JP2015122886A - Axial variable gap type rotary electric machine - Google Patents

Axial variable gap type rotary electric machine Download PDF

Info

Publication number
JP2015122886A
JP2015122886A JP2013265607A JP2013265607A JP2015122886A JP 2015122886 A JP2015122886 A JP 2015122886A JP 2013265607 A JP2013265607 A JP 2013265607A JP 2013265607 A JP2013265607 A JP 2013265607A JP 2015122886 A JP2015122886 A JP 2015122886A
Authority
JP
Japan
Prior art keywords
rotor
axial
shaft
stator
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013265607A
Other languages
Japanese (ja)
Other versions
JP6205264B2 (en
Inventor
坂本 正文
Masabumi Sakamoto
正文 坂本
佳雅 野田
Yoshimasa Noda
佳雅 野田
重善 佐藤
Shigeyoshi Sato
重善 佐藤
俊輔 竹口
Shunsuke Takeguchi
俊輔 竹口
Original Assignee
日本ピストンリング株式会社
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ピストンリング株式会社, Nippon Piston Ring Co Ltd filed Critical 日本ピストンリング株式会社
Priority to JP2013265607A priority Critical patent/JP6205264B2/en
Publication of JP2015122886A publication Critical patent/JP2015122886A/en
Application granted granted Critical
Publication of JP6205264B2 publication Critical patent/JP6205264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide a rotary electric machine in which speeding up and high torque thereof can be achieved by an inexpensive, simple, and highly-reliable method.SOLUTION: A stator comprises a stator iron core part which has a plurality of first teeth parts with concentric circular-arc shape protrude in a shaft direction and has a plurality of salient-pole iron cores for winding, in which a winding shaft is formed in parallel with a fixed shaft, distributed and arranged in a circumference direction. In a rotator, rotator magnetic poles constituted of a plurality of magnetic bodies are distributed and arranged in a circumference direction, where each rotator magnetic pole is concentric and has a second protruded tooth part arranged oppositely to engage with a first tooth part in a shaft direction via an air gap. A rotation body cannot be moved in the shaft direction, and the rotator is installed to be movable in the shaft direction and installed in the rotation body to enable torque transmission. In either one of the stator and the rotator are formed with a plurality of female screws in the shaft direction, and an air gap between the rotator and the stator is rotated by driving means having a plurality of male screws to engage with the female screws arranged coaxially with the shaft, thereby energizing and moving the rotator in the shaft direction by thrust of the driving means.

Description

本発明は回転電機に係り、特に、電動機や発電機のアキシャルギャップ式回転電機に関する。   The present invention relates to a rotating electrical machine, and more particularly to an axial gap rotating electrical machine for an electric motor or a generator.
電動機や発電機として用いられる回転電機は、市場より軽薄短小化の要求が強く、また最近は地球温暖化対策として、省エネルギー化や高効率化の要求も増加してきている。更に、低振動化、低騒化、そして安価であることも強く要求されている。その中で、固定軸方向にエアギャップを有するアキシャルギャップ式回転電機は扁平で薄型に有利な構造であり、回転子を円盤状にすれば慣性も小さくできるので、一定速度運転にも、可変速度運転にも適した回転電機であり、近年注目されだした回転電機の形態であり、種々の形態が知られている。   Rotating electric machines used as electric motors and generators are more demanding to be lighter, thinner, and smaller than the market, and recently, demands for energy saving and higher efficiency are increasing as a countermeasure against global warming. Furthermore, low vibration, low noise, and low cost are also strongly required. Among them, the axial gap type rotating electrical machine having an air gap in the fixed axis direction is a flat and thin structure that is advantageous for thinness, and if the rotor is made into a disk shape, the inertia can be reduced, so even for constant speed operation, variable speed It is a rotating electrical machine suitable for operation, is a form of rotating electrical machine that has been attracting attention in recent years, and various forms are known.
特開2012−130086号公報JP2012-130086A
一方、関係する従来技術として上記の特許文献がある。   On the other hand, there is the above-mentioned patent document as related prior art.
回転電機はラジアルギャップ式とアキシャルギャップ式があるが、その回転原理は同一である。   There are a radial gap type and an axial gap type rotary electric machine, but the rotation principle is the same.
従来の一般的なラジアルギャップ式の回転電機で回転子に永久磁石を用いるブラシレスDCモータ(以下BLDCMと略す)や同期発電機、あるいは回転子に永久磁石を用いないで磁性体の歯を有したスイッチドレラクタンスモータ(以下SRMと略す)の場合の技術は、固定子鉄心を珪素鋼鈑で積層して構成し、安価と効率を重視する場合は巻き線は主に集中巻き方式を採用する。   In a conventional general radial gap type rotating electrical machine, a brushless DC motor (hereinafter referred to as BLDCM) using a permanent magnet as a rotor, a synchronous generator, or a rotor without a permanent magnet was used. In the case of a switched reluctance motor (hereinafter abbreviated as SRM), the stator core is formed by laminating a silicon core with a silicon steel plate, and when focusing on low cost and efficiency, a concentrated winding method is mainly used for winding. .
分布巻き方式ではトルク発生に寄与しないコイルエンド部が大きくなり銅損が増大し効率が低下するためと集中巻きでは巻き線がシンプルでスロットへの直接巻き込が可能となり巻き線が安価となるためである。   In the distributed winding method, the coil end portion that does not contribute to torque generation becomes large, resulting in increased copper loss and reduced efficiency. In concentrated winding, the winding is simple and can be directly wound into the slot, making the winding cheaper. It is.
一方、アキシャルギャップ式のBLDCMやSRMも近年、ハイブリッド車や電気自動車用の駆動用車載モータとして検討されている。その理由はエンジンに併設したり、インホイールモータとする場合、扁平形状が都合がよいためである。その場合、特にアキシャルBLDCモータでは始動時および低速回転時は高トルクを得るように強め界磁制御で、また高速回転時は高速回転を得るため弱め界磁制御をすることが知られている。このような界磁制御を行っている理由は界磁磁束が大きいと、低速時は大トルクが得られるが、高速度時は界磁磁束が大きいと起電力定数も大きくなり、電源電圧にモータ内部誘起電圧が近づくことで電流が流れなくなり、トルクもダウンしてしまうためである。そのため、高速回転時は回転子磁極の磁化した方向と逆方向に界磁磁束を発生させて、弱め界磁として高速時トルクを大きくさせる。また、これを回避するために多極永久磁石界磁モータで界磁制御することも考えられるが、多極永久磁石界磁モータで界磁制御するにはベクトル制御技術を駆使する等、制御が複雑で高価となる。その点、アキシャルギャップ式BLDCモータ等では回転子を軸方向に移動させて、低速回転時は固定子と回転子間のエアギャップである距離を狭め、高速回転時は距離を大きくすれば、界磁磁束を強め、あるいは弱め制御したことと同様な特性となることが知られている。   On the other hand, axial gap type BLDCM and SRM have recently been studied as driving vehicle motors for hybrid vehicles and electric vehicles. The reason is that a flat shape is convenient when it is provided with an engine or an in-wheel motor. In that case, it is known that, particularly in an axial BLDC motor, strong field control is performed so as to obtain high torque at the time of starting and low speed rotation, and weak field control is performed so as to obtain high speed rotation at high speed rotation. The reason for this field control is that if the field magnetic flux is large, a large torque can be obtained at low speeds, but if the field magnetic flux is large at high speeds, the electromotive force constant also increases and the motor voltage is induced in the power supply voltage. This is because when the voltage approaches, current stops flowing and torque decreases. For this reason, during high-speed rotation, a field magnetic flux is generated in the direction opposite to the magnetized direction of the rotor magnetic pole, and the high-speed torque is increased as a weak field. In order to avoid this, it is conceivable to control the field with a multi-pole permanent magnet field motor, but to control the field with a multi-pole permanent magnet field motor, the vector control technology is used and the control is complicated and expensive. Become. On the other hand, in an axial gap type BLDC motor or the like, if the rotor is moved in the axial direction, the air gap between the stator and the rotor is reduced during low-speed rotation, and the distance is increased during high-speed rotation. It is known that the magnetic flux becomes the same characteristic as when the magnetic flux is strengthened or weakened.
その典型的なアキシャルギャップ式BLDCモータに更にギャップ長を外力で強制的に可変させる先行技術として上述した特許文献1が知られている。特許文献1には、アキシャルギャップ式回転電機の回転力とは異なる動力源により作動する可変ギャップ機構によってロータを軸方向に移動せしめてエアギャップ長を変更することができるように構成されている。   Patent Document 1 described above is known as a prior art in which the gap length is forcibly changed by an external force in the typical axial gap type BLDC motor. Patent Document 1 is configured such that the air gap length can be changed by moving the rotor in the axial direction by a variable gap mechanism that is operated by a power source different from the rotational force of the axial gap type rotating electrical machine.
しかし従来のアキシャルギャップ式回転電機は、界磁磁石と固定子鉄心が平面で対向するプレーンエアギャップ式であるためラジアルギャップモータと比較して、最小エアギャップが小さく出来ないこと等によってトルクを大きくすることができずこれを実用化しようとするとその実用性に問題があった。また、ラジアルギャップ式に対してアキシャルギャップ式では回転子面振れを考慮して、エアギャップ長がラジアルギャップ式の概略2倍必要となり、その分効率が低下してしまうという問題もあった。さらに、エアギャップ長対トルク特性がエアギャップ長に対して線形変化でなく、非線形となるため制御性がよくないといった問題があった。   However, the conventional axial gap type rotating electrical machine is a plain air gap type in which the field magnet and the stator core are opposed to each other in a plane, so that the torque is increased due to the fact that the minimum air gap cannot be reduced compared to the radial gap motor. There was a problem in its practicality when trying to put it into practical use. In addition, the axial gap type, in contrast to the radial gap type, has a problem that the air gap length is approximately twice that of the radial gap type in consideration of the rotor surface runout, and the efficiency is reduced accordingly. Further, there is a problem that the controllability is not good because the air gap length vs. torque characteristic is not linearly changed with respect to the air gap length but becomes nonlinear.
そこで、本発明は上記問題に鑑みてなされたものであり、高出力による実用性を有し、高効率、高い制御性を有する安価で高性能な回転電機を提供することを目的とする。   Accordingly, the present invention has been made in view of the above problems, and an object thereof is to provide an inexpensive and high-performance rotating electrical machine having practicality with high output, high efficiency, and high controllability.
固定子と固定軸を有し、前記軸方向にエアギャップを介して回転可能に配置された回転子と、前記回転子と共に回転可能な回転体とを備える回転電機であって、前記固定子は、同心円弧的で軸方向に複数の第一の歯部を突き出して有すると共に、巻き線軸が前記固定軸と平行に形成された巻き線用突極鉄心を周方向に複数分布配置した固定子鉄心部を備え、前記回転子は、複数の磁性体による回転子磁極が周方向に分布配置されて、各々の回転子磁極は同心円的で軸方向に前記第一の歯部と前記エアギャップを介して噛み合うように対向配置された第二の歯部を突き出して有し、前記回転体は軸方向には移動不能で、前記回転子は軸方向に移動可能に組み付けられるとともに、前記回転体に対してはトルク伝達可能に組み付けられ、前記固定子又は前記回転子の何れか一方は、前記軸方向に複数の雌ネジが形成され、前記回転子と前記固定子との間のエアギャップを、前記雌ネジと噛み合う複数の雄ネジを前記軸と同軸的に配した駆動手段で回転させ、前記駆動手段の推力で前記回転子を前記軸方向に付勢移動することを特徴とする。   A rotating electric machine having a stator and a fixed shaft, the rotor being arranged to be rotatable through an air gap in the axial direction, and a rotating body rotatable with the rotor, wherein the stator is A stator core in which a plurality of first teeth are projected in the axial direction in a concentric arc shape, and a plurality of winding salient cores in which the winding axis is formed in parallel with the fixed axis are distributed in the circumferential direction. The rotor includes a plurality of magnetic magnetic rotor poles distributed in the circumferential direction, and each rotor magnetic pole is concentric and axially interposed between the first tooth portion and the air gap. A second tooth portion that is arranged to face each other so as to mesh with each other, the rotating body is not movable in the axial direction, and the rotor is assembled so as to be movable in the axial direction. It is assembled so that torque can be transmitted, and the fixed Alternatively, either one of the rotors is formed with a plurality of female screws in the axial direction, and an air gap between the rotor and the stator, and a plurality of male screws that mesh with the female screws are used as the shafts. The rotor is rotated by driving means arranged coaxially, and the rotor is urged and moved in the axial direction by the thrust of the driving means.
本発明に係る回転電機において、前記駆動手段は、前記雌ネジが、前記回転子に形成されると共に、前記回転子と前記固定子との間のエアギャップを、前記軸と平行で、前記回転子に雌ネジを有して前記回転体部に配した複数の雄ネジにピニオンを設け、軸から径方向に設けたガイドに沿って移動可能なラックギヤを前記ピニオンに噛み合わせて、前記回転子の増速により発生する遠心力で前記雄ネジを回転させその推力で前記回転子を軸方向に付勢移動すると好適である。   In the rotating electrical machine according to the present invention, the drive means includes the female screw formed in the rotor, and an air gap between the rotor and the stator parallel to the shaft and the rotation A pinion is provided on a plurality of male screws provided on the rotating body portion with a female screw in the child, and a rack gear movable along a guide provided in a radial direction from the shaft is meshed with the pinion, and the rotor It is preferable that the male screw is rotated by a centrifugal force generated by an increase in speed and the rotor is urged and moved in the axial direction by the thrust.
本発明に係る回転電機において、前記駆動手段は、アウターロータ式又は中空軸を有するインナーロータ式のモータを用いることができる。   In the rotating electrical machine according to the present invention, the driving means may be an outer rotor type or an inner rotor type motor having a hollow shaft.
本発明に係る回転電機において、前記回転子の複数の周方向に分布配置された磁極は軸方向に磁化されたあるいは周方向に磁化された永久磁石を周方向に配置して交互に異極性に磁化されていると好適である。   In the rotating electrical machine according to the present invention, the plurality of circumferentially distributed magnetic poles of the rotor are alternately magnetized in the axial direction or in the circumferential direction by alternately arranging permanent magnets magnetized in the circumferential direction. It is preferable that it is magnetized.
本発明のアキシャルギャップ式BLDCモータは凹凸状に固定子と回転子に形成された第一の歯部と第二の歯部同士がかみ合って回転できるので、鎖交磁束がプレーンギャップの2倍以上と大きくなり、始動時および低速時のトルクも2倍以上が得られる。また、従来のアキシャルギャップ式モータに比べ低騒音である。   Since the axial gap type BLDC motor of the present invention can rotate by engaging the first tooth portion and the second tooth portion formed on the stator and the rotor in a concavo-convex shape, the flux linkage is more than twice the plane gap. The torque at the time of starting and at low speed can be more than doubled. In addition, the noise is lower than that of a conventional axial gap motor.
さらに、固定子に形成された第一の歯部と回転子に形成された第二の歯部との間のエアギャップ対向部がかみ合い対向なので、対向面積が増大しエアギャップ部パーミアンスの大きな高効率回転電機にして、エアギャップの増加に対して、そのアキシャル方向吸引力及びトルクはエアギャップ長にほぼ比例するのでギャップ長を制御することでトルク制御が容易に行える。   Further, since the air gap facing portion between the first tooth portion formed on the stator and the second tooth portion formed on the rotor is in meshing opposition, the facing area increases and the air gap portion permeance is greatly increased. With an efficient rotating electrical machine, the axial suction force and torque are almost proportional to the air gap length as the air gap increases, so torque control can be easily performed by controlling the gap length.
本発明のアキシャルギャップ式SRMも凹凸状に固定子と回転子に形成された第一の歯部及び第二の歯部同士がかみ合い回転できるので、従来技術に比較して優れたものとなる。また回転子の複数の周方向に分布配置された磁極は軸方向に磁化された永久磁石で交互に異極性に磁化されるアキシャルギャップ式BLDCMとすれば更に高トルクモータとなり好適である。   The axial gap type SRM of the present invention is also superior to the prior art because the first tooth portion and the second tooth portion formed on the stator and the rotor in a concavo-convex manner can mesh and rotate. Further, if the magnetic poles distributed and arranged in a plurality of circumferential directions of the rotor are axial gap type BLDCMs alternately magnetized in different polarities by permanent magnets magnetized in the axial direction, a higher torque motor is preferable.
可変エアギャップの具体的な手段として、軸と平行に固定子部に雌ネジ有して配した複数の雄ネジを軸と同軸的に配した別のステッピングモータ等で回転させその推力で回転子を軸方向に付勢移動するので確実に所望のエアギャップが得られ、確実に速度制御ができる。   As a specific means of the variable air gap, a plurality of male screws arranged with a female screw in the stator portion parallel to the shaft are rotated by another stepping motor or the like arranged coaxially with the shaft, and the rotor is driven by the thrust. As a result, the desired air gap can be reliably obtained and the speed can be controlled reliably.
可変エアギャップの具体的な手段として、遠心力を利用すれば、別の制御用モータが不要で、可変エアギャップの簡易速度制御が可能となる。   If a centrifugal force is used as a specific means of the variable air gap, a separate control motor is unnecessary, and simple speed control of the variable air gap is possible.
また、本発明のアキシャルギャップ式回転電機を電気自動車の駆動主機に応用すれば、低速時の強め界磁や高速時の弱め界磁に要する電力が不要となり、駆動効率を高めることができる。   Further, when the axial gap type rotating electrical machine of the present invention is applied to a driving main machine of an electric vehicle, the power required for a strong field at low speed and a weak field at high speed becomes unnecessary, and the driving efficiency can be increased.
本発明の第一の実施形態に係る回転電機の軸方向断面図1 is an axial sectional view of a rotating electrical machine according to a first embodiment of the present invention. 図1における軸方向から見た図The figure seen from the axial direction in FIG. 別の本発明の第一の実施形態に係る回転電機の軸方向断面図Another axial sectional view of the rotating electrical machine according to the first embodiment of the present invention 図3における軸方向から見た図The figure seen from the axial direction in FIG. 本発明の第二の実施形態に係る回転電機の軸方向断面図Sectional drawing of the axial direction of the rotary electric machine which concerns on 2nd embodiment of this invention. 図5における軸方向から見た図The figure seen from the axial direction in FIG. 図5の固定子をエアギャップ側から見た図FIG. 5 is a view of the stator of FIG. 5 viewed from the air gap side. 図5の回転子をエアギャップ側から見た図FIG. 5 is a view of the rotor of FIG. 5 viewed from the air gap side. 本発明の動作原理の説明図Explanatory diagram of the operating principle of the present invention 本発明の効果の説明図Explanatory drawing of the effect of the present invention 本発明による特性変化の説明図Explanatory drawing of characteristic change by this invention
[第一の実施形態]
発明のアキシャルギャップ式モータの固定子鉄心1や回転子磁極4は圧粉鉄心をプレスすることで簡単安価に製作できる。珪素鋼鈑の積層式の場合において従来のラジアルギャップ式の場合は2次元形状の鉄心を軸方向に積層して、界磁磁束も軸と垂直平面磁路で用いられる。しかしアキシャルギャップ式モータでは界磁磁束磁路は立体的になるので珪素鋼鈑の積層方式を採用するには積層方式では積層方向には磁束が通過困難であるという問題があり、これがアキシャルギャップモータがラジアルギャップに比べて普及しない別の理由でもあった。この点、圧粉鉄心は無方向性であるので立体的な形状を構成するのに適したものとなる。圧粉鉄心とは軟磁性鉄粉を樹脂コーティングして加圧後熱処理したもので、プレス型で複雑な形状品を製作できる。また、透磁率は珪素鋼鈑の圧延方向には劣るが、磁束通過方向は無方向性である。さらに鉄粉が個々に樹脂で絶縁されているので渦電流が発生せず、鉄損が小さい鉄心とすることができる。
[First embodiment]
The stator core 1 and the rotor magnetic pole 4 of the inventive axial gap motor can be easily and inexpensively manufactured by pressing a dust core. In the case of the silicon steel sheet laminated type, in the case of the conventional radial gap type, a two-dimensional iron core is laminated in the axial direction, and the field magnetic flux is also used in the plane magnetic path perpendicular to the axis. However, in the axial gap motor, the field magnetic flux magnetic path is three-dimensional, so there is a problem that the magnetic flux cannot pass in the stacking direction in the stacking method to adopt the silicon steel sheet stacking method. However, this was another reason why it was not widespread compared to the radial gap. In this respect, since the dust core is non-directional, it is suitable for forming a three-dimensional shape. The dust core is a soft magnetic iron powder coated with resin, heat treated after pressurization, and can be manufactured in a complicated shape with a press die. Further, the magnetic permeability is inferior to the rolling direction of the silicon steel sheet, but the magnetic flux passing direction is non-directional. Furthermore, since the iron powder is individually insulated with resin, eddy currents are not generated, and an iron core with a small iron loss can be obtained.
図1は本発明の構成の一例を示したものであり、軸固定式のアキシャル可変立体ギャップ式回転電機である。図2は図1の回転電機の軸方向から見た図である。図1〜2を参照して第一の実施形態に係る回転電機を説明する。   FIG. 1 shows an example of the configuration of the present invention, which is an axially variable axial variable solid gap type rotating electrical machine. FIG. 2 is a diagram viewed from the axial direction of the rotating electrical machine of FIG. The rotating electrical machine according to the first embodiment will be described with reference to FIGS.
図1に示すように、固定子鉄心1は圧粉鉄心等によって構成された巻き線用突極鉄心1bが円盤上に配列されており、巻き線用突極鉄心1bは、図1に示すように軸方向に同心的に複数の第一の歯部1aが突き出して円弧状に形成されている。本図において、固定子鉄心1は6個の巻き線用突極鉄心1bで構成され、3相巻き線、回転子は4極の例である。この固定子鉄心1の分割数mと、回転子の極数nの組み合わせは、例えばm=12,n=8,10,14,あるいは、m=9,n=8,10等、その他多数の組合せが可能である。なお、巻き線用突極鉄心1bの外周面には、巻き線2が巻かれており、巻き線2は、インシュレータ3に巻かれている。尚ホール素子等の図示は省略してある。   As shown in FIG. 1, the stator core 1 has winding salient cores 1b made of a dust core or the like arranged on a disk, and the winding salient core 1b is as shown in FIG. A plurality of first tooth portions 1a project concentrically in the axial direction and are formed in an arc shape. In this figure, the stator core 1 is composed of six winding salient cores 1b, and the three-phase winding and the rotor are four poles. The combination of the division number m of the stator core 1 and the number of poles n of the rotor is, for example, m = 12, n = 8, 10, 14 or m = 9, n = 8, 10, etc. Combinations are possible. The winding 2 is wound around the outer peripheral surface of the winding salient core 1 b, and the winding 2 is wound around the insulator 3. In addition, illustration of Hall elements etc. is omitted.
回転子磁極4は固定子鉄心1と同じく圧粉鉄心等によって構成されており、軸方向に同心的に複数の第2の歯部4aが円弧状に設けてあり、エアギャップを介して前記第一の歯部1aと凹凸状にかみ合い対向配置されている。また、回転子磁極4の背面には、軸方向から見た投影形状が回転子磁極4とほぼ同じ形状の扇形状に形成された永久磁石5が配置されており、4個をN極S極が交互となるように配置してある。さらに、永久磁石はスポーク状に配置してもよい。即ち、図1を参照して永久磁石5を無くして、永久磁石は略長方形や矩形として径方向にスポーク状に回転子磁極4の径方向の隙間に配置して周方向に互いに異極性に磁化してもよい。   The rotor magnetic pole 4 is composed of a dust core or the like, like the stator core 1, and has a plurality of second teeth 4a concentrically provided in the axial direction in the form of an arc, and the first through the air gap. It meshes with one tooth 1a in a concavo-convex shape and is disposed oppositely. Further, on the back surface of the rotor magnetic pole 4, permanent magnets 5, which are formed in a fan shape whose projection shape viewed from the axial direction is substantially the same shape as the rotor magnetic pole 4, are arranged. Are arranged alternately. Furthermore, the permanent magnet may be arranged in a spoke shape. That is, with reference to FIG. 1, the permanent magnet 5 is eliminated, and the permanent magnet is arranged in the radial gap of the rotor magnetic pole 4 in the shape of a spoke in the radial direction as a substantially rectangular or rectangular shape, and is magnetized with different polarities in the circumferential direction. May be.
さらに、永久磁石5の背面には、円盤状のバックヨーク6が配置されている。バックヨーク6の端面部は深溝平歯車6−1が形成されて、軸12に軸受け9を介して回転可能に設けられた回転体8の端面に設けた深溝平歯車8−1とかみ合っている。図2に軸方向から見た図が示されている。そして回転子磁極4,永久磁石5およびバックヨーク6が固着して一つの回転子を形成する。そして回転子は固定子とエアギャップを保って固定子に固定された軸12を軸心に回転かつ軸方向に移動可能なスリーブ軸受け7で支持されている。即ち回転子は軸方向に所定長移動可能で、その回転力は回転子が軸方向に移動しても前述の深溝平歯車で回転体に伝達できる構成としてある。深溝平歯車のかみ合いは回転子が軸方向に所定長移動してもかみ合いが外れないように設定してある。回転子は軸方向に移動して回転するが、回転体8は軸方向には定位置で回転する。   Further, a disk-shaped back yoke 6 is disposed on the back surface of the permanent magnet 5. A deep groove spur gear 6-1 is formed on the end surface portion of the back yoke 6, and meshes with a deep groove spur gear 8-1 provided on an end surface of a rotating body 8 rotatably provided on a shaft 12 via a bearing 9. . FIG. 2 shows a view from the axial direction. The rotor magnetic pole 4, the permanent magnet 5 and the back yoke 6 are fixed to form one rotor. The rotor is supported by a sleeve bearing 7 that can rotate about the shaft 12 fixed to the stator while maintaining an air gap with the stator and move in the axial direction. That is, the rotor can move in the axial direction for a predetermined length, and the rotational force can be transmitted to the rotating body by the deep groove spur gear even if the rotor moves in the axial direction. The engagement of the deep groove spur gear is set so that the engagement will not be disengaged even if the rotor moves a predetermined length in the axial direction. The rotor moves in the axial direction and rotates, but the rotating body 8 rotates at a fixed position in the axial direction.
図1は固定子と回転子間のエアギャップが最少の位置関係の図であり、起動時や低速回転時の負荷トルクが大きい時に対応する。速度が増加されて負荷トルクが小さくなり、かつ高速回転速度が必要な場合はエアギャップを増加させ、弱め界磁効果を狙う。その具体的手段は軸12に同心的に設けたエアギャップ制御用アウターロータ型回転電機15で行う。アウターロータ型回転電機15のアウターロータの外周にはギヤ15aが設けてあり、固定子1に雌ネジを設けて軸12の周りに配置した雄ねじであるピニオンつきスクリュ13を回転させる。するとピニオンつきスクリュ13はカンザ14を軸方向に右方向に押してエアギャップを所望の大きさまで拡大する。エアギャップが拡大すれば回転数は増加し内部誘導電圧が増大するので電流は減少する。よってスラスト吸引力も小さくなる。回転子が移動しても、深溝平歯車8−1で噛み合う回転体8には常にトルクを伝達できる。エアギャップを縮小する場合は、アウターロータ型回転電機15を逆回転させればよい。アキシャルギャップモータは大きなスラスト吸引力が発生しており、容易にエアギャップは縮小できる。また低速時は巻き線2の電流も増加するのでスラスト吸引力は一層増大する。この詳細説明は更に図9〜11で後述する。   FIG. 1 is a diagram showing a positional relationship in which the air gap between the stator and the rotor is minimum, and corresponds to a case where the load torque is large at the time of start-up or low-speed rotation. When the speed is increased to reduce the load torque and a high rotational speed is required, the air gap is increased to aim at the field weakening effect. The specific means is performed by an air gap control outer rotor type rotating electrical machine 15 concentrically provided on the shaft 12. A gear 15 a is provided on the outer periphery of the outer rotor of the outer rotor type rotating electrical machine 15, and a screw 13 with a pinion that is a male screw disposed around the shaft 12 is rotated by providing a female screw on the stator 1. Then, the screw 13 with a pinion pushes the Kansa 14 rightward in the axial direction, and expands the air gap to a desired size. If the air gap increases, the rotation speed increases and the internal induction voltage increases, so the current decreases. Accordingly, the thrust suction force is also reduced. Even if the rotor moves, torque can always be transmitted to the rotating body 8 meshed with the deep groove spur gear 8-1. When the air gap is reduced, the outer rotor type rotating electrical machine 15 may be rotated in the reverse direction. The axial gap motor generates a large thrust suction force, and the air gap can be easily reduced. Further, at the time of low speed, the current of the winding 2 also increases, so that the thrust suction force is further increased. This detailed description will be further described later with reference to FIGS.
[第二の実施形態]
図3は図1と基本的機能は同じであるがエアギャップ制御用モータを中空式インナーロータ型回転電機16として軸12に同心的に設けたものである。中空式インナーロータ型回転電機16の出力はピニオン17で取り出し、複数のアイドルギア18でダブルインターナルギア19に伝達してピニオンつきスクリュ13を駆動するものである。図1のアウターロータ型よりアイドルギア18やダブルインターナルギア19が増えるが減速比を大きく出来て大きなトルクでピニオンつきスクリュ13を駆動できる。またその他は同じ機能の部品には同じ番号を付したのでその説明も省略する。図4は図3の軸方向から見た図である。
[Second Embodiment]
3 has the same basic function as that of FIG. 1, but a motor for air gap control is provided concentrically on the shaft 12 as a hollow inner rotor type rotating electrical machine 16. The output of the hollow inner rotor type rotating electrical machine 16 is taken out by a pinion 17 and transmitted to a double internal gear 19 by a plurality of idle gears 18 to drive a screw 13 with a pinion. Although the idle gear 18 and the double internal gear 19 are increased from the outer rotor type of FIG. 1, the reduction ratio can be increased and the screw 13 with the pinion can be driven with a large torque. Other parts having the same function are denoted by the same reference numerals, and the description thereof is omitted. 4 is a diagram viewed from the axial direction of FIG.
[第三の実施形態]
図5は図1や図3と類似のピニオンつきスクリュを用いることは同じであるが、制御用モータは用いず、遠心力を利用する。固定子と回転子の構成は図1、図3と同じなので説明は省略する。但し回転子のバックヨーク20には雌ネジが設けてあり、軸に対して定位置回転体21にはピニオンつきスクリュ22が回転可能に取り付けられている。即ちピニオンつきスクリュ22は先端部で雌ネジとかみ合う部分のみに雄ネジスクリュが設けてある。図6は図5の軸方向から見た図である。ピニオンつきスクリュ22のピニオンには金属製で質量を大きくしたラックギア23とかみ合い、ラックギア23はガイドプレート24をガイドにして半径方向に移動可能に設けてある。図5はエアギャップが最小状態であるが、回転数が増加すれば遠心力がラックギア23に働き、ラックギア23はラジアル方向に移動するのでピニオンつきスクリュ22が回転駆動されて、エアギャップが拡大する。低速時は図示は省略したがラックギア23は軸12方向にバネ等の弾性体で常に張力を受けているので遠心力が消滅時は引き戻される。モータの動作は図1と同じなので説明は省略する。
[Third embodiment]
FIG. 5 is the same as using a screw with a pinion similar to FIG. 1 and FIG. 3, but uses a centrifugal force without using a control motor. The configuration of the stator and the rotor is the same as in FIGS. However, the back yoke 20 of the rotor is provided with a female screw, and a screw 22 with a pinion is rotatably attached to the fixed position rotating body 21 with respect to the shaft. That is, the screw 22 with the pinion is provided with a male screw screw only at a portion where the tip portion engages with the female screw. 6 is a view seen from the axial direction of FIG. The pinion of the screw 22 with a pinion meshes with a rack gear 23 made of metal and having a large mass, and the rack gear 23 is provided so as to be movable in the radial direction with a guide plate 24 as a guide. Although the air gap is in the minimum state in FIG. 5, if the rotational speed increases, the centrifugal force acts on the rack gear 23 and the rack gear 23 moves in the radial direction, so that the screw 22 with the pinion is driven to rotate and the air gap is expanded. . Although illustration is omitted at low speed, the rack gear 23 is always tensioned by an elastic body such as a spring in the direction of the axis 12, so that it is pulled back when the centrifugal force disappears. The operation of the motor is the same as in FIG.
図1〜図6で示したモータは中心軸が固定子に固定されているアキシャル立体ギャップモータに本発明を適応した図である。本構造は固定軸12を両側からグリップして回転体の外周にタイヤを装着すればインホイールモータとして、電気自動車、車いす、ゴルフカート、電動バイク、電動自転車への応用が容易である。   The motor shown in FIGS. 1 to 6 is a diagram in which the present invention is applied to an axial solid gap motor having a central axis fixed to a stator. This structure can be easily applied to an electric vehicle, a wheelchair, a golf cart, an electric motorcycle, and an electric bicycle as an in-wheel motor if the fixed shaft 12 is gripped from both sides and a tire is attached to the outer periphery of the rotating body.
モータのトルクは鎖交磁束に比例する。鎖交磁束はギャップパーミアンスPに比例し、Pは次式で与えられる。
P= μ0S/L (1)
ここで、μ0:真空の透磁率、S:ギャップ対向面積、L:エアギャップ長
しかるに、(1)式で本発明型は凹凸ギャップのため、ギャップ対向面積Sは容易に従来型の2倍〜3倍になる。従ってパーミアンスPも2から3倍でトルクもPに比例して増加できる。従って、ラジアルギャップ式モータに比べて、アキシャルギャップの欠点であったエアギャップ大によるトルク小が改善される。本発明は圧粉鉄心を用いるが、圧粉の珪素鋼鈑に比べた透磁率の悪さも、この凹凸ギャップ効果でカバーされる。
The motor torque is proportional to the flux linkage. The flux linkage is proportional to the gap permeance P, and P is given by the following equation.
P = μ 0 S / L (1)
Here, μ 0 : vacuum permeability, S: gap facing area, L: air gap length However, since the mold according to the present invention is an uneven gap in equation (1), the gap facing area S is easily twice that of the conventional type. ~ 3 times. Therefore, the permeance P can be increased by 2 to 3 times and the torque can be increased in proportion to P. Therefore, as compared with the radial gap motor, the small torque due to the large air gap, which was a drawback of the axial gap, is improved. Although the present invention uses a dust core, the poor magnetic permeability compared with the dust silicon steel plate is also covered by this uneven gap effect.
図9は本発明の動作原理の説明図である。
図9の(A)は従来型モータでエアギャップが最小のL1の図、(B)は従来型モータでエアギャップが漸次増大して最大のL2の図、(C)は本発明型モータでエアギャップが最小のL1の図、(D)は本発明型モータでエアギャップが漸次増大して最大のL2の図である。同じエアギャップL2の状態で(B)と(D)を比較すると、本発明の(D)は有効エアギャップが小さくパーミアンスPが大きいことが分かる。これらのモータの構成については既に図1等の説明で述べたのでその説明は省略する。
FIG. 9 is an explanatory diagram of the operation principle of the present invention.
FIG. 9A is a view of L1 with the smallest air gap in the conventional motor, FIG. 9B is a view of L2 with the air gap gradually increasing in the conventional motor, and FIG. 9C is the motor of the present invention. FIG. 2D is a diagram of L1 with the smallest air gap, and FIG. 4D is a diagram of L2 with the air gap gradually increasing in the motor of the present invention. When (B) and (D) are compared in the state of the same air gap L2, it can be seen that (D) of the present invention has a small effective air gap and a large permeance P. Since the configuration of these motors has already been described with reference to FIG. 1 and the like, description thereof will be omitted.
また従来型アキシャルギャップモータとギャップ長Lを変化させた時のトルクTとの特性を比較すると図10の如くなる。即ちエアギャップが同じL1でも、本発明型は従来型のトルクの2倍程度でエアギャップLを増加していくと、従来型(b)はギャップ距離Lの自乗に反比例してトルクが減少するが、本発明型(a)はギャップLがL2までは常に固定子と回転子歯がラジアル方向で対向しているので、トルクは図示の如くほぼ線形に減少する。線形に減少することはギャップLの可変制御でトルクを線形に制御できるものであり、インホイールモータとして使用した場合、車の低速から高速までの制御が容易となる。さらに試作した結果から判明したことであるが、本発明モータはアキシャルギャップモータでありながら、ラジアルギャップ対向部が存在しているので、騒音がプレーンギャップ式アキシャルモータに対して、大幅に低いメリットもある。   FIG. 10 shows a comparison of the characteristics of the conventional axial gap motor and the torque T when the gap length L is changed. That is, even if the air gap is the same L1, when the air gap L is increased by about twice the torque of the conventional type, the torque of the conventional type (b) decreases in inverse proportion to the square of the gap distance L. However, in the present invention type (a), since the stator and the rotor teeth are always opposed in the radial direction until the gap L is L2, the torque decreases almost linearly as shown in the figure. The linear decrease means that the torque can be controlled linearly by the variable control of the gap L, and when used as an in-wheel motor, the vehicle can be easily controlled from low speed to high speed. Furthermore, as a result of trial manufacture, the motor of the present invention is an axial gap motor, but there is a radial gap facing portion, so there is a merit that noise is significantly lower than that of a plain gap type axial motor. is there.
図11は本発明によるアキシャル可変ギャップ式モータのエアギャップを可変した時の特性を説明するための図である。エアギャップが最小の場合の速度―負荷トルク特性が実線(1)でそのときの電流―負荷トルク特性が点線(2)である。エアギャップを最小で実線(1)の速度―負荷トルクカーブにおいて始動トルクT1、速度N1で始動する時、電流I1は最大電流に近く、アキシャル方向吸引力が大きくなり、このアキシャル方向吸引力で最小エアギャップを保持して大トルクで始動後、モータは増速していく。増速するに伴い、負荷トルクが減少し、負荷電流も減少していく。するとアキシャル方向吸引力も減少するので、エアギャップは可変しやすくなる。エアギャップを制御モータや遠心力でアクティブに増大させて所定のエアギャップまでギャップ長が増加した最大エアギャップ時の速度―負荷トルク特性が実線(3)でそのときの電流―負荷トルク特性が点線(4)である。そのときの負荷トルクがT2で電流がI2となる。即ち、本発明モータの速度―負荷トルク特性は実線(1)から実線(3)へと無段階に連続変化して負荷を始動、加速させる。もし速度―負荷トルク特性がエアギャップ固定で実線(1)のみであれば負荷トルクT2時、速度はN2までしか、増加しないが、本発明の可変エアギャップモータでは速度―負荷トルク特性(3)上のN3まで増速できるものである。これを強め界磁や弱め界磁制御で行えば、余分な励磁コイルや界磁制御電力、あるいは複雑なベクトル制御回路等が必要になる。   FIG. 11 is a diagram for explaining the characteristics when the air gap of the axial variable gap motor according to the present invention is varied. The speed-load torque characteristic when the air gap is minimum is a solid line (1), and the current-load torque characteristic at that time is a dotted line (2). When starting with the starting torque T1 and speed N1 in the speed-load torque curve of the solid line (1) with the minimum air gap, the current I1 is close to the maximum current, and the axial suction force increases. After starting with a large torque while holding the air gap, the motor speed increases. As the speed increases, the load torque decreases and the load current also decreases. Then, the axial suction force also decreases, so that the air gap is easily variable. The speed at the maximum air gap when the air gap is actively increased by a control motor or centrifugal force and the gap length is increased to the specified air gap-load torque characteristic is a solid line (3), and the current-load torque characteristic at that time is a dotted line (4). At that time, the load torque is T2, and the current is I2. That is, the speed-load torque characteristic of the motor of the present invention continuously changes steplessly from the solid line (1) to the solid line (3) to start and accelerate the load. If the speed-load torque characteristic is fixed to the air gap and the solid line (1) is only the speed, the speed will only increase to N2 at the load torque T2, but the speed-load torque characteristic (3) is increased in the variable air gap motor of the present invention. The speed can be increased up to N3 above. If this is performed by strong field or weak field control, an extra excitation coil, field control power, or a complicated vector control circuit is required.
以上の説明は主にアキシャルギャプ式BLDCMで固定子と回転子の対向面を凹凸かみ合いの場合で説明したが円弧あるいは3角状の歯対向にしても十分な効果を有する。また
永久磁石を使用しないSRMでも固定子と回転子の対向面を凹凸や円弧あるいは3角状の歯対向にすれば十分な効果を有する。SRMの場合は、図11に示した速度―トルク曲線がBLDCMほどきれいな直線とはならないが、エアギャップを増加していけば特性曲線は概略(1)から(3)への傾向で変化する。従って本発明のSRMへの展開も永久磁石不要の安価なモータで行えるため有益である。
In the above description, the axial gap type BLDCM is mainly described in the case where the opposing surfaces of the stator and the rotor are engaged with each other. Further, even in an SRM that does not use a permanent magnet, sufficient effects can be obtained if the opposing surfaces of the stator and the rotor are made to be opposed to irregularities, arcs, or triangular teeth. In the case of SRM, the speed-torque curve shown in FIG. 11 is not as clean as BLDCM, but if the air gap is increased, the characteristic curve changes in a tendency from (1) to (3). Therefore, the development of the SRM of the present invention is beneficial because it can be performed with an inexpensive motor that does not require a permanent magnet.
本発明によるアキシャルギャップ式回転電機は、安価で軽薄短小、高トルク化、高効率化、さらに低騒音に適した、シンプルにして、きわめて実用的なものである。従って工業的に大きな貢献が期待される。   The axial gap type rotating electrical machine according to the present invention is simple, extremely practical, inexpensive, light and thin, suitable for high torque, high efficiency, and low noise. Therefore, it is expected to make a significant industrial contribution.
1 固定子鉄心
2 巻き線
3 インシュレータ
4 回転子磁極
5 永久磁石
6、20 バックヨーク
12 固定軸
8、21 回転体
7 スリーブ軸受け
9 軸受け
6−1、8−1、 深溝平歯車
10、11 軸受けおさえ
13、22 ピニオンつきスクリュー
14 カンザ
15 エアギャップ制御用アウターロータ型回転電機
16 中空軸インナーロータ型回転電機
17 ピニオン
18 アイドルギア
19 ダブルインターナルギア
23 ラックギア
24 ガイドプレート
DESCRIPTION OF SYMBOLS 1 Stator core 2 Winding 3 Insulator 4 Rotor magnetic pole 5 Permanent magnet 6, 20 Back yoke 12 Fixed shaft 8, 21 Rotating body 7 Sleeve bearing 9 Bearing 6-1, 8-1 Deep groove spur gear 10, 11 13, 22 Screw 14 with pinion 14 Kanza 15 Outer rotor type rotating electrical machine 16 for air gap control Hollow shaft inner rotor type rotating electrical machine 17 Pinion 18 Idle gear 19 Double internal gear 23 Rack gear 24 Guide plate

Claims (4)

  1. 固定子と固定軸を有し、
    前記軸方向にエアギャップを介して回転可能に配置された回転子と、
    前記回転子と共に回転可能な回転体とを備える回転電機であって、
    前記固定子は、同心円弧的で軸方向に複数の第一の歯部を突き出して有すると共に、巻き線軸が前記固定軸と平行に形成された巻き線用突極鉄心を周方向に複数分布配置した固定子鉄心部を備え、
    前記回転子は、複数の磁性体による回転子磁極が周方向に分布配置されて、各々の回転子磁極は同心円的で軸方向に前記第一の歯部と前記エアギャップを介して噛み合うように対向配置された第二の歯部を突き出して有し、
    前記回転体は軸方向には移動不能で、前記回転子は軸方向に移動可能に組み付けられるとともに、前記回転体に対してはトルク伝達可能に組み付けられ、
    前記固定子又は前記回転子の何れか一方は、前記軸方向に複数の雌ネジが形成され、
    前記回転子と前記固定子との間のエアギャップを、前記雌ネジと噛み合う複数の雄ネジを前記軸と同軸的に配した駆動手段で回転させ、前記駆動手段の推力で前記回転子を前記軸方向に付勢移動することを特徴とする回転電機。
    Having a stator and a fixed shaft,
    A rotor arranged rotatably in the axial direction via an air gap;
    A rotating electrical machine comprising a rotating body that can rotate together with the rotor,
    The stator has a concentric arc shape and a plurality of first teeth protruding in the axial direction, and a plurality of winding salient cores having a winding axis formed in parallel with the fixed shaft are distributed in the circumferential direction. The stator core
    In the rotor, rotor magnetic poles made of a plurality of magnetic bodies are distributed in the circumferential direction, and each rotor magnetic pole is concentric and meshes with the first tooth portion via the air gap in the axial direction. Protrusively has a second tooth portion arranged oppositely,
    The rotating body is immovable in the axial direction, the rotor is assembled so as to be movable in the axial direction, and is assembled so as to transmit torque to the rotating body,
    Either one of the stator or the rotor has a plurality of female screws formed in the axial direction,
    The air gap between the rotor and the stator is rotated by driving means in which a plurality of male screws meshing with the female screw are arranged coaxially with the shaft, and the rotor is driven by the thrust of the driving means. A rotating electrical machine characterized in that it is biased in the axial direction.
  2. 請求項1に記載の回転電機において、
    前記駆動手段は、前記雌ネジが、前記回転子に形成されると共に、前記回転子と前記固定子との間のエアギャップを、前記軸と平行で、前記回転子に雌ネジを有して前記回転体部に配した複数の雄ネジにピニオンを設け、軸から径方向に設けたガイドに沿って移動可能なラックギアを前記ピニオンに噛み合わせて、前記回転子の増速により発生する遠心力で前記雄ネジを回転させその推力で前記回転子を軸方向に付勢移動することを特徴とする回転電機。
    In the rotating electrical machine according to claim 1,
    In the driving means, the female screw is formed in the rotor, and an air gap between the rotor and the stator is parallel to the shaft, and the rotor has a female screw. Centrifugal force generated by increasing the speed of the rotor by providing a pinion on a plurality of male screws arranged in the rotating body portion, meshing with the pinion a rack gear movable along a guide provided radially from the shaft And rotating the male screw to urge and move the rotor in the axial direction by the thrust.
  3. 請求項1に記載の回転電機において、
    前記駆動手段は、アウターロータ型又は中空軸を有するインナーロータ型のモータを用いることを特徴とする回転電機。
    In the rotating electrical machine according to claim 1,
    The rotating electric machine is characterized in that the driving means uses an outer rotor type motor or an inner rotor type motor having a hollow shaft.
  4. 請求項1から3のいずれか1項に記載の回転電機において、
    前記回転子の複数の周方向に分布配置された磁極は軸方向に磁化された永久磁石あるいは周方向に磁化されたスポーク状永久磁石を周方向に配置して交互に異極性に磁化されていることを特徴とする回転電機。
    The rotating electrical machine according to any one of claims 1 to 3,
    The plurality of circumferentially distributed magnetic poles of the rotor are alternately magnetized with different polarities by arranging axially magnetized permanent magnets or circumferentially magnetized spoke-like permanent magnets in the circumferential direction. Rotating electric machine characterized by that.
JP2013265607A 2013-12-24 2013-12-24 Axial variable gap rotating electric machine Active JP6205264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265607A JP6205264B2 (en) 2013-12-24 2013-12-24 Axial variable gap rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265607A JP6205264B2 (en) 2013-12-24 2013-12-24 Axial variable gap rotating electric machine

Publications (2)

Publication Number Publication Date
JP2015122886A true JP2015122886A (en) 2015-07-02
JP6205264B2 JP6205264B2 (en) 2017-09-27

Family

ID=53534043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265607A Active JP6205264B2 (en) 2013-12-24 2013-12-24 Axial variable gap rotating electric machine

Country Status (1)

Country Link
JP (1) JP6205264B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05300712A (en) * 1992-04-22 1993-11-12 Toyota Motor Corp Variable torque-constant type wheel motor
JP2002247822A (en) * 2001-02-22 2002-08-30 Chubu Electric Power Co Inc Synchronous motor generator with gap adjusting device
JP2005168190A (en) * 2003-12-03 2005-06-23 Nissan Motor Co Ltd Variable air gap type permanent magnet motor
US20080265702A1 (en) * 2007-04-26 2008-10-30 Don-Lon Yeh Permanent magnetic brushless motor with length adjustable air gap based on load

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05300712A (en) * 1992-04-22 1993-11-12 Toyota Motor Corp Variable torque-constant type wheel motor
JP2002247822A (en) * 2001-02-22 2002-08-30 Chubu Electric Power Co Inc Synchronous motor generator with gap adjusting device
JP2005168190A (en) * 2003-12-03 2005-06-23 Nissan Motor Co Ltd Variable air gap type permanent magnet motor
US20080265702A1 (en) * 2007-04-26 2008-10-30 Don-Lon Yeh Permanent magnetic brushless motor with length adjustable air gap based on load

Also Published As

Publication number Publication date
JP6205264B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6214990B2 (en) Rotating electric machine
JP4394115B2 (en) Axial gap type motor
JP4707696B2 (en) Axial gap type motor
Rasmussen et al. Motor integrated permanent magnet gear with a wide torque-speed range
JP4961302B2 (en) Axial gap type motor
JP2008271640A (en) Axial gap motor
US20120212085A1 (en) Axial-flux electric machine
JP2015070767A (en) Lateral magnetic flux dynamo-electric machine, and vehicle
US8436507B2 (en) Adjustable axial-flux disc motor
JP4500843B2 (en) Axial gap type motor
JPH07143694A (en) Rotor structure of synchronous machine and synchronous motor
JP2010183648A (en) Permanent magnet rotary electric machine and electric vehicle using the same
WO2013056458A1 (en) Electric motor
JP6205264B2 (en) Axial variable gap rotating electric machine
CN105720772A (en) Hybrid excitation drive motor for electric vehicle
JP6408766B2 (en) Axial three-dimensional gap type rotating electric machine
JP6044077B2 (en) Electric rotating machine and electric rotating system
JP5688055B2 (en) Rotating electrical machine
JP2016116368A (en) Rotary electric machine
JP2015082921A (en) Dynamo-electric machine
JP2018102090A (en) Stator and motor
JP2016226133A (en) Rotor, electric driving system, and electric vehicle comprising the same
JP5085875B2 (en) Electric motor
JP2020137350A (en) Axial gap motor
JP6310304B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R150 Certificate of patent or registration of utility model

Ref document number: 6205264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150