JP5723473B1 - Magnet excitation rotating electrical machine system - Google Patents

Magnet excitation rotating electrical machine system Download PDF

Info

Publication number
JP5723473B1
JP5723473B1 JP2014165617A JP2014165617A JP5723473B1 JP 5723473 B1 JP5723473 B1 JP 5723473B1 JP 2014165617 A JP2014165617 A JP 2014165617A JP 2014165617 A JP2014165617 A JP 2014165617A JP 5723473 B1 JP5723473 B1 JP 5723473B1
Authority
JP
Japan
Prior art keywords
rotor
displacement
rotors
displaced
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014165617A
Other languages
Japanese (ja)
Other versions
JP2016067064A (en
Inventor
市山 義和
義和 市山
Original Assignee
市山 義和
義和 市山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 市山 義和, 義和 市山 filed Critical 市山 義和
Priority to JP2014165617A priority Critical patent/JP5723473B1/en
Priority to PCT/JP2015/061931 priority patent/WO2015186442A1/en
Application granted granted Critical
Publication of JP5723473B1 publication Critical patent/JP5723473B1/en
Priority to US14/726,612 priority patent/US20150357891A1/en
Publication of JP2016067064A publication Critical patent/JP2016067064A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

【課題】誘起電圧の位相制御により回転速度範囲の広い磁石励磁回転電機を実現する。【解決手段】電機子に対向する回転子を第一回転子14,第二回転子15,第三回転子16で構成し,二つの回転子を周方向に変位させて誘起電圧を制御する回転電機システムであって回転子間の磁気結合力が小の範囲内で大きな誘起電圧抑圧が可能である。駆動電流の進角制御による弱め界磁技術が現在専ら用いられているが,低速及び高速回転領域では一種の電流励磁併用であってエネルギー効率を大幅に低下させている。これによれば,全回転速度範囲で磁石励磁の高いエネルギー効率が維持される。【選択図】図1A magnet-excited rotating electrical machine with a wide rotational speed range is realized by phase control of an induced voltage. A rotor that has a first rotor 14, a second rotor 15, and a third rotor 16 that oppose the armature, and that controls the induced voltage by displacing the two rotors in the circumferential direction. In an electric system, large induced voltage suppression is possible within a range where the magnetic coupling force between the rotors is small. The field-weakening technology based on the drive current advance angle control is currently used exclusively, but in the low-speed and high-speed rotation regions, it is a kind of current excitation and greatly reduces the energy efficiency. According to this, high energy efficiency of magnet excitation is maintained in the whole rotation speed range. [Selection] Figure 1

Description

本発明は,永久磁石界磁を持つ発電機,電動機を含む回転電機システムに関する。   The present invention relates to a rotating electrical machine system including a generator and a motor having a permanent magnet field.

永久磁石を回転子表面近傍の磁性体内に埋め込んだ回転電機装置(IPM)は駆動電流の位相制御による弱め界磁が可能で普及しているが,制御範囲,低速及び高速回転に於けるエネルギー効率には限界がある。更に永久磁石励磁の回転子を2分し,一方の回転子を他方に対して変位させ,電機子コイルと鎖交する磁束の位相を制御して実効的に弱め界磁を実現する提案がある(特許文献1,2,3,4)。後者は,大きな起動トルクと広い回転速度範囲とを磁石励磁のエネルギー効率の高さを犠牲にすることなく実現できる。   Rotating electrical machines (IPMs) with permanent magnets embedded in the magnetic body near the rotor surface are widely used because they allow field weakening by phase control of the drive current, but the control range, energy efficiency in low speed and high speed rotation Has its limits. Furthermore, there is a proposal that effectively divides the rotor of permanent magnet excitation into two parts, displaces one rotor with respect to the other, and controls the phase of the magnetic flux interlinking with the armature coil to realize the field weakening effectively. (Patent Documents 1, 2, 3, 4). The latter can achieve a large starting torque and a wide rotational speed range without sacrificing the energy efficiency of magnet excitation.

しかしながら,後者の構造に於いて,二つの回転子間の角度を電気角にして2θとすると,合成された誘起電圧の振幅はCosθに比例し,2θを120度にして誘起電圧は0.5倍,150度まで大きくしても0.26倍程度にしか減少できない。更に誘起電圧を減少させて回転速度範囲を拡大するには変位量2θを上限の180度近傍にまで大とする必要があるが,限界値に対して余裕が無く,また回転子間の磁気結合力が大になる等,制御性に懸念があった。   However, in the latter structure, if the angle between the two rotors is 2θ in terms of electrical angle, the amplitude of the synthesized induced voltage is proportional to Cosθ, and 2θ is 120 degrees and the induced voltage is 0.5. Even if it is increased up to 150 degrees, it can only be reduced to about 0.26 times. In order to further increase the rotational speed range by reducing the induced voltage, it is necessary to increase the displacement 2θ to near the upper limit of 180 degrees, but there is no margin for the limit value, and the magnetic coupling between the rotors There was concern about controllability, such as increased power.

米国特許3713015US Patent 3713015 特開平10−155262JP 10-155262 A 特開2002−165426JP 2002-165426 A 特開2010−154699JP 2010-154699 A

したがって,本発明が解決しようとする課題は,一部回転子の変位による誘起電圧制御の回転電機装置に於いて,回転子間の磁気結合力が小の範囲で十分な誘起電圧の減少を可能にして容易に広い回転速度範囲を可能とする誘起電圧制御方法,弱め界磁方式の回転電機システムを提供する事である。   Therefore, the problem to be solved by the present invention is that the induced voltage can be sufficiently reduced in a range where the magnetic coupling force between the rotors is small in the rotating electrical machine apparatus in which the induced voltage is controlled by the displacement of the rotor. The present invention is to provide an induced voltage control method and a field weakening type rotating electrical machine system that can easily achieve a wide rotational speed range.

請求項1の発明は,ハウジングと,一以上の電機子コイルが周方向に配置された電機子と,周方向に隣接する磁性体突極が永久磁石により互いに異極に磁化された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転軸と共に回転可能に構成された回転電機装置であって,回転子は磁極数の等しい第一回転子,第二回転子,第三回転子がこの順に軸方向に並ぶと共に二つの回転子が他に対して周方向に変位可能に構成され,更に回転子位置制御手段を有し,第一回転子,第二回転子,第三回転子の同極磁極が軸方向に並ぶ位置を基準位置とし,回転速度が所定の値より大の時に回転子位置制御手段は第二回転子に対して第一回転子,第三回転子を前記基準位置から互いに逆の周方向に相対変位させるそれぞれの変位量を電気角にしてゼロから180度迄の範囲内で大にさせて誘起電圧を減少させ,回転速度が所定の値より小の時に回転子位置制御手段は前記変位量を小にさせて誘起電圧を増大させ,回転力が最適に制御される事を特徴とする。   The invention of claim 1 includes a housing, an armature in which one or more armature coils are arranged in the circumferential direction, a rotor in which magnetic salient poles adjacent in the circumferential direction are magnetized to different polarities by a permanent magnet, The rotor is a rotary electric machine device configured to be opposed to the armature in the radial direction through a minute gap and configured to be rotatable together with the rotating shaft, wherein the rotor is a first rotor having the same number of magnetic poles, The two rotors and the third rotor are arranged in this order in the axial direction, the two rotors are configured to be displaceable in the circumferential direction with respect to others, and further have rotor position control means. The reference position is the position where the same-pole magnetic poles of the two rotors and the third rotor are aligned in the axial direction, and the rotor position control means controls the first rotor with respect to the second rotor when the rotational speed is greater than a predetermined value. , The respective displacements for relatively displacing the third rotor from the reference position in opposite circumferential directions The electrical angle is increased within a range from zero to 180 degrees to reduce the induced voltage, and when the rotational speed is lower than a predetermined value, the rotor position control means reduces the displacement to reduce the induced voltage. And the rotational force is optimally controlled.

本発明は電機子と回転子とが径方向に対向する回転電機装置に於いて,回転子は磁極数が等しい第一回転子,第二回転子,第三回転子で構成し,二つの回転子を周方向に変位可能に構成し,各回転子の同極が軸方向に並ぶ基準位置から第二回転子に対して第一回転子,第三回転子を互いに逆の周方向に相対変位させるそれぞれの変位量を制御して誘起電圧(モータに於いては逆起電圧,逆起電力,発電機に於いては発電電圧とも称する)を制御する回転電機システムである。第一回転子,第三回転子の第二回転子に対する相対的変位量が制御されるのであって,具体化された構成では第一回転子,第三回転子が第二回転子に対して変位させられる,或いは第一回転子,第二回転子が第三回転子に対して変位させられる等の構成とされる。   The present invention relates to a rotating electrical machine apparatus in which an armature and a rotor face each other in the radial direction. The rotor is composed of a first rotor, a second rotor, and a third rotor having the same number of magnetic poles, and two rotations. The rotor is configured to be displaceable in the circumferential direction, and the first rotor and third rotor are displaced relative to each other in the opposite circumferential direction with respect to the second rotor from the reference position where the same polarity of each rotor is aligned in the axial direction. This is a rotating electrical machine system that controls the induced voltage (back electromotive force, counter electromotive force in a motor, and also generated power in a generator) by controlling the amount of displacement. The relative displacement of the first rotor and the third rotor with respect to the second rotor is controlled, and in the embodied configuration, the first rotor and the third rotor are relative to the second rotor. The first rotor and the second rotor are displaced with respect to the third rotor.

全く同じ磁極構成の回転子の組み合わせの場合,軸方向の長さが等しい二つの回転子の一方を他方に対して変位させる従来構造では,二つの回転子間の変位量を電気角で2θとすると,電機子コイルに現れる誘起電圧はCosθに比例する。本発明構成に於いて,第一回転子,第三回転子の軸方向長さがそれぞれ第二回転子の軸方向長さの半分である場合,第一,第二回転子間,第二,第三回転子間の相対変位量を2θとすると誘起電圧はCosθの自乗に比例する。   In the case of a combination of rotors having exactly the same magnetic pole configuration, in a conventional structure in which one of two rotors having the same axial length is displaced with respect to the other, the amount of displacement between the two rotors is 2θ in electrical angle. Then, the induced voltage appearing in the armature coil is proportional to Cos θ. In the configuration of the present invention, when the axial lengths of the first rotor and the third rotor are each half of the axial length of the second rotor, the first rotor, the second rotor, the second rotor, If the relative displacement between the third rotors is 2θ, the induced voltage is proportional to the square of Cos θ.

従来構造で変位量2θはゼロから180度までであるが,本発明で第一回転子,第二回転子,第三回転子それぞれの軸方向長さの比を1:2:1とする標準構成で第一回転子,第二回転子間及び第二回転子,第三回転子間の周方向間隔範囲2θはそれぞれ0から180度まで,第一,第三回転子間の周方向間隔はゼロから360度までである。第一,第二,第三回転子それぞれの軸方向長さを変える事で上記の周方向間隔範囲は変わる。誘起電圧ピークが最大になる点からほぼゼロになる条件をそれぞれの設計仕様毎に確認し,回転子間の周方向間隔範囲を定める。   In the conventional structure, the displacement 2θ is from zero to 180 degrees. In the present invention, the standard ratio of the axial lengths of the first rotor, the second rotor, and the third rotor is 1: 2: 1. In the configuration, the circumferential spacing range 2θ between the first rotor and the second rotor and between the second rotor and the third rotor is 0 to 180 degrees, respectively, and the circumferential spacing between the first and third rotors is From zero to 360 degrees. By changing the axial length of each of the first, second and third rotors, the circumferential interval range is changed. Check the conditions for almost zero from the point where the induced voltage peak becomes maximum for each design specification, and determine the circumferential interval range between the rotors.

高速回転では第一回転子,第二回転子間の周方向間隔,第二回転子,第三回転子間の周方向間隔を大として誘起電圧を減少させ,電源電圧と誘起電圧間に差を確保して更に高速回転でも駆動電流を供給する余裕が確保される。低速回転では前記周方向間隔を小として誘起電圧を大とし,発生するトルクが大とされ,回転力が最適化される。軸方向に隣接する回転子間の周方向間隔2θが小さい領域,すなわち隣接回転子間の磁気結合力が小さな領域で大きな誘起電圧抑圧比が得られ,回転力の最適化が容易である。   In high-speed rotation, the induced voltage is reduced by increasing the circumferential distance between the first and second rotors and the circumferential distance between the second and third rotors, and the difference between the power supply voltage and the induced voltage is reduced. This ensures a margin for supplying the drive current even at higher speeds. In low-speed rotation, the circumferential interval is reduced, the induced voltage is increased, the generated torque is increased, and the rotational force is optimized. A large induced voltage suppression ratio can be obtained in a region where the circumferential interval 2θ between adjacent rotors in the axial direction is small, that is, a region where the magnetic coupling force between adjacent rotors is small, and the optimization of the rotational force is easy.

回転子位置制御手段には,種々の方法が利用可能である。例えば,回転軸方向の変位を周方向変位に変える斜交溝を用いた構成,遊星ギア機構,油圧制御機構,クラッチ機構等があり,二つの回転子の周方向変位をそれぞれ独立に或いは更に第一回転子,第二回転子,第三回転子間に結合機構を用いて同時に変位制御をする事が可能である。第一回転子,第二回転子間及び第二回転子,第三回転子間の周方向間隔は等しく設定,或いは適切な変位量比として誘起電圧対変位量の特性を望ましい方向に調整出来る。   Various methods can be used for the rotor position control means. For example, there are configurations using oblique grooves that change the displacement in the rotation axis direction to the circumferential displacement, a planetary gear mechanism, a hydraulic control mechanism, a clutch mechanism, etc., and the circumferential displacement of the two rotors can be set independently or further. It is possible to control displacement simultaneously using a coupling mechanism between the first rotor, the second rotor, and the third rotor. The circumferential intervals between the first rotor and the second rotor and between the second rotor and the third rotor can be set equal, or the characteristics of the induced voltage versus the displacement can be adjusted in a desired direction as an appropriate displacement amount ratio.

請求項2の発明は,請求項1記載の回転電機システムに於いて,第二回転子に対する第一回転子,第三回転子それぞれの変位量は等しく構成され,電機子コイルと第二回転子との相対位置関係を基準に駆動電流の極性を切替て回転子が回転駆動される事を特徴とする。第二回転子磁極は回転子全体の合成磁極と同じ位置にあり,回転子を回転駆動するには電機子の電機コイルと第二回転子磁極との相対位置関係を基準に駆動電流極性を切り替える。   According to a second aspect of the present invention, in the rotating electrical machine system according to the first aspect, the displacement amounts of the first rotor and the third rotor relative to the second rotor are configured to be equal, and the armature coil and the second rotor The rotor is driven to rotate by switching the polarity of the drive current on the basis of the relative positional relationship between the rotor and the rotor. The second rotor magnetic pole is at the same position as the combined magnetic pole of the entire rotor, and the drive current polarity is switched based on the relative positional relationship between the armature coil and the second rotor magnetic pole to rotate the rotor. .

請求項3の発明は,請求項1記載の回転電機システムに於いて,第一回転子,第三回転子の何れか一方が第二回転子に対して周方向に変位圧力を受けると,他方は第二回転子に対して逆の周方向に変位圧力を受けるよう第一回転子と第二回転子と第三回転子とが機械的に結合される回転子結合機構を有する事を特徴とする。第一,第二,第三回転子を相互に結合する事によって相対的に変位可能に構成された二つの回転子の一方が変位させられると他方も変位させられ,回転子位置制御手段の構成がシンプルに出来る。   According to a third aspect of the present invention, in the rotating electrical machine system according to the first aspect, when one of the first rotor and the third rotor receives displacement pressure in the circumferential direction with respect to the second rotor, Has a rotor coupling mechanism in which the first rotor, the second rotor, and the third rotor are mechanically coupled so as to receive a displacement pressure in the opposite circumferential direction with respect to the second rotor. To do. The configuration of the rotor position control means when one of the two rotors configured to be relatively displaceable by coupling the first, second and third rotors to each other is displaced, the other is also displaced. Can be made simple.

請求項4の発明は,請求項3記載の回転電機システムに於いて,回転子結合機構は回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう構成されている事を特徴とする。回転子結合機構の一つの構成である。これにより第一回転子,第三回転子の何れか一方が第二回転子に対して周方向に相対的に変位させられると,他方は第二回転子に対して逆の周方向に変位させられて制御が容易になる。   According to a fourth aspect of the present invention, in the rotating electrical machine system according to the third aspect of the invention, the rotor coupling mechanism circulates around the rotating shaft and the side gear fixed to the first rotor and the third rotor, and the second rotor. The coupling gear includes one or more gears arranged rotatably, and the first and third rotors are displaced in the opposite circumferential directions with respect to the second rotor. The side gears of the first and third rotors are configured to mesh with each other. This is one configuration of the rotor coupling mechanism. As a result, when either the first rotor or the third rotor is displaced relative to the second rotor in the circumferential direction, the other is displaced in the opposite circumferential direction relative to the second rotor. Control becomes easier.

請求項5の発明は,請求項1記載の回転電機システムに於いて,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう構成され,回転軸に固定された第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位される事を特徴とする。第一回転子,第三回転子の基準位置からの変位量を小さく構成できる。
According to a fifth aspect of the present invention, in the rotating electrical machine system according to the first aspect of the present invention , the rotary gear is disposed around the rotary shaft and is fixed to the first rotor, the side gear fixed to the third rotor, and the second rotor. A coupling gear comprising one or more gears, wherein the first rotor and the first rotor are coupled to the coupling gear so that the first rotor and the third rotor are displaced in opposite circumferential directions with respect to the second rotor. The side gears of the three rotors are configured to mesh with each other, and the first rotor and the third rotor are displaced in opposite circumferential directions with respect to the second rotor fixed to the rotating shaft. The amount of displacement from the reference position of the first rotor and the third rotor can be reduced.

請求項6の発明は,請求項1記載の回転電機システムに於いて,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう構成され,回転軸に固定された第三回転子に対して第一回転子,第二回転子が同じ周方向に変位される事を特徴とする。第一回転子の変位量が大になるが,回転駆動力を変位に利用する事が容易である。
According to a sixth aspect of the present invention, in the rotating electrical machine system according to the first aspect of the present invention , the rotary gear is disposed around the rotary shaft and is fixed to the first rotor, the side gear fixed to the third rotor, and the second rotor. A coupling gear comprising one or more gears, wherein the first rotor and the first rotor are coupled to the coupling gear so that the first rotor and the third rotor are displaced in opposite circumferential directions with respect to the second rotor. The side gears of the three rotors are configured to mesh with each other, and the first rotor and the second rotor are displaced in the same circumferential direction with respect to the third rotor fixed to the rotating shaft. Although the amount of displacement of the first rotor is large, it is easy to use the rotational driving force for displacement.

請求項7の発明は,請求項1記載の回転電機システムに於いて,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう構成され,回転軸に固定された第三回転子に対して主として用いられる常用の回転方向に先行する領域で第一回転子,第二回転子が変位制御される事を特徴とする。主として用いられる常用の回転方向に第一回転子,第二回転子が第三回転子に対して変位される構成であって,変位に際して回転駆動力,回生制動力を利用する事が容易となる。
A seventh aspect of the invention is the rotating electrical machine system according to the first aspect of the invention , wherein the rotary gear is disposed around the rotary shaft and is fixed to the first rotor, the side gear fixed to the third rotor, and the second rotor. A coupling gear comprising one or more gears, wherein the first rotor and the first rotor are coupled to the coupling gear so that the first rotor and the third rotor are displaced in opposite circumferential directions with respect to the second rotor. The side gears of the three rotors are configured to mesh with each other , and the first rotor and the second rotor are controlled in displacement in the region preceding the normal rotation direction that is mainly used for the third rotor fixed to the rotating shaft. It is characterized by that. The first rotor and the second rotor are displaced with respect to the third rotor in the normal rotation direction that is mainly used, and it becomes easy to use the rotational driving force and the regenerative braking force for the displacement. .

請求項8の発明は,請求項1記載の回転電機システムに於いて,回転子位置制御手段は,回転子結合機構,スライドスリーブ,斜交溝スライドピン,直線溝スライドピン,アクチュエータを有し,回転子結合機構は,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう配置され,スライドスリーブは,外周面に回転軸に対して斜めの斜交溝,内周面に回転軸と平行の直線溝を有して回転軸外周に配置された直線溝スライドピンが前記直線溝をスライドするよう配置され,斜交溝スライドピンは,スライドスリーブ外周面の斜交溝内をスライドするよう配置されると共に斜交溝スライドピンの他端が第三回転子に固定され,ハウジング側に配置されたアクチュエータが回転軸と共に回転するスライドスリーブを回転軸と平行の方向に変位させて第三回転子が回転軸に対して周方向に変位され,第二回転子に対する第一回転子,第三回転子それぞれの相対的変位量が変更される事を特徴とする。
The invention according to claim 8 is the rotating electrical machine system according to claim 1, wherein the rotor position control means includes a rotor coupling mechanism, a slide sleeve, an oblique groove slide pin, a linear groove slide pin, and an actuator. The rotor coupling mechanism has a coupling gear that includes one or more gears that rotate around the rotation shaft and are fixed to the first rotor, the third rotor, and the second rotor. The first and third rotors are arranged so that the side gears of the first and third rotors mesh with each other so that the first and third rotors are displaced in opposite circumferential directions with respect to the second rotor. The sleeve has an oblique groove oblique to the rotation axis on the outer peripheral surface and a linear groove parallel to the rotation shaft on the inner peripheral surface, and a linear groove slide pin arranged on the outer periphery of the rotation shaft slides on the linear groove. Arranged and oblique The slide pin is arranged to slide in the oblique groove on the outer peripheral surface of the slide sleeve, the other end of the oblique groove slide pin is fixed to the third rotor, and the actuator arranged on the housing side rotates together with the rotation shaft. The sliding sleeve is displaced in the direction parallel to the rotation axis, and the third rotor is displaced in the circumferential direction with respect to the rotation axis, and the relative displacement of each of the first and third rotors with respect to the second rotor It is characterized by being changed.

回転軸と平行な力を作用させて周方向に回転子を変位させる事が出来る。   The rotor can be displaced in the circumferential direction by applying a force parallel to the rotation axis.

請求項9の発明は,請求項1記載の回転電機システムに於いて,回転子位置制御手段は,回転子結合機構,第一遊星ギア機構,第二遊星ギア機構,アクチュエータを有し,回転子結合機構は,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう配置され,第一遊星ギア機構は,第二回転子,第三回転子の何れかに固定されたサンギア,ハウジングに固定されたリングギア,サンギア及びリングギアとに噛み合う遊星ギア,遊星ギア支持軸とを有して遊星ギア支持軸は外部への出力軸に固定され,第二遊星ギア機構は,第一回転子に固定されたサンギア,アクチュエータにより回動可能に配置されたリングギア,サンギア及びリングギアとに噛み合う遊星ギア,遊星ギア支持軸とを有して遊星ギア支持軸は前記出力軸に固定され,ハウジング側に配置されたアクチュエータが第二遊星ギア機構内のリングギアを周方向に変位させ第一回転子が回転軸に対して周方向に変位され,第二回転子に対する第一回転子,第三回転子それぞれの相対的変位量が変更される事を特徴とする。
The ninth aspect of the present invention is the rotating electrical machine system according to the first aspect, wherein the rotor position control means includes a rotor coupling mechanism, a first planetary gear mechanism, a second planetary gear mechanism, and an actuator. The coupling mechanism has a coupling gear composed of one or more gears arranged around the rotating shaft and fixed to the first rotor, the third rotor, and rotatably arranged on the second rotor. The first and third rotors are arranged so that the side gears of the first and third rotors mesh with each other so that the first and third rotors are displaced in opposite circumferential directions with respect to the two rotors. The gear mechanism includes a sun gear fixed to one of the second rotor and the third rotor, a ring gear fixed to the housing, a planetary gear meshing with the sun gear and the ring gear, and a planetary gear support shaft. Gear support shaft to the outside The second planetary gear mechanism fixed to the force shaft includes a sun gear fixed to the first rotor, a ring gear rotatably disposed by an actuator, a planetary gear meshing with the sun gear and the ring gear, a planetary gear support shaft, The planetary gear support shaft is fixed to the output shaft, and an actuator arranged on the housing side displaces the ring gear in the second planetary gear mechanism in the circumferential direction so that the first rotor rotates around the rotation shaft. The relative displacement of each of the first and third rotors relative to the second rotor is changed.

回転子位置制御手段に減速機構である遊星ギア機構を利用し,ハウジング側に固定されたアクチュエータで第二遊星ギア機構内のリングギアを回転させる事で第一回転子,第二回転子間の周方向間隔,第二回転子,第三回転子間の周方向間隔が変更される。   A planetary gear mechanism, which is a speed reduction mechanism, is used as the rotor position control means, and the ring gear in the second planetary gear mechanism is rotated by an actuator fixed on the housing side, so that the first rotor and the second rotor are connected. The circumferential interval and the circumferential interval between the second and third rotors are changed.

請求項10の発明は,請求項1記載の回転電機システムに於いて,第三回転子は回転軸に固定され,第一回転子及び第二回転子が第三回転子に対して周方向に変位される構成であって,回転子位置制御手段は,回転子結合機構,クラッチ機構を有し,回転子結合機構は,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう配置され,クラッチ機構は,第一回転子,第二回転子の何れかを回転軸に把持及び解放出来る構成とし,第三回転子に対して第一回転子及び第二回転子を変位させる際にクラッチ機構により第一回転子及び第二回転子が回転軸への把持から解放され,回転駆動力或いは回生制動力を利用して第一回転子及び第二回転子が変位させられた後にクラッチ機構により第一回転子及び第二回転子が回転軸に把持される事を特徴とする。
According to a tenth aspect of the present invention , in the rotating electrical machine system according to the first aspect, the third rotor is fixed to the rotating shaft, and the first rotor and the second rotor are arranged circumferentially with respect to the third rotor. The rotor position control means has a rotor coupling mechanism and a clutch mechanism, and the rotor coupling mechanism rotates around the rotation shaft and is fixed to the first rotor and the third rotor. Side gear, and a coupling gear comprising one or more gears rotatably arranged on the second rotor. The first rotor and the third rotor are opposite to each other in the circumferential direction with respect to the second rotor. Arranged so that the side gears of the first and third rotors mesh with the coupling gear so as to displace, and the clutch mechanism can hold and release either the first rotor or the second rotor on the rotating shaft. And the first and second rotors for the third rotor The first rotor and the second rotor are released from the grip on the rotating shaft by the clutch mechanism, and the first rotor and the second rotor are displaced using the rotational driving force or the regenerative braking force. After that, the first rotor and the second rotor are gripped by the rotation shaft by the clutch mechanism.

回転子相互は回転子結合機構により機械的に結合されているので第一回転子,第二回転子の何れかが回転軸に把持されれば3つの回転子全てが回転軸と共に回転する事になる。変位可能に構成された第一回転子,第二回転子の一方が回転軸から解放されている状態で回転駆動力或いは回生制動力を利用して第一回転子,第二回転子が第三回転子に対して変位させられる。   Since the rotors are mechanically coupled to each other by the rotor coupling mechanism, if either the first rotor or the second rotor is gripped by the rotation shaft, all three rotors rotate together with the rotation shaft. Become. With one of the first and second rotors configured to be displaceable being released from the rotating shaft, the first and second rotors are third using the rotational driving force or regenerative braking force. Displaced relative to the rotor.

請求項11の発明は,請求項1記載の回転電機システムに於いて,第一回転子,第二回転子,第三回転子の何れかの回転子或いは回転子群が他に対して変位される際に電機子から当該回転子或いは回転子群への回転駆動力が大となる位相で電機子コイルに駆動電流が供給され,回転駆動力が当該回転子或いは回転子群の変位に利用される事を特徴とする。通常時の回転駆動は電機子コイルと第二回転子との相対位置を基準に駆動電流の極性が切り替えられる。変位量が大の場合にも変位させられる回転子群へ十分に大きい回転駆動力が作用するよう駆動電流の位相を進め或いは遅らせる。
According to an eleventh aspect of the present invention , in the rotating electrical machine system according to the first aspect, any one of the first rotor, the second rotor, and the third rotor or the rotor group is displaced with respect to the other. In this case, a driving current is supplied to the armature coil at a phase where the rotational driving force from the armature to the rotor or the rotor group becomes large, and the rotational driving force is used for the displacement of the rotor or the rotor group. It is characterized by that. In normal rotation drive, the polarity of the drive current is switched based on the relative position of the armature coil and the second rotor. The phase of the drive current is advanced or delayed so that a sufficiently large rotational driving force acts on the rotor group that is displaced even when the displacement amount is large.

請求項12の発明は,請求項1記載の回転電機システムに於いて,第三回転子が回転軸に固定され,第三回転子に対して第一回転子,第二回転子が同じ周方向に変位される構成であって,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう配置され,第一回転子への回転駆動力が最大になる位相で電機子コイルに駆動電流が供給され,回転駆動力が第一回転子,第二回転子の変位に利用される事を特徴とする。第三回転子が回転軸に固定され,各回転子が回転子結合機構により結合されている構成では,第一回転子,第二回転子に加えられる回転駆動力はそれぞれ1:0.5の比で変位に寄与する作用力となる。
The invention of claim 12 is the rotating electrical machine system according to claim 1, wherein the third rotor is fixed to the rotating shaft, and the first rotor and the second rotor are in the same circumferential direction with respect to the third rotor. A coupling gear comprising one or more gears arranged around the rotation axis and fixed to the first rotor, the third rotor, and rotatably arranged on the second rotor Arranged so that the side gears of the first and third rotors mesh with the coupling gear so that the first and third rotors are displaced in opposite circumferential directions with respect to the second rotor. The driving current is supplied to the armature coil at a phase where the rotational driving force to the first rotor is maximized, and the rotational driving force is used for the displacement of the first rotor and the second rotor. To do. In the configuration in which the third rotor is fixed to the rotating shaft and each rotor is coupled by the rotor coupling mechanism, the rotational driving force applied to the first rotor and the second rotor is 1: 0.5, respectively. It becomes the acting force that contributes to displacement by the ratio.

請求項13の発明は,一以上の電機子コイルが周方向に配置された電機子と,周方向に隣接する磁性体突極が永久磁石により互いに異極に磁化された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転可能に構成された回転電機装置の電機子コイルに誘起される誘起電圧制御方法であって,回転子を磁極数の等しい第一回転子,第二回転子,第三回転子の順で軸方向に並べると共に第一回転子,第三回転子を第二回転子に対して周方向に変位可能に構成し,回転軸を周回し且つ第一回転子,第三回転子に固定したサイドギア,第二回転子に回転可能に配置した1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう構成し,第一回転子,第二回転子,第三回転子の同極磁極が軸方向に並ぶ位置を基準位置とし,誘起電圧を減少させる時には第二回転子に対して第一回転子,第三回転子を前記基準位置から互いに逆の周方向に変位させる変位量を大にさせ,誘起電圧を増大させる時には前記変位量を小にさせる事を特徴とする誘起電圧制御方法である。
The invention of claim 13 has an armature in which one or more armature coils are arranged in the circumferential direction, and a rotor in which magnetic salient poles adjacent in the circumferential direction are magnetized to different polarities by a permanent magnet. The rotor is an induced voltage control method that is induced in an armature coil of a rotating electrical machine device that is configured to face the armature in a radial direction through a minute gap and is rotatable, and the rotor has the same number of magnetic poles. first rotor, second rotor, the first rotor with arranged axially in the order of the third rotor, displaceably constructed in the circumferential direction of the third rotor relative to the second rotor, the rotating shaft And a first gear, a side gear fixed to the third rotor, and a coupling gear composed of one or more gears rotatably arranged on the second rotor. The first and second coupling gears are arranged so that the rotor and third rotor are displaced in opposite circumferential directions. Trochanter, configured to the third rotor each side gear is engaged, the first rotor, second rotor, the position of the magnetic poles of the third rotor are aligned in the axial direction as a reference position, to reduce the induced voltage Sometimes the first rotor and the third rotor are displaced relative to the second rotor in the opposite circumferential directions from the reference position, and when the induced voltage is increased, the displacement is decreased. This is an induced voltage control method characterized by this.

第二回転子を回転軸に固定し,第一回転子,第三回転子を互いに逆の周方向に変位させる構成として,第一回転子,第三回転子と第二回転子間の変位量を大として誘起電圧を小とし,第一回転子,第三回転子と第二回転子間の変位量を小として誘起電圧を大として誘起電圧を制御する。   The amount of displacement between the first rotor, the third rotor and the second rotor is such that the second rotor is fixed to the rotating shaft and the first rotor and the third rotor are displaced in opposite circumferential directions. The induced voltage is controlled by increasing the induced voltage by setting the induced voltage to be small, the displacement between the first rotor, the third rotor and the second rotor being small.

請求項14の発明は,一以上の電機子コイルが周方向に配置された電機子と,周方向に隣接する磁性体突極が永久磁石により互いに異極に磁化された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転可能に構成された回転電機装置の電機子コイルに誘起される誘起電圧制御方法であって,回転子を磁極数の等しい第一回転子,第二回転子,第三回転子の順に軸方向に並べると共に一つを固定回転子として回転軸に固定し,他の二つを変位回転子群として固定回転子に対して周方向に変位可能に構成し,第一回転子,第三回転子の何れか一方が第二回転子に対して周方向に変位圧力を受けると,他方は第二回転子に対して逆の周方向に変位圧力を受けるよう第一回転子と第二回転子と第三回転子とを機械的に結合し,第一回転子,第二回転子,第三回転子の同極磁極が軸方向に並ぶ位置を基準位置とし,前記変位回転子群の一つの回転子を前記基準位置から固定回転子に対して周方向に変位させる変位量を大にして誘起電圧を減少させ,前記変位量を小にして誘起電圧を増大させる事を特徴とする誘起電圧制御方法である。
The invention according to claim 14 includes an armature in which one or more armature coils are arranged in the circumferential direction, and a rotor in which magnetic salient poles adjacent in the circumferential direction are magnetized to different polarities by a permanent magnet. The rotor is an induced voltage control method that is induced in an armature coil of a rotating electrical machine device that is configured to face the armature in a radial direction through a minute gap and is rotatable, and the rotor has the same number of magnetic poles. The first rotor, the second rotor, and the third rotor are arranged in the axial direction in order, and one is fixed to the rotating shaft as a fixed rotor, and the other two are arranged as a displacement rotor group with respect to the fixed rotor. It is configured to be displaceable in the circumferential direction, and when one of the first rotor and the third rotor receives displacement pressure in the circumferential direction with respect to the second rotor, the other is opposite to the second rotor. The first rotor, second rotor, and third rotor are mechanically coupled to receive displacement pressure in the circumferential direction. , The position where the same polarity magnetic poles of the first rotor, the second rotor, and the third rotor are arranged in the axial direction is set as a reference position, and one rotor of the displacement rotor group is moved from the reference position to the fixed rotor. The induced voltage control method is characterized in that the induced voltage is decreased by increasing the amount of displacement displaced in the circumferential direction, and the induced voltage is increased by decreasing the amount of displacement.

第一,第二,第三回転子を相互に結合する事によって相対的に変位可能に構成された二つの回転子の一方が変位させられると他方も変位させられ,誘起電圧制御の方法がシンプルになる。   When one of the two rotors configured to be relatively displaceable by coupling the first, second, and third rotors to each other is displaced, the other is also displaced, and the method of controlling the induced voltage is simple. become.

請求項15の発明は,一以上の電機子コイルが周方向に配置された電機子と,周方向に隣接する磁性体突極が永久磁石により互いに異極に磁化された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転可能に構成された回転電機装置の電機子コイルに誘起される誘起電圧制御方法であって,回転子を磁極数の等しい第一回転子,第二回転子,第三回転子の順に軸方向に並べて構成し,第一回転子,第二回転子を第三回転子に対して周方向の同じ方向に変位可能に構成すると共に第一回転子,第二回転子の何れかを周方向に変位させると,第二回転子,第三回転子間の変位量を第一回転子,第三回転子間の変位量の半分に保ちながら変位するよう第一回転子と第二回転子と第三回転子とを機械的に結合し,第一回転子,第二回転子,第三回転子の同極磁極が軸方向に並ぶ位置を基準位置とし,誘起電圧を減少させる時には第一回転子,第二回転子の第三回転子に対する前記基準位置からの変位量を大にさせ,誘起電圧を増大させる時には前記変位量を小にさせる事を特徴とする誘起電圧制御方法である。
The invention of claim 15 includes an armature in which one or more armature coils are arranged in the circumferential direction, and a rotor in which magnetic salient poles adjacent to each other in the circumferential direction are magnetized to different polarities by a permanent magnet. The rotor is an induced voltage control method that is induced in an armature coil of a rotating electrical machine device that is configured to face the armature in a radial direction through a minute gap and is rotatable, and the rotor has the same number of magnetic poles. The first rotor, the second rotor, and the third rotor are arranged in the axial direction in this order, and the first rotor and the second rotor can be displaced in the same circumferential direction with respect to the third rotor. When either the first rotor or the second rotor is displaced in the circumferential direction, the displacement amount between the second rotor and the third rotor is changed to the displacement amount between the first rotor and the third rotor. The first rotor, the second rotor, and the third rotor are mechanically coupled so as to be displaced while maintaining half, and the first rotation , The position where the same polarity magnetic poles of the second rotor and the third rotor are aligned in the axial direction is used as a reference position, and when the induced voltage is reduced, the reference position relative to the third rotor of the first rotor and the second rotor is The induced voltage control method is characterized in that the displacement amount is decreased when the displacement amount is increased and the induced voltage is increased.

第三回転子が回転軸に固定されるので第一,第二回転子を同じ方向に変位させる事で誘起電圧制御が可能である。回転子結合機構は例えば,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置されたカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう構成する。   Since the third rotor is fixed to the rotating shaft, the induced voltage can be controlled by displacing the first and second rotors in the same direction. The rotor coupling mechanism includes, for example, a first gear, a side gear fixed to the third rotor, a coupling gear that is rotatably disposed on the second rotor, and rotates around the rotation shaft. On the other hand, the side gears of the first rotor and the third rotor are engaged with the coupling gear so that the first rotor and the third rotor are displaced in opposite circumferential directions.

請求項16の発明は,一以上の電機子コイルが周方向に配置された電機子と,周方向に隣接する磁性体突極が永久磁石により互いに異極に磁化された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転可能に構成された回転電機装置の電機子コイルに誘起される誘起電圧制御方法であって,回転子を磁極数の等しい第一回転子,第二回転子,第三回転子の順に軸方向に並べ,第一回転子,第二回転子を第三回転子に対して周方向の同じ方向に変位可能に構成すると共に第一回転子,第二回転子の何れかを周方向に変位させると,第二回転子,第三回転子間の変位量を第一回転子,第三回転子間の変位量の半分に保ちながら変位するよう第一回転子と第二回転子と第三回転子とを機械的に結合し,第一回転子,第二回転子,第三回転子の同極磁極が軸方向に並ぶ位置を基準位置とし,誘起電圧を減少させる時には第一回転子,第二回転子の第三回転子に対する前記基準位置からの変位量が大となる方向の回転駆動力が第一回転子,第二回転子に加わるよう電機子コイルに駆動電流を流し,回転駆動力を第一回転子,第二回転子の変位に利用して前記変位量を大にさせ,誘起電圧を増大させる時には前記変位量が小となる方向の回転駆動力が第一回転子,第二回転子に加わるよう電機子コイルに駆動電流を流し,回転駆動力を第一回転子,第二回転子の変位に利用して前記変位量を小にさせる事を特徴とする誘起電圧制御方法である。
The invention of claim 16 has an armature in which one or more armature coils are arranged in the circumferential direction, and a rotor in which magnetic salient poles adjacent in the circumferential direction are magnetized to different polarities by a permanent magnet. The rotor is an induced voltage control method that is induced in an armature coil of a rotating electrical machine device that is configured to face the armature in a radial direction through a minute gap and is rotatable, and the rotor has the same number of magnetic poles. The first rotor, the second rotor, and the third rotor are arranged in the axial direction in this order, and the first rotor and the second rotor are configured to be displaceable in the same circumferential direction with respect to the third rotor. When either the first rotor or the second rotor is displaced in the circumferential direction, the displacement amount between the second rotor and the third rotor is reduced to half of the displacement amount between the first rotor and the third rotor. The first rotor, the second rotor and the third rotor are mechanically coupled so as to be displaced while maintaining the first rotor, the second rotor The reference position is the position where the same-pole magnetic poles of the rotor and third rotor are aligned in the axial direction, and when the induced voltage is reduced, the amount of displacement of the first rotor and second rotor from the reference position with respect to the third rotor The drive current is passed through the armature coil so that the rotational drive force in the direction of increasing is applied to the first and second rotors, and the rotational drive force is used for the displacement of the first and second rotors. When the displacement amount is increased and the induced voltage is increased, a drive current is supplied to the armature coil so that a rotational drive force in a direction in which the displacement amount decreases is applied to the first rotor and the second rotor. The induced voltage control method is characterized in that a force is used for displacement of the first rotor and the second rotor to reduce the amount of displacement.

質量の大きな回転子の変位に回転駆動力を利用する制御方法であって変位を迅速に完了できる。   This is a control method that uses a rotational driving force for displacement of a rotor having a large mass, and the displacement can be completed quickly.

請求項17の発明は,一以上の電機子コイルが周方向に配置された電機子と,周方向に隣接する磁性体突極が永久磁石により互いに異極に磁化された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転可能に構成された回転電機装置の回転駆動方法であって,回転子を磁極数の等しい第一回転子,第二回転子,第三回転子の順に軸方向に並べると共に二つの回転子を他に対して周方向に変位可能に構成し,第一回転子,第二回転子,第三回転子の同極磁極が軸方向に並ぶ位置を基準位置として基準位置から第一回転子,第三回転子それぞれの第二回転子に対する相対的変位量を等しく設定し,電機子コイルと第二回転子との相対位置関係を基準に駆動電流の極性を切替て回転子を回転駆動させ,回転速度が所定の値より大の時には第二回転子に対して第一回転子,第三回転子を前記基準位置から互いに逆の周方向に相対変位させるそれぞれの変位量を大にして誘起電圧を減少させて誘起電圧に対する電源電圧の余裕分を大にし,回転速度が所定の値より小の時には前記相対的変位量を小にして誘起電圧を増大させて発生させる回転駆動力を大にさせ,回転力を最適に制御する事を特徴とする回転駆動方法である。 The invention of claim 17 has an armature in which one or more armature coils are arranged in the circumferential direction, and a rotor in which magnetic salient poles adjacent in the circumferential direction are magnetized to different polarities by a permanent magnet. The rotor is a rotational driving method of a rotating electrical machine device that is configured to face the armature in a radial direction through a minute gap and is rotatable, and the rotor is a first rotor and a second rotation having the same number of magnetic poles. The rotor and third rotor are arranged in the axial direction in this order, and the two rotors are configured to be displaceable in the circumferential direction with respect to others. The same polarity magnetic poles of the first rotor, the second rotor, and the third rotor Relative positional relationship between the armature coil and the second rotor by setting the relative displacement of the first and third rotors relative to the second rotor from the reference position with the axially aligned position as the reference position. Rotating the rotor by switching the polarity of the drive current with reference to When larger, the induced voltage is decreased by increasing the respective displacement amounts of the first rotor and the third rotor relative to the second rotor in the circumferential direction opposite to each other from the reference position, thereby reducing the induced voltage. When the rotational speed is lower than a predetermined value, the rotational driving force generated by increasing the induced voltage by increasing the induced voltage is increased when the rotational speed is lower than the predetermined value. It is a rotational drive method characterized by controlling.

回転子を回転駆動するには回転子全体の合成磁極と同じ位置にある第二回転子の磁極と電機コイルとが正対した時を基準に駆動電流極性を切り替える。高速回転では,第一回転子,第二回転子間の周方向間隔,第二回転子,第三回転子間の周方向間隔を大として誘起電圧を減少させ,電源電圧と誘起電圧間に差を確保して更に高速回転でも駆動電流を供給する余裕を確保する。低速回転では前記周方向間隔を小として誘起電圧を大とし,発生するトルクを大とする。   In order to rotationally drive the rotor, the drive current polarity is switched on the basis of the time when the magnetic pole of the second rotor and the electric coil that are located at the same position as the combined magnetic pole of the entire rotor face each other. In high-speed rotation, the induced voltage is reduced by increasing the circumferential interval between the first and second rotors and the circumferential interval between the second and third rotors, and the difference between the power supply voltage and the induced voltage is reduced. To secure a margin for supplying the drive current even at higher speeds. In low speed rotation, the circumferential interval is small, the induced voltage is large, and the generated torque is large.

回転電機装置は電機子コイルへの電流を入力として回転力を出力とすれば電動機であり,回転力を入力として電機子コイルから電流を出力すれば発電機である。電動機或いは発電機に於いて最適の磁極構成は存在するが,可逆的であり,上記の請求項に規定する回転電機システム及び誘起電圧制御方法は電動機,発電機の何れにも適用される。   A rotating electrical machine device is an electric motor if a current to the armature coil is input and a rotational force is output, and a rotating electric machine is a generator if a current is output from the armature coil by receiving the rotational force. There is an optimum magnetic pole configuration in an electric motor or a generator, but it is reversible, and the rotating electrical machine system and the induced voltage control method defined in the above claims are applied to both the electric motor and the generator.

電機子に対向する回転子を第一回転子,第二回転子,第三回転子で構成し,二つの回転子を他に対して周方向に変位させて誘起電圧を制御する回転電機システムであって回転子間の磁気結合力が小の範囲内で大きな誘起電圧抑圧が可能である。駆動電流の進角制御による弱め界磁技術が現在専ら用いられているが,低速及び高速回転領域では一種の電流励磁併用であってエネルギー効率を大幅に低下させている。本発明によれば,全回転速度範囲で磁石励磁の高いエネルギー効率が維持される。   This is a rotating electrical machine system in which the rotor facing the armature is composed of a first rotor, a second rotor, and a third rotor, and the two rotors are displaced in the circumferential direction relative to the other to control the induced voltage. Thus, large induced voltage suppression is possible within a range where the magnetic coupling force between the rotors is small. The field-weakening technology based on the drive current advance angle control is currently used exclusively, but in the low-speed and high-speed rotation regions, it is a kind of current excitation and greatly reduces the energy efficiency. According to the present invention, high energy efficiency of magnet excitation is maintained over the entire rotation speed range.

第一の実施例による回転電機装置の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine apparatus by a 1st Example. 図1に示された回転電機装置のA−A’に沿う断面図を示す。Sectional drawing which follows A-A 'of the rotary electric machine apparatus shown by FIG. 1 is shown. 図1に示された回転電機装置の第三回転子を第二回転子側から見た平面図である。It is the top view which looked at the 3rd rotor of the rotary electric machine apparatus shown by FIG. 1 from the 2nd rotor side. 図1に示された回転電機装置の第三回転子を周方向に変位させる部材の斜視図を示す。同図(a)は斜交溝スライドピン及びその支持部材を,同図(b)はスライドスリーブを,同図(c)は直線溝スライドピンと回転軸とをそれぞれ示す。The perspective view of the member which displaces the 3rd rotor of the rotary electric machine apparatus shown by FIG. 1 to the circumferential direction is shown. 4A shows the oblique groove slide pin and its supporting member, FIG. 2B shows the slide sleeve, and FIG. 3C shows the linear groove slide pin and the rotating shaft. 図1に示された回転電機装置に於いて,第二回転子に対して第一,第三回転子の変位方向をモデル的に示す図である。同図(a)は斜視図を,同図(b)は平面図をそれぞれ示す。In the rotary electric machine apparatus shown in FIG. 1, it is a figure which shows the displacement direction of a 1st, 3rd rotor with respect to a 2nd rotor in model. The figure (a) shows a perspective view, and the figure (b) shows a top view, respectively. 回転子を二分して一方を他方に対して変位させる従来構造の回転電機装置に於いて,回転子間の変位方向をモデル的に示す図である。同図(a)は斜視図を,同図(b)は平面図をそれぞれ示す。FIG. 3 is a diagram schematically showing a displacement direction between rotors in a rotating electrical machine apparatus having a conventional structure in which a rotor is divided into two parts and one of them is displaced with respect to the other. The figure (a) shows a perspective view, and the figure (b) shows a top view, respectively. 図1に示された本発明による回転電機装置,図6に示された従来構造の回転電機装置に於いて,回転子変位量と誘起電圧振幅との関係を示す。In the rotating electrical machine apparatus according to the present invention shown in FIG. 1 and the conventional rotating electrical machine apparatus shown in FIG. 6, the relationship between the rotor displacement and the induced voltage amplitude is shown. 回転子変位と磁極の関係をモデル的に示す図である。It is a figure which shows the relationship between a rotor displacement and a magnetic pole in model. 誘起電圧制御を行う回転電機システムのブロック図である。It is a block diagram of the rotary electric machine system which performs induced voltage control. 駆動電流を進角させた場合に回転子が受ける回転駆動力の変化の様子を示す。The state of change in the rotational driving force received by the rotor when the drive current is advanced is shown. 第二の実施例による回転電装置の縦断面図である。It is a longitudinal cross-sectional view of the rotating electrical apparatus by a 2nd Example. 図11に示された回転電機装置のB−B’に沿う断面図を示す。Sectional drawing which follows B-B 'of the rotary electric machine apparatus shown by FIG. 11 is shown. 図11に示された回転電機装置の第一回転子を第二回転子側から見た平面図である。It is the top view which looked at the 1st rotor of the rotary electric machine apparatus shown by FIG. 11 from the 2nd rotor side. 回転子結合機構を説明する為の斜視図である。It is a perspective view for demonstrating a rotor coupling | bonding mechanism. 図11に示された回転電機装置のC−C’に沿う断面図を示す。Sectional drawing which follows C-C 'of the rotary electric machine apparatus shown by FIG. 11 is shown. 第三の実施例による回転電機装置の縦断面図である。It is a longitudinal cross-sectional view of the rotary electric machine apparatus by a 3rd Example. 図16に示された回転電機装置のD−D’に沿う断面図を示す。FIG. 17 is a cross-sectional view along D-D ′ of the rotating electrical machine apparatus shown in FIG. 16. 図16に示された回転電機装置の第一回転子を第二回転子側から見た平面図である。It is the top view which looked at the 1st rotor of the rotary electric machine apparatus shown by FIG. 16 from the 2nd rotor side. 図16に示された回転電機装置の回転子位置制御手段を第一回転子側から見た平面図である。It is the top view which looked at the rotor position control means of the rotary electric machine apparatus shown by FIG. 16 from the 1st rotor side. 図16に示された回転電機装置の拡大された回転子位置制御手段を示し,クラッチ板を介して回転力が伝達されている状態を示す。FIG. 16 shows an enlarged rotor position control means of the rotating electrical machine apparatus shown in FIG. 16 and shows a state in which a rotational force is transmitted via a clutch plate. 図16に示された回転電機装置の拡大された回転子位置制御手段を示し,クラッチ板を介して回転力が伝達されていない状態を示す。FIG. 16 shows an enlarged rotor position control means of the rotating electrical machine apparatus shown in FIG. 16, and shows a state in which no rotational force is transmitted through the clutch plate.

以下に本発明による回転電機システムについて,その実施例及び原理作用等を図面を参照しながら説明する。   In the following, a rotating electrical machine system according to the present invention will be described with reference to the drawings, with regard to embodiments, principles and actions.

本発明による回転電機装置の実施例1が図1から図8を用いて説明される。実施例1は,磁石励磁の回転子が第一回転子,第二回転子,第三回転子に分割されて電機子に対向し,第二回転子に対して第一,第三回転子が互いに逆方向の周方向に変位され,電機子コイルに誘起される電圧が制御される磁石励磁の回転電機装置である。   A first embodiment of a rotating electrical machine apparatus according to the present invention will be described with reference to FIGS. In the first embodiment, the magnet-excited rotor is divided into a first rotor, a second rotor, and a third rotor to face the armature, and the first and third rotors are opposed to the second rotor. This is a magnet-excited rotating electrical machine apparatus in which the voltages induced in the armature coils are controlled by being displaced in opposite circumferential directions.

図1はインナーロータ構造の回転電機装置に本発明を適用した実施例の縦断面図を示し,回転軸11がベアリング13を介してハウジング12に回転可能に支持されている。第二回転子15は回転軸11に固定され,第一回転子14,第三回転子16はベアリングを介して回転軸11に変位可能に保持されている。第一回転子14の軸長,第二回転子15の軸長,第三回転子16の軸長は比率にして1:2:1に設定されている。番号19は電機子コイル,番号17は電機子コア,番号18は非磁性絶縁素材で構成されたスペーサを示す。   FIG. 1 is a longitudinal sectional view of an embodiment in which the present invention is applied to a rotating electrical machine apparatus having an inner rotor structure. A rotating shaft 11 is rotatably supported by a housing 12 via a bearing 13. The second rotor 15 is fixed to the rotating shaft 11, and the first rotor 14 and the third rotor 16 are held on the rotating shaft 11 so as to be displaceable via bearings. The axial length of the first rotor 14, the axial length of the second rotor 15, and the axial length of the third rotor 16 are set to 1: 2: 1 as a ratio. Reference numeral 19 denotes an armature coil, reference numeral 17 denotes an armature core, and reference numeral 18 denotes a spacer made of a nonmagnetic insulating material.

番号1aはカップリングギア,番号1bはカップリングギア軸を示し,第二回転子15に回転可能に保持されている。カップリングギア軸1bは径方向であり,本実施例ではカップリングギア1a,カップリングギア軸1bの組み合わせが周方向に3個配置されている。番号1c,1dはそれぞれ第一回転子14,第三回転子16側面に配置されたサイドギアであり,周方向にギアが刻まれてカップリングギア1aとそれぞれ噛み合うよう配置されている。カップリングギア1a,カップリングギア軸1b,サイドギア1c,サイドギア1dで回転子結合機構が構成され,第一回転子14,第三回転子16の何れかが第二回転子15に対して周方向に変位させられると,他方は逆の周方向に変位させられる。   Reference numeral 1 a denotes a coupling gear, and reference numeral 1 b denotes a coupling gear shaft, which is rotatably held by the second rotor 15. The coupling gear shaft 1b is in the radial direction, and in this embodiment, three combinations of the coupling gear 1a and the coupling gear shaft 1b are arranged in the circumferential direction. Reference numerals 1c and 1d are side gears arranged on the side surfaces of the first rotor 14 and the third rotor 16, respectively, and are arranged so that the gears are engraved in the circumferential direction and mesh with the coupling gear 1a. The coupling gear 1a, the coupling gear shaft 1b, the side gear 1c, and the side gear 1d constitute a rotor coupling mechanism, and either the first rotor 14 or the third rotor 16 is circumferential with respect to the second rotor 15. Is displaced in the opposite circumferential direction.

番号1fは斜交溝スライドピン,番号1eは斜交溝スライドピンサポート,番号1gはスライドスリーブ,番号1kはスライドスリーブ1g外周面に形成された斜交溝の一部,番号1mはスライドスリーブ1g内周面に形成された直線溝内を摺動する直線溝スライドピン,番号1pはスライドスリーブ1gを回転軸11と平行方向に移動させる制御バー,番号1qは制御バー1pを回転軸11と平行方向に移動させるアクチュエータをそれぞれ示し,回転子位置制御手段が構成されている。更に詳しい構成及び動作は図4を参照して説明される。   Number 1f is an oblique groove slide pin, number 1e is an oblique groove slide pin support, number 1g is a slide sleeve, number 1k is a part of the oblique groove formed on the outer peripheral surface of the slide sleeve 1g, and number 1m is a slide sleeve 1g. A straight groove slide pin that slides in a straight groove formed on the inner peripheral surface, No. 1p is a control bar that moves the slide sleeve 1g in a direction parallel to the rotary shaft 11, and No. 1q is parallel to the rotary shaft 11. Each actuator is shown to move in the direction, and the rotor position control means is configured. A more detailed configuration and operation will be described with reference to FIG.

図2は図1に示された回転電機のA−A’に沿う断面図であり,電機子及び第二回転子15の断面を示す。第二回転子15は第二回転子サポート25,その外周に配置された磁極部とで構成されている。磁極部はケイ素鋼板を積層して構成された回転子コア21,永久磁石22とより構成され,矢印23は永久磁石の磁化方向を示し,周方向に交互に極性が反転した8個の磁極(8ポール)が配置されている。番号24は磁気空隙で非磁性のステンレススチールが配置されている。第二回転子サポート25は非磁性のステンレススチールで構成されて回転軸11に固定されると共に3組のカップリングギア1a,カップリングギア軸1bが配置されている。   FIG. 2 is a cross-sectional view taken along A-A ′ of the rotary electric machine shown in FIG. 1, and shows a cross section of the armature and the second rotor 15. The 2nd rotor 15 is comprised by the 2nd rotor support 25 and the magnetic pole part arrange | positioned on the outer periphery. The magnetic pole part is composed of a rotor core 21 and a permanent magnet 22 formed by laminating silicon steel plates, and an arrow 23 indicates the magnetization direction of the permanent magnet, and eight magnetic poles whose polarities are alternately reversed in the circumferential direction ( 8 poles) are arranged. Number 24 is a magnetic gap and nonmagnetic stainless steel is arranged. The second rotor support 25 is made of non-magnetic stainless steel and is fixed to the rotating shaft 11, and three sets of coupling gear 1 a and coupling gear shaft 1 b are arranged.

本実施例は回転子の一部を変位させて電機子コイル19への誘起電圧制御をする回転電機装置であるので回転子は発生トルク重視で設計されている。すなわち,最大限の磁束が電機子コイル19と鎖交するよう永久磁石22より外周側の磁極のケイ素鋼板はほぼ磁気的に飽和に近い状態に設定している。更に,永久磁石22より内周側のケイ素鋼板も磁気的に飽和に近い状態にする為に磁気空隙24が配置されている。このように磁極部のケイ素鋼板を磁気的に飽和に近い状態で使用する事により回転軸11と平行方向の磁気抵抗を大にし,相対的に変位している回転子間に磁気的な結合が生じ難い構成とされている。   Since this embodiment is a rotating electrical machine apparatus that controls an induced voltage to the armature coil 19 by displacing a part of the rotor, the rotor is designed with emphasis on generated torque. That is, the silicon steel plate of the magnetic pole on the outer peripheral side of the permanent magnet 22 is set to be almost magnetically saturated so that the maximum magnetic flux is linked to the armature coil 19. Further, a magnetic air gap 24 is arranged in order to bring the silicon steel plate on the inner peripheral side of the permanent magnet 22 into a magnetically saturated state. Thus, by using the silicon steel plate of the magnetic pole part in a state close to saturation magnetically, the magnetic resistance in the direction parallel to the rotating shaft 11 is increased, and the magnetic coupling is established between the relatively displaced rotors. The structure is difficult to occur.

電機子コア17はケイ素鋼板を積層して構成され,電機子コイル19が巻回されている。電機子コイル19は9個のコイルが集中巻きとして構成され,8ポールの回転子側磁極と組み合わせて8ポール9スロット構成となるよう結線されている。8ポール9スロット構成は既知であるので説明は省略する。他の構成,例えば8ポール12スロットの分布巻を用いても本発明を構成する事は出来る。上記磁極構成は電機子と第一回転子14,第三回転子16との組み合わせでも全く同じであり,それぞれの説明は省略される。   The armature core 17 is formed by laminating silicon steel plates, and an armature coil 19 is wound around the armature core 17. The armature coil 19 is composed of nine coils as concentrated windings, and is connected to form an 8-pole 9-slot structure in combination with an 8-pole rotor-side magnetic pole. Since the 8-pole 9-slot configuration is known, the description is omitted. The present invention can also be configured by using other configurations, for example, distributed winding of 8 poles and 12 slots. The magnetic pole configuration is exactly the same for the combination of the armature, the first rotor 14 and the third rotor 16, and the description thereof will be omitted.

図3は第三回転子16を第二回転子15側から見た平面図であり,第三回転子サポート31にサイドギア1dが配置されている。図1に縦断面図が示されるように第一回転子14側面にはサイドギア1dと同じ形状のサイドギア1cが配置されている。第三回転子16の磁極構成は図2を参照して説明された第二回転子15の磁極構成と同じであるので説明は省略される。   FIG. 3 is a plan view of the third rotor 16 as viewed from the second rotor 15 side, and the side gear 1 d is arranged on the third rotor support 31. As shown in FIG. 1, a side gear 1 c having the same shape as the side gear 1 d is arranged on the side surface of the first rotor 14 as shown in a longitudinal sectional view. The magnetic pole configuration of the third rotor 16 is the same as the magnetic pole configuration of the second rotor 15 described with reference to FIG.

図4を用いて第三回転子16を周方向に変位させる回転子位置制御手段を構成する部材が説明される。図4(a)には2個の斜交溝スライドピン1fが斜交溝スライドピンサポート1eに配置されている斜視図が示されている。図4(b)はスライドスリーブ1gの斜視図を示し,スライドスリーブ1g内周面には回転軸11と平行な直線溝41が2本形成され,外周面には回転軸11と斜めに交叉する斜交溝1kが2本形成されている。斜交溝スライドピン1fが斜交溝1k内を摺動している時,スライドスリーブ1gが矢印42の方向に移動すると,斜交溝スライドピン1fは矢印43の示す周方向に変位圧力を受ける。図4(c)には回転軸11と回転軸11に固定されている直線溝スライドピン1mの斜視図が示されている。   The member which comprises the rotor position control means to which the 3rd rotor 16 is displaced to the circumferential direction using FIG. 4 is demonstrated. FIG. 4A shows a perspective view in which two oblique groove slide pins 1f are arranged on the oblique groove slide pin support 1e. FIG. 4B is a perspective view of the slide sleeve 1g. Two linear grooves 41 parallel to the rotary shaft 11 are formed on the inner peripheral surface of the slide sleeve 1g, and the outer peripheral surface obliquely crosses the rotary shaft 11. Two oblique grooves 1k are formed. When the oblique groove slide pin 1f is sliding in the oblique groove 1k, if the slide sleeve 1g moves in the direction of the arrow 42, the oblique groove slide pin 1f receives a displacement pressure in the circumferential direction indicated by the arrow 43. . FIG. 4C shows a perspective view of the rotating shaft 11 and the linear groove slide pin 1m fixed to the rotating shaft 11. FIG.

図1,図4を用いて第三回転子16を周方向に変位させる回転子位置制御手段の構成及び動作原理が説明される。スライドスリーブ1gは回転軸11の外周に配置され,回転軸11に固定されている直線溝スライドピン1mが直線溝41内を摺動するよう構成され,回転軸11と共に回転する。斜交溝スライドピンサポート1eは第三回転子16に固定されると共に,2個の斜交溝スライドピン1fが斜交軸1k内を摺動するようスライドスリーブ1gの外周に配置されている。   The configuration and operating principle of the rotor position control means for displacing the third rotor 16 in the circumferential direction will be described with reference to FIGS. The slide sleeve 1g is arranged on the outer periphery of the rotary shaft 11, and is configured such that a linear groove slide pin 1m fixed to the rotary shaft 11 slides in the linear groove 41, and rotates together with the rotary shaft 11. The oblique groove slide pin support 1e is fixed to the third rotor 16, and the two oblique groove slide pins 1f are arranged on the outer periphery of the slide sleeve 1g so as to slide in the oblique shaft 1k.

回転軸11に固定されている直線溝スライドピン1mが直線溝41内を摺動するのでスライドスリーブ1gは回転軸11と共に回転しながら,回転軸11方向には移動可能に構成されている。アクチュエータ1qは制御バー1pを回転軸11と平行方向に移動させ,制御バー1pはスライドスリーブ1gのフランジ部分を挟み,摺動しながらスライドスリーブ1gを回転軸11と平行方向に移動させるよう構成されている。   Since the linear groove slide pin 1m fixed to the rotary shaft 11 slides in the linear groove 41, the slide sleeve 1g rotates with the rotary shaft 11 and is movable in the direction of the rotary shaft 11. The actuator 1q moves the control bar 1p in the direction parallel to the rotary shaft 11, and the control bar 1p sandwiches the flange portion of the slide sleeve 1g and moves the slide sleeve 1g in the direction parallel to the rotary shaft 11 while sliding. ing.

したがって,アクチュエータ1qが制御バー1pを回転軸11と平行に右に(矢印42の方向)移動させると,斜交溝スライドピン1fが回転軸11に対して矢印43で示す周方向に変位し,斜交溝スライドピン1fが固定されている斜交溝スライドピンサポート1e及び第三回転子16が回転軸11及び第二回転子15に対して矢印43で示す周方向に変位させられる。第三回転子16が第二回転子15に対して変位させられると,サイドギア1d,カップリングギア1a,サイドギア1cを介して第一回転子14が第二回転子15に対して第三回転子16とは逆の周方向に変位させられる。アクチュエータ1qが制御バー1pを回転軸11と平行に左に移動させると,第一回転子14及び第三回転子16はそれぞれ前述とは逆の方向に変位させられる。   Therefore, when the actuator 1q moves the control bar 1p to the right (in the direction of the arrow 42) in parallel with the rotation shaft 11, the oblique groove slide pin 1f is displaced in the circumferential direction indicated by the arrow 43 with respect to the rotation shaft 11, The oblique groove slide pin support 1e to which the oblique groove slide pin 1f is fixed and the third rotor 16 are displaced in the circumferential direction indicated by the arrow 43 with respect to the rotation shaft 11 and the second rotor 15. When the third rotor 16 is displaced with respect to the second rotor 15, the first rotor 14 is moved with respect to the second rotor 15 through the side gear 1 d, the coupling gear 1 a, and the side gear 1 c. It is displaced in the circumferential direction opposite to 16. When the actuator 1q moves the control bar 1p to the left in parallel with the rotation shaft 11, the first rotor 14 and the third rotor 16 are displaced in the opposite directions.

図1から図4までを用いて実施例1の回転電機装置の構成及び第一回転子14,第三回転子16を第二回転子15に対して互いに逆の周方向に変位させる事が出来る事を示した。以下では第一回転子14,第三回転子16を第二回転子15に対して変位させる事により電機子コイル19への誘起電圧振幅を制御出来る動作原理が説明される。図5は第一回転子14,第二回転子15,第三回転子16の相対的位置関係が理解されやすいようにモデル的に示された図であって,図5(a)は斜視図を,図5(b)は平面図をそれぞれ示している。   1 to 4, the configuration of the rotating electrical machine apparatus according to the first embodiment and the first rotor 14 and the third rotor 16 can be displaced with respect to the second rotor 15 in opposite circumferential directions. I showed that. In the following, an operation principle is described in which the induced voltage amplitude to the armature coil 19 can be controlled by displacing the first rotor 14 and the third rotor 16 with respect to the second rotor 15. FIG. 5 is a model diagram so that the relative positional relationship among the first rotor 14, the second rotor 15, and the third rotor 16 can be easily understood, and FIG. 5A is a perspective view. FIG. 5B is a plan view.

図5(a)は3分割された回転子が第一回転子14,第二回転子15,第三回転子16の順に軸方向に並び,第一回転子14と第三回転子16が矢印51,52で示されるように第二回転子15に対して互いに逆の周方向に変位させられる状態をモデル的に示す。更にこれを回転軸11側から見た図が図5(b)である。回転子内の一つの磁極に着目して番号53は第二回転子15の磁極位置を,番号54は変位した第一回転子14の磁極位置を,番号55は変位した第三回転子16の磁極位置をそれぞれ示す。番号57,58は第一回転子14,第三回転子16の変位量を示すが,本実施例でそれら変位量は等しく設定されている。番号56は回転子全体の回転方向を示す。   In FIG. 5A, the rotor divided into three is arranged in the axial direction in the order of the first rotor 14, the second rotor 15, and the third rotor 16, and the first rotor 14 and the third rotor 16 are arrows. A state in which the second rotor 15 is displaced in the opposite circumferential directions as shown by 51 and 52 is shown as a model. Further, FIG. 5B is a view of this as viewed from the rotating shaft 11 side. Focusing on one magnetic pole in the rotor, number 53 indicates the magnetic pole position of the second rotor 15, number 54 indicates the magnetic pole position of the displaced first rotor 14, and number 55 indicates the position of the displaced third rotor 16. Each magnetic pole position is shown. Reference numerals 57 and 58 indicate the displacement amounts of the first rotor 14 and the third rotor 16, and these displacement amounts are set equal in this embodiment. Reference numeral 56 indicates the rotation direction of the entire rotor.

ωを回転角周波数,tを時間,変位量57,58を電気角2θとすると,第二回転子15,第一回転子14,第三回転子16から電機子コイル19への誘起電圧はそれぞれSinωt,Sin(ωt+2θ),Sin(ωt−2θ)に比例するが,第一回転子14,第二回転子15,第三回転子16の軸長の比は1:2:1であるので最大振幅を1.0に正規化して合成された誘起電圧は0.5*Sinωt+0.25*Sin(ωt+2θ)+0.25*Sin(ωt−2θ)と表される。この表現式はSinωt*Cosθ*Cosθと変形され,第一回転子14,第三回転子16の変位量2θに対し,誘起電圧振幅はCosθの自乗に比例する事が分かる。   When ω is the rotational angular frequency, t is time, and the displacement amounts 57 and 58 are the electrical angle 2θ, the induced voltages from the second rotor 15, the first rotor 14, and the third rotor 16 to the armature coil 19 are respectively It is proportional to Sinωt, Sin (ωt + 2θ), and Sin (ωt-2θ), but the ratio of the axial lengths of the first rotor 14, the second rotor 15, and the third rotor 16 is 1: 2: 1, which is the maximum. The induced voltage synthesized by normalizing the amplitude to 1.0 is expressed as 0.5 * Sinωt + 0.25 * Sin (ωt + 2θ) + 0.25 * Sin (ωt−2θ). This expression is transformed into Sinωt * Cosθ * Cosθ, and it can be seen that the induced voltage amplitude is proportional to the square of Cosθ with respect to the displacement 2θ of the first rotor 14 and the third rotor 16.

したがって,図1に示された本実施例の回転電機装置は図示されていない制御装置により,回転速度が所定の値より大で電機子コイル19に誘起される誘起電圧を減少させる時にはアクチュエータ1qに制御バー1pを回転軸11と平行に右方向に移動させてスライドスリーブ1gを同方向に移動させ,第二回転子15に対して第一回転子14,第三回転子16を互いに逆の周方向に変位させる変位量を大にさせて誘起電圧を減少させ,更に高速回転で駆動できるよう誘起電圧に対する電源電圧の余裕を大にさせる。   Therefore, the rotating electrical machine apparatus of the present embodiment shown in FIG. 1 is controlled by a control device (not shown) when the rotational speed is higher than a predetermined value and the induced voltage induced in the armature coil 19 is reduced. The control bar 1p is moved in the right direction parallel to the rotary shaft 11 to move the slide sleeve 1g in the same direction, and the first rotor 14 and the third rotor 16 are rotated in the opposite directions with respect to the second rotor 15. The induced voltage is reduced by increasing the amount of displacement in the direction, and the margin of the power supply voltage with respect to the induced voltage is increased so that it can be driven at high speed.

回転速度が所定の値より小で誘起電圧を増大させる時にはアクチュエータ1qに制御バー1pを回転軸11と平行に左方向に移動させてスライドスリーブ1gを同方向に移動させ,第二回転子15に対して第一回転子14,第三回転子16を互いに逆の周方向に変位させる変位量を小にさせて誘起電圧を増大させ,回転子を駆動するトルクを大にさせる。   When the induced voltage is increased when the rotational speed is lower than a predetermined value, the actuator 1q moves the control bar 1p to the left in parallel with the rotary shaft 11 to move the slide sleeve 1g in the same direction. On the other hand, the amount of displacement for displacing the first rotor 14 and the third rotor 16 in the opposite circumferential directions is reduced to increase the induced voltage and increase the torque for driving the rotor.

本発明の特徴を示す為に,回転子を2分割し,一方を他方に対して周方向に変位させる従来構造の回転電機装置と比較される。図6(a)にモデル的に斜視図を示すように二つに分割された一方の回転子62が他方の回転子61に対して変位される。番号63は変位の方向を示す。図6(b)は回転軸側から見た図であり,回転子内の一つの磁極に着目して番号64は回転子61の磁極位置を,番号65は回転子62の磁極位置をそれぞれ示す。番号67は変位量を,番号66は合成磁極の位置をそれぞれ示している。   In order to show the feature of the present invention, it is compared with a rotating electrical machine apparatus having a conventional structure in which the rotor is divided into two parts and one is displaced in the circumferential direction with respect to the other. One rotor 62 divided into two parts is displaced with respect to the other rotor 61 as shown in a perspective view as a model in FIG. Number 63 indicates the direction of displacement. FIG. 6B is a view as seen from the rotating shaft side, focusing on one magnetic pole in the rotor, number 64 indicates the magnetic pole position of the rotor 61, and number 65 indicates the magnetic pole position of the rotor 62. . Reference numeral 67 indicates the amount of displacement, and reference numeral 66 indicates the position of the composite magnetic pole.

合成磁極の位置66を基準にして回転子61,回転子62から電機子コイルへの誘起電圧はそれぞれSin(ωt−θ),Sin(ωt+θ)に比例する。回転子61,回転子62の軸長は等しいとして最大振幅を1.0に正規化すると,誘起電圧は(Sin(ωt−θ)+Sin(ωt+θ))/2と表される。この表現式はSinωt*Cosθと変形され,回転子61に対する回転子62の変位量を2θとして誘起電圧振幅はCosθに比例する。   The induced voltages from the rotor 61 and the rotor 62 to the armature coil with respect to the position 66 of the composite magnetic pole are proportional to Sin (ωt−θ) and Sin (ωt + θ), respectively. When the axial lengths of the rotor 61 and the rotor 62 are equal and the maximum amplitude is normalized to 1.0, the induced voltage is expressed as (Sin (ωt−θ) + Sin (ωt + θ)) / 2. This expression is transformed into Sinωt * Cosθ, and the induced voltage amplitude is proportional to Cosθ, where the displacement amount of the rotor 62 relative to the rotor 61 is 2θ.

従来構造と対比して本発明の回転電機装置の特徴は図7を参照して説明される。図7に於いて,縦軸75は変位量2θがゼロの最大振幅を1.0に正規化して誘起電圧振幅を表し,横軸76は変位量2θを電気角で0から180度まで示している。番号71は本実施例の誘起電圧振幅を,番号72は回転子61,回転子62の軸長を等しく構成した従来構造での誘起電圧振幅をそれぞれ示す。   The features of the rotating electrical machine apparatus of the present invention as compared with the conventional structure will be described with reference to FIG. In FIG. 7, the vertical axis 75 represents the induced voltage amplitude by normalizing the maximum amplitude at which the displacement 2θ is zero to 1.0, and the horizontal axis 76 represents the displacement 2θ from 0 to 180 degrees in electrical angle. Yes. Reference numeral 71 represents the induced voltage amplitude of this embodiment, and reference numeral 72 represents the induced voltage amplitude in the conventional structure in which the axial lengths of the rotor 61 and the rotor 62 are configured to be equal.

図7から明かな事は,誘起電圧振幅72は変位量2θが90度程度までの小さい領域ではなかなか誘起電圧振幅を減少させる事が出来ないという点である。本実施例による誘起電圧振幅71は比較的小さい変位量2θの領域から減少する。本実施例では第一回転子14,第二回転子15,第三回転子16の軸長の比は1:2:1としたが,この構成を121構成と称し,軸長比を変えて更に小さい変位量2θで誘起電圧を大きく減少させる事が可能である。例えば,343構成では,誘起電圧振幅は1.2*Cosθ*Cosθ−0.2となり,番号73で示される。また更に212構成では1.6*Cosθ*Cosθ−0.6となり,番号74で示される。   It is clear from FIG. 7 that the induced voltage amplitude 72 cannot be reduced easily in a region where the displacement 2θ is as small as about 90 degrees. The induced voltage amplitude 71 according to this embodiment decreases from the region of the relatively small displacement 2θ. In this embodiment, the ratio of the axial lengths of the first rotor 14, the second rotor 15, and the third rotor 16 is 1: 2: 1. However, this configuration is referred to as a 121 configuration, and the axial length ratio is changed. Furthermore, it is possible to greatly reduce the induced voltage with a small displacement 2θ. For example, in the 343 configuration, the induced voltage amplitude is 1.2 * Cos θ * Cos θ−0.2, which is indicated by reference numeral 73. Further, in the 212 configuration, 1.6 * Cosθ * Cosθ−0.6, which is indicated by reference numeral 74.

誘起電圧を抑圧しない条件での最高回転速度を基底回転速度とし,実用的に可能な誘起電圧抑圧比で駆動できる回転速度が決まるとシンプルに考え,誘起電圧振幅が0.1となる変位量2θで比較する。番号77を付された直線は0.1の誘起電圧振幅を示し,直線77と誘起電圧振幅71,72,73,74とが交叉する点の変位量2θはそれぞれおおよそ143度,169度,120度,97度である。従来構造では180度に近く,変位量の余裕が殆ど無いが,本発明による回転電機装置の誘起電圧振幅71,73,74では180度までかなり余裕がある。すなわち,本発明によれば,実現できる変位量2θの範囲で誘起電圧振幅を0.1まで減少させる事が出来る。表現を変えれば,基底回転速度の10倍以上の広い回転速度範囲の回転電機装置が実現される。   The maximum rotation speed under the condition where the induced voltage is not suppressed is set as the base rotation speed, and it is simply considered that the rotation speed that can be driven with the practically possible induced voltage suppression ratio is determined, and the displacement 2θ at which the induced voltage amplitude becomes 0.1. Compare with. A straight line numbered 77 indicates an induced voltage amplitude of 0.1, and displacements 2θ at points where the straight line 77 intersects with the induced voltage amplitudes 71, 72, 73, and 74 are approximately 143 degrees, 169 degrees, and 120, respectively. It is 97 degrees. In the conventional structure, it is close to 180 degrees and there is almost no allowance for displacement, but the induced voltage amplitudes 71, 73, and 74 of the rotating electrical machine apparatus according to the present invention have a considerable allowance up to 180 degrees. That is, according to the present invention, the induced voltage amplitude can be reduced to 0.1 within the range of the displacement amount 2θ that can be realized. In other words, a rotating electrical apparatus having a wide rotational speed range that is 10 times or more the base rotational speed is realized.

更に本発明の特徴が図8により説明される。図8は回転子変位と磁極の関係を示す図であり,第二回転子15内のN極に着目して隣接磁極が第一回転子14,第三回転子16の周方向変位に伴ってどのように変わるかをモデル的に示す図である。図8(a)は2θが電気角で45度,図8(b)は2θが90度,図8(c)は2θが135度である場合をそれぞれ示している。番号81は第二回転子15内のN極を,番号82,83は第二回転子15内で隣接するS極をそれぞれ示している。   Further features of the present invention are illustrated by FIG. FIG. 8 is a diagram showing the relationship between the rotor displacement and the magnetic poles. Focusing on the N pole in the second rotor 15, the adjacent magnetic poles move along with the circumferential displacement of the first rotor 14 and the third rotor 16. It is a figure which shows how it changes. 8A shows the case where 2θ is an electrical angle of 45 degrees, FIG. 8B shows the case where 2θ is 90 degrees, and FIG. 8C shows the case where 2θ is 135 degrees. Reference numeral 81 denotes an N pole in the second rotor 15, and reference numerals 82 and 83 denote adjacent S poles in the second rotor 15.

番号84,85は2θが0度では第二回転子15内のN極81と同じ周方向位置にある第一回転子14,第三回転子16内のN極をそれぞれ示している。番号87は2θが0度では第二回転子15内のS極82と同じ周方向位置にある第三回転子16内のS極を,番号86は2θが0度では第二回転子15内のS極83と同じ周方向位置にある第一回転子14内のS極をそれぞれ示している。番号88は回転方向を示す。   Numbers 84 and 85 respectively indicate the N poles in the first rotor 14 and the third rotor 16 at the same circumferential position as the N pole 81 in the second rotor 15 when 2θ is 0 degree. No. 87 is the S pole in the third rotor 16 at the same circumferential position as the S pole 82 in the second rotor 15 when 2θ is 0 degree, and No. 86 is in the second rotor 15 when 2θ is 0 degree. The S poles in the first rotor 14 at the same circumferential position as the S pole 83 are respectively shown. Number 88 indicates the direction of rotation.

変位角2θが45度,90度,135度と大になると,N極81周辺の磁極は図8(a),図8(b),図8(c)と変遷する。注目すべきは図8(b)である。N極84とS極87,N極85とS極86がそれぞれ周方向の同じ位置となる。互いに異なる極性の磁極が軸方向に並んで第一回転子14と第三回転子16とが電機子コア17を介して磁気的に結合する懸念があるが,二つの回転子の軸方向の間に第二回転子15が存在してその懸念は少ない。電機子コア17には回転子の分割に対応して非磁性のスペーサ18が配置されて軸方向の磁気抵抗は大きく構成され,更に本実施例で回転子内の磁性体がほぼ磁気的に飽和せしめられているので軸方向の磁気抵抗は大きく,第一回転子14と第三回転子16とを磁気的に結合する磁束が存在し難いのである。   When the displacement angle 2θ is as large as 45 degrees, 90 degrees, and 135 degrees, the magnetic pole around the N pole 81 changes to FIG. 8A, FIG. 8B, and FIG. 8C. It should be noted that FIG. The N pole 84 and the S pole 87, and the N pole 85 and the S pole 86 are at the same position in the circumferential direction. There is a concern that magnetic poles having different polarities are aligned in the axial direction and the first rotor 14 and the third rotor 16 are magnetically coupled via the armature core 17. The second rotor 15 is present and there are few concerns. The armature core 17 is provided with a nonmagnetic spacer 18 corresponding to the division of the rotor so that the axial magnetic resistance is large, and in this embodiment, the magnetic body in the rotor is almost magnetically saturated. Therefore, the magnetic resistance in the axial direction is large, and there is no magnetic flux that magnetically couples the first rotor 14 and the third rotor 16.

更に図8(b)での変位角2θは90度であるが,N極85とN極84間の周方向間隔は180度である。回転子を二分割した従来構造は図8に於いてN極81が存在しない場合に相当して図8(b)が制御の限界であり,軸方向に異極同士の磁極が隣接する事になるので磁気吸引力は無視し難い。図7に示されたように従来構造で誘起電圧を大きく減少させようとすると,変位角2θを180度近傍の領域にまで大きくする必要があるが,実現は困難であった。   Further, the displacement angle 2θ in FIG. 8B is 90 degrees, but the circumferential interval between the N pole 85 and the N pole 84 is 180 degrees. In the conventional structure in which the rotor is divided into two, FIG. 8 (b) is the limit of control corresponding to the case where the N pole 81 does not exist in FIG. 8, and the magnetic poles of different poles are adjacent in the axial direction. Therefore, it is difficult to ignore the magnetic attractive force. As shown in FIG. 7, in order to greatly reduce the induced voltage in the conventional structure, the displacement angle 2θ needs to be increased to a region near 180 degrees, but this is difficult to realize.

更に図8(c)は変位角2θが135度と大になった図であり,N極81には軸方向に隣接する異極のS極86,S極87が近づいている。しかし,図7を用いて説明されたように誘起電圧振幅が0.1となる変位量2θはおおよそ143度であり,第二回転子15と第一回転子14,第三回転子16とが磁気吸引力の為に変位制御不能となる以前の段階で変位を停める事が出来る。更に第二回転子15の軸長比率を本実施例より小さくする構成では変位角2θに対する誘起電圧振幅減少率を大にできるので更に磁気吸引力による変位阻害要因を小にできる。上記に説明したように本発明で,回転子それぞれの軸長を最適に選ぶ事,第一回転子14,第二回転子15,第三回転子16の順で軸方向に並ぶ構造として異極同士の磁極が軸方向に隣接する事態を起こり難くして,回転子変位を阻害する磁気吸引力は発生し難く出来る。   Further, FIG. 8C is a diagram in which the displacement angle 2θ is as large as 135 degrees, and the N pole 81 is approached by the S pole 86 and the S pole 87 of different polarities adjacent in the axial direction. However, as described with reference to FIG. 7, the displacement 2θ at which the induced voltage amplitude becomes 0.1 is about 143 degrees, and the second rotor 15, the first rotor 14, and the third rotor 16 are Displacement can be stopped before the displacement control becomes impossible due to the magnetic attractive force. Furthermore, in the configuration in which the axial length ratio of the second rotor 15 is made smaller than that of the present embodiment, the rate of decrease in the induced voltage amplitude with respect to the displacement angle 2θ can be increased, so that the displacement inhibition factor due to the magnetic attractive force can be further reduced. As described above, in the present invention, the axial length of each rotor is optimally selected, and the first rotor 14, the second rotor 15, and the third rotor 16 are arranged in the axial direction in this order. It is possible to make it difficult for the magnetic poles between the magnetic poles to be adjacent to each other in the axial direction and to generate a magnetic attractive force that inhibits the rotor displacement.

本実施例で第一回転子14,第二回転子15,第三回転子16の軸長の比は1:2:1であるので電機子コイルへの誘起電圧振幅はcosθの自乗に比例し,第一回転子14,第三回転子16の第二回転子15に対する相対変位量の範囲は0から180度までである。しかし,実際に180度まで相対変位量を大にする必要はなく,誘起電圧振幅を10分の1まで減少させる相対変位量が143度である事から,150度程度或いは必要な誘起電圧振幅抑圧比を実現する相対変位量に応じた最大変位量を設定して第一回転子14,或いは第三回転子16の可動範囲を制限するようストッパーを配置する事が望ましい。   In this embodiment, since the ratio of the axial lengths of the first rotor 14, the second rotor 15, and the third rotor 16 is 1: 2: 1, the induced voltage amplitude to the armature coil is proportional to the square of cos θ. The range of relative displacement of the first rotor 14 and the third rotor 16 with respect to the second rotor 15 is from 0 to 180 degrees. However, it is not actually necessary to increase the relative displacement amount up to 180 degrees, and since the relative displacement amount that reduces the induced voltage amplitude to 1/10 is 143 degrees, it is about 150 degrees or necessary suppression of the induced voltage amplitude. It is desirable to dispose a stopper so as to limit the movable range of the first rotor 14 or the third rotor 16 by setting a maximum displacement amount corresponding to the relative displacement amount that realizes the ratio.

以上の説明に於いて,誘起電圧の検出について特に説明はしなかったが,第一回転子14,第三回転子16の相対的変位量を知る上で誘起電圧振幅は重要なパラメータであり,誘起電圧振幅を常時把握する事は重要である。誘起電圧振幅と回転速度とを知れば,予め記憶してあるデータマップから第一回転子14,第三回転子16の第二回転子15に対する相対変位量を知る事が出来,駆動電流当たりの回転駆動力を知り,更に次の制御への方向性を判断できる。   In the above description, the detection of the induced voltage has not been particularly described. However, the induced voltage amplitude is an important parameter for knowing the relative displacement amount of the first rotor 14 and the third rotor 16. It is important to keep track of the induced voltage amplitude at all times. If the induced voltage amplitude and the rotational speed are known, the relative displacement of the first rotor 14 and the third rotor 16 with respect to the second rotor 15 can be known from the data map stored in advance, and the per-drive current Knowing the rotational driving force, you can also determine the direction to the next control.

以上,図1から図5に示した回転電機装置に於いて,第一回転子14,第三回転子16を第二回転子15に対して変位させる事で電機子コイル19の誘起電圧を制御できることを説明した。本実施例は誘起電圧を制御して出力を最適化するシステムであり,図1及び図9を用いて回転電機システムとしての制御を更に説明する。図9は誘起電圧制御を行う回転電機システムのブロック図を示している。回転電機装置91は入力92,出力93を有するとし,制御装置94は回転電機装置91の出力93及び回転子の位置信号97を入力として誘起電圧を制御する。番号96は回転子位置制御手段を制御するアクチュエータ1qを示し,番号95は電機子コイル19に駆動電流を供給する駆動回路を示す。回転電機装置91が発電機として用いられるのであれば,入力92は回転力であり,出力93は発電電力となる。回転電機装置91が電動機として用いられるのであれば,入力92は駆動回路95から電機子コイル19に供給される駆動電流であり,出力93は回転トルク,回転速度となる。   As described above, in the rotating electrical machine apparatus shown in FIGS. 1 to 5, the induced voltage of the armature coil 19 is controlled by displacing the first rotor 14 and the third rotor 16 with respect to the second rotor 15. I explained what I can do. The present embodiment is a system that optimizes the output by controlling the induced voltage, and the control as the rotating electrical machine system will be further described with reference to FIGS. 1 and 9. FIG. 9 is a block diagram of a rotating electrical machine system that performs induced voltage control. The rotating electrical machine device 91 has an input 92 and an output 93, and the control device 94 receives the output 93 of the rotating electrical machine device 91 and the rotor position signal 97 as inputs to control the induced voltage. Reference numeral 96 denotes an actuator 1q for controlling the rotor position control means, and reference numeral 95 denotes a drive circuit for supplying a drive current to the armature coil 19. If the rotating electrical machine device 91 is used as a generator, the input 92 is a rotational force and the output 93 is generated power. If the rotary electric machine device 91 is used as an electric motor, the input 92 is a drive current supplied from the drive circuit 95 to the armature coil 19, and the output 93 is a rotation torque and a rotation speed.

回転電機装置が電動機として用いられる場合に於いて,誘起電圧制御を行って回転駆動力が最適に制御される。制御装置94は出力93である回転速度が所定の値より大となった時にはアクチュエータ96(1q)によりスライドスリーブ1gを回転軸11と平行に右方向に移動させて第二回転子15に対して第一回転子14,第三回転子16を互いに逆の周方向に変位させる変位量を大にさせて電機子コイル19に誘起される誘起電圧を減少させ,更に高速回転で駆動できるよう誘起電圧に対する電源電圧の余裕を大にさせる。   When the rotating electrical machine apparatus is used as an electric motor, the rotational driving force is optimally controlled by performing induced voltage control. When the rotational speed, which is the output 93, exceeds the predetermined value, the control device 94 moves the slide sleeve 1g to the right in parallel with the rotary shaft 11 by the actuator 96 (1q) and moves the slide sleeve 1g relative to the second rotor 15. The amount of displacement by which the first rotor 14 and the third rotor 16 are displaced in the opposite circumferential directions is increased to reduce the induced voltage induced in the armature coil 19, and the induced voltage so that it can be driven at a higher speed. Increase the margin of power supply voltage against

制御装置94は出力93である回転速度が所定の値より小となった時にはアクチュエータ96(1q)によりスライドスリーブ1gを回転軸11と平行に左方向に移動させ,第二回転子15に対して第一回転子14,第三回転子16を互いに逆の周方向に変位させる変位量を小にさせて電機子コイル19に誘起される誘起電圧を増大させ,回転子を駆動するトルクを大にさせる。   When the rotational speed, which is the output 93, becomes smaller than a predetermined value, the control device 94 moves the slide sleeve 1g to the left in parallel with the rotary shaft 11 by the actuator 96 (1q), so that the second rotor 15 is moved. The amount of displacement for displacing the first rotor 14 and the third rotor 16 in the opposite circumferential directions is reduced to increase the induced voltage induced in the armature coil 19 and increase the torque for driving the rotor. Let

回転電機装置が発電機として用いられる場合において,誘起電圧制御を行って発電電圧を所定の電圧となるよう制御する。制御装置94は出力93である発電電圧が所定の値より大となった時にはアクチュエータ96(1q)によりスライドスリーブ1gを回転軸11と平行に右方向に移動させて第二回転子15に対して第一回転子14,第三回転子16を互いに逆の周方向に変位させる変位量を大にさせて電機子コイル19に誘起される発電電圧を減少させる。   When the rotating electrical machine apparatus is used as a generator, induced voltage control is performed to control the generated voltage to be a predetermined voltage. When the generated voltage, which is the output 93, exceeds a predetermined value, the control device 94 moves the slide sleeve 1g in the right direction parallel to the rotary shaft 11 by the actuator 96 (1q) and moves the slide sleeve 1g relative to the second rotor 15. The displacement generated by displacing the first rotor 14 and the third rotor 16 in the opposite circumferential directions is increased to reduce the generated voltage induced in the armature coil 19.

制御装置94は出力93である発電電圧が所定の値より小となった時にはアクチュエータ96(1q)によりスライドスリーブ1gを回転軸11と平行に左方向に移動させて第二回転子15に対して第一回転子14,第三回転子16を互いに逆の周方向に変位させる変位量を小にさせて電機子コイル19に誘起される発電電圧を大とする。   The control device 94 moves the slide sleeve 1g to the left in parallel with the rotary shaft 11 by the actuator 96 (1q) when the generated voltage as the output 93 becomes smaller than a predetermined value, and the second rotor 15 is moved. The amount of displacement that causes the first rotor 14 and the third rotor 16 to be displaced in the opposite circumferential directions is reduced to increase the generated voltage induced in the armature coil 19.

以上に本実施例の構造及び作動原理,更に従来構造の回転電機装置と比較対照したように,本発明によれば比較的小さな隣接回転子間の変位量で所望の誘起電圧抑圧比を得る事が可能であり,実際に実現可能な回転子の変位範囲内で広い回転速度範囲の回転電機装置を実現できる。しかしながら,誘起電圧制御に際して少なからぬ回転慣性を有する回転子の一部を周方向に変位させる必要があり,迅速な制御の阻害要因となっている。本発明は上記阻害要因を軽減出来る手段をも提供しており,実施例1に適用できる手段を以下に説明する。   As described above, as compared with the structure and operating principle of this embodiment and the rotating electrical machine apparatus of the conventional structure, according to the present invention, a desired induced voltage suppression ratio can be obtained with a relatively small displacement between adjacent rotors. Therefore, it is possible to realize a rotating electrical machine apparatus having a wide rotational speed range within a rotor displacement range that can be actually realized. However, in the induced voltage control, it is necessary to displace a part of the rotor having a considerable rotational inertia in the circumferential direction, which is an impediment to rapid control. The present invention also provides means that can reduce the above-described inhibition factors, and means that can be applied to Example 1 will be described below.

図10は電機子コイル19に供給される駆動電流を進角させた場合に回転子が受ける回転駆動力の減少度合いを示す。回転子の磁極が電機子コイルに正対した時に駆動電流の極性を反転させて回転子を回転駆動させるとして磁極が電機子コイルに正対した時を基準に駆動電流の切替タイミングをずらすと回転子が受ける回転駆動力は減少する。図10に於いて番号101は駆動電流の進角量に対して変化する回転駆動力を示し,縦軸102は最大値を1.0に正規化された回転駆動力を示し,横軸103は駆動電流の進角量を電気角で表している。負の進角量は遅れの角度を意味する。   FIG. 10 shows the degree of reduction in the rotational driving force received by the rotor when the drive current supplied to the armature coil 19 is advanced. When the magnetic pole of the rotor is directly facing the armature coil, the polarity of the drive current is reversed to rotate the rotor, and the rotation is performed when the drive current switching timing is shifted with respect to the time when the magnetic pole is directly facing the armature coil. The rotational driving force received by the child is reduced. In FIG. 10, reference numeral 101 indicates a rotational driving force that changes with respect to the advance amount of the driving current, a vertical axis 102 indicates a rotational driving force normalized to 1.0, and a horizontal axis 103 indicates The advance amount of the drive current is expressed in electrical angle. A negative advance amount means a delay angle.

本実施例では図5に示したように第一回転子14を第二回転子15に対して回転方向に変位させ,第三回転子16はそれと逆方向に変位させ,変位量を増減させて誘起電圧振幅を制御する。本発明は,電機子コイル19に駆動電流を供給して回転子に作用させる回転駆動力を回転子の変位に利用する。すなわち,駆動電流の切替タイミングを基準タイミングから90度ずらせて電機子コイル19に供給すると,変位量2θが0から180度の領域にある第一回転子14,−180から0度の領域にある第三回転子16に互いに逆方向の回転駆動力が働き,第二回転子15に回転駆動力は作用しない。   In this embodiment, as shown in FIG. 5, the first rotor 14 is displaced in the rotational direction with respect to the second rotor 15, the third rotor 16 is displaced in the opposite direction, and the amount of displacement is increased or decreased. Controls the induced voltage amplitude. In the present invention, a rotational driving force that is applied to the rotor by supplying a driving current to the armature coil 19 is used for displacement of the rotor. That is, when the drive current switching timing is shifted by 90 degrees from the reference timing and supplied to the armature coil 19, the first rotor 14 in which the displacement 2θ is in the range of 0 to 180 degrees, and in the range of −180 to 0 degrees. Rotational driving forces in opposite directions act on the third rotor 16 and no rotational driving force acts on the second rotor 15.

切替タイミングを基準タイミングから90度ずらせた駆動電流を平衡駆動電流として,第一回転子14,第三回転子16を第二回転子15に対して互いに逆方向に変位させる際に,アクチュエータ1qを駆動させ,同時に第一回転子14,第三回転子16にそれぞれ変位させる方向と同じ方向の回転駆動力が働くよう設定された極性の平衡駆動電流を電機子コイル19に供給する。アクチュエータ1qによる第一回転子14,第三回転子16の変位は上記回転駆動力によりアシストされて変位は迅速に完了される。変位量2θが90度近傍で効果は最大となり,ゼロに近い領域で効果は限定的である。   When the drive current obtained by shifting the switching timing by 90 degrees from the reference timing is used as the equilibrium drive current, the actuator 1q is moved when the first rotor 14 and the third rotor 16 are displaced in the opposite directions with respect to the second rotor 15. At the same time, an armature coil 19 is supplied with a balanced driving current having a polarity set so that a rotational driving force in the same direction as the direction in which the first rotor 14 and the third rotor 16 are displaced is applied. The displacement of the first rotor 14 and the third rotor 16 by the actuator 1q is assisted by the rotational driving force, and the displacement is completed quickly. The effect is maximum when the displacement 2θ is near 90 degrees, and the effect is limited in a region near zero.

本発明による回転電機装置の実施例2が図11から図15を用いて説明される。磁石励磁の回転子が第一回転子,第二回転子,第三回転子に分割されて電機子に対向し,第三回転子に対して第一,第二回転子が遊星ギア機構を用いて同じ周方向に変位され,電機子コイルに誘起される電圧が制御される回転電機装置である。   Second Embodiment A rotating electrical machine apparatus according to the present invention will be described with reference to FIGS. The magnet-excited rotor is divided into a first rotor, a second rotor, and a third rotor and faces the armature. The first and second rotors use a planetary gear mechanism with respect to the third rotor. And a rotating electrical machine apparatus in which the voltage induced in the armature coil is controlled in the same circumferential direction.

図11はインナーロータ構造の回転電機装置に本発明を適用した実施例の縦断面図を示し,回転軸11がベアリング13を介してハウジング111に回転可能に支持されている。第一回転子112,第二回転子113はベアリングを介して回転軸11に変位可能に保持され,第三回転子114は回転軸11に固定されている。第一回転子112,第二回転子113が変位制御される領域は,第三回転子114に対して常用の回転方向前方の領域であり,同じ極性の磁極に着目して第一回転子112が回転方向の先頭,第三回転子114が最後部,第二回転子113が両者の中間に並ぶよう構成されている。第一回転子112の軸長,第二回転子113の軸長,第三回転子114の軸長は比率にして3:4:3に設定されている。番号19は電機子コイル,番号17は電機子コア,番号18は非磁性絶縁素材のスペーサを示す。   FIG. 11 is a longitudinal sectional view of an embodiment in which the present invention is applied to a rotating electrical machine apparatus having an inner rotor structure. A rotating shaft 11 is rotatably supported by a housing 111 via a bearing 13. The first rotor 112 and the second rotor 113 are movably held on the rotary shaft 11 via bearings, and the third rotor 114 is fixed to the rotary shaft 11. The region in which the displacement of the first rotor 112 and the second rotor 113 is controlled is a region in front of the normal rotation direction with respect to the third rotor 114, and the first rotor 112 is focused on the magnetic poles having the same polarity. Is arranged in such a manner that the third rotor 114 is arranged at the end, the second rotor 113 is arranged in the middle. The axial length of the first rotor 112, the axial length of the second rotor 113, and the axial length of the third rotor 114 are set to 3: 4: 3 as a ratio. Reference numeral 19 denotes an armature coil, reference numeral 17 denotes an armature core, and reference numeral 18 denotes a nonmagnetic insulating material spacer.

番号115は第一回転子112側面に固定されたサイドギア,番号116は第三回転子114側面に固定されたサイドギア,番号117はサイドギア115と噛み合うギア,番号119はカップリングギア支持軸,番号118はカップリングギア支持軸119に固定されてギア117と共に回転するギアをそれぞれ示す。カップリングギア支持軸119は第二回転子113に回転可能に支持されている。サイドギア116と噛み合うギア,ギア118と噛み合うギア及びそれらの支持軸は図11に図示されていないが,ギア117,ギア118,カップリングギア支持軸119と共に回転子結合機構が構成され,後に説明される。   Reference numeral 115 denotes a side gear fixed to the side surface of the first rotor 112, reference numeral 116 denotes a side gear fixed to the side surface of the third rotor 114, reference numeral 117 denotes a gear meshing with the side gear 115, reference numeral 119 denotes a coupling gear support shaft, and reference numeral 118. Indicates gears fixed to the coupling gear support shaft 119 and rotating together with the gear 117. The coupling gear support shaft 119 is rotatably supported by the second rotor 113. The gears that mesh with the side gear 116, the gears that mesh with the gear 118, and their support shafts are not shown in FIG. 11, but a rotor coupling mechanism is configured with the gear 117, gear 118, and coupling gear support shaft 119, which will be described later. The

番号11aは回転軸11に固定されたサンギア,番号11cはハウジング111に固定されたリングギア,番号11eはサンギア11a及びリングギア11cと噛み合うプラネタリーギアをそれぞれ示し,プラネタリーギア11eはプラネタリーギア軸11gに回転可能に支持されて第一遊星ギア機構が構成されている。番号11bは第一回転子112に固定されたサンギア,番号11dはハウジング111に回転可能に支持されたリングギア,番号11fはサンギア11b及びリングギア11dと噛み合うプラネタリーギアをそれぞれ示し,プラネタリーギア11fはプラネタリーギア軸11gに回転可能に支持されて第二遊星ギア機構が構成されている。   Reference numeral 11a is a sun gear fixed to the rotary shaft 11, reference numeral 11c is a ring gear fixed to the housing 111, reference numeral 11e is a planetary gear meshing with the sun gear 11a and the ring gear 11c, and the planetary gear 11e is a planetary gear. A first planetary gear mechanism is configured to be rotatably supported by the shaft 11g. Reference numeral 11b denotes a sun gear fixed to the first rotor 112, reference numeral 11d denotes a ring gear rotatably supported by the housing 111, and reference numeral 11f denotes a planetary gear that meshes with the sun gear 11b and the ring gear 11d. 11f is rotatably supported by the planetary gear shaft 11g to constitute a second planetary gear mechanism.

プラネタリーギア11e,プラネタリーギア11f,プラネタリーギア軸11gは3組が周方向に配置されてプラネタリーギア軸11gが出力軸11hに固定され,出力軸11hはハウジング111に回転可能に支持されている。番号11jはウオームギアを示し,リングギア11d側面に刻まれたギアと噛み合うよう構成されている。更にウオームギア11jは図示されていないアクチュエータにより回転駆動可能に接続されている。サンギア11aとサンギア11b,リングギア11cとリングギア11d,プラネタリーギア11eとプラネタリーギア11fそれぞれ同じ仕様のギアであり,上記二組の遊星ギア機構及びウオームギア11j,図示されていないアクチュエータは回転子位置制御手段を構成している。   Three sets of planetary gear 11e, planetary gear 11f, and planetary gear shaft 11g are arranged in the circumferential direction, the planetary gear shaft 11g is fixed to the output shaft 11h, and the output shaft 11h is rotatably supported by the housing 111. ing. Reference numeral 11j denotes a worm gear, which is configured to mesh with a gear carved on the side surface of the ring gear 11d. Further, the worm gear 11j is connected to be rotatable by an actuator (not shown). The sun gear 11a and the sun gear 11b, the ring gear 11c and the ring gear 11d, the planetary gear 11e and the planetary gear 11f are gears having the same specifications, and the two sets of the planetary gear mechanism and the worm gear 11j, the actuator not shown is a rotor. It constitutes a position control means.

図12は図11に示された回転電機装置のB−B’に沿う断面図であり,電機子及び第二回転子113の断面を示す。回転子の磁極部分及び電機子は実施例1と全く同じ構成であるので説明は省略される。第二回転子サポート121は非磁性のステンレススチールで構成されて回転軸11に変位可能に保持されている。3組の互いに噛み合うギア118,ギア122が第二回転子サポート121内に配置されている。ギア122と共に回転するカップリングギア支持軸123はカップリングギア支持軸119と同様に第二回転子サポート121に回転可能に支持されている。   12 is a cross-sectional view taken along B-B ′ of the rotating electrical machine apparatus shown in FIG. 11, and shows a cross section of the armature and the second rotor 113. Since the magnetic pole portion of the rotor and the armature have the same configuration as that of the first embodiment, description thereof is omitted. The second rotor support 121 is made of nonmagnetic stainless steel and is held on the rotary shaft 11 so as to be displaceable. Three sets of intermeshing gears 118 and 122 are arranged in the second rotor support 121. The coupling gear support shaft 123 that rotates together with the gear 122 is rotatably supported by the second rotor support 121 in the same manner as the coupling gear support shaft 119.

図13は第一回転子112を第二回転子113側から見た平面図であり,第一回転子112の磁極構成は図12を参照して説明された第二回転子113の磁極構成と同じであるので説明は省略される。第一回転子サポート131にサイドギア115が配置され,サイドギア115内周面にはギア117と噛み合うギア132が刻まれている。図11に縦断面図が示されるように第三回転子114側面に配置されているサイドギア116はサイドギア115と同じ形状である。   FIG. 13 is a plan view of the first rotor 112 viewed from the second rotor 113 side. The magnetic pole configuration of the first rotor 112 is the same as that of the second rotor 113 described with reference to FIG. Since it is the same, description is abbreviate | omitted. A side gear 115 is disposed on the first rotor support 131, and a gear 132 that meshes with the gear 117 is carved on the inner peripheral surface of the side gear 115. As shown in the longitudinal sectional view of FIG. 11, the side gear 116 disposed on the side surface of the third rotor 114 has the same shape as the side gear 115.

図14は回転子結合機構を説明する為の斜視図であり,図11,12,13に一部の部材が示された回転子結合機構が組み合わされ,モデル的に示されている。カップリングギア支持軸119及びカップリングギア支持軸123は第二回転子113に回転可能に支持され,カップリングギア支持軸119にはギア117,118が固定され,カップリングギア支持軸123にはギア122,141が固定されている。ギア118,ギア122は互いに噛み合うよう配置されている。ギア117はサイドギア115内周面に刻まれたギア132と噛み合い,ギア141はサイドギア116内周面に刻まれたギアと噛み合うよう構成されている。   FIG. 14 is a perspective view for explaining the rotor coupling mechanism, and the rotor coupling mechanism in which some members are shown in FIGS. 11, 12, and 13 is combined and shown as a model. The coupling gear support shaft 119 and the coupling gear support shaft 123 are rotatably supported by the second rotor 113, and gears 117 and 118 are fixed to the coupling gear support shaft 119. Gears 122 and 141 are fixed. The gear 118 and the gear 122 are arranged to mesh with each other. The gear 117 is configured to mesh with the gear 132 carved on the inner peripheral surface of the side gear 115, and the gear 141 is configured to mesh with the gear carved on the inner peripheral surface of the side gear 116.

ギア117,118,122,141,カップリングギア支持軸119,123等で構成され,周方向に3組配置されたカップリングギア群が第一回転子112のサイドギア115と第三回転子114のサイドギア116と結合され,ギア118,ギア122は互いに逆方向に回転するので第一回転子112,第三回転子114の何れか一方が周方向に変位圧力を受ければ他方は逆の周方向に変位圧力を受ける構造である。   The gears 117, 118, 122, 141, coupling gear support shafts 119, 123, and the like, and three sets of coupling gears arranged in the circumferential direction are the side gear 115 of the first rotor 112 and the third rotor 114. Since the gear 118 and the gear 122 rotate in the opposite directions with respect to the side gear 116, if one of the first rotor 112 and the third rotor 114 receives displacement pressure in the circumferential direction, the other in the opposite circumferential direction. It is a structure that receives displacement pressure.

図15は図11に示された回転電機装置のC−C’に沿う断面図であり,第一回転子112と結合されている第二遊星ギア機構が示されている。同図に於いて,サンギア11bは図示されていない第一回転子112に固定され,周方向に3個配置されているプラネタリーギア11fと噛み合い,プラネタリーギア11fはリングギア11dと噛み合うよう構成されている。更に3個のプラネタリーギア11fのプラネタリーギア軸11gは図11に示された出力軸11hに接続されている。リングギア11dはハウジング111に対しては変位可能であり,更に図示していないアクチュエータにより回転駆動可能に構成されている。回転軸11に配置された第一遊星ギア機構はリングギア11cがハウジング111に固定されている事を除いて同じ構成であり,説明は省略される。   FIG. 15 is a cross-sectional view taken along C-C ′ of the rotating electrical machine apparatus shown in FIG. 11, and shows a second planetary gear mechanism coupled to the first rotor 112. In this figure, a sun gear 11b is fixed to a first rotor 112 (not shown) and meshes with three planetary gears 11f arranged in the circumferential direction, and the planetary gear 11f meshes with a ring gear 11d. Has been. Further, the planetary gear shafts 11g of the three planetary gears 11f are connected to the output shaft 11h shown in FIG. The ring gear 11d can be displaced with respect to the housing 111, and can be rotated by an actuator (not shown). The first planetary gear mechanism disposed on the rotating shaft 11 has the same configuration except that the ring gear 11c is fixed to the housing 111, and the description thereof is omitted.

図15に於いて,番号151の矢印はサンギア11bの回転方向を示し,番号152の矢印はプラネタリーギア11fの回転方向を示し,番号153の矢印はプラネタリーギア軸11gの回転方向を示す。リングギア11dが静止している状態で,サンギア11bが矢印151の方向に回転すると,プラネタリーギア11fは矢印152の方向に回転し,プラネタリーギア軸11gは矢印153の方向に回転されて出力軸11hを回転させる。第一遊星ギア機構と第二遊星ギア機構とは同じ構成であり,プラネタリーギア軸11gを共有しているので第一回転子112,回転軸11,第三回転子114は同じ回転数で回転する。第二回転子113も回転子結合機構により第一回転子112,第三回転子114と結合されているので同じ回転数で回転する。   In FIG. 15, the arrow 151 indicates the rotation direction of the sun gear 11b, the arrow 152 indicates the rotation direction of the planetary gear 11f, and the arrow 153 indicates the rotation direction of the planetary gear shaft 11g. When the ring gear 11d is stationary and the sun gear 11b rotates in the direction of arrow 151, the planetary gear 11f rotates in the direction of arrow 152 and the planetary gear shaft 11g rotates in the direction of arrow 153 for output. The shaft 11h is rotated. Since the first planetary gear mechanism and the second planetary gear mechanism have the same configuration and share the planetary gear shaft 11g, the first rotor 112, the rotating shaft 11, and the third rotor 114 rotate at the same rotational speed. To do. Since the second rotor 113 is also coupled to the first rotor 112 and the third rotor 114 by the rotor coupling mechanism, the second rotor 113 rotates at the same rotational speed.

リングギア11dが回転子の回転方向(矢印151と同じ方向)に外部のアクチュエータにより回転させられると,プラネタリーギア軸11gは矢印153の方向への回転速度を変更し難いのでプラネタリーギア11fの回転速度が遅くなり,サンギア11bの回転速度が遅くなり,したがって第一回転子112が第三回転子114に対して矢印151と逆方向(回転子の回転方向とは逆方向)に相対的に変位させられる。リングギア11dが外部のアクチュエータにより回転子の回転方向とは逆方向に回転させられると第一回転子112が第三回転子114に対して矢印151と同じ方向(回転子の回転方向と同じ方向)に相対的に変位させられる。第二回転子113も回転子結合機構により第一回転子112,第三回転子114と結合されているので常に両者の中間に位置するよう変位させられる。   When the ring gear 11d is rotated by an external actuator in the rotation direction of the rotor (the same direction as the arrow 151), it is difficult for the planetary gear shaft 11g to change the rotation speed in the direction of the arrow 153, so that the planetary gear 11f The rotation speed is decreased and the rotation speed of the sun gear 11b is decreased. Therefore, the first rotor 112 is relatively opposite to the third rotor 114 in the direction opposite to the arrow 151 (the direction opposite to the rotation direction of the rotor). Be displaced. When the ring gear 11d is rotated in the direction opposite to the rotation direction of the rotor by an external actuator, the first rotor 112 is in the same direction as the arrow 151 with respect to the third rotor 114 (the same direction as the rotation direction of the rotor). ) Relative to each other. Since the second rotor 113 is also coupled to the first rotor 112 and the third rotor 114 by the rotor coupling mechanism, the second rotor 113 is always displaced so as to be positioned between the two.

本実施例では第一回転子,第二回転子,第三回転子の同極磁極が軸方向に並ぶ位置を基準位置として基準位置から第一回転子112が常用の回転方向の先頭,第三回転子114が最後部,第二回転子113が両者の中間と変位するよう構成されているので第一回転子112及び第二回転子113の変位に回転子の回転駆動力,或いは回生制動力等を利用できる。すなわち,回転子の加速中にリングギア11dが外部のアクチュエータにより矢印151と逆方向に回転させられると,リングギア11dを介したアクチュエータの作用力に回転駆動力が加わって第一回転子112の回転方向前方への変位が早められる。更に電機子コイル19から電力が引き出される回生制動中にリングギア11dが外部のアクチュエータにより矢印151と同じ方向に回転させられると,第一回転子112はアクチュエータの作用力に回生制動力も加わって回転方向と逆方向への変位が早められる。   In the present embodiment, the first rotor 112 is moved from the reference position to the head in the normal rotation direction from the reference position where the same-pole magnetic poles of the first rotor, the second rotor, and the third rotor are aligned in the axial direction. Since the rotor 114 is displaced at the rearmost portion and the second rotor 113 is displaced between the two, the displacement of the first rotor 112 and the second rotor 113 is influenced by the rotational driving force or regenerative braking force of the rotor. Etc. can be used. That is, when the ring gear 11d is rotated in the direction opposite to the arrow 151 by the external actuator during the acceleration of the rotor, the rotational driving force is added to the acting force of the actuator via the ring gear 11d, and the first rotor 112 Displacement forward in the rotational direction is accelerated. Furthermore, when the ring gear 11d is rotated in the same direction as the arrow 151 by an external actuator during regenerative braking in which power is drawn from the armature coil 19, the first rotor 112 adds regenerative braking force to the acting force of the actuator. Displacement in the direction opposite to the rotational direction is accelerated.

上記説明のように第一回転子112と第二回転子113が第三回転子114に対して変位される事により電機子コイル19への誘起電圧振幅が制御される事が説明された。本実施例に於いては,第一回転子112の軸長,第二回転子113の軸長,第三回転子114の軸長は比率にして3:4:3に設定されているので軸方向に隣接する回転子間の相対的変位量を電気角で2θとすると,電機子コイルへの誘起電圧振幅は1.2*Cosθ*Cosθ−0.2に比例する。この誘起電圧振幅の極性が逆転するまでが相対的変位量2θの範囲として相対的変位量2θの範囲はゼロから約132度迄である。したがって,第三回転子114に対して第二回転子113の変位範囲はゼロから約132度まで,第一回転子112の変位範囲はゼロから約264度までである。   It has been described that the induced voltage amplitude to the armature coil 19 is controlled by the displacement of the first rotor 112 and the second rotor 113 with respect to the third rotor 114 as described above. In the present embodiment, the axial length of the first rotor 112, the axial length of the second rotor 113, and the axial length of the third rotor 114 are set to 3: 4: 3 as a ratio. If the relative displacement between the rotors adjacent in the direction is 2θ in electrical angle, the induced voltage amplitude to the armature coil is proportional to 1.2 * Cosθ * Cosθ−0.2. Until the polarity of the induced voltage amplitude is reversed, the range of the relative displacement 2θ ranges from zero to about 132 degrees. Therefore, the displacement range of the second rotor 113 with respect to the third rotor 114 is from zero to about 132 degrees, and the displacement range of the first rotor 112 is from zero to about 264 degrees.

以上,図11から図15に示した回転電機装置に於いて,第一回転子112,第二回転子113を第三回転子114に対して変位させる事で電機子コイルへの誘起電圧を制御できることを説明した。本実施例は誘起電圧を制御して出力を最適化するシステムであり,図11,図9を用いて回転電機システムとしての制御を更に説明する。図9は誘起電圧制御を行う回転電機システムのブロック図を示し,実施例1に於いて既に説明されているが,本実施例で番号96は第二遊星ギア機構のリングギア11dを回転駆動するアクチュエータと読み替える。   As described above, in the rotating electrical machine apparatus shown in FIGS. 11 to 15, the induced voltage to the armature coil is controlled by displacing the first rotor 112 and the second rotor 113 with respect to the third rotor 114. I explained what I can do. The present embodiment is a system that optimizes the output by controlling the induced voltage, and the control as a rotating electrical machine system will be further described with reference to FIGS. FIG. 9 shows a block diagram of a rotating electrical machine system that performs induced voltage control, which has already been described in the first embodiment. In this embodiment, numeral 96 designates a ring gear 11d of the second planetary gear mechanism for rotational driving. Read as Actuator.

回転電機装置が電動機として用いられる場合に於いて,回転駆動力を利用して誘起電圧制御を行って回転駆動力を最適に制御する。制御装置94は出力93である回転速度が所定の値より大となった時には第一回転子112,第二回転子113を第三回転子114に対して回転方向に変位させ,第一回転子112,第二回転子113間及び第二回転子113,第三回転子114間の周方向間隔を大にして誘起電圧を減少させ,更に高速回転で駆動できるよう誘起電圧に対する電源電圧の余裕を大にさせる。すなわち,アクチュエータ96によりリングギア11dを矢印151と逆方向(回転子の回転方向とは逆方向)に回転させ,同時に駆動電流を駆動回路95から電機子コイル19に供給させ,第一回転子112,第二回転子113を第三回転子114に対して回転方向に変位させる。   When the rotating electrical machine apparatus is used as an electric motor, induced voltage control is performed using the rotational driving force to optimally control the rotational driving force. The control device 94 displaces the first rotor 112 and the second rotor 113 in the rotational direction with respect to the third rotor 114 when the rotation speed, which is the output 93, becomes larger than a predetermined value, and thereby the first rotor. 112, the circumferential interval between the second rotor 113 and the second rotor 113 and the third rotor 114 is increased to reduce the induced voltage, and further, the margin of the power supply voltage with respect to the induced voltage is provided so that it can be driven at high speed rotation. Make it big. In other words, the ring gear 11d is rotated by the actuator 96 in the direction opposite to the arrow 151 (the direction opposite to the rotation direction of the rotor), and at the same time, the drive current is supplied from the drive circuit 95 to the armature coil 19, The second rotor 113 is displaced in the rotational direction with respect to the third rotor 114.

制御装置94は出力93である回転速度が所定の値より小となった時には第一回転子112,第二回転子113を第三回転子114に対して回転方向とは逆方向に変位させて誘起電圧を増大させ,回転子を駆動するトルクを大にさせる。すなわち,アクチュエータ96によりリングギア11dを矢印151と同じ方向(回転子の回転方向と同じ方向)に回転させ,同時に回転と逆方向の回転駆動力を発生させる駆動電流を駆動回路95から電機子コイル19に供給させ,第一回転子112,第二回転子113を第三回転子114に対して回転方向とは逆方向に変位させる。回転と逆方向の回転駆動力を発生させる駆動電流を供給させる替わりに回生制動状態に切り替えても同様の効果を得る事が出来る。   The controller 94 displaces the first rotor 112 and the second rotor 113 with respect to the third rotor 114 in the direction opposite to the rotation direction when the rotation speed, which is the output 93, becomes smaller than a predetermined value. Increase the induced voltage and increase the torque to drive the rotor. In other words, the actuator 96 rotates the ring gear 11d in the same direction as the arrow 151 (the same direction as the rotation direction of the rotor), and simultaneously generates a drive current from the drive circuit 95 that generates a rotational driving force in the opposite direction to the rotation. 19, the first rotor 112 and the second rotor 113 are displaced relative to the third rotor 114 in the direction opposite to the rotation direction. The same effect can be obtained by switching to the regenerative braking state instead of supplying the drive current for generating the rotational driving force in the direction opposite to the rotation.

本実施例では第三回転子114を回転軸に固定し,第一回転子112,第二回転子113を第三回転子114に対して周方向に変位させる構成であった。この構成を実施例1と同様に第二回転子113を回転軸に固定する構成に変更する事は容易である。すなわち,図11に示される実施例2の構成に於いて,第二回転子113を回転軸11に固定し,第三回転子114を回転軸11に変位可能に変更する。他の構成は全く同じ構成で第二回転子113に対して第一回転子112,第三回転子114を互いに逆の周方向に変位させて電機子コイル19への誘起電圧を制御する回転電機装置に変更される。   In this embodiment, the third rotor 114 is fixed to the rotation shaft, and the first rotor 112 and the second rotor 113 are displaced in the circumferential direction with respect to the third rotor 114. It is easy to change this configuration to a configuration in which the second rotor 113 is fixed to the rotation shaft as in the first embodiment. That is, in the configuration of the second embodiment shown in FIG. 11, the second rotor 113 is fixed to the rotating shaft 11 and the third rotor 114 is changed to be displaceable to the rotating shaft 11. Other configurations are exactly the same, and the first rotor 112 and the third rotor 114 are displaced in the opposite circumferential directions with respect to the second rotor 113 to control the induced voltage on the armature coil 19. Changed to device.

本実施例ではリングギア11dを回転駆動するアクチュエータ及び回転電機装置の回転駆動力を用いて第一回転子112,第二回転子113を周方向に変位させたが,回転電機装置の回転駆動力はリングギア11dを回転させるアクチュエータへのアシスタンスの位置づけであった。しかし,アクチュエータをリングギア11dの位置決め及び保持に使い,回転駆動力で第一回転子112,第二回転子113を周方向に変位させる事も可能であり,その場合には小さな出力のアクチュエータで十分となる。更にウオームギア11jとアクチュエータをリングギア11dの周方向位置を保持するクラッチ,ブレーキシステムに替え,回転駆動力のみで第一回転子112,第二回転子113を周方向に変位させる回転電機装置とする事が出来る。これら何れの構成も本発明に含まれる。   In this embodiment, the first rotor 112 and the second rotor 113 are displaced in the circumferential direction by using the rotational driving force of the actuator and the rotating electrical machine device that rotationally drives the ring gear 11d. Is the positioning of assistance to the actuator that rotates the ring gear 11d. However, the actuator can be used for positioning and holding the ring gear 11d and the first rotor 112 and the second rotor 113 can be displaced in the circumferential direction by a rotational driving force. It will be enough. Further, the worm gear 11j and the actuator are replaced with clutches and brake systems that maintain the circumferential position of the ring gear 11d, and a rotating electrical machine apparatus that displaces the first rotor 112 and the second rotor 113 in the circumferential direction only by the rotational driving force is provided. I can do it. Any of these configurations are included in the present invention.

本発明による回転電機装置の実施例3が図16から図21を用いて説明される。磁石励磁の回転子が第一回転子,第二回転子,第三回転子に分割されて電機子に対向し,第一,第二回転子が回転駆動力,回生制動力を用いて第三回転子に対して同じ周方向に変位され,電機子コイルに誘起される電圧が制御される回転電機装置である。   A third embodiment of the rotating electrical machine apparatus according to the present invention will be described with reference to FIGS. The magnet-excited rotor is divided into a first rotor, a second rotor, and a third rotor so as to face the armature, and the first and second rotors use a rotational driving force and a regenerative braking force to make a third This is a rotating electrical machine apparatus in which the voltage induced in the armature coil is controlled by being displaced in the same circumferential direction with respect to the rotor.

図16はインナーロータ構造の回転電機装置に本発明を適用した実施例の縦断面図を示し,回転軸11がベアリング13を介してハウジング161に回転可能に支持されている。第一回転子162,第二回転子163はベアリングを介して回転軸11に変位可能に保持され,第三回転子164は回転軸11に固定されている。第一回転子162,第二回転子163が変位制御される領域は,第三回転子164に対して常用の回転方向前方の領域であり,同じ極性の磁極に着目して第一回転子162が回転方向の先頭,第三回転子164が最後部,第二回転子163が両者の中間に位置するよう構成されている。第一回転子162の軸長,第二回転子163の軸長,第三回転子164の軸長は比率にして3:4:3に設定されている。番号19は電機子コイル,番号17は電機子コア,番号18は非磁性絶縁素材のスペーサを示す。   FIG. 16 is a longitudinal sectional view of an embodiment in which the present invention is applied to a rotating electrical machine apparatus having an inner rotor structure, and a rotating shaft 11 is rotatably supported by a housing 161 via a bearing 13. The first rotor 162 and the second rotor 163 are movably held on the rotary shaft 11 via bearings, and the third rotor 164 is fixed to the rotary shaft 11. The region in which the displacement of the first rotor 162 and the second rotor 163 is controlled is a region in front of the normal rotation direction with respect to the third rotor 164, and the first rotor 162 is focused on the magnetic poles having the same polarity. Are arranged in such a manner that the first rotor in the rotation direction, the third rotor 164 is located at the rearmost part, and the second rotor 163 is located between the two. The axial length of the first rotor 162, the axial length of the second rotor 163, and the axial length of the third rotor 164 are set to 3: 4: 3 as a ratio. Reference numeral 19 denotes an armature coil, reference numeral 17 denotes an armature core, and reference numeral 18 denotes a nonmagnetic insulating material spacer.

番号165はカップリングギア,番号166はカップリングギア軸を示し,第二回転子163に回転可能に保持されている。カップリングギア軸166は径方向であり,本実施例ではカップリングギア165,カップリングギア軸166の組み合わせが周方向に3個配置されている。番号167,168はそれぞれ第一回転子162,第三回転子164側面に配置されたサイドギアであり,周方向にギアが刻まれてそれぞれがカップリングギア165と噛み合うよう配置されている。カップリングギア165,カップリングギア軸166,サイドギア167,サイドギア168等で回転子結合機構が構成され,サイドギア167,サイドギア168は互いに逆方向に回転するので第一回転子162,第三回転子164の何れか一方が周方向に変位圧力を受ければ他方は逆の周方向に変位圧力を受ける構造である。   Reference numeral 165 denotes a coupling gear, and reference numeral 166 denotes a coupling gear shaft, which is rotatably held by the second rotor 163. The coupling gear shaft 166 is in the radial direction, and in this embodiment, three combinations of the coupling gear 165 and the coupling gear shaft 166 are arranged in the circumferential direction. Reference numerals 167 and 168 are side gears disposed on the side surfaces of the first rotor 162 and the third rotor 164, respectively, and are disposed so that the gears are engraved in the circumferential direction and mesh with the coupling gear 165, respectively. The coupling gear 165, the coupling gear shaft 166, the side gear 167, the side gear 168, and the like constitute a rotor coupling mechanism, and the side gear 167 and the side gear 168 rotate in opposite directions, so the first rotor 162 and the third rotor 164. If either one receives a displacement pressure in the circumferential direction, the other receives a displacement pressure in the opposite circumferential direction.

番号169は第一回転子162側面に固定されたクラッチ板,番号16aは可動クラッチ板,番号16dはスプリング,番号16eはスプリングストッパーをそれぞれ示し,可動クラッチ板16aがスプリング16dによりクラッチ板169に押しつけられている。更に番号16c,16bはアームを示し,回転軸11とアーム16c,アーム16cとアーム16b,アーム16bと可動クラッチ板16aとはそれぞれ回動可能なジョイントで接続され,このアーム組立が周方向に3組配置されて可動クラッチ板16aが回転軸11と平行方向に変位可能であると共に回転軸11と共に回転するよう構成されている。   Reference numeral 169 denotes a clutch plate fixed to the side surface of the first rotor 162, reference numeral 16a denotes a movable clutch plate, reference numeral 16d denotes a spring, reference numeral 16e denotes a spring stopper, and the movable clutch plate 16a is pressed against the clutch plate 169 by the spring 16d. It has been. Reference numerals 16c and 16b denote arms. The rotary shaft 11 and the arm 16c, the arm 16c and the arm 16b, and the arm 16b and the movable clutch plate 16a are connected by a rotatable joint, respectively. The movable clutch plates 16a are arranged in groups and can be displaced in a direction parallel to the rotary shaft 11 and rotate together with the rotary shaft 11.

番号16gは回転軸11を周回する励磁コイル,番号16fは断面がC字状で回転軸11を周回する励磁コアを示し,励磁コア16fはハウジング161に固定されている。可動クラッチ板16aの励磁コア16f側部材には少なくとも磁性材料が用いられ,クラッチ板169,可動クラッチ板16a,アーム16c,アーム16b,スプリング16d,スプリングストッパー16e,励磁コア16f,励磁コイル16g等により回転子位置制御手段が構成されている。   Reference numeral 16 g denotes an exciting coil that circulates around the rotating shaft 11, and reference numeral 16 f denotes an exciting core that has a C-shaped section and circulates around the rotating shaft 11. The exciting core 16 f is fixed to the housing 161. At least the magnetic material is used for the exciting core 16f side member of the movable clutch plate 16a. The clutch plate 169, the movable clutch plate 16a, the arm 16c, the arm 16b, the spring 16d, the spring stopper 16e, the exciting core 16f, the exciting coil 16g, etc. Rotor position control means is configured.

図17は図16に示された回転電機装置のD−D’に沿う断面図であり,電機子及び第二回転子163の断面を示す。回転子の磁極部分及び電機子は実施例1と同じ構成であるので説明は省略される。第二回転子サポート171は非磁性のステンレススチールで構成されて回転軸11に変位可能に保持されている。3組のカップリングギア165,カップリングギア軸166が第二回転子サポート171内に配置されている。   FIG. 17 is a cross-sectional view taken along D-D ′ of the rotating electrical machine apparatus shown in FIG. 16, and shows a cross section of the armature and the second rotor 163. Since the magnetic pole portion of the rotor and the armature have the same configuration as in the first embodiment, the description thereof is omitted. The second rotor support 171 is made of nonmagnetic stainless steel and is held on the rotary shaft 11 so as to be displaceable. Three sets of coupling gears 165 and coupling gear shafts 166 are arranged in the second rotor support 171.

図18は第一回転子162を第二回転子163側から見た平面図であり,第一回転子162の磁極構成は図17を参照して説明された第二回転子163の磁極構成と同じである。第一回転子サポート181にサイドギア167が配置されている。図16に縦断面図が示されるように第三回転子164側面にはサイドギア167と同じ形状のサイドギア168が配置されている。第三回転子164の磁極構成は図17に示された第二回転子163の磁極構成と同じである。   18 is a plan view of the first rotor 162 viewed from the second rotor 163 side. The magnetic pole configuration of the first rotor 162 is the same as the magnetic pole configuration of the second rotor 163 described with reference to FIG. The same. A side gear 167 is disposed on the first rotor support 181. As shown in a longitudinal sectional view in FIG. 16, a side gear 168 having the same shape as the side gear 167 is disposed on the side surface of the third rotor 164. The magnetic pole configuration of the third rotor 164 is the same as the magnetic pole configuration of the second rotor 163 shown in FIG.

図19は回転子位置制御手段を第一回転子162側から見た平面図であり,回転子位置制御手段の構成を更に説明する。可動クラッチ板16aは回転軸11を周回する構造でクラッチ板169と接する面には周方向に凹部191,凸部192が交互に形成されている。図示されていないが,クラッチ板169にも凹部191,凸部192と噛み合うような凹部,凸部が施され,クラッチ板169と可動クラッチ板16aとの間で回転力が伝達される構成である。   FIG. 19 is a plan view of the rotor position control means viewed from the first rotor 162 side, and the configuration of the rotor position control means will be further described. The movable clutch plate 16a has a structure that circulates around the rotating shaft 11, and has a concave portion 191 and a convex portion 192 formed alternately on the surface in contact with the clutch plate 169 in the circumferential direction. Although not shown, the clutch plate 169 is also provided with recesses and projections that mesh with the recesses 191 and 192, so that rotational force is transmitted between the clutch plate 169 and the movable clutch plate 16a. .

図19に示されるように可動クラッチ板16aは3組のアーム組立で回転軸11に支持されている。アーム組立の一つは各部材に番号が付されているようにアーム16cの両端にはジョイント部193,194が配置されている。ジョイント部193は回転軸11に固定されたピン196を中心に回動可能に構成され,ジョイント部194はアーム16bに固定されたピン197を中心に回動可能に構成されている。更にアーム16bに配置されたジョイント部195は可動クラッチ板16aに固定されたピン198を中心に回動可能に構成されている。   As shown in FIG. 19, the movable clutch plate 16a is supported on the rotating shaft 11 by three arm assemblies. In one of the arm assemblies, joints 193 and 194 are arranged at both ends of the arm 16c so that each member is numbered. The joint portion 193 is configured to be rotatable about a pin 196 fixed to the rotating shaft 11, and the joint portion 194 is configured to be rotatable about a pin 197 fixed to the arm 16b. Further, the joint portion 195 disposed on the arm 16b is configured to be rotatable about a pin 198 fixed to the movable clutch plate 16a.

このようにアーム16c,アーム16b,ジョイント部193,ジョイント部194,ジョイント部195等で構成された3組のアーム組立で可動クラッチ板16aは回転軸11に支持され,ジョイント部193,ジョイント部194,ジョイント部195は図16に示された縦断面図の面内で回動可能に構成されている。したがって,可動クラッチ板16aは回転軸11と平行方向に変位可能であると共に回転軸11と共に回転する。   In this way, the movable clutch plate 16a is supported on the rotating shaft 11 by the three arm assemblies including the arm 16c, the arm 16b, the joint portion 193, the joint portion 194, the joint portion 195, and the like. The joint portion 195 is configured to be rotatable within the plane of the longitudinal sectional view shown in FIG. Therefore, the movable clutch plate 16 a can be displaced in a direction parallel to the rotation shaft 11 and rotates together with the rotation shaft 11.

回転子位置制御手段の動作が図20,図21を用いて説明される。図20は図16に示された回転子位置制御手段が拡大された縦断面図であり,クラッチ板169に可動クラッチ板16aがスプリング16dにより押しつけられ,クラッチ板169と可動クラッチ板16aとの間で回転トルクが伝達されている状態である。この状態では第一回転子162,第二回転子163,第三回転子164が回転軸11と共に回転する。   The operation of the rotor position control means will be described with reference to FIGS. FIG. 20 is an enlarged longitudinal sectional view of the rotor position control means shown in FIG. 16. The movable clutch plate 16a is pressed against the clutch plate 169 by a spring 16d, and the gap between the clutch plate 169 and the movable clutch plate 16a is shown. In this state, the rotational torque is transmitted. In this state, the first rotor 162, the second rotor 163, and the third rotor 164 rotate together with the rotating shaft 11.

励磁コイル16gに電流が流されると,励磁コア16fには励磁磁束211が誘起され,少なくとも一部が磁性体で構成されている可動クラッチ板16aが励磁コア16f側に引きつけられ,可動クラッチ板16aがクラッチ板169から引き離される。図21はこの状態を示し,第三回転子164が回転軸11と共に回転するが,第一回転子162と回転軸11との結合は解除され,第一回転子162は回転軸11に対してフリーに回転できる状態となる。   When a current is passed through the exciting coil 16g, an exciting magnetic flux 211 is induced in the exciting core 16f, and the movable clutch plate 16a made of at least a part of a magnetic material is attracted to the exciting core 16f side, and the movable clutch plate 16a. Is pulled away from the clutch plate 169. FIG. 21 shows this state, where the third rotor 164 rotates together with the rotary shaft 11, but the coupling between the first rotor 162 and the rotary shaft 11 is released, and the first rotor 162 is in relation to the rotary shaft 11. It will be ready to rotate freely.

図21に示される状態に於いて,電機子コイル19から回転子に回転駆動力が与えられると,第三回転子164は回転軸11及び回転軸11に接続されている回転負荷と共に加速され,第一回転子162及び第二回転子163は第三回転子164より慣性モーメントが小さいので更に容易に加速されて第三回転子164に対して回転方向に変位させられる。回転子を減速させるように逆方向の回転駆動力が加えられた場合,或いは電機子コイルから電力を取り出す回生制動が掛けられた場合に第一回転子162及び第二回転子163は第三回転子164に対して回転方向とは逆方向に変位させられる。   In the state shown in FIG. 21, when a rotational driving force is applied from the armature coil 19 to the rotor, the third rotor 164 is accelerated together with the rotary shaft 11 and the rotary load connected to the rotary shaft 11, Since the first rotor 162 and the second rotor 163 have a smaller moment of inertia than the third rotor 164, the first rotor 162 and the second rotor 163 are more easily accelerated and displaced in the rotational direction with respect to the third rotor 164. When a reverse rotational driving force is applied so as to decelerate the rotor, or when regenerative braking is performed to extract electric power from the armature coil, the first rotor 162 and the second rotor 163 rotate the third. The child 164 is displaced in the direction opposite to the rotation direction.

第一回転子162及び第二回転子163が回転駆動力或いは回生制動力により変位させられるが,第一回転子162,第二回転子163,第三回転子164は回転子結合機構により互いに結合されているので常に第二回転子163は第一回転子162,第三回転子164間の中間に位置するよう変位させられる。すなわち,常に第二回転子163の第三回転子164に対する変位量は,第一回転子162の第三回転子164に対する変位量の半分である。第一回転子162及び第二回転子163が目標の変位量に達した時点で励磁コイル16gへの励磁電流は切断され,可動クラッチ板16aがスプリングによりクラッチ板169に押しつけられて図20に示す状態に戻される。   The first rotor 162 and the second rotor 163 are displaced by a rotational driving force or a regenerative braking force. The first rotor 162, the second rotor 163, and the third rotor 164 are coupled to each other by a rotor coupling mechanism. Therefore, the second rotor 163 is always displaced so as to be positioned between the first rotor 162 and the third rotor 164. That is, the displacement amount of the second rotor 163 relative to the third rotor 164 is always half of the displacement amount of the first rotor 162 relative to the third rotor 164. When the first rotor 162 and the second rotor 163 reach the target displacement, the exciting current to the exciting coil 16g is cut off, and the movable clutch plate 16a is pressed against the clutch plate 169 by the spring, as shown in FIG. Return to state.

第一回転子162及び第二回転子163の第三回転子164に対する変位量は専用の変位センサーを備えて知る事が出来るが,変位センサーを具備しなくても電機子コイル19への誘起電圧を検知し,その時の回転速度から容易に推定は出来る。また,前記変位制御では目標とする変位量まで連続して変位させたが,図21の状態の持続時間を短時間とし,図19に示された凹部191,凸部192の1ピッチ変位させる毎に図20,図21の状態を繰り返し,ステップ状に変位を繰り返して目標の変位量にまで到達させる方法,或いはそのミックスされた手順とする事も出来る。   The amount of displacement of the first rotor 162 and the second rotor 163 with respect to the third rotor 164 can be known with a dedicated displacement sensor, but the induced voltage to the armature coil 19 can be obtained without the displacement sensor. Can be easily estimated from the rotational speed at that time. In the displacement control, the target displacement amount is continuously displaced, but the duration of the state of FIG. 21 is set to a short time, and each time the concave portion 191 and the convex portion 192 shown in FIG. 20 and 21 may be repeated, and the displacement may be repeated stepwise to reach the target displacement amount, or a mixed procedure thereof.

以上に説明されたように回転駆動力を利用して第一回転子162,第二回転子163が変位させられる。しかし,通常の回転駆動では電機子コイル19と第二回転子163との相対位置を基準に電機子コイル19に供給される駆動電流が切り替えられる。第一回転子162,第二回転子163間の変位量が大になると,図10に示されたように第一回転子162に作用する回転駆動力は徐々に小となり,変位量が90度を超えると回転駆動力の方向が反転する。   As described above, the first rotor 162 and the second rotor 163 are displaced using the rotational driving force. However, in normal rotation driving, the drive current supplied to the armature coil 19 is switched based on the relative position between the armature coil 19 and the second rotor 163. When the displacement amount between the first rotor 162 and the second rotor 163 increases, the rotational driving force acting on the first rotor 162 gradually decreases as shown in FIG. 10, and the displacement amount is 90 degrees. If it exceeds, the direction of the rotational driving force is reversed.

更にクラッチ板169と可動クラッチ板16aとの結合が解除されて第一回転子162が回転軸11からフリーにされた状態でも回転子結合機構を介して第三回転子164及び回転軸11と接続されているので第一回転子162,第二回転子163それぞれに作用する回転駆動力の変位への寄与は同じではない。すなわち,第二回転子163は常に第一回転子162と第三回転子164との間の中間に位置するよう規制されているので第一回転子162,第二回転子163それぞれに作用する回転駆動力の変位への寄与は比率にして1:0.5となる。したがって,第一回転子162,第二回転子163間の変位量が大の場合に通常の回転駆動と同様の回転駆動力によっては第一回転子162,第二回転子163を変位させるに十分な力が得られない場合も有る。   Further, even when the coupling between the clutch plate 169 and the movable clutch plate 16a is released and the first rotor 162 is released from the rotating shaft 11, it is connected to the third rotor 164 and the rotating shaft 11 through the rotor coupling mechanism. Therefore, the contribution to the displacement of the rotational driving force acting on each of the first rotor 162 and the second rotor 163 is not the same. That is, since the second rotor 163 is always restricted to be positioned between the first rotor 162 and the third rotor 164, the rotations acting on the first rotor 162 and the second rotor 163, respectively. The contribution of the driving force to the displacement is 1: 0.5 as a ratio. Therefore, when the amount of displacement between the first rotor 162 and the second rotor 163 is large, the first rotor 162 and the second rotor 163 are sufficient to displace depending on the rotational drive force similar to the normal rotational drive. In some cases, it may not be possible to obtain sufficient power.

通常の回転駆動で第一回転子162,第二回転子163に作用する回転駆動力の比は1.0対cos2θで近似され,変位されるべき第一回転子162,第二回転子163に作用する回転駆動力を最大にするには通常の回転駆動より駆動電流の位相を適切に進める事である。駆動電流の進角量をαとすると,前記変位に寄与する回転駆動力は0.5*0.4*cosα+0.3*cos(2θ−α)にほぼ比例する。0.4,0.3は第二回転子163,第一回転子162の軸長比を反映させた係数であり,0.5は回転子結合機構によるレバー比を示す。この表現から前記変位に寄与する回転駆動力を最適にする進角量αをその都度算出する事は出来るし,また予め算出し,確認済みの進角量αをデータマップとして保存し,参照する事で常に変位に必要な回転駆動力を最適に制御する事が出来,前記変位を迅速に完了できる。   The ratio of the rotational driving force acting on the first rotor 162 and the second rotor 163 in the normal rotational drive is approximated by 1.0 to cos 2θ, and the first rotor 162 and the second rotor 163 to be displaced are In order to maximize the rotational driving force that acts, it is necessary to appropriately advance the phase of the driving current rather than the normal rotational driving. When the advance amount of the drive current is α, the rotational driving force contributing to the displacement is approximately proportional to 0.5 * 0.4 * cos α + 0.3 * cos (2θ−α). 0.4 and 0.3 are coefficients reflecting the axial length ratio of the second rotor 163 and the first rotor 162, and 0.5 indicates the lever ratio by the rotor coupling mechanism. From this representation, the advance amount α that optimizes the rotational driving force that contributes to the displacement can be calculated each time, and the advance amount α that has been calculated in advance and confirmed is stored and referenced as a data map. As a result, the rotational driving force necessary for the displacement can always be optimally controlled, and the displacement can be completed quickly.

このように第一回転子162,第二回転子163の第三回転子164に対する変位量に応じて変位に寄与する回転駆動力を最適に制御できるが,若干単純化する事も出来る。すなわち,第一回転子162,第二回転子163に作用する回転駆動力は1対0.5の比で変位に寄与する事を考慮して電機子コイル19と第一回転子162との相対位置を基準に電機子コイル19に供給される駆動電流を制御する。すなわち,通常の回転駆動での駆動電流の位相を2θ分進めて(α=2θとして)電機子コイル19に供給する。   As described above, the rotational driving force contributing to the displacement can be optimally controlled according to the displacement amount of the first rotor 162 and the second rotor 163 with respect to the third rotor 164, but it can also be simplified slightly. That is, in consideration of the fact that the rotational driving force acting on the first rotor 162 and the second rotor 163 contributes to displacement at a ratio of 1: 0.5, the armature coil 19 and the first rotor 162 are relatively The drive current supplied to the armature coil 19 is controlled based on the position. That is, the phase of the drive current in the normal rotational drive is advanced by 2θ (assuming α = 2θ) and supplied to the armature coil 19.

以上,図16から図21に示した回転電機装置に於いて,第一回転子162,第二回転子163を第三回転子164に対して変位できることを説明した。本実施例は誘起電圧を制御して出力を最適化するシステムであり,図9を参照して回転電機システムとしての制御が更に説明される。図9は誘起電圧制御を行う回転電機システムのブロック図を示し,実施例1に於いて既に説明されているが,本実施例で番号96は励磁コイル16gに励磁電流を供給する励磁回路と読み替える。   As described above, it has been described that the first rotor 162 and the second rotor 163 can be displaced with respect to the third rotor 164 in the rotating electrical machine apparatus shown in FIGS. The present embodiment is a system for controlling the induced voltage to optimize the output, and the control as the rotating electrical machine system will be further described with reference to FIG. FIG. 9 shows a block diagram of a rotating electrical machine system that performs induced voltage control, which has already been described in the first embodiment. In this embodiment, the number 96 is read as an excitation circuit that supplies an excitation current to the excitation coil 16g. .

回転電機装置が電動機として用いられる場合に於いて,誘起電圧制御を行って回転駆動力が最適に制御されるが,その誘起電圧制御に回転駆動力そのものが利用される。制御装置94は出力93である回転速度が所定の値より大となった時には第一回転子162,第二回転子163を第三回転子114に対して回転方向に変位させ,第一回転子162,第二回転子163間及び第二回転子163,第三回転子164間の周方向間隔を大にして誘起電圧を減少させ,更に高速回転で駆動できるよう誘起電圧に対する電源電圧の余裕を大にさせる。すなわち,励磁回路96により励磁コイル16gに励磁電流を供給させて可動クラッチ板16aをクラッチ板169から離間させ,同時に駆動回路95から電機子コイル19に通常の回転駆動より2θ分位相を進めた駆動電流を供給して回転子に回転駆動力を作用させ,第一回転子162,第二回転子163を第三回転子164に対して回転方向に変位させ,誘起電圧が目標レベルにまで減少したら,励磁電流をゼロとして通常の回転駆動動作に復帰させる。   When the rotating electrical machine is used as an electric motor, the rotational driving force is optimally controlled by performing the induced voltage control, and the rotational driving force itself is used for the induced voltage control. The control device 94 displaces the first rotor 162 and the second rotor 163 in the rotational direction with respect to the third rotor 114 when the rotational speed, which is the output 93, becomes larger than a predetermined value, and the first rotor. 162, the circumferential interval between the second rotor 163 and the second rotor 163, the third rotor 164 is increased to reduce the induced voltage, and further, a margin of the power supply voltage with respect to the induced voltage is provided so that it can be driven at high speed rotation. Make it big. That is, an excitation current is supplied to the excitation coil 16g by the excitation circuit 96 so that the movable clutch plate 16a is separated from the clutch plate 169, and at the same time, the drive is advanced from the drive circuit 95 to the armature coil 19 by 2θ phase from the normal rotational drive. When electric current is supplied to cause the rotational driving force to act on the rotor, the first rotor 162 and the second rotor 163 are displaced in the rotational direction with respect to the third rotor 164, and the induced voltage is reduced to the target level. , Return to normal rotation drive operation with zero excitation current.

制御装置94は出力93である回転速度が所定の値より小となった時には第一回転子162,第二回転子163を第三回転子164に対して回転方向とは逆方向に変位させて誘起電圧を増大させ,回転子を駆動するトルクを大にさせる。すなわち,励磁回路96により励磁コイル16gに励磁電流を供給させて可動クラッチ板16aをクラッチ板169から離間させると同時に回転子を減速させるよう位相を通常の回転駆動より2θ分進めた駆動電流を駆動回路95から電機子コイル19に供給させ,第一回転子162,第二回転子163を第三回転子164に対して回転方向とは逆方向に変位させ,誘起電圧が目標レベルにまで増大したら,励磁電流をゼロとして通常の回転駆動動作に復帰させる。   The controller 94 displaces the first rotor 162 and the second rotor 163 in the direction opposite to the rotation direction with respect to the third rotor 164 when the rotation speed, which is the output 93, becomes smaller than a predetermined value. Increase the induced voltage and increase the torque to drive the rotor. That is, an excitation current is supplied to the excitation coil 16g by the excitation circuit 96 so that the movable clutch plate 16a is separated from the clutch plate 169, and at the same time, the drive current whose phase is advanced by 2θ from the normal rotational drive is driven so as to decelerate the rotor. When the circuit 95 is supplied to the armature coil 19 and the first rotor 162 and the second rotor 163 are displaced with respect to the third rotor 164 in the direction opposite to the rotation direction, the induced voltage increases to the target level. , Return to normal rotation drive operation with zero excitation current.

実施例3に於いて,回転駆動力,回生制動力を利用して第一回転子162,第二回転子163を周方向に変位させたが,変位量2θが大の場合,回転子の回転状態に少なからぬ影響を与える場合も有る。例えば,軸方向に隣接する回転子間の変位量2θが電気角にして90度以上である場合,通常の回転駆動と同じように駆動電流が供給される事は第三回転子164には電気角にして2θ分の位相が進められた駆動電流に対する回転駆動力が加えられる事になり,図10に示されるように第二回転子163と第三回転子164には互いに逆方向の回転駆動力が与えられる事になる。回生制動状態であった場合には第三回転子164に回転方向に加速するような力が作用する。   In the third embodiment, the first rotor 162 and the second rotor 163 are displaced in the circumferential direction by using the rotational driving force and the regenerative braking force. If the displacement 2θ is large, the rotation of the rotor is performed. It may have a considerable impact on the condition. For example, when the displacement 2θ between the rotors adjacent in the axial direction is 90 degrees or more in electrical angle, the drive current is supplied to the third rotor 164 as in the normal rotational drive. As a result, a rotational driving force is applied to the driving current whose phase is advanced by 2θ, and the second rotor 163 and the third rotor 164 are rotated in opposite directions as shown in FIG. Power will be given. In the regenerative braking state, a force that accelerates in the rotational direction acts on the third rotor 164.

第三回転子164には回転軸11及び慣性モーメントの大きな回転負荷が接続されているので第三回転子164等の回転状態を大きく変える事にならないが,回転状態にショックを与える。これを軽減させる為には第三回転子164を基準にして90度或いは270度の位相がずれた駆動電流を電機子コイル19に供給して第一回転子162,第二回転子163に回転駆動力を与え,変位させる事である。図10に示されるように第三回転子164への回転駆動力はほぼゼロになり,回転状態に影響を与える事はない。(別の表現を用いれば,通常の回転駆動に於ける駆動電流の切り替えタイミングを2θ−90だけ進める。)   The third rotor 164 is connected to the rotary shaft 11 and a rotational load having a large moment of inertia, so that the rotational state of the third rotor 164 and the like is not greatly changed, but a shock is given to the rotational state. In order to reduce this, a drive current whose phase is shifted by 90 degrees or 270 degrees with respect to the third rotor 164 is supplied to the armature coil 19 to rotate the first rotor 162 and the second rotor 163. A driving force is applied and displaced. As shown in FIG. 10, the rotational driving force to the third rotor 164 becomes almost zero and does not affect the rotational state. (In other words, the drive current switching timing in the normal rotational drive is advanced by 2θ-90.)

実施例1,2,3で示されたように第一回転子,第三回転子それぞれの第二回転子に対する相対変位量は等しく設定するのが基本形であり,誘起電圧波形は時間軸上で対称に,含まれる高調波成分は小さくなる。しかし,本発明の回転電機装置をモータとして使用する場合,第二回転子より回転方向の後方にある回転子には常に永久磁石を逆励磁する磁界が加えられ,第二回転子より回転方向の前方にある回転子には永久磁石を励磁する極性の磁界が加えられる。当然にそれら回転子が発生する回転トルクは影響を受ける可能性がある。   As shown in Examples 1, 2, and 3, the basic displacement is to set the relative displacement amounts of the first rotor and the third rotor relative to the second rotor equal to each other, and the induced voltage waveform is on the time axis. In contrast, the included harmonic components become smaller. However, when the rotating electrical machine apparatus of the present invention is used as a motor, a magnetic field that reversely excites the permanent magnet is always applied to the rotor located behind the second rotor in the rotational direction, and the rotational direction of the rotor is greater than that of the second rotor. A magnetic field having a polarity for exciting the permanent magnet is applied to the rotor in front. Of course, the rotational torque generated by these rotors may be affected.

したがって,回転時の各回転子の受ける影響を勘案し,第二回転子より回転方向の後方にある回転子の変位量を前方にある回転子の変位量より若干小に修正する,或いは第二回転子より回転方向の後方にある回転子の軸長を前方にある回転子の軸長より若干大に修正し,回転条件に応じて発生するトルクの均等化を図る事も可能である。   Therefore, considering the influence of each rotor during rotation, the displacement amount of the rotor located behind the second rotor in the rotational direction is corrected to be slightly smaller than the displacement amount of the rotor located forward. It is also possible to equalize the torque generated according to the rotation conditions by correcting the axial length of the rotor located behind the rotor in the rotational direction to be slightly larger than the axial length of the rotor located forward.

更にまた,第二回転子より回転方向の後方或いは前方にある回転子それぞれに含まれる永久磁石の仕様を調整して長期の使用に際して支障が生じないように対処する必要がある。また,第二回転子に関して回転方向の前後に位置する回転子の位置を固定化することなく,一定期間毎に回転子の位置を交替させる事も長期の使用に際して有効である。以上の変更,運用上の対処策は何ら本発明の趣旨を損なう訳ではない。   Furthermore, it is necessary to adjust the specifications of the permanent magnets included in each of the rotors behind or in the rotational direction of the second rotor so as not to hinder long-term use. In addition, it is also effective for long-term use that the position of the rotor is changed at regular intervals without fixing the position of the rotor positioned before and after the rotation direction with respect to the second rotor. The above changes and countermeasures for operation do not impair the gist of the present invention.

以上,本発明の回転電機装置について,実施例を挙げて説明した。これらの実施例は本発明の趣旨,目的を実現する例を示したのであって本発明の範囲を限定するわけでは無い。例えば上記説明に於いて第一,第二,第三回転子の磁極構成は全く同じとしたが,同じ磁極数で異なる磁極構造の回転子の組み合わせも本発明で可能であり,従来にない特性の回転電機装置を実現する事が出来る。第一,第三回転子の磁極構成を上記実施例に於けると同じ構成とし,第二回転子を駆動電流の進み位相制御により弱め界磁が可能でリラクタンストルクの利用が可能な磁極構成とする。この構成で同種磁極に関して第一,第三回転子間の周方向間隔を約180度にすると,回転子全体の動作はほぼ第二回転子のみによって決まるとして従来の回転電機装置と同様に駆動電流の進み位相制御で回転子の駆動制御が可能となる。   In the above, the rotating electrical machine apparatus of the present invention has been described with reference to the embodiments. These examples show examples of realizing the gist and purpose of the present invention, and do not limit the scope of the present invention. For example, in the above description, the magnetic pole configurations of the first, second, and third rotors are exactly the same, but a combination of rotors having the same number of magnetic poles and different magnetic pole structures is also possible in the present invention, and characteristics that are not present Can be realized. The magnetic pole configuration of the first and third rotors is the same as that in the above embodiment, and the magnetic field configuration in which the second rotor can be weakened by the advance phase control of the drive current and the reluctance torque can be used. To do. With this configuration, when the circumferential interval between the first and third rotors is about 180 degrees with respect to the same kind of magnetic poles, the operation of the entire rotor is determined only by the second rotor, and the drive current is the same as in the conventional rotating electrical machine. The drive control of the rotor becomes possible by the advance phase control.

更に例えば,上記の説明に於いて電機子の内周側に回転子が配置されるインナーロータ構造の回転電機装置が実施例に挙げられたが,当然に電機子の外周側に回転子が配置されるアウターロータ構造の回転電機装置も可能である。また,上記実施例に於ける回転子の磁極構成,電機子の構成,回転子の分割比等はそれぞれ組み合わせを変えて本発明の趣旨を実現する回転電機装置を構成できる事は勿論である。   Further, for example, in the above description, the example of the rotary electric machine device having the inner rotor structure in which the rotor is arranged on the inner peripheral side of the armature is given, but naturally the rotor is arranged on the outer peripheral side of the armature. A rotating electrical machine apparatus having an outer rotor structure is also possible. Of course, the rotor magnetic pole configuration, armature configuration, rotor split ratio, etc. in the above embodiments can be combined to form a rotating electrical machine apparatus that realizes the gist of the present invention.

Claims (17)

ハウジングと,一以上の電機子コイルが周方向に配置された電機子と,周方向に隣接する磁性体突極が永久磁石により互いに異極に磁化された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転軸と共に回転可能に構成された回転電機装置であって,回転子は磁極数の等しい第一回転子,第二回転子,第三回転子がこの順に軸方向に並ぶと共に二つの回転子が他に対して周方向に変位可能に構成され,更に回転子位置制御手段を有し,第一回転子,第二回転子,第三回転子の同極磁極が軸方向に並ぶ位置を基準位置とし,回転速度が所定の値より大の時に回転子位置制御手段は第二回転子に対して第一回転子,第三回転子を前記基準位置から互いに逆の周方向に相対変位させるそれぞれの変位量を電気角にしてゼロから180度迄の範囲内で大にさせて誘起電圧を減少させ,回転速度が所定の値より小の時に回転子位置制御手段は前記変位量を小にさせて誘起電圧を増大させ,回転力が最適に制御される事を特徴とする回転電機システム A housing, an armature in which one or more armature coils are arranged in the circumferential direction, and a rotor in which magnetic salient poles adjacent in the circumferential direction are magnetized to different polarities by a permanent magnet; A rotating electrical machine apparatus configured to be opposed to an armature in a radial direction through a minute gap and to be rotatable together with a rotating shaft, wherein the rotor has a first rotor, a second rotor, and a third rotation having the same number of magnetic poles. The rotors are arranged in this order in the axial direction, and the two rotors are configured to be displaceable in the circumferential direction with respect to the others, and further have rotor position control means. The first rotor, the second rotor, and the third rotation The position where the same-pole magnetic poles of the rotor are aligned in the axial direction is used as a reference position, and when the rotational speed is larger than a predetermined value, the rotor position control means places the first rotor and the third rotor with respect to the second rotor. The amount of displacement for each relative displacement in the opposite circumferential direction from the reference position is set to an electrical angle. The induced voltage is decreased within a range from 1 to 180 degrees to reduce the induced voltage. When the rotational speed is smaller than a predetermined value, the rotor position control means reduces the displacement amount to increase the induced voltage, thereby increasing the rotational force. Rotating electrical machine system characterized by optimal control 請求項1記載の回転電機システムに於いて,第二回転子に対する第一回転子,第三回転子それぞれの変位量は等しく構成され,電機子コイルと第二回転子との相対位置関係を基準に駆動電流の極性を切替て回転子が回転駆動される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the displacement amounts of the first rotor and the third rotor with respect to the second rotor are equal, and the relative positional relationship between the armature coil and the second rotor is used as a reference. The rotating electrical machine system is characterized in that the rotor is driven to rotate by switching the polarity of the drive current at the same time 請求項1記載の回転電機システムに於いて,第一回転子,第三回転子の何れか一方が第二回転子に対して周方向に変位圧力を受けると,他方は第二回転子に対して逆の周方向に変位圧力を受けるよう第一回転子と第二回転子と第三回転子とが機械的に結合される回転子結合機構を有する事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein when one of the first rotor and the third rotor receives a displacement pressure in the circumferential direction with respect to the second rotor, the other is applied to the second rotor. And a rotating electrical machine system having a rotor coupling mechanism in which the first rotor, the second rotor, and the third rotor are mechanically coupled so as to receive displacement pressures in opposite circumferential directions. 請求項3記載の回転電機システムに於いて,回転子結合機構は回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう構成されている事を特徴とする回転電機システム 4. The rotating electrical machine system according to claim 3, wherein the rotor coupling mechanism is arranged around the rotating shaft and rotatably arranged on the first rotor, the side gear fixed to the third rotor, and the second rotor. Having a coupling gear composed of the above gears, the first and third rotors are coupled to the coupling gear so that the first and third rotors are displaced in opposite circumferential directions with respect to the second rotor. Rotating electrical machine system characterized in that each side gear of each child is engaged. 請求項1記載の回転電機システムに於いて,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう構成され,回転軸に固定された第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, comprising one or more gears orbiting around the rotating shaft and fixed to the first rotor, the third rotor, and rotatably arranged on the second rotor. A coupling gear is provided, and the side gears of the first rotor and the third rotor are coupled to the coupling gear so that the first rotor and the third rotor are displaced in opposite circumferential directions with respect to the second rotor. A rotating electrical machine system characterized in that a first rotor and a third rotor are displaced in opposite circumferential directions with respect to a second rotor that is configured to mesh with and fixed to a rotating shaft. 請求項1記載の回転電機システムに於いて,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう構成され,回転軸に固定された第三回転子に対して第一回転子,第二回転子が同じ周方向に変位される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, comprising one or more gears orbiting around the rotating shaft and fixed to the first rotor, the third rotor, and rotatably arranged on the second rotor. A coupling gear is provided, and the side gears of the first rotor and the third rotor are coupled to the coupling gear so that the first rotor and the third rotor are displaced in opposite circumferential directions with respect to the second rotor. A rotating electrical machine system characterized in that a first rotor and a second rotor are displaced in the same circumferential direction with respect to a third rotor that is configured to mesh with each other and fixed to a rotating shaft. 請求項1記載の回転電機システムに於いて,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう構成され,回転軸に固定された第三回転子に対して主として用いられる常用の回転方向に先行する領域で第一回転子,第二回転子が変位制御される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, comprising one or more gears orbiting around the rotating shaft and fixed to the first rotor, the third rotor, and rotatably arranged on the second rotor. A coupling gear is provided, and the side gears of the first rotor and the third rotor are coupled to the coupling gear so that the first rotor and the third rotor are displaced in opposite circumferential directions with respect to the second rotor. Rotation characterized in that the first rotor and the second rotor are controlled to be displaced in a region preceding the normal rotation direction that is mainly used for the third rotor fixed to the rotating shaft and configured to mesh with each other. Electric system 請求項1記載の回転電機システムに於いて,回転子位置制御手段は,回転子結合機構,スライドスリーブ,斜交溝スライドピン,直線溝スライドピン,アクチュエータを有し,回転子結合機構は,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう配置され,スライドスリーブは,外周面に回転軸に対して斜めの斜交溝,内周面に回転軸と平行の直線溝を有して回転軸外周に配置された直線溝スライドピンが前記直線溝をスライドするよう配置され,斜交溝スライドピンは,スライドスリーブ外周面の斜交溝内をスライドするよう配置されると共に斜交溝スライドピンの他端が第三回転子に固定され,ハウジング側に配置されたアクチュエータが回転軸と共に回転するスライドスリーブを回転軸と平行の方向に変位させて第三回転子が回転軸に対して周方向に変位され,第二回転子に対する第一回転子,第三回転子それぞれの相対的変位量が変更される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the rotor position control means includes a rotor coupling mechanism, a slide sleeve, an oblique groove slide pin, a linear groove slide pin, and an actuator. A first gear, a side gear fixed to the third rotor, and a coupling gear composed of one or more gears rotatably disposed on the second rotor, with respect to the second rotor The first and third rotors are arranged so that the side gears of the first and third rotors mesh with each other so that the first and third rotors are displaced in opposite circumferential directions, and the slide sleeve rotates on the outer circumferential surface. An oblique groove oblique to the shaft, a linear groove slide pin arranged on the outer periphery of the rotary shaft having a linear groove parallel to the rotary shaft on the inner peripheral surface is arranged to slide on the linear groove, and the oblique groove The slide pin is The slide sleeve is arranged so as to slide in the oblique groove on the outer peripheral surface of the ride sleeve, and the other end of the oblique groove slide pin is fixed to the third rotor, and the actuator arranged on the housing side rotates with the rotary shaft. The third rotor is displaced in the circumferential direction with respect to the rotation axis by being displaced in a direction parallel to the rotation axis, and the relative displacement amounts of the first and third rotors with respect to the second rotor are changed. Rotating electrical machine system 請求項1記載の回転電機システムに於いて,回転子位置制御手段は,回転子結合機構,第一遊星ギア機構,第二遊星ギア機構,アクチュエータを有し,回転子結合機構は,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう配置され,第一遊星ギア機構は,第二回転子,第三回転子の何れかに固定されたサンギア,ハウジングに固定されたリングギア,サンギア及びリングギアとに噛み合う遊星ギア,遊星ギア支持軸とを有して遊星ギア支持軸は外部への出力軸に固定され,第二遊星ギア機構は,第一回転子に固定されたサンギア,アクチュエータにより回動可能に配置されたリングギア,サンギア及びリングギアとに噛み合う遊星ギア,遊星ギア支持軸とを有して遊星ギア支持軸は前記出力軸に固定され,ハウジング側に配置されたアクチュエータが第二遊星ギア機構内のリングギアを周方向に変位させて第一回転子が回転軸に対して周方向に変位され,第二回転子に対する第一回転子,第三回転子それぞれの相対的変位量が変更される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the rotor position control means includes a rotor coupling mechanism, a first planetary gear mechanism, a second planetary gear mechanism, and an actuator, and the rotor coupling mechanism includes a rotating shaft. The first rotor, a side gear fixed to the third rotor, and a coupling gear comprising one or more gears rotatably disposed on the second rotor, The first and third rotors are arranged so that the side gears of the first and third rotors mesh with the coupling gear so that the first and third rotors are displaced in opposite circumferential directions. The planetary gear support shaft is connected to the outside. The planetary gear support shaft has a planetary gear engaging with the ring gear, the sun gear fixed to the housing, the ring gear fixed to the housing, the sun gear and the ring gear, and the planetary gear support shaft. Fixed to the output shaft, The two planetary gear mechanism has a sun gear fixed to the first rotor, a ring gear rotatably arranged by an actuator, a planetary gear meshing with the sun gear and the ring gear, and a planetary gear support shaft, and supports the planetary gear. The shaft is fixed to the output shaft, and the actuator disposed on the housing side displaces the ring gear in the second planetary gear mechanism in the circumferential direction, so that the first rotor is displaced in the circumferential direction with respect to the rotation shaft, The rotating electrical machine system characterized in that the relative displacement amounts of the first and third rotors with respect to the two rotors are changed. 請求項1記載の回転電機システムに於いて,第三回転子は回転軸に固定され,第一回転子及び第二回転子が第三回転子に対して周方向に変位される構成であって,回転子位置制御手段は,回転子結合機構,クラッチ機構を有し,回転子結合機構は,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう配置され,クラッチ機構は,第一回転子,第二回転子の何れかを回転軸に把持及び解放出来る構成とし,第三回転子に対して第一回転子及び第二回転子を変位させる際にクラッチ機構により第一回転子及び第二回転子が回転軸への把持から解放され,回転駆動力或いは回生制動力を利用して第一回転子及び第二回転子が変位させられた後にクラッチ機構により第一回転子及び第二回転子が回転軸に把持される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the third rotor is fixed to a rotating shaft, and the first rotor and the second rotor are displaced in the circumferential direction with respect to the third rotor. The rotor position control means has a rotor coupling mechanism and a clutch mechanism. The rotor coupling mechanism circulates around the rotating shaft and is fixed to the first rotor and the third rotor, and the second rotor. The coupling gear is composed of one or more gears rotatably arranged on the coupling gear so that the first rotor and the third rotor are displaced in opposite circumferential directions with respect to the second rotor. The first and third rotors are arranged so that the side gears mesh with each other, and the clutch mechanism is configured so that either the first rotor or the second rotor can be held and released on the rotation shaft. When the first and second rotors are displaced, The mechanism releases the first rotor and the second rotor from gripping the rotation shaft, and after the first rotor and the second rotor are displaced using the rotational driving force or the regenerative braking force, the clutch mechanism A rotating electrical machine system in which a first rotor and a second rotor are held by a rotating shaft 請求項1記載の回転電機システムに於いて,第一回転子,第二回転子,第三回転子の何れかの回転子或いは回転子群が他に対して変位される際に電機子から当該回転子或いは回転子群への回転駆動力が大となる位相で電機子コイルに駆動電流が供給され,回転駆動力が当該回転子或いは回転子群の変位に利用される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein when the rotor or the rotor group of any one of the first rotor, the second rotor, and the third rotor is displaced with respect to the other, the armature A rotation characterized in that a driving current is supplied to the armature coil at a phase where the rotational driving force to the rotor or the rotor group becomes large, and the rotational driving force is used for displacement of the rotor or the rotor group. Electric system 請求項1記載の回転電機システムに於いて,第三回転子が回転軸に固定され,第三回転子に対して第一回転子,第二回転子が同じ周方向に変位される構成であって,回転軸を周回し且つ第一回転子,第三回転子に固定されたサイドギア,第二回転子に回転可能に配置された1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう配置され,第一回転子への回転駆動力が最大になる位相で電機子コイルに駆動電流が供給され,回転駆動力が第一回転子,第二回転子の変位に利用される事を特徴とする回転電機システム 2. The rotating electrical machine system according to claim 1, wherein the third rotor is fixed to the rotating shaft, and the first rotor and the second rotor are displaced in the same circumferential direction with respect to the third rotor. And a first gear, a side gear fixed to the third rotor, and a coupling gear comprising one or more gears rotatably arranged on the second rotor, and the second rotation The side gears of the first and third rotors are arranged in mesh with the coupling gear so that the first and third rotors are displaced in opposite circumferential directions with respect to the rotor. The rotating electrical machine system is characterized in that a driving current is supplied to the armature coil at a phase where the rotational driving force of the rotor becomes maximum, and the rotational driving force is used for displacement of the first rotor and the second rotor. 一以上の電機子コイルが周方向に配置された電機子と,周方向に隣接する磁性体突極が永久磁石により互いに異極に磁化された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転可能に構成された回転電機装置の電機子コイルに誘起される誘起電圧制御方法であって,回転子を磁極数の等しい第一回転子,第二回転子,第三回転子の順で軸方向に並べると共に第一回転子,第三回転子を第二回転子に対して周方向に変位可能に構成し,回転軸を周回し且つ第一回転子,第三回転子に固定したサイドギア,第二回転子に回転可能に配置した1以上のギアより成るカップリングギアを有し,第二回転子に対して第一回転子,第三回転子が互いに逆の周方向に変位するようカップリングギアに第一回転子,第三回転子それぞれのサイドギアが噛み合うよう構成し,第一回転子,第二回転子,第三回転子の同極磁極が軸方向に並ぶ位置を基準位置とし,誘起電圧を減少させる時には第二回転子に対して第一回転子,第三回転子を前記基準位置から互いに逆の周方向に変位させる変位量を大にさせ,誘起電圧を増大させる時には前記変位量を小にさせる事を特徴とする誘起電圧制御方法 The armature includes one or more armature coils arranged in the circumferential direction, and a rotor in which magnetic salient poles adjacent to each other in the circumferential direction are magnetized differently by a permanent magnet. A method for controlling an induced voltage induced in an armature coil of a rotating electrical machine device that is configured to face and rotate in a radial direction with a minute gap between the first rotor and the second rotor having the same number of magnetic poles. the rotor, the first rotor with arranged axially in the order of the third rotor, a third rotor displaceably constructed in the circumferential direction relative to the second rotor, orbiting and and first rotating the rotary shaft A rotor, a side gear fixed to the third rotor, and a coupling gear composed of one or more gears rotatably arranged on the second rotor, the first rotor and the third rotor with respect to the second rotor The first and third rotors are coupled to the coupling gear so that they are displaced in opposite circumferential directions. Configured to respective side gear meshes, the first rotor, second rotor, the second rotor when the same magnetic poles of the third rotor as a reference position a position aligned axially, reducing the induced voltage In contrast, the first rotor and the third rotor are displaced in the circumferential direction opposite to each other from the reference position, and the displacement is decreased when the induced voltage is increased. Voltage control method 一以上の電機子コイルが周方向に配置された電機子と,周方向に隣接する磁性体突極が永久磁石により互いに異極に磁化された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転可能に構成された回転電機装置の電機子コイルに誘起される誘起電圧制御方法であって,回転子を磁極数の等しい第一回転子,第二回転子,第三回転子の順に軸方向に並べると共に一つを固定回転子として回転軸に固定し,他の二つを変位回転子群として固定回転子に対して周方向に変位可能に構成し,第一回転子,第三回転子の何れか一方が第二回転子に対して周方向に変位圧力を受けると,他方は第二回転子に対して逆の周方向に変位圧力を受けるよう第一回転子と第二回転子と第三回転子とを機械的に結合し,第一回転子,第二回転子,第三回転子の同極磁極が軸方向に並ぶ位置を基準位置とし,前記変位回転子群の一つの回転子を前記基準位置から固定回転子に対して周方向に変位させる変位量を大にして誘起電圧を減少させ,前記変位量を小にして誘起電圧を増大させる事を特徴とする誘起電圧制御方法 The armature includes one or more armature coils arranged in the circumferential direction, and a rotor in which magnetic salient poles adjacent to each other in the circumferential direction are magnetized differently by a permanent magnet. A method for controlling an induced voltage induced in an armature coil of a rotating electrical machine device that is configured to face and rotate in a radial direction with a minute gap between the first rotor and the second rotor having the same number of magnetic poles. The rotor and third rotor are arranged in this order in the axial direction, and one is fixed to the rotating shaft as a fixed rotor, and the other two are arranged as displacement rotors so that they can be displaced in the circumferential direction with respect to the fixed rotor. When either the first rotor or the third rotor receives displacement pressure in the circumferential direction with respect to the second rotor, the other receives displacement pressure in the opposite circumferential direction with respect to the second rotor. The first rotor, the second rotor, and the third rotor are mechanically coupled so that the first rotor, the second rotor The amount of displacement by which one rotor of the group of displacement rotors is displaced from the reference position in the circumferential direction with respect to the fixed rotor, with the position where the poles of the rotor and third rotor are aligned in the axial direction as the reference position Induced voltage control method characterized in that the induced voltage is decreased by increasing the value and the induced voltage is increased by decreasing the displacement amount. 一以上の電機子コイルが周方向に配置された電機子と,周方向に隣接する磁性体突極が永久磁石により互いに異極に磁化された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転可能に構成された回転電機装置の電機子コイルに誘起される誘起電圧制御方法であって,回転子を磁極数の等しい第一回転子,第二回転子,第三回転子の順に軸方向に並べて構成し,第一回転子,第二回転子を第三回転子に対して周方向の同じ方向に変位可能に構成すると共に第一回転子,第二回転子の何れかを周方向に変位させると,第二回転子,第三回転子間の変位量を第一回転子,第三回転子間の変位量の半分に保ちながら変位するよう第一回転子と第二回転子と第三回転子とを機械的に結合し,第一回転子,第二回転子,第三回転子の同極磁極が軸方向に並ぶ位置を基準位置とし,誘起電圧を減少させる時には第一回転子,第二回転子の第三回転子に対する前記基準位置からの変位量を大にさせ,誘起電圧を増大させる時には前記変位量を小にさせる事を特徴とする誘起電圧制御方法 The armature includes one or more armature coils arranged in the circumferential direction, and a rotor in which magnetic salient poles adjacent to each other in the circumferential direction are magnetized differently by a permanent magnet. A method for controlling an induced voltage induced in an armature coil of a rotating electrical machine device that is configured to face and rotate in a radial direction with a minute gap between the first rotor and the second rotor having the same number of magnetic poles. The rotor and the third rotor are arranged in the axial direction in this order, the first rotor and the second rotor are configured to be displaceable in the same circumferential direction with respect to the third rotor, and the first rotor, When any of the second rotors is displaced in the circumferential direction, the displacement between the second and third rotors is displaced while maintaining half of the displacement between the first and third rotors. The first rotor, the second rotor, and the third rotor are mechanically coupled, and the first rotor, the second rotor, the third rotor The position where the same-pole magnetic poles of the rotor are aligned in the axial direction is used as a reference position, and when the induced voltage is reduced, the displacement of the first rotor and the second rotor from the reference position with respect to the third rotor is increased. An induced voltage control method characterized by reducing the amount of displacement when increasing the induced voltage 一以上の電機子コイルが周方向に配置された電機子と,周方向に隣接する磁性体突極が永久磁石により互いに異極に磁化された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転可能に構成された回転電機装置の電機子コイルに誘起される誘起電圧制御方法であって,回転子を磁極数の等しい第一回転子,第二回転子,第三回転子の順に軸方向に並べて構成し,第一回転子,第二回転子を第三回転子に対して周方向の同じ方向に変位可能に構成すると共に第一回転子,第二回転子の何れかを周方向に変位させると,第二回転子,第三回転子間の変位量を第一回転子,第三回転子間の変位量の半分に保ちながら変位するよう第一回転子と第二回転子と第三回転子とを機械的に結合し,第一回転子,第二回転子,第三回転子の同極磁極が軸方向に並ぶ位置を基準位置とし,誘起電圧を減少させる時には第一回転子,第二回転子の第三回転子に対する前記基準位置からの変位量が大となる方向の回転駆動力が第一回転子,第二回転子に加わるよう電機子コイルに駆動電流を流し,回転駆動力を第一回転子,第二回転子の変位に利用して前記変位量を大にさせ,誘起電圧を増大させる時には前記変位量が小となる方向の回転駆動力が第一回転子,第二回転子に加わるよう電機子コイルに駆動電流を流し,回転駆動力を第一回転子,第二回転子の変位に利用して前記変位量を小にさせる事を特徴とする誘起電圧制御方法 The armature includes one or more armature coils arranged in the circumferential direction, and a rotor in which magnetic salient poles adjacent to each other in the circumferential direction are magnetized differently by a permanent magnet. A method for controlling an induced voltage induced in an armature coil of a rotating electrical machine device that is configured to face and rotate in a radial direction with a minute gap between the first rotor and the second rotor having the same number of magnetic poles. The rotor and the third rotor are arranged in the axial direction in this order, the first rotor and the second rotor are configured to be displaceable in the same circumferential direction with respect to the third rotor, and the first rotor, When any of the second rotors is displaced in the circumferential direction, the displacement between the second and third rotors is displaced while maintaining half of the displacement between the first and third rotors. The first rotor, the second rotor, and the third rotor are mechanically coupled, and the first rotor, the second rotor, the third rotor The direction in which the displacement of the first rotor and the second rotor from the reference position is large when the induced voltage is reduced when the position where the same-pole magnetic poles of the rotor are aligned in the axial direction is used as the reference position. Current is applied to the armature coil so that the rotational driving force is applied to the first and second rotors, and the displacement is increased by using the rotational driving force for the displacement of the first and second rotors. When the induced voltage is increased, a driving current is supplied to the armature coil so that the rotational driving force in the direction in which the displacement becomes small is applied to the first rotor and the second rotor, and the rotational driving force is applied to the first rotation. Inductive voltage control method characterized in that the amount of displacement is reduced by utilizing the displacement of the rotor and the second rotor 一以上の電機子コイルが周方向に配置された電機子と,周方向に隣接する磁性体突極が永久磁石により互いに異極に磁化された回転子とを有し,回転子は電機子と微小間隙を介して半径方向に対向し且つ回転可能に構成された回転電機装置の回転駆動方法であって,回転子を磁極数の等しい第一回転子,第二回転子,第三回転子の順に軸方向に並べると共に二つの回転子を他に対して周方向に変位可能に構成し,第一回転子,第二回転子,第三回転子の同極磁極が軸方向に並ぶ位置を基準位置として基準位置から第一回転子,第三回転子それぞれの第二回転子に対する相対的変位量を等しく設定し,電機子コイルと第二回転子との相対位置関係を基準に駆動電流の極性を切替て回転子を回転駆動させ,回転速度が所定の値より大の時には第二回転子に対して第一回転子,第三回転子を前記基準位置から互いに逆の周方向に相対変位させるそれぞれの変位量を大にして誘起電圧を減少させて誘起電圧に対する電源電圧の余裕分を大にし,回転速度が所定の値より小の時には前記相対的変位量を小にして誘起電圧を増大させて発生させる回転駆動力を大にさせ,回転力を最適に制御する事を特徴とする回転駆動方法
The armature includes one or more armature coils arranged in the circumferential direction, and a rotor in which magnetic salient poles adjacent to each other in the circumferential direction are magnetized differently by a permanent magnet. A method for rotationally driving a rotating electrical machine apparatus that is configured to be opposed to and rotate in a radial direction with a minute gap between the first rotor, the second rotor, and the third rotor having the same number of magnetic poles. The two rotors are arranged in the axial direction in order and can be displaced in the circumferential direction with respect to the other, and the same poles of the first rotor, the second rotor, and the third rotor are aligned in the axial direction as a reference. Set the relative displacement of the first and third rotors relative to the second rotor from the reference position as the position, and the polarity of the drive current based on the relative positional relationship between the armature coil and the second rotor To rotate the rotor, and when the rotational speed is higher than the predetermined value, Reducing the induced voltage by increasing the amount of displacement of the first rotor and the third rotor relative to the rotator in the circumferential direction opposite to each other from the reference position, thereby allowing a margin of power supply voltage relative to the induced voltage. And when the rotational speed is smaller than a predetermined value, the relative displacement is decreased and the induced voltage is increased to increase the rotational driving force to be generated, thereby controlling the rotational force optimally. Rotation drive method
JP2014165617A 2014-06-06 2014-08-18 Magnet excitation rotating electrical machine system Expired - Fee Related JP5723473B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014165617A JP5723473B1 (en) 2014-06-06 2014-08-18 Magnet excitation rotating electrical machine system
PCT/JP2015/061931 WO2015186442A1 (en) 2014-06-06 2015-04-20 Magnet excitation rotating electric machine system
US14/726,612 US20150357891A1 (en) 2014-06-06 2015-06-01 Rotating electric machine system and method for controlling induced voltage for the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014117294 2014-06-06
JP2014117294 2014-06-06
JP2014138276 2014-07-04
JP2014138276 2014-07-04
JP2014165617A JP5723473B1 (en) 2014-06-06 2014-08-18 Magnet excitation rotating electrical machine system

Publications (2)

Publication Number Publication Date
JP5723473B1 true JP5723473B1 (en) 2015-05-27
JP2016067064A JP2016067064A (en) 2016-04-28

Family

ID=53277940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014165617A Expired - Fee Related JP5723473B1 (en) 2014-06-06 2014-08-18 Magnet excitation rotating electrical machine system

Country Status (1)

Country Link
JP (1) JP5723473B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620263B2 (en) 1984-04-27 1994-03-16 ソニー株式会社 Power control circuit

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155262A (en) * 1996-09-30 1998-06-09 Hitachi Metals Ltd Magnet type brushless motor
JP2001314068A (en) * 2000-05-01 2001-11-09 Denso Corp Two-rotor synchronous machine
JP2002165426A (en) * 2000-09-14 2002-06-07 Denso Corp Multiple-rotor synchronous machine
JP2004242461A (en) * 2003-02-07 2004-08-26 Denso Corp Rotor of variable magnetic flux magnet
JP2007097284A (en) * 2005-09-28 2007-04-12 Toyota Motor Corp Magnet type motor
JP2010154699A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Magnetic flux variable type rotating electrical machine
WO2010098006A1 (en) * 2009-02-24 2010-09-02 有限会社クラ技術研究所 Variable magnetic flux rotating electric machine system
JP2010246196A (en) * 2009-04-02 2010-10-28 Hitachi Ltd Rotary electric machine
JP2011254609A (en) * 2010-06-02 2011-12-15 Takeo Hiramatsu Device for setting phase difference between two-divided rotors of permanent magnetic type motor
JP2012191690A (en) * 2011-03-09 2012-10-04 Yaskawa Electric Corp Variable-field rotary electric machine
JP2013046440A (en) * 2011-08-22 2013-03-04 Yaskawa Electric Corp Rotary electric machine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155262A (en) * 1996-09-30 1998-06-09 Hitachi Metals Ltd Magnet type brushless motor
JP2001314068A (en) * 2000-05-01 2001-11-09 Denso Corp Two-rotor synchronous machine
JP2002165426A (en) * 2000-09-14 2002-06-07 Denso Corp Multiple-rotor synchronous machine
JP2004242461A (en) * 2003-02-07 2004-08-26 Denso Corp Rotor of variable magnetic flux magnet
JP2007097284A (en) * 2005-09-28 2007-04-12 Toyota Motor Corp Magnet type motor
JP2010154699A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Magnetic flux variable type rotating electrical machine
WO2010098006A1 (en) * 2009-02-24 2010-09-02 有限会社クラ技術研究所 Variable magnetic flux rotating electric machine system
JP2010246196A (en) * 2009-04-02 2010-10-28 Hitachi Ltd Rotary electric machine
JP2011254609A (en) * 2010-06-02 2011-12-15 Takeo Hiramatsu Device for setting phase difference between two-divided rotors of permanent magnetic type motor
JP2012191690A (en) * 2011-03-09 2012-10-04 Yaskawa Electric Corp Variable-field rotary electric machine
JP2013046440A (en) * 2011-08-22 2013-03-04 Yaskawa Electric Corp Rotary electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620263B2 (en) 1984-04-27 1994-03-16 ソニー株式会社 Power control circuit

Also Published As

Publication number Publication date
JP2016067064A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
JP4525830B2 (en) Synchronous motor
WO2008129904A1 (en) Controller for motor
KR101091444B1 (en) Flux shunt control rotary electric machine system
JP2012130223A (en) Synchronous motor
JP4150765B1 (en) Magnetic flux shunt control rotating electrical machine system
JP2015039251A (en) Magnet excitation rotary electric machine system
JP5842852B2 (en) Rotating electrical machine control system and rotating electrical machine control method
JP5723473B1 (en) Magnet excitation rotating electrical machine system
JP5265799B1 (en) Magnet excitation rotating electrical machine system
WO2015186442A1 (en) Magnet excitation rotating electric machine system
JP2011182622A (en) Magnetic flux volume variable rotary electric machine system
JP5504637B2 (en) Electric motor and control method thereof
JP6986337B2 (en) Variable magnetic flux motor
JP5759054B1 (en) Magnet excitation rotating electrical machine system
JP2005278268A (en) Permanent magnet type motor
US20120081060A1 (en) Control apparatus for driving apparatus
WO2015022733A1 (en) Magnetic excitation rotating electric machine system
JP7039322B2 (en) Variable field motor
JP6205264B2 (en) Axial variable gap rotating electric machine
JP4150779B1 (en) Magnetic flux shunt control rotating electrical machine system
JP2016010182A (en) Magnet excitation rotary electric machine system
JP4808529B2 (en) Electric motor
JP4238298B1 (en) Magnetic flux shunt control rotating electrical machine system
WO2012070514A1 (en) Rotating device using permanent magnet
JP2009303361A (en) Magnetic flux shunt control rotary electric machine system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150327

R150 Certificate of patent or registration of utility model

Ref document number: 5723473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees