウムと炭酸ナトリウムの添加量は必ずしも同モルでなくてもよいが、同モル用いることにより最も効率よく炭酸カルシウムを生成することができる。またこれらのホウ素に対する添加量は、ホウ素に対するカルシウムのモル比(Ca/B)で、好ましくは100以上、より好ましくは200以上、さらに好ましくは300以上とする。300以上とすることにより、60%以上のホウ素除去率(={[反応後固液分離した液体のホウ素濃度]÷[もとの廃水のホウ素濃度]}×100)を達成することができる。
In the first aspect of the present invention, calcium chloride and sodium carbonate are added to such boron-containing wastewater, and calcium carbonate is produced by the reaction of the following formula.
CaCl 2 + Na 2 CO 3 → CaCO 3
The addition amount of calcium chloride and sodium carbonate is not necessarily the same mole, but the calcium carbonate can be generated most efficiently by using the same mole. Moreover, the addition amount with respect to these boron is molar ratio (Ca / B) of calcium with respect to boron, Preferably it is 100 or more, More preferably, it is 200 or more, More preferably, you may be 300 or more. By setting it to 300 or more, it is possible to achieve a boron removal rate of 60% or more (= {[boron concentration of liquid after solid-liquid separation after reaction] ÷ [boron concentration of original waste water]} × 100).

反応は、バテライト型の炭酸カルシウムが生成する条件で行うことが好ましい。炭酸カルシウムには、カルサイト型、バテライト型、アラゴナイト型などが存在することが知られているが、本発明者らの研究によれば上述した反応により炭酸カルシウムを生成させる場合には、バテライト型の炭酸カルシウムがより多く生成したときに高いホウ素除去率が達成できた。   The reaction is preferably carried out under conditions that produce vaterite-type calcium carbonate. Calcium carbonate is known to have a calcite type, a vaterite type, an aragonite type, and the like, but according to the study of the present inventors, when calcium carbonate is generated by the reaction described above, a vaterite type is used. High boron removal rate could be achieved when more calcium carbonate was produced.

バテライト型の炭酸カルシウムが生成する条件として、反応温度が重要であり、好ましくは50℃以下、より好ましくは40℃以下とする。廃水のpHは特に限定されず、酸性の廃水であっても塩基性の廃水であっても同様のホウ素除去率が達成できる。反応時間(撹拌時間)は、短いほどよく、具体的には10分程度とする。撹拌時間が長くなるとホウ素除去率が低下する傾向がある。これは、一度炭酸カルシウム粒子に吸着されたホウ素が再び溶解するためと、炭酸カルシウムの結晶系がバテライトからカルサイトに転移するためと考えられる。   The reaction temperature is important as a condition for producing the vaterite-type calcium carbonate, preferably 50 ° C. or lower, more preferably 40 ° C. or lower. The pH of the wastewater is not particularly limited, and the same boron removal rate can be achieved whether it is acidic wastewater or basic wastewater. The reaction time (stirring time) is preferably as short as possible, specifically about 10 minutes. When the stirring time becomes longer, the boron removal rate tends to decrease. This is probably because boron once adsorbed on the calcium carbonate particles is dissolved again and the crystal system of calcium carbonate is transferred from vaterite to calcite.

本態様のホウ素含有廃水処理方法では、廃水に上述した塩化カルシウムと炭酸ナトリウムを順次、或いは一度に投入し、所定時間撹拌した後、固液分離する。本態様は、比較的低い温度の廃水に対し有効であり、短時間で60%以上のホウ素除去率を達成することができる。   In the boron-containing wastewater treatment method of this embodiment, the above-described calcium chloride and sodium carbonate are added to the wastewater sequentially or at a time, and after stirring for a predetermined time, solid-liquid separation is performed. This aspect is effective for relatively low temperature wastewater, and can achieve a boron removal rate of 60% or more in a short time.

次に本発明の第2の態様について説明する。第2の態様では、ホウ素含有廃水に水酸化カルシウム及び/又は酸化カルシウムを添加し、さらに二酸化炭素を加え、前記処理剤中の水酸化カルシウムと反応させて炭酸カルシウムを生成させる。
水酸化カルシウム或いは酸化カルシウムの添加量は、ホウ素に対するカルシウムのモル比(Ca/B)で、好ましくは100以上、より好ましくは300以上とする。300以上とすることにより、ホウ素濃度10ppmの廃水において60%以上のホウ素除去率を達成することができる。
Next, the second aspect of the present invention will be described. In the second aspect, calcium hydroxide and / or calcium oxide is added to the boron-containing wastewater, carbon dioxide is further added, and reacted with calcium hydroxide in the treatment agent to generate calcium carbonate.
The addition amount of calcium hydroxide or calcium oxide is preferably 100 or more, more preferably 300 or more, in terms of the molar ratio of calcium to boron (Ca / B). By setting it to 300 or more, a boron removal rate of 60% or more can be achieved in wastewater having a boron concentration of 10 ppm.

二酸化炭素は、二酸化炭素100%のガスのみならず、各種燃焼工程などで排出された二酸化炭素を5〜100容量%含有する混合ガスを用いることができる。具体的には石灰石焼成キルン排ガスなどの石灰石焼成排ガス、パルプ製造プラントの石灰キルン排ガスなどの石灰焼成排ガス、発電ボイラー排ガス、ゴミ焼却排ガスなどを用いることができる。工業的にはこのような排ガスを利用することが好ましい。   As the carbon dioxide, not only a gas containing 100% carbon dioxide but also a mixed gas containing 5 to 100% by volume of carbon dioxide discharged in various combustion processes can be used. Specifically, limestone calcined exhaust gas such as limestone calcined kiln exhaust gas, lime calcined exhaust gas such as lime kiln exhaust gas of pulp production plant, power generation boiler exhaust gas, garbage incineration exhaust gas, and the like can be used. Industrially, it is preferable to use such exhaust gas.

反応条件は、一般的な沈殿法による炭酸カルシウム製造と同様の条件とすることができる。例えば、炭酸ガス量として廃液1リットルあたり毎分3〜20リットル、好適には5〜15リットルの割合で吹き込みながら、30分〜2時間程度反応させる。処理時の廃水温度は特に限定されず、比較的低温の廃水であっても高温の廃水であってもそのまま処理することができる。また本態様では生成する炭酸カルシウムの結晶系に依存せず、カルサイトであってもバテライトであっても同様の効果が得られる。   The reaction conditions can be the same as those for producing calcium carbonate by a general precipitation method. For example, the carbon dioxide gas is reacted for about 30 minutes to 2 hours while blowing at a rate of 3 to 20 liters per minute, preferably 5 to 15 liters per liter of waste liquid. The waste water temperature at the time of the treatment is not particularly limited, and it can be treated as it is, whether it is a relatively low temperature waste water or a high temperature waste water. Further, in this embodiment, the same effect can be obtained regardless of whether it is calcite or vaterite regardless of the crystal system of calcium carbonate produced.

本態様では、廃水に所定量の水酸化カルシウム(或いは酸化カルシウム)を投入し、溶解させた後、炭酸ガス或いは炭酸ガス含有ガスを一定時間(30分〜2時間程度)吹き込み、生成する沈殿物(炭酸カルシウム)を固液分離する。
本態様は、ホウ素除去率は第1の態様に比べ、やや低いものの従来の凝集沈殿法に比べ少ない薬剤使用量且つ少ない沈殿物生成量でホウ素を除去することができる。また本態様では、炭酸ガス含有排ガスを利用でき、また処理の温度依存性がないので、廃水と排ガスが同時に排出される工場などに好適である。
In this embodiment, a predetermined amount of calcium hydroxide (or calcium oxide) is added to the wastewater and dissolved, and then carbon dioxide or a gas containing carbon dioxide is blown in for a certain time (about 30 minutes to 2 hours) to generate precipitates. (Calcium carbonate) is solid-liquid separated.
In this embodiment, although the boron removal rate is slightly lower than that in the first embodiment, boron can be removed with a smaller amount of chemical use and a smaller amount of precipitate produced than in the conventional coagulation precipitation method. Moreover, in this aspect, since carbon dioxide containing exhaust gas can be used and there is no temperature dependency of processing, it is suitable for a factory where waste water and exhaust gas are discharged simultaneously.

<実施例1>
原子吸光分析用ホウ素標準液を希釈し、ホウ素濃度約200ppmの模擬廃液を作製した。この模擬廃液200cm3(室温20℃)に、塩化カルシウムおよび炭酸ナトリウムを、表1に示す割合(モル比:Ca/B)で添加し、30分間撹拌して反応させた。反応後、濾過し固液分離し、濾液中のホウ素濃度をICPで測定した。結果を表1に示す。
表1に示す結果からわかるように、ホウ素に対するカルシウム添加量が増加するほど、ホウ素除去率を高くすることができ、Ca/B=365では60%以上の除去率が達成できた。
<Example 1>
A boron standard solution for atomic absorption analysis was diluted to prepare a simulated waste solution having a boron concentration of about 200 ppm. Calcium chloride and sodium carbonate were added to the simulated waste liquid 200 cm 3 (room temperature 20 ° C.) in the proportions (molar ratio: Ca / B) shown in Table 1 and stirred for 30 minutes to react. After the reaction, filtration and solid-liquid separation were performed, and the boron concentration in the filtrate was measured by ICP. The results are shown in Table 1.
As can be seen from the results shown in Table 1, as the amount of calcium added to boron increased, the boron removal rate could be increased. With Ca / B = 365, a removal rate of 60% or more could be achieved.

Figure 2007283154
Figure 2007283154

<実施例2>
実施例1と同じ模擬廃液200cm3(ホウ素濃度約200ppm)を用意し、液温を20℃、40℃、60℃に、それぞれ調整した後、塩化カルシウムおよび炭酸ナトリウムを、モル比(Ca/B)365となるように添加し、30分間撹拌して反応させた。反応後、濾過し固液分離し、濾液中のホウ素濃度をICPで測定した。結果を表2に示す。
<Example 2>
200 cm 3 of the same simulated waste liquid as in Example 1 (boron concentration: about 200 ppm) was prepared, and the liquid temperatures were adjusted to 20 ° C., 40 ° C., and 60 ° C., respectively, and then calcium chloride and sodium carbonate were added in a molar ratio (Ca / B ) 365 and stirred for 30 minutes to react. After the reaction, filtration and solid-liquid separation were performed, and the boron concentration in the filtrate was measured by ICP. The results are shown in Table 2.

表2に示す結果からわかるように、ホウ素除去率は、処理温度(反応開始温度)20℃では60%以上となったが、温度が高くなるにつれて低下した。処理温度20℃のときに生成した沈殿物と、60℃のときに生成した沈殿物をX線回折により分析したところ、前者ではバテライトとカルサイトの両方のピークが見られたが、後者ではカルサイトのピークのみが観察された。このことからホウ素の除去には特にバテライトが有効であると思われる。   As can be seen from the results shown in Table 2, the boron removal rate was 60% or more at the treatment temperature (reaction start temperature) of 20 ° C., but decreased as the temperature increased. When the precipitate formed at a treatment temperature of 20 ° C. and the precipitate generated at 60 ° C. were analyzed by X-ray diffraction, both the vaterite and calcite peaks were observed in the former, but the latter Only site peaks were observed. This suggests that vaterite is particularly effective for removing boron.

Figure 2007283154
Figure 2007283154

<実施例3>
実施例1と同じ模擬廃液200cm3(ホウ素濃度約200ppm、液温20℃)に対し、塩化カルシウムおよび炭酸ナトリウムを、モル比(Ca/B)365となるように添加し、撹拌時間を10分、30分、60分、120分と変化させた反応させた。反応後、撹拌時間の異なる反応液をそれぞれ濾過し固液分離し、濾液中のホウ素濃度をICPで測定した。結果を表3に示す。
<Example 3>
Calcium chloride and sodium carbonate were added to a simulated waste liquid of 200 cm 3 (boron concentration: about 200 ppm, liquid temperature: 20 ° C.) as in Example 1 so that the molar ratio (Ca / B) was 365, and the stirring time was 10 minutes. , 30 minutes, 60 minutes, and 120 minutes. After the reaction, the reaction solutions having different stirring times were filtered and separated into solid and liquid, and the boron concentration in the filtrate was measured by ICP. The results are shown in Table 3.

表3に示す結果からわかるように、ホウ素除去率は、撹拌時間が短いほど高く、10分の拡散ではほぼ75%の除去率が得られたが、撹拌時間が長くなるにつれホウ素除去率は低下した。これは撹拌時間が長くなると、一度炭酸カルシウム粒子に吸着されたホウ素が再び溶出するためと、時間が経つにつれバテライトがカルサイトに転移するためと考えられる。   As can be seen from the results shown in Table 3, the boron removal rate was higher as the stirring time was shorter, and a removal rate of almost 75% was obtained after 10 minutes of diffusion. However, the boron removal rate decreased as the stirring time became longer. did. This is thought to be because boron once adsorbed to the calcium carbonate particles elutes again when the stirring time becomes longer, and vaterite is transferred to calcite with time.

Figure 2007283154
Figure 2007283154

<実施例4>
原子吸光分析用ホウ素標準液を希釈し、ホウ素濃度約10ppmの模擬廃液を作製した。この模擬廃液200cm3(液温20℃)に対し、消石灰(水酸化カルシウム含有量96.5%)を表4に示す割合(モル比:Ca/B)で添加し、炭酸ガス吹き込み量2リットル/分で炭酸ガス(100%)を約90分間吹き込み、pH7になるまで反応させた。反応後、濾過し固液分離し、濾液中のホウ素濃度をICPで測定した。結果を表4に示す。
<Example 4>
A boron standard solution for atomic absorption analysis was diluted to prepare a simulated waste solution having a boron concentration of about 10 ppm. With respect to 200 cm 3 of this simulated waste liquid (liquid temperature 20 ° C.), slaked lime (calcium hydroxide content 96.5%) is added in the ratio shown in Table 4 (molar ratio: Ca / B), and the carbon dioxide blowing rate is 2 liters. Carbon dioxide (100%) was blown in at about 90 minutes for about 90 minutes, and the reaction was allowed to reach pH 7. After the reaction, filtration and solid-liquid separation were performed, and the boron concentration in the filtrate was measured by ICP. The results are shown in Table 4.

Figure 2007283154
Figure 2007283154

表4に示す結果からわかるように、ホウ素に対するカルシウム添加量が増加するほど、ホウ素除去率を高くすることができ、ガス吹き込みを用いない実施例1と同様に、Ca/B=365では60%以上の除去率が達成できた。   As can be seen from the results shown in Table 4, as the amount of calcium added to boron increases, the boron removal rate can be increased. Similarly to Example 1 in which gas blowing is not used, 60% is achieved at Ca / B = 365. The above removal rate was achieved.

<実施例5>
実施例4と同様の模擬廃液を用い、この模擬廃液200cm3の液温を10℃、20℃、30℃、50℃に、それぞれ調整した後、消石灰(水酸化カルシウム含有量96.5%)をモル比で100添加し、炭酸ガス吹き込み量2リットル/分で炭酸ガス(100%)を約90分間吹き込み、pH7になるまで反応させた。反応後、濾過し固液分離し、濾液中のホウ素濃度をICPで測定した。結果を表5に示す。
<Example 5>
Using the simulated waste liquid similar to that in Example 4, the liquid temperature of 200 cm 3 of this simulated waste liquid was adjusted to 10 ° C., 20 ° C., 30 ° C., and 50 ° C., respectively, and then slaked lime (calcium hydroxide content 96.5%) Was added at a molar ratio of 100, carbon dioxide gas (100%) was blown in for about 90 minutes at a carbon dioxide blowing rate of 2 liters / minute, and the reaction was continued until pH 7 was reached. After the reaction, filtration and solid-liquid separation were performed, and the boron concentration in the filtrate was measured by ICP. The results are shown in Table 5.

Figure 2007283154
表5に示すように、除去率に対する温度の影響は見られなかった。
Figure 2007283154
As shown in Table 5, the effect of temperature on the removal rate was not observed.

本発明によれば、炭酸カルシウムの生成反応を利用することにより、比較的少ない発生汚泥量で簡便に、廃水中のホウ素を低濃度になるまで除去することが可能である。
According to the present invention, it is possible to easily remove boron in wastewater to a low concentration by using a relatively small amount of generated sludge by utilizing the formation reaction of calcium carbonate.

Claims (8)

ホウ素含有廃水中のホウ素濃度を低下させる方法であって、前記ホウ素含有廃水中で炭酸カルシウム生成反応を生じさせ、生成する炭酸カルシウム結晶中にホウ素を取り込み廃水中のホウ素濃度を低下させることを特徴とするホウ素含有廃水の処理方法。   A method for reducing the boron concentration in a boron-containing wastewater, wherein a calcium carbonate formation reaction is caused in the boron-containing wastewater, and boron is incorporated into the generated calcium carbonate crystal to reduce the boron concentration in the wastewater. A method for treating boron-containing wastewater. ホウ素含有廃水に塩化カルシウム及び炭酸ナトリウムを添加、撹拌し、塩化カルシウムと炭酸ナトリウムとの反応により炭酸カルシウムを生成させ、前記廃水中のホウ素濃度を低下させることを特徴とするホウ素含有廃水の処理方法。   A method for treating boron-containing wastewater, comprising adding calcium chloride and sodium carbonate to a boron-containing wastewater, stirring, generating calcium carbonate by a reaction between calcium chloride and sodium carbonate, and reducing the boron concentration in the wastewater . 前記塩化カルシウムと炭酸ナトリウムの添加量は、ほぼ同当量であることを特徴とする請求項2記載の処理方法。   The processing method according to claim 2, wherein the addition amounts of the calcium chloride and sodium carbonate are substantially the same. 前記塩化カルシウムの添加量は、ホウ素に対するカルシウムのモル比で100以上であることを特徴とする請求項2又は3に記載の処理方法。   The treatment method according to claim 2 or 3, wherein the addition amount of the calcium chloride is 100 or more in terms of a molar ratio of calcium to boron. 前記反応温度が、40℃以下であることを特徴とする請求項1ないし4のいずれか1項に記載の処理方法。   The processing method according to claim 1, wherein the reaction temperature is 40 ° C. or lower. 生成する炭酸カルシウムがバテライト系炭酸カルシウムであることを特徴とする請求項1ないし5のいずれか1項に記載の処理方法。   The treatment method according to any one of claims 1 to 5, wherein the calcium carbonate to be produced is vaterite calcium carbonate. ホウ素含有廃水に水酸化カルシウム及び/又は酸化カルシウムを添加し、さらに二酸化炭素を加え、前記処理剤中の水酸化カルシウムと反応させて炭酸カルシウムを生成させ、前記廃水中のホウ素濃度を低下させることを特徴とするホウ素含有廃水の処理方法。   Adding calcium hydroxide and / or calcium oxide to boron-containing wastewater, adding carbon dioxide, reacting with calcium hydroxide in the treatment agent to produce calcium carbonate, and reducing the boron concentration in the wastewater A method for treating boron-containing wastewater. 水酸化カルシウム及び/又は酸化カルシウムの添加量は、ホウ素に対するカルシウムのモル比で100以上であることを特徴とする請求項7に記載の処理方法。
The treatment method according to claim 7, wherein the addition amount of calcium hydroxide and / or calcium oxide is 100 or more in terms of a molar ratio of calcium to boron.
JP2006109587A 2006-04-12 2006-04-12 Treatment method for boron-containing wastewater Active JP4696017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006109587A JP4696017B2 (en) 2006-04-12 2006-04-12 Treatment method for boron-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006109587A JP4696017B2 (en) 2006-04-12 2006-04-12 Treatment method for boron-containing wastewater

Publications (2)

Publication Number Publication Date
JP2007283154A true JP2007283154A (en) 2007-11-01
JP4696017B2 JP4696017B2 (en) 2011-06-08

Family

ID=38755419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006109587A Active JP4696017B2 (en) 2006-04-12 2006-04-12 Treatment method for boron-containing wastewater

Country Status (1)

Country Link
JP (1) JP4696017B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141627A (en) * 2012-01-10 2013-07-22 Mitsubishi Electric Corp Water-treating method and water-treating equipment
WO2014196132A1 (en) * 2013-06-03 2014-12-11 三菱電機株式会社 Method and device for treating boron-containing water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119484A (en) * 1979-03-07 1980-09-13 Mitsubishi Keikinzoku Kogyo Kk Treating method for exhaust water
JPS57180493A (en) * 1981-04-27 1982-11-06 Kurita Water Ind Ltd Treatment of water containing boron
JP2002254086A (en) * 2000-12-28 2002-09-10 Toshiba Corp Method for treating waste water containing fluorine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119484A (en) * 1979-03-07 1980-09-13 Mitsubishi Keikinzoku Kogyo Kk Treating method for exhaust water
JPS57180493A (en) * 1981-04-27 1982-11-06 Kurita Water Ind Ltd Treatment of water containing boron
JP2002254086A (en) * 2000-12-28 2002-09-10 Toshiba Corp Method for treating waste water containing fluorine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141627A (en) * 2012-01-10 2013-07-22 Mitsubishi Electric Corp Water-treating method and water-treating equipment
WO2014196132A1 (en) * 2013-06-03 2014-12-11 三菱電機株式会社 Method and device for treating boron-containing water

Also Published As

Publication number Publication date
JP4696017B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4829610B2 (en) Production method of adsorbent mainly composed of hydroxyapatite crystals
Remy et al. Removal of boron from wastewater by precipitation of a sparingly soluble salt
CN104016398B (en) A kind of method that dilute sulfuric acid utilized in industrial wastewater produces sulfate
JP5913436B2 (en) Boron remover
JP2007283168A (en) Adsorbent and its manufacturing method
JP4607847B2 (en) Treatment method and treatment agent for boron-containing wastewater
JP4845188B2 (en) Waste water treatment agent and method for reducing fluorine ions in waste water
JP4954131B2 (en) Treatment method of water containing borofluoride
JP2012106215A (en) Method for purification and treatment of flue gas
JP4696017B2 (en) Treatment method for boron-containing wastewater
CN102328947A (en) Method for recovering strontium slag
JPWO2014132887A1 (en) Method and apparatus for treating borofluoride-containing water
JP2007283216A (en) Boron-containing wastewater treatment method
JP2010082497A (en) Water treating agent and method for treating water
JPH0657354B2 (en) Simultaneous removal method of arsenic and silicon
TWI263623B (en) Effluent water treatment method
Lin et al. Role of phase transformation of barium perborates in the effective removal of boron from aqueous solution via chemical oxo-precipitation
CN108689427A (en) It is a kind of to produce the method and its application that feed grade zinc oxide is recycled in mother liquor from basic zinc chloride
JP2002233881A (en) Method for treating boron-containing water
JP4583786B2 (en) Treatment method for boron-containing wastewater
JP2007283217A (en) Boron-containing wastewater treatment method
JP5001594B2 (en) Biomass fuel manufacturing method and biomass fuel system using the same
CN113896302A (en) Method for treating cadmium-containing wastewater by using calcium carbonate and method for recovering cadmium ions
KR20220008099A (en) Preparation method of monocalcium citrate using disposal oyster shell and application thereof
JP2008200599A (en) Method for cleaning waste water containing ammonia nitrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4696017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250