JP2007282388A - Motor - Google Patents

Motor Download PDF

Info

Publication number
JP2007282388A
JP2007282388A JP2006106195A JP2006106195A JP2007282388A JP 2007282388 A JP2007282388 A JP 2007282388A JP 2006106195 A JP2006106195 A JP 2006106195A JP 2006106195 A JP2006106195 A JP 2006106195A JP 2007282388 A JP2007282388 A JP 2007282388A
Authority
JP
Japan
Prior art keywords
rotor
rotors
electric motor
phase
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006106195A
Other languages
Japanese (ja)
Other versions
JP4800086B2 (en
Inventor
Toshiyuki Yumoto
俊行 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006106195A priority Critical patent/JP4800086B2/en
Publication of JP2007282388A publication Critical patent/JP2007282388A/en
Application granted granted Critical
Publication of JP4800086B2 publication Critical patent/JP4800086B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor capable of constantly increasing torque between both rotors when rotating either of the rotors in a circumferential direction to the other rotor, and facilitating the control of a phase angle between both the rotors when changing a relative phase of both the rotors with a rotating device. <P>SOLUTION: The pair of rotors 2, 3 having permanent magnets 4, 5 are concentrically provided around a rotating shaft 7. There is provided the rotating device 13 for rotating one rotor 3 to the other rotor 2 and changing the relative phase between both the rotors 2 and 3. Further, there is provided a forcing device 8 for forcing the one rotor 3 in a direction opposite to the phase change direction in a range in which the relative phase between both the rotors 2 and 3 becomes above a prescribed angle when one rotor 3 is rotated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回転子に永久磁石を備えて永久磁石の界磁特性を変更可能な電動機に関する。   The present invention relates to an electric motor that includes a permanent magnet in a rotor and can change the field characteristics of the permanent magnet.

従来、永久磁石を備える外周側回転子と永久磁石を備える内周側回転子とが同心円状に配設され、外周側回転子と内周側回転子との何れか一方を他方に対して周方向に回動させることにより外周側回転子と内周側回転子との相対的な位相を変更する電動機が知られている(例えば、特許文献1参照)。   Conventionally, an outer peripheral rotor including a permanent magnet and an inner peripheral rotor including a permanent magnet are concentrically arranged, and either the outer peripheral rotor or the inner peripheral rotor is arranged around the other. There is known an electric motor that changes the relative phase between an outer circumferential rotor and an inner circumferential rotor by rotating in a direction (see, for example, Patent Document 1).

この電動機では、電動機の回転速度に応じて両回転子における相対的な位相を変更する場合には、遠心力の作用により径方向に沿って変位する部材によって、外周側回転子と内周側回転子との何れか一方を他方に対して周方向に回動させる。また、固定子に発生する回転磁界の速度に応じて両回転子における相対的な位相を変更する場合には、各回転子が慣性により回転速度を維持する状態で固定子巻線に制御電流を通電して回転磁界速度を変更することによって、外周側回転子及び内周側回転子の周方向の相対位置を変更する。   In this electric motor, when the relative phase of both rotors is changed according to the rotational speed of the electric motor, the outer rotor and the inner rotor are rotated by a member that is displaced along the radial direction by the action of centrifugal force. Either one of the children is rotated in the circumferential direction with respect to the other. In addition, when the relative phase of both rotors is changed according to the speed of the rotating magnetic field generated in the stator, a control current is applied to the stator winding in a state where each rotor maintains the rotation speed due to inertia. The relative position in the circumferential direction of the outer peripheral side rotor and the inner peripheral side rotor is changed by energizing and changing the rotating magnetic field speed.

そして、外周側回転子と内周側回転子との相対的な位相を変更することにより、電動機の特性(誘起電圧/回転数の比)を可変とすることができる。即ち、具体的には、外周側回転子の永久磁石と内周側回転子の永久磁石とを互いに異極同士で対向(同極配置)させると、界磁が強め状態(強め界磁位相)となって誘起電圧が大となる。それとは逆に、外周側回転子の永久磁石と内周側回転子の永久磁石とを互いに同極同士で対向(対極配置)させると、界磁が弱め状態(弱め界磁位相)となって誘起電圧が小となる。
特開2002−204541号公報
And the characteristic (ratio of induced voltage / rotation speed) of an electric motor can be made variable by changing the relative phase of an outer peripheral side rotor and an inner peripheral side rotor. Specifically, when the permanent magnet of the outer rotor and the permanent magnet of the inner rotor face each other with different polarities (same polarity arrangement), the field is in a stronger state (stronger field phase). Thus, the induced voltage becomes large. On the other hand, when the permanent magnet of the outer rotor and the permanent magnet of the inner rotor face each other with the same polarity (counter electrode arrangement), the field becomes weakened (weak field phase). The induced voltage becomes small.
JP 2002-204541 A

ところで、この種の電動機においては、何れか一方の回転子を他方の回転子に対して周方向に回動させて、例えば、強め界磁位相から弱め界磁位相に変更させようとすると、両回転子の永久磁石の相互作用により、両回転子間のトルクが一旦増加した後、弱め界磁位相に近づくと減少する。   By the way, in this type of electric motor, if one of the rotors is rotated in the circumferential direction with respect to the other rotor, for example, when changing from a strong field phase to a weak field phase, Due to the interaction of the permanent magnets of the rotor, the torque between the two rotors once increases and then decreases when approaching the field weakening phase.

このため、両回転子間の位相角の増加とトルクの増加との関係が対応せず、アクチュエータ等の回動手段を制御して位相を変更させようとしても、同一のトルクを示す位相角がトルク増加時とトルク減少時とで2箇所存在するため、アクチュエータ等の回動手段による位相角の制御が困難となる不都合がある。   For this reason, the relationship between the increase in the phase angle between the two rotors and the increase in the torque does not correspond, and even if an attempt is made to change the phase by controlling the rotation means such as the actuator, the phase angle indicating the same torque is Since there are two locations when the torque is increasing and when the torque is decreasing, there is an inconvenience that it is difficult to control the phase angle by a rotating means such as an actuator.

本発明は上記事情に鑑みてなされたもので、何れか一方の回転子を他方の回転子に対して周方向に回動させたときに、両回転子間のトルクを一定に増加させることができ、両回転子の相対的な位相を回動手段により変更する際に両回転子間の位相角を容易に制御することができる電動機を提供することを目的とする。   The present invention has been made in view of the above circumstances, and when one of the rotors is rotated in the circumferential direction with respect to the other rotor, the torque between the two rotors can be increased constantly. An object of the present invention is to provide an electric motor that can easily control the phase angle between the two rotors when the relative phase of the two rotors is changed by the rotating means.

かかる目的を達成するために、本発明は、極性の異なる複数の永久磁石が周方向に沿って交互に配設された一対の回転子を回転軸の周囲に同心円状に備え、一方の回転子を他方の回転子に対して回動させて両回転子間の相対的な位相を変更する回動手段を備える電動機であって、回動手段により一方の回転子が回動されるとき、両回転子間の相対的な位相が所定角以上となる範囲において該回転子を位相の変更方向と反対方向に付勢する付勢手段が設けられていることを特徴とする。   In order to achieve such an object, the present invention includes a pair of rotors in which a plurality of permanent magnets having different polarities are alternately arranged along the circumferential direction, concentrically around a rotating shaft, and one rotor Is an electric motor provided with a rotating means for rotating the first rotor with respect to the other rotor to change the relative phase between the two rotors. Biasing means for urging the rotor in a direction opposite to the phase changing direction is provided in a range in which the relative phase between the rotors is a predetermined angle or more.

本発明によれば、前記回動手段により一方の回転子を他方の回転子に対して回動させることで両回転子間の相対的な位相が変更される。このとき、両回転子間の相対的な位相が所定角以上となる範囲において、両回転子の永久磁石の相互作用による両回転子間のトルクの減少が生じても、回動される一方の回転子が前記付勢手段によって位相の変更方向と反対方向に付勢されることにより、両回転子間のトルクを増加させることができる。   According to the present invention, the relative phase between the two rotors is changed by rotating one rotor with respect to the other rotor by the rotating means. At this time, in the range where the relative phase between the two rotors is a predetermined angle or more, even if the torque between the two rotors decreases due to the interaction of the permanent magnets of the two rotors, The rotor is biased in the direction opposite to the phase change direction by the biasing means, whereby the torque between the rotors can be increased.

具体的には、本発明においては、前記回動手段により両回転子間の位相が変更され、一方の回転子の永久磁石と他方の回転子の永久磁石との間で第1の回転トルクが発生するとき、前記付勢手段は、両回転子間の相対的な位相が所定角以上となる範囲で減少する第1の回転トルクに、付勢力による第2の回転トルクを付加する。これにより、両回転子間の相対的な位相角の全域においてトルクを一定に増加させることができ、両回転子の相対的な位相を回動手段により変更するとき、両回転子間の位相角を容易に制御することができる。   Specifically, in the present invention, the phase between the two rotors is changed by the rotating means, and a first rotational torque is generated between the permanent magnet of one rotor and the permanent magnet of the other rotor. When generated, the urging means adds a second rotational torque due to the urging force to the first rotational torque that decreases within a range in which the relative phase between the two rotors is a predetermined angle or more. As a result, the torque can be increased constantly over the entire relative phase angle between the two rotors, and when the relative phase between the two rotors is changed by the rotating means, the phase angle between the two rotors Can be easily controlled.

ここで、前記回動手段は、一方の回転子の永久磁石が他方の回転子の永久磁石の異極に対向する状態から同極に対向する状態となるように一方の回転子を回動させる。両回転子の永久磁石同士が異極に対向する状態から、回動手段が一方の回転子を回動させると、両回転子の永久磁石の相互作用により、両回転子間のトルクが次第に増加し、両回転子間の相対的な位相が所定角以上となったとき、両回転子間のトルクが次第に減少する。従って、両回転子間のトルクが次第に減少する範囲において確実に前記付勢手段による付勢力が付与され、両回転子間のトルクを確実に増加させることができるので、両回転子間のトルクと位相角とを正確に対応させることができる。   Here, the rotating means rotates one of the rotors so that the permanent magnet of one rotor faces the same pole from the state facing the opposite pole of the permanent magnet of the other rotor. . When the rotating means rotates one rotor from the state where the permanent magnets of both rotors face each other, the torque between the rotors gradually increases due to the interaction of the permanent magnets of both rotors. When the relative phase between the two rotors exceeds a predetermined angle, the torque between the two rotors gradually decreases. Therefore, in the range where the torque between the two rotors gradually decreases, the biasing force by the biasing means is surely applied, and the torque between the two rotors can be reliably increased. It is possible to accurately correspond to the phase angle.

また、本発明においては、前記両回転子間に摩擦抵抗を付与して両回転子間の相対的な位相を保持する摩擦抵抗付与手段が設けられていることが好ましい。摩擦抵抗付与手段によって両回転子間に摩擦抵抗を付与することにより、外部からの振動等により両回転子間の位相が不安定になることを防止でき、回動手段による回動を精度良く安定して行うことができる。また、両回転子間の相対的な位相が変更された後には、前記回動手段によって一方の回転子が変更後の位相角に保持されるが、このとき、前記付勢手段により位相の変更方向と反対方向に一方の回転子が付勢された状態となる。そこで、前記摩擦抵抗付与手段により、付勢手段の付勢力に対抗して摩擦抵抗を付与し、両回転子間の相対的な位相を所定の位相角に保持させることで、回動手段の負担を軽減することができ、両回転子間の相対的な位相を変更後の位相に確実に維持することができる。   In the present invention, it is preferable that a frictional resistance applying means for providing a frictional resistance between the two rotors and maintaining a relative phase between the two rotors is provided. By applying frictional resistance between the two rotors by means of frictional resistance, it is possible to prevent the phase between the two rotors from becoming unstable due to external vibrations, etc. Can be done. In addition, after the relative phase between the two rotors is changed, one of the rotors is held at the changed phase angle by the rotating means. At this time, the phase is changed by the biasing means. One rotor is biased in the opposite direction to the direction. Therefore, the frictional resistance applying means applies a frictional resistance against the urging force of the urging means, and maintains the relative phase between the two rotors at a predetermined phase angle. And the relative phase between the two rotors can be reliably maintained at the changed phase.

本発明の実施形態を図面に基づいて説明する。先ず、本発明の第1の実施形態について、図1乃至図4を参照して説明する。   Embodiments of the present invention will be described with reference to the drawings. First, a first embodiment of the present invention will be described with reference to FIGS.

第1の実施形態に係る電動機1は、図1に示すように、環状の外周側回転子2と、外周側回転子2の内側に同心円状に配設された内周側回転子3とを備えている。外周側回転子2は周方向に沿って複数の外周側永久磁石4を備えている。内周側回転子3は、外周側回転子2の各外周側永久磁石4に対向するように周方向に沿って配設された複数の内周側永久磁石5を備えている。内周側回転子3は、外周側回転子2に対して周方向に回動自在に設けられ、この回動によって外周側回転子2との間の相対的な位相が変更可能とされている。また、外周側回転子2の外周には、外周側回転子2及び内周側回転子3を回転させる回転磁界を発生する複数相の固定子巻線(図示略)を有する固定子6が設けられている。   As shown in FIG. 1, the electric motor 1 according to the first embodiment includes an annular outer circumferential rotor 2 and an inner circumferential rotor 3 disposed concentrically inside the outer circumferential rotor 2. I have. The outer peripheral rotor 2 includes a plurality of outer peripheral permanent magnets 4 along the circumferential direction. The inner circumferential rotor 3 includes a plurality of inner circumferential permanent magnets 5 arranged along the circumferential direction so as to face the outer circumferential permanent magnets 4 of the outer circumferential rotor 2. The inner circumferential side rotor 3 is provided so as to be rotatable in the circumferential direction with respect to the outer circumferential side rotor 2, and the relative phase with the outer circumferential side rotor 2 can be changed by this rotation. . A stator 6 having a plurality of phases of stator windings (not shown) for generating a rotating magnetic field for rotating the outer rotor 2 and the inner rotor 3 is provided on the outer periphery of the outer rotor 2. It has been.

本実施形態の電動機1は、ブラシレスDCモータであって、例えばハイブリッド車両や電動車両等の車両に駆動源として搭載され、電動機1の回転軸7はトランスミッション(図示略)の入力軸に接続され、電動機1の駆動力がトランスミッションを介して車両の駆動輪(図示略)に伝達されるようになっている。   The electric motor 1 of the present embodiment is a brushless DC motor and is mounted as a drive source in a vehicle such as a hybrid vehicle or an electric vehicle, for example, and the rotating shaft 7 of the electric motor 1 is connected to an input shaft of a transmission (not shown). The driving force of the electric motor 1 is transmitted to driving wheels (not shown) of the vehicle via a transmission.

なお、車両の減速時に駆動輪側から電動機1に駆動力が伝達されると、電動機1は発電機として機能していわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギー(回生エネルギー)として回収する。さらに、例えばハイブリッド車両においては、この電動機1の回転軸7が内燃機関(図示略)のクランクシャフトに連結されており、内燃機関の出力が電動機1に伝達された場合にも電動機1は発電機として機能して発電エネルギーを発生する。   When driving force is transmitted from the driving wheel side to the electric motor 1 during deceleration of the vehicle, the electric motor 1 functions as a generator to generate a so-called regenerative braking force, and the kinetic energy of the vehicle body is used as electric energy (regenerative energy). to recover. Further, for example, in a hybrid vehicle, the rotating shaft 7 of the electric motor 1 is connected to a crankshaft of an internal combustion engine (not shown), and the electric motor 1 is a generator even when the output of the internal combustion engine is transmitted to the electric motor 1. Function as a power generation energy.

図1に示すように、外周側回転子2に設けられた外周側永久磁石4は、板状に形成されており、その厚さ方向(即ち外周側回転子2の径方向)に磁化されている。更に、各外周側永久磁石4は、隣り合うもの同士では極性(磁化方向)が異なる方向となるように配列されている。即ち、外周側がN極となる外周側永久磁石4と外周側がS極となる外周側永久磁石4とが交互に配列されている。   As shown in FIG. 1, the outer peripheral permanent magnet 4 provided on the outer rotor 2 is formed in a plate shape, and is magnetized in the thickness direction thereof (that is, the radial direction of the outer rotor 2). Yes. Further, the outer peripheral side permanent magnets 4 are arranged so that adjacent ones have different polarities (magnetization directions). That is, the outer peripheral side permanent magnets 4 whose outer peripheral side is an N pole and the outer peripheral side permanent magnets 4 whose outer peripheral side is an S pole are alternately arranged.

同様に、内周側回転子3に設けられた内周側永久磁石5は、板状に形成されており、その厚さ方向(即ち内周側回転子3の径方向)に磁化されている。そして、各内周側永久磁石5は、隣り合うもの同士では極性(磁化方向)が異なる方向となるように配列されており、具体的には、外周側がN極となる内周側永久磁石5と外周側がS極となる内周側永久磁石5とが交互に配列されている。   Similarly, the inner peripheral side permanent magnet 5 provided in the inner peripheral side rotor 3 is formed in a plate shape and is magnetized in the thickness direction (that is, the radial direction of the inner peripheral side rotor 3). . The inner peripheral side permanent magnets 5 are arranged so that the adjacent ones have different polarities (magnetization directions). Specifically, the inner peripheral side permanent magnets 5 whose outer peripheral side is an N pole. And inner peripheral side permanent magnets 5 whose outer peripheral side is an S pole are alternately arranged.

また、図1及び図2に一部を示すように、回転軸7と内周側回転子3との間には付勢手段8が設けられている。付勢手段8は、回転軸7に保持部9を介して保持された圧縮バネである弾性部材10と、内周側回転子3の内周面に突出して内周側回転子3の回動に伴い弾性部材10に当接する当接部11とを備えている。   Further, as shown in part in FIGS. 1 and 2, an urging means 8 is provided between the rotating shaft 7 and the inner circumferential rotor 3. The biasing means 8 protrudes from the inner peripheral surface of the inner peripheral rotor 3 and the elastic member 10 which is a compression spring held on the rotary shaft 7 via the holding portion 9, and the inner peripheral rotor 3 rotates. Accordingly, a contact portion 11 that contacts the elastic member 10 is provided.

外周側回転子2は、図2に示すように、ドライブプレート12を介して回転軸7に連結されている。内周側回転子3は、回転軸7に回動自在に保持され、アクチュエータ13(回動手段)により回転軸7周りに回動される。   As shown in FIG. 2, the outer circumferential rotor 2 is connected to the rotary shaft 7 via a drive plate 12. The inner circumferential rotor 3 is rotatably held by the rotary shaft 7 and is rotated around the rotary shaft 7 by an actuator 13 (rotating means).

次に、図3及び図4を参照して第1の実施形態の電動機1の作動を説明する。図3(a)は電動機1における強め界磁状態を示している。この状態では、外周側回転子2の外周側永久磁石4と内周側回転子3の内周側永久磁石5とが異極の磁極同士で対向するように配置(同極配置)されている。このような、強め界磁状態では、電動機1のトルク定数(トルク/相電流)を高い値に設定することができる。   Next, the operation of the electric motor 1 of the first embodiment will be described with reference to FIGS. 3 and 4. FIG. 3A shows a strong field state in the electric motor 1. In this state, the outer peripheral side permanent magnet 4 of the outer peripheral side rotor 2 and the inner peripheral side permanent magnet 5 of the inner peripheral side rotor 3 are arranged so as to face each other with different polarities (same polarity arrangement). . In such a strong field state, the torque constant (torque / phase current) of the electric motor 1 can be set to a high value.

次いで、図3(a)に示す状態から内周側回転子3を回動させると、図3(b)に示すように、外周側回転子2に対して内周側回転子3が変位し、位相角θ1となったところで内周側回転子3の当接部11が弾性部材10の一端に当接する。そして更に内周側回転子3を回動させると、図3(c)に示すように、内周側回転子3は当接部11により弾性部材10を圧縮しつつ回動する。そして、外周側回転子2と内周側回転子3との間の位相が位相角θ2となり、外周側回転子2の外周側永久磁石4と内周側回転子3の内周側永久磁石5との同極の磁極同士が対向して配置(対極配置)されて弱め界磁状態となる。   Next, when the inner peripheral rotor 3 is rotated from the state shown in FIG. 3A, the inner peripheral rotor 3 is displaced with respect to the outer peripheral rotor 2 as shown in FIG. 3B. When the phase angle θ1 is reached, the contact portion 11 of the inner rotor 3 contacts the one end of the elastic member 10. When the inner circumferential rotor 3 is further rotated, the inner circumferential rotor 3 rotates while compressing the elastic member 10 by the contact portion 11 as shown in FIG. Then, the phase between the outer rotor 2 and the inner rotor 3 becomes the phase angle θ2, and the outer permanent magnet 4 of the outer rotor 2 and the inner permanent magnet 5 of the inner rotor 3. Are placed opposite to each other (counter electrode arrangement) to form a field-weakening state.

ここで、内周側回転子3の回動に伴う外周側回転子2と内周側回転子3との間のトルクと位相角との関係を図4に基づいて説明すれば、図3(a)に示す外周側回転子2と内周側回転子3との間の位相角θ0が図3(b)に示す外周側回転子2と内周側回転子3との間の位相角θ1になるまでは、図4に示すように、同極配置されていた外周側永久磁石4と内周側永久磁石5との相互作用により外周側回転子2と内周側回転子3との間の磁力によるトルクAが増加する。続いて、図3(b)に示す外周側回転子2と内周側回転子3との間の位相角θ1が図3(c)に示す外周側回転子2と内周側回転子3との間の位相角θ2になるまでは、図4に示すように、外周側永久磁石4と内周側永久磁石5とが対極配置に近づくことにより外周側回転子2と内周側回転子3との間の磁力によるトルクAが減少する。   Here, the relationship between the torque and the phase angle between the outer circumferential rotor 2 and the inner circumferential rotor 3 accompanying the rotation of the inner circumferential rotor 3 will be described with reference to FIG. The phase angle θ0 between the outer circumferential rotor 2 and the inner circumferential rotor 3 shown in a) is the phase angle θ1 between the outer circumferential rotor 2 and the inner circumferential rotor 3 shown in FIG. 4, the interaction between the outer peripheral side permanent magnet 4 and the inner peripheral side permanent magnet 5, which have been arranged with the same polarity, between the outer peripheral side rotor 2 and the inner peripheral side rotor 3 as shown in FIG. 4. The torque A due to the magnetic force increases. Subsequently, the phase angle θ1 between the outer circumferential rotor 2 and the inner circumferential rotor 3 shown in FIG. 3B is equal to the outer circumferential rotor 2 and the inner circumferential rotor 3 shown in FIG. 4 until the outer peripheral side permanent magnet 4 and the inner peripheral side permanent magnet 5 approach the counter electrode arrangement as shown in FIG. 4, until the phase angle θ2 between the outer peripheral side rotor 2 and the inner peripheral side rotor 3 is reached. Torque A due to the magnetic force between and decreases.

一方、本実施形態においては、図3(b)に示すように、位相角θ1となったところで内周側回転子3の当接部11が弾性部材10の一端に当接し、図3(c)に示す外周側回転子2と内周側回転子3との間の位相角θ2になるまで当接部11による弾性部材10の圧縮が行われるようになっている。これにより、図3(a)に示す外周側回転子2と内周側回転子3との間の位相角θ0が図3(b)に示す外周側回転子2と内周側回転子3との間の位相角θ1になるまでは、図4に示すように、内周側回転子3の当接部11が弾性部材10を圧縮せず、弾性部材10によるトルクBは生じない。続いて、図3(b)に示す外周側回転子2と内周側回転子3との間の位相角θ1が図3(c)に示す外周側回転子2と内周側回転子3との間の位相角θ2になるまでは、図4に示すように、内周側回転子3の当接部11が弾性部材10を圧縮するので、弾性部材10によるトルクBが増加する。そして、位相角θ1から位相角θ2までの間、磁力によるトルクA(第1の回転トルク)に弾性部材10によるトルクB(第2の回転トルク)が付加されるので、位相角θ0から位相角θ2までの総トルクCは、位相角に対して概ね比例的に増加する。   On the other hand, in the present embodiment, as shown in FIG. 3B, the contact portion 11 of the inner rotor 3 contacts the one end of the elastic member 10 when the phase angle θ1 is reached, and FIG. The elastic member 10 is compressed by the contact portion 11 until the phase angle θ2 between the outer circumferential rotor 2 and the inner circumferential rotor 3 shown in FIG. As a result, the phase angle θ0 between the outer peripheral rotor 2 and the inner peripheral rotor 3 shown in FIG. 3A becomes equal to the outer peripheral rotor 2 and the inner peripheral rotor 3 shown in FIG. Until the phase angle θ1 is between, the contact portion 11 of the inner circumferential rotor 3 does not compress the elastic member 10 and torque B by the elastic member 10 does not occur, as shown in FIG. Subsequently, the phase angle θ1 between the outer circumferential rotor 2 and the inner circumferential rotor 3 shown in FIG. 3B is equal to the outer circumferential rotor 2 and the inner circumferential rotor 3 shown in FIG. Until the phase angle θ2 is between, the contact portion 11 of the inner circumferential rotor 3 compresses the elastic member 10 as shown in FIG. 4, so that the torque B by the elastic member 10 increases. Since the torque B (second rotational torque) by the elastic member 10 is added to the torque A (first rotational torque) due to the magnetic force between the phase angle θ1 and the phase angle θ2, the phase angle θ0 to the phase angle The total torque C up to θ2 increases approximately in proportion to the phase angle.

このように、付勢手段8を設けることによって、外周側回転子2と内周側回転子3との間の位相角とトルクとが一定の増加により対応するので、アクチュエータ13による内周側回転子3の回動制御を容易に且つ精度良く行うことができる。   In this way, by providing the biasing means 8, the phase angle and torque between the outer rotor 2 and the inner rotor 3 correspond to each other by a constant increase. The rotation control of the child 3 can be easily and accurately performed.

次に、本発明の第2の実施形態について、図5及び図6を参照して説明する。第2の実施形態の電動機14は、図5に示すように、内周側回転子15がドライブプレート16を介して回転軸17に連結され、外周側回転子18がアクチュエータ19を介して回転軸17及び内周側回転子15対して回動可能に支持されている。また、外周側回転子18と回転軸17との間には付勢手段20が設けられており、外周側回転子18と内周側回転子15との間には摩擦抵抗付与手段21が設けられている。なお、前述した第1の実施形態と同様に、外周側回転子18は複数の外周側永久磁石22を備え、内周側回転子15は複数の内周側永久磁石23を備えている。   Next, a second embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 5, in the electric motor 14 of the second embodiment, an inner peripheral rotor 15 is connected to a rotary shaft 17 via a drive plate 16, and an outer peripheral rotor 18 is connected to a rotary shaft via an actuator 19. 17 and the inner circumferential rotor 15 are rotatably supported. Further, a biasing means 20 is provided between the outer peripheral side rotor 18 and the rotary shaft 17, and a frictional resistance applying means 21 is provided between the outer peripheral side rotor 18 and the inner peripheral side rotor 15. It has been. Similar to the first embodiment described above, the outer peripheral rotor 18 includes a plurality of outer peripheral permanent magnets 22, and the inner peripheral rotor 15 includes a plurality of inner peripheral permanent magnets 23.

第2の実施形態の電動機14における付勢手段20は、回転軸17に保持部24を介して保持された圧縮バネである弾性部材25と、外周側回転子18の内周面に突出して外周側回転子18の回動に伴い弾性部材25に当接する当接部26とを備えている。   The urging means 20 in the electric motor 14 of the second embodiment includes an elastic member 25 that is a compression spring held on the rotating shaft 17 via a holding portion 24, and an outer periphery protruding from the inner peripheral surface of the outer rotor 18. A contact portion 26 that contacts the elastic member 25 as the side rotor 18 rotates is provided.

また、摩擦抵抗付与手段21は、外周側回転子18の内方に支持されたフリクションディスク27と、内周側回転子15の内側に支持されてフリクションディスク27に圧接自在の圧接プレート28と、回転軸17の軸線方向に進退自在に設けられて圧接プレート28をフリクションディスク27に圧接させるピストン部材29とを備えるクラッチにより構成されている。ピストン部材29は、内周側回転子15のドライブプレート16との間に圧力室30を形成しており、圧力室30には、回転軸17の内部に形成された油路31から連通孔32を介して加圧用の油が供給される。これにより、油路31を介して供給された油により圧力室30が加圧され、ピストン部材29が圧接プレート28をフリクションディスク27に圧接させて摩擦係合させることで、外周側回転子18と内周側回転子15との位相が所望の位相で維持される。また、ピストン部材29は、圧接プレート28の押圧方向と反対方向に付勢するリターンスプリング33により付勢されており、圧力室30への加圧を解除したとき、圧接プレート28によるフリクションディスク27の圧接を解除し、内周側回転子15に対してアクチュエータ19による外周側回転子18の回動が可能とされる。   The frictional resistance applying means 21 includes a friction disk 27 supported inside the outer rotor 18, a pressure plate 28 supported inside the inner rotor 15 and press-contactable with the friction disk 27, and The clutch is provided with a piston member 29 that is provided so as to be movable back and forth in the axial direction of the rotating shaft 17 and presses the pressure contact plate 28 against the friction disk 27. The piston member 29 forms a pressure chamber 30 between the piston plate 29 and the drive plate 16 of the inner circumferential rotor 15, and a communication hole 32 is connected to the pressure chamber 30 from an oil passage 31 formed inside the rotation shaft 17. The oil for pressurization is supplied through. As a result, the pressure chamber 30 is pressurized by the oil supplied through the oil passage 31, and the piston member 29 presses the pressure contact plate 28 against the friction disk 27 and frictionally engages the outer rotor 18. The phase with the inner rotor 15 is maintained at a desired phase. The piston member 29 is urged by a return spring 33 that urges the pressure plate 28 in a direction opposite to the pressing direction. When the pressure to the pressure chamber 30 is released, the friction disk 27 of the friction plate 27 is pressed by the pressure plate 28. The pressure contact is released, and the outer peripheral side rotor 18 can be rotated by the actuator 19 with respect to the inner peripheral side rotor 15.

第2の実施形態の電動機14によれば、図6(a)に示す状態で外周側回転子18の外周側永久磁石22と内周側回転子15の内周側永久磁石23とが異極の磁極同士で対向するように配置(同極配置)され、強め界磁状態となる。そして、この状態から外周側回転子18を回動させると、図6(b)に示すように、内周側回転子15に対して外周側回転子18が変位し、位相角θ1となったところで外周側回転子18の当接部26が弾性部材25の一端に当接する。第2の実施形態の電動機14においても、前述の第1の実施形態と同様に、内周側回転子15と外周側回転子18とが、磁力によるトルクが減少を開始する位相角θ1となるときに当接部26による弾性部材25への当接が開始されるように設定されている。   According to the electric motor 14 of the second embodiment, the outer peripheral side permanent magnet 22 of the outer peripheral side rotor 18 and the inner peripheral side permanent magnet 23 of the inner peripheral side rotor 15 are different in the state shown in FIG. The magnetic poles are arranged so as to face each other (same polarity arrangement), and a strong field state is obtained. Then, when the outer rotor 18 is rotated from this state, the outer rotor 18 is displaced with respect to the inner rotor 15 as shown in FIG. 6B, and the phase angle θ1 is obtained. Incidentally, the contact portion 26 of the outer rotor 18 contacts one end of the elastic member 25. Also in the electric motor 14 of the second embodiment, as in the first embodiment, the inner rotor 15 and the outer rotor 18 have a phase angle θ1 at which the torque due to the magnetic force starts to decrease. Sometimes, the contact portion 26 is set to start contact with the elastic member 25.

そして更に外周側回転子18を回動させると、図6(c)に示すように、外周側回転子18は当接部26により弾性部材25を圧縮しつつ回動する。そして、内周側回転子15と外周側回転子18との間の位相が位相角θ2となり、内周側回転子15の内外周側永久磁石23と外周側回転子18の外周側永久磁石22との同極の磁極同士が対向して配置(対極配置)されて弱め界磁状態となる。そして、図6(b)に示す外周側回転子18と内周側回転子15との間の位相角θ1が図6(c)に示す外周側回転子18と内周側回転子15との間の位相角θ2になるまでは、外周側回転子18の当接部26が弾性部材25を圧縮するので、図4を参照すれば、弾性部材25によるトルクBが増加して総トルクCを得ることができる。従って、第2の実施形態の電動機14においても、位相角に対するトルクが概ね比例的に増加するので、アクチュエータ19による外周側回転子18の回動制御を容易に且つ精度良く行うことができる。   When the outer circumferential rotor 18 is further rotated, the outer circumferential rotor 18 rotates while compressing the elastic member 25 by the contact portion 26 as shown in FIG. The phase between the inner circumferential rotor 15 and the outer circumferential rotor 18 becomes the phase angle θ2, and the inner and outer circumferential permanent magnets 23 of the inner circumferential rotor 15 and the outer circumferential permanent magnet 22 of the outer circumferential rotor 18 are obtained. Are placed opposite to each other (counter electrode arrangement) to form a field-weakening state. The phase angle θ1 between the outer peripheral side rotor 18 and the inner peripheral side rotor 15 shown in FIG. 6B is the same between the outer peripheral side rotor 18 and the inner peripheral side rotor 15 shown in FIG. Until the phase angle θ2 is reached, the contact portion 26 of the outer rotor 18 compresses the elastic member 25. Therefore, referring to FIG. 4, the torque B by the elastic member 25 increases and the total torque C is increased. Obtainable. Therefore, also in the electric motor 14 of the second embodiment, the torque with respect to the phase angle increases approximately proportionally, so that the rotation control of the outer peripheral rotor 18 by the actuator 19 can be easily and accurately performed.

また、第2の実施形態の電動機14においては、図5に示すように、摩擦抵抗付与手段21を設けたことにより、例えば、図6(c)に示すように、弾性部材25によるトルクが付与されて外周側回転子18と内周側回転子15との間のトルクが最も高くなる位相角θ2のとき、ピストン部材29を作動させて圧接プレート28をフリクションディスク27に圧接させ、摩擦係合によって位相角θ2を維持させることができる。これにより、外周側回転子18と内周側回転子15との間のトルクが最も高くなる位相角θ2をアクチュエータ19によって維持するだけでなく、摩擦抵抗付与手段21の摩擦係合によっても維持することができるので、アクチュエータ19への負担を軽減することができる。   Further, in the electric motor 14 of the second embodiment, as shown in FIG. 5, by providing the frictional resistance applying means 21, for example, as shown in FIG. When the phase angle θ2 at which the torque between the outer circumferential rotor 18 and the inner circumferential rotor 15 is the highest, the piston member 29 is actuated to press the pressure contact plate 28 against the friction disk 27 and frictionally engage. Thus, the phase angle θ2 can be maintained. Thus, the phase angle θ2 at which the torque between the outer peripheral rotor 18 and the inner peripheral rotor 15 becomes the highest is maintained not only by the actuator 19 but also by the frictional engagement of the frictional resistance applying means 21. Therefore, the burden on the actuator 19 can be reduced.

次に、本発明の第3の実施形態について、図7を参照して説明する。第3の実施形態における電動機34は、図7に示すように、内周側回転子35がドライブプレート36を介して回転軸37に連結され、外周側回転子38がアクチュエータ39を介して回転軸37及び内周側回転子35に回動可能に支持されている。また、外周側回転子38と内周側回転子35との間には付勢手段40と摩擦抵抗付与手段41とが設けられている。   Next, a third embodiment of the present invention will be described with reference to FIG. As shown in FIG. 7, the electric motor 34 in the third embodiment includes an inner peripheral rotor 35 connected to a rotary shaft 37 via a drive plate 36, and an outer peripheral rotor 38 connected to a rotary shaft via an actuator 39. 37 and the inner circumferential rotor 35 are rotatably supported. Further, an urging means 40 and a frictional resistance applying means 41 are provided between the outer peripheral side rotor 38 and the inner peripheral side rotor 35.

付勢手段40は、外周側回転子38の内方に連設された保持部42を介して保持された圧縮バネである弾性部材43と、内周側回転子35に連結されたドライブプレート36の内周面に突出して外周側回転子38の回動に伴い弾性部材43に当接する当接部44とを備えている。   The urging means 40 includes an elastic member 43 that is a compression spring held via a holding portion 42 that is connected to the inner side of the outer peripheral rotor 38, and a drive plate 36 that is connected to the inner peripheral rotor 35. And an abutting portion 44 that abuts against the elastic member 43 as the outer circumferential rotor 38 rotates.

また、摩擦抵抗付与手段41は、外周側回転子38の内方に支持されたフリクションディスク45と、内周側回転子35の内側に支持されてフリクションディスク45に圧接自在の圧接プレート46とを備え、更に、内周側回転子35の内側に支持されて圧接プレート46を介してフリクションディスク45に圧接状態とされた皿バネ部材47を備えている。   The frictional resistance applying means 41 includes a friction disk 45 supported on the inner side of the outer circumferential rotor 38 and a pressure plate 46 supported on the inner side of the inner circumferential rotor 35 and freely press-contactable with the friction disk 45. And a disc spring member 47 supported inside the inner circumferential rotor 35 and brought into pressure contact with the friction disk 45 via the pressure contact plate 46.

これによって、第3の実施形態における電動機34は、第1及び第2の実施形態と同様に、付勢手段40によって位相角に対するトルクが概ね比例的に増加するようになっており、アクチュエータ39による外周側回転子38の回動制御を容易に且つ精度良く行うことができる。   As a result, in the electric motor 34 in the third embodiment, the torque with respect to the phase angle is increased approximately proportionally by the urging means 40 as in the first and second embodiments. The rotation control of the outer circumferential rotor 38 can be easily and accurately performed.

また、第3の実施形態の電動機34における摩擦抵抗付与手段41は、皿バネ部材47によって内周側回転子35に対する外周側回転子38の回動に常時摩擦抵抗を付与している。これにより、例えば、ハイブリッド車両や電動車両等の車両に搭載されているために路面状況やエンジンのトルク変動に伴う振動が内周側回転子35と外周側回転子38との間に伝達するような状況が生じても、内周側回転子35に対する外周側回転子38の不用意な動きが摩擦抵抗付与手段41によって抑制され、内周側回転子35と外周側回転子38との間の位相を安定した状態に維持することができる。   Further, the frictional resistance imparting means 41 in the electric motor 34 of the third embodiment always imparts a frictional resistance to the rotation of the outer peripheral rotor 38 relative to the inner peripheral rotor 35 by the disc spring member 47. As a result, for example, because it is mounted on a vehicle such as a hybrid vehicle or an electric vehicle, vibrations associated with road surface conditions and engine torque fluctuations are transmitted between the inner circumferential rotor 35 and the outer circumferential rotor 38. Even if such a situation occurs, the inadvertent movement of the outer circumferential rotor 38 relative to the inner circumferential rotor 35 is suppressed by the frictional resistance applying means 41, and between the inner circumferential rotor 35 and the outer circumferential rotor 38. The phase can be maintained in a stable state.

なお、前述した第1乃至第3の実施形態における付勢手段8,20,40は、何れも圧縮バネによる弾性部材10,25,43を採用したものを示したが、これに限るものではなく、例えば、本発明の第4の実施形態として図8(a)乃至(c)に示すように、引きバネを弾性部材48として採用することもできる。即ち、第4の実施形態の電動機49は、図8(a)に一部を示すように、環状の外周側回転子50と、外周側回転子50の内側に同心円状に配設された内周側回転子51とを備えている。外周側回転子50は周方向に沿って複数の外周側永久磁石52を備えると共に、内周側回転子51は外周側回転子50の各外周側永久磁石52に対向するように周方向に沿って配設された複数の内周側永久磁石53を備えており、アクチュエータ39によって内周側回転子51が回動される。   The urging means 8, 20, and 40 in the first to third embodiments described above employ the elastic members 10, 25, and 43 that are compression springs, but are not limited thereto. For example, as shown in FIGS. 8A to 8C as a fourth embodiment of the present invention, a tension spring may be employed as the elastic member 48. That is, the electric motor 49 according to the fourth embodiment includes an annular outer circumferential rotor 50 and an inner ring disposed concentrically inside the outer circumferential rotor 50, as shown in part in FIG. A circumferential rotor 51 is provided. The outer circumferential rotor 50 includes a plurality of outer circumferential permanent magnets 52 along the circumferential direction, and the inner circumferential rotor 51 extends along the circumferential direction so as to face the outer circumferential permanent magnets 52 of the outer circumferential rotor 50. The inner peripheral rotor 51 is rotated by the actuator 39.

外周側回転子50と内周側回転子51との間には付勢手段55が設けられている。付勢手段55は、一端が固定ピン56により外周側回転子50に連結され、他端が可動ピン57により内周側回転子51に連結された引きバネによる弾性部材48を備えている。可動ピン56は、内周側回転子51に設けられた長孔状の保持溝58に摺動自在に保持されている。   A biasing means 55 is provided between the outer circumferential rotor 50 and the inner circumferential rotor 51. The biasing means 55 includes an elastic member 48 of a pulling spring having one end connected to the outer rotor 50 by a fixed pin 56 and the other end connected to the inner rotor 51 by a movable pin 57. The movable pin 56 is slidably held in a long hole-like holding groove 58 provided in the inner circumferential rotor 51.

第4の実施形態においては、図8(a)に示す強め界磁状態から内周側回転子51を回動させると、図8(b)に示すように、外周側回転子50に対して内周側回転子51が変位するが位相角θ0から位相角θ1となるまでは、可動ピン57が保持溝58に沿って摺動して弾性部材48による付勢力は殆ど生じない。   In the fourth embodiment, when the inner rotor 51 is rotated from the strong field state shown in FIG. 8A, the outer rotor 50 is moved with respect to the outer rotor 50 as shown in FIG. 8B. Although the inner rotor 51 is displaced, until the phase angle θ0 changes to the phase angle θ1, the movable pin 57 slides along the holding groove 58 and almost no urging force is generated by the elastic member 48.

そして、図8(b)に示すように、外周側回転子50と内周側回転子51との間が位相角θ1となったところで可動ピン57が保持溝58の終端に位置し、摺動が規制される。ここから更に内周側回転子51を回動させると、図8(c)に示すように、内周側回転子51は弾性部材48を引き伸ばしつつ回動する。そして、内周側回転子51と外周側回転子50との間の位相が位相角θ2となり弱め界磁状態となる。   Then, as shown in FIG. 8B, the movable pin 57 is positioned at the end of the holding groove 58 when the phase angle θ1 is between the outer peripheral rotor 50 and the inner peripheral rotor 51, and slides. Is regulated. When the inner circumferential rotor 51 is further rotated from here, the inner circumferential rotor 51 rotates while stretching the elastic member 48 as shown in FIG. 8C. Then, the phase between the inner circumferential rotor 51 and the outer circumferential rotor 50 becomes the phase angle θ2, and the field weakening state is established.

このように、第4の実施形態の電動機49においても、外周側回転子50と内周側回転子51との間の磁力によるトルクAが位相角θ1と位相角θ2との間で減少しても、弾性部材48によるトルクBを付加して位相角に対するトルクを概ね比例的に増加させることができる。   Thus, also in the electric motor 49 of the fourth embodiment, the torque A due to the magnetic force between the outer rotor 50 and the inner rotor 51 decreases between the phase angle θ1 and the phase angle θ2. In addition, the torque B with the elastic member 48 can be added to increase the torque with respect to the phase angle substantially proportionally.

本発明の第1の実施形態に係る電動機の要部構成を模式的に示す説明図。Explanatory drawing which shows typically the principal part structure of the electric motor which concerns on the 1st Embodiment of this invention. 第1の実施形態の電動機の要部の断面説明図。Cross-sectional explanatory drawing of the principal part of the electric motor of 1st Embodiment. 第1の実施形態の電動機の作動説明図。Operation | movement explanatory drawing of the electric motor of 1st Embodiment. 第1の実施形態の電動機における位相角とトルクとの関係を示すグラフ図。The graph which shows the relationship between the phase angle and torque in the electric motor of 1st Embodiment. 本発明の第2の実施形態に係る電動機の要部を模式的に示す断面説明図。Cross-sectional explanatory drawing which shows typically the principal part of the electric motor which concerns on the 2nd Embodiment of this invention. 第2の実施形態の電動機の作動説明図。Operation | movement explanatory drawing of the electric motor of 2nd Embodiment. 本発明の第3の実施形態に係る電動機の要部を模式的に示す断面説明図。Cross-sectional explanatory drawing which shows typically the principal part of the electric motor which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る電動機の要部構成及び作動を模式的に示す説明図。Explanatory drawing which shows typically the principal part structure and action | operation of the electric motor which concerns on the 4th Embodiment of this invention.

符号の説明Explanation of symbols

1,14,34,49…電動機、2,18,38,50…外周側回転子(回転子)、3,15,35,51…内周側回転子(回転子)、4,23,52…内周側永久磁石(永久磁石)、5,22,53…外周側永久磁石(永久磁石)、6,17,37…回転軸、8,20,40,55…付勢手段、13,19,39…アクチュエータ(回動手段)、21,41…摩擦抵抗付与手段、A…第1の回転トルク、B…第2の回転トルク。   DESCRIPTION OF SYMBOLS 1,14,34,49 ... Electric motor, 2,18,38,50 ... Outer peripheral side rotor (rotor), 3,15,35,51 ... Inner peripheral side rotor (rotor), 4,23,52 ... inner peripheral side permanent magnet (permanent magnet) 5, 22, 53 ... outer peripheral side permanent magnet (permanent magnet) 6, 17, 37 ... rotating shaft 8, 20, 40, 55 ... biasing means 13, 19 , 39 ... Actuators (turning means), 21, 41 ... Friction resistance applying means, A ... First rotational torque, B ... Second rotational torque.

Claims (4)

極性の異なる複数の永久磁石が周方向に沿って交互に配設された一対の回転子を回転軸の周囲に同心円状に備え、一方の回転子を他方の回転子に対して回動させて両回転子間の相対的な位相を変更する回動手段を備える電動機であって、
回動手段により一方の回転子が回動されるとき、両回転子間の相対的な位相が所定角以上となる範囲において該回転子を位相の変更方向と反対方向に付勢する付勢手段が設けられていることを特徴とする電動機。
A pair of rotors in which a plurality of permanent magnets having different polarities are alternately arranged along the circumferential direction are provided concentrically around the rotation shaft, and one rotor is rotated with respect to the other rotor. An electric motor comprising rotating means for changing the relative phase between both rotors,
When one of the rotors is rotated by the rotating means, an urging means for urging the rotor in a direction opposite to the phase changing direction in a range where the relative phase between the two rotors is a predetermined angle or more. An electric motor is provided.
前記回動手段により両回転子間の位相が変更され、一方の回転子の永久磁石と他方の回転子の永久磁石との間で第1の回転トルクが発生するとき、
前記付勢手段は、両回転子間の相対的な位相が所定角以上となる範囲で減少する第1の回転トルクに、付勢力による第2の回転トルクを付加することを特徴とする請求項1記載の電動機。
When the phase between the two rotors is changed by the rotating means, and a first rotational torque is generated between the permanent magnet of one rotor and the permanent magnet of the other rotor,
The said urging means adds the 2nd rotational torque by urging | biasing force to the 1st rotational torque which reduces in the range from which the relative phase between both rotors becomes a predetermined angle or more. 1. The electric motor according to 1.
前記回動手段は、一方の回転子の永久磁石が他方の回転子の永久磁石の異極に対向する状態から同極に対向する状態となるように一方の回転子を回動させることを特徴とする請求項1又は2記載の電動機。   The rotating means rotates one rotor so that the permanent magnet of one rotor is opposed to the same pole from the state of facing the opposite pole of the permanent magnet of the other rotor. The electric motor according to claim 1 or 2. 前記両回転子間に摩擦抵抗を付与して両回転子間の相対的な位相を保持する摩擦抵抗付与手段が設けられていることを特徴とする請求項1乃至3の何れか1項記載の電動機。   4. The friction resistance applying means for applying a friction resistance between the two rotors to maintain a relative phase between the two rotors is provided. 5. Electric motor.
JP2006106195A 2006-04-07 2006-04-07 Electric motor Expired - Fee Related JP4800086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006106195A JP4800086B2 (en) 2006-04-07 2006-04-07 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006106195A JP4800086B2 (en) 2006-04-07 2006-04-07 Electric motor

Publications (2)

Publication Number Publication Date
JP2007282388A true JP2007282388A (en) 2007-10-25
JP4800086B2 JP4800086B2 (en) 2011-10-26

Family

ID=38683257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006106195A Expired - Fee Related JP4800086B2 (en) 2006-04-07 2006-04-07 Electric motor

Country Status (1)

Country Link
JP (1) JP4800086B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165426A (en) * 2000-09-14 2002-06-07 Denso Corp Multiple-rotor synchronous machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165426A (en) * 2000-09-14 2002-06-07 Denso Corp Multiple-rotor synchronous machine

Also Published As

Publication number Publication date
JP4800086B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4394115B2 (en) Axial gap type motor
WO2007072622A1 (en) Electric motor
JP2007244027A (en) Dynamo-electric machine
JP2010025318A (en) Power transmission device
JP2015070765A (en) Rotary electric machine
JP2005318718A (en) Axial gap motor
JP4857802B2 (en) Rotating electric machine
JP5089066B2 (en) Electric motor
US9528589B2 (en) Pulley for alternator
JP4800086B2 (en) Electric motor
JP4800091B2 (en) Electric motor
US20150108856A1 (en) Rotating electric machine
JP5271176B2 (en) Rotor shaft
JP2010206952A (en) Motor and controller thereof
JP5279989B2 (en) Electric motor
JP4808529B2 (en) Electric motor
JP2009254005A (en) Motor
JP5723473B1 (en) Magnet excitation rotating electrical machine system
JP5085875B2 (en) Electric motor
JP2010017009A (en) Axial gap motor
JP2015122886A (en) Axial variable gap type rotary electric machine
CN210693676U (en) Variable magnetic field rotating electric machine
AU2015202563B2 (en) Pulley for an alternator
JPH0747624Y2 (en) Electromagnetic clutch / brake
JP4453051B2 (en) Axial gap type motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees