JP2007278960A - Cell electric physiological sensor, and method of measuring cell electric physiological phenomenon using this - Google Patents

Cell electric physiological sensor, and method of measuring cell electric physiological phenomenon using this Download PDF

Info

Publication number
JP2007278960A
JP2007278960A JP2006108434A JP2006108434A JP2007278960A JP 2007278960 A JP2007278960 A JP 2007278960A JP 2006108434 A JP2006108434 A JP 2006108434A JP 2006108434 A JP2006108434 A JP 2006108434A JP 2007278960 A JP2007278960 A JP 2007278960A
Authority
JP
Japan
Prior art keywords
hole
well
solution
holding plate
inner well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006108434A
Other languages
Japanese (ja)
Inventor
Masaya Nakatani
将也 中谷
Koji Ushio
浩司 牛尾
Soichiro Hiraoka
聡一郎 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006108434A priority Critical patent/JP2007278960A/en
Publication of JP2007278960A publication Critical patent/JP2007278960A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell electric physiological sensor capable of accurately measuring an electric physiological phenomenon correspondingly to various cells, and to provide a method of measuring the cell electric physiological phenomenon using this. <P>SOLUTION: The sensor includes a thin plate 2 having a first through-hole 3, a holding plate 4 having a second through-hole 5, and a well 6 having an inner well 8. The thin plate 2 is held inside the second through-hole 5, the well 6 is arranged in the upper part of the second through-hole 5 and butted on the holding plate 4, and the inner well 8 is disposed to be included in the well 6. A third through-hole 7 is formed in a wall surface section, and one opening of the third through-hole 7 is opened toward the second through- hole 5 of the holding plate 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、細胞の薬剤に対する反応を測定するために用いられる細胞電気生理センサおよびこれを用いた細胞電気生理現象の測定方法に関するものである。   The present invention relates to a cell electrophysiological sensor used for measuring a response of a cell to a drug and a method for measuring a cell electrophysiological phenomenon using the same.

従来、電気生理学におけるパッチクランプ法は、微細な先端を持つガラスマイクロピペットを用いて細胞膜に存在するイオンチャンネルを測定する方法として知られており、このパッチクランプ法によってイオンチャンネルの様々な機能が解明されてきた。そして、イオンチャンネルの働きは細胞学において重要な関心ごとであり、これは薬剤の開発にも応用されている。   Conventionally, the patch clamp method in electrophysiology is known as a method of measuring ion channels existing in cell membranes using a glass micropipette with a fine tip, and this patch clamp method elucidates various functions of ion channels. It has been. And the action of ion channels is an important concern in cytology, which has also been applied to drug development.

しかし、一方でパッチクランプ法は測定技術に微細なガラスマイクロピペットを1個の細胞に高い精度で挿入するという極めて高い能力を必要としているため、熟練作業者が必要であり、高いスループットで測定を必要とする場合には適切な方法でない。   However, on the other hand, the patch clamp method requires extremely high ability to insert a fine glass micropipette into a single cell with high accuracy in the measurement technique. It's not the right way if you need it.

このため、微細加工技術を利用した平板型プローブの開発がなされており、これらは個々の細胞についてマイクロピペットの挿入を必要としない自動化システムに適している。例えば、2つの領域を分離するキャリアに穴を有し、このキャリアの上下に設置した電極によって電界を発生させることで細胞の穴を効率よく保持し、上下の電極間で電気的測定を行うことで細胞状態量測定の一つである電気生理的測定を可能にする技術が開示されている(例えば、特許文献1参照)。   For this reason, flat-type probes utilizing microfabrication techniques have been developed, which are suitable for automated systems that do not require the insertion of micropipettes for individual cells. For example, there is a hole in the carrier that separates the two regions, and an electric field is generated by the electrodes placed above and below this carrier, thereby efficiently holding the cell hole and performing electrical measurement between the upper and lower electrodes Discloses a technique that enables electrophysiological measurement, which is one of cell state quantity measurements (see, for example, Patent Document 1).

一方、細胞と接触しうる細胞作用剤を含有する溶液を連続的または間欠的に流すのに適した微小流体室と、この微小流体室中に保持された生細胞と、この生細胞に生じる細胞媒介細胞外効果を測定する手段を用意することで、前記微小流体室中に流した細胞作用剤の効果を測定する技術について開示している(例えば、特許文献2参照)。特に、この技術を用いると細胞の極周辺に細胞作用剤を供給、または排出をすることができ、細胞周辺の溶液環境の切り替えを迅速に行いたいときに有効である。
特表2002−508516号公報 特許第2993982号公報
On the other hand, a microfluidic chamber suitable for flowing a solution containing a cell agent that can come into contact with cells continuously or intermittently, a living cell held in the microfluidic chamber, and a cell generated in the living cell A technique for measuring the effect of a cell agent flowing in the microfluidic chamber by preparing a means for measuring a mediated extracellular effect is disclosed (for example, see Patent Document 2). In particular, when this technique is used, a cell agent can be supplied to or discharged from the very periphery of the cell, which is effective when it is desired to quickly switch the solution environment around the cell.
Special table 2002-508516 gazette Japanese Patent No. 2993982

しかしながら、前記従来の構成では、細胞周辺の溶液環境を迅速に交換するために、流体室は閉空間である必要があり、それぞれの細胞に合わせて、溶液の流動性、拡散係数、濃度等の種々の条件の溶液による細胞が発する電気生理的変化を高精度に測定したい場合、前記のような固定された閉空間では流体室の大きさを細胞の大きさによって変えることが困難である。   However, in the conventional configuration, in order to quickly exchange the solution environment around the cells, the fluid chamber needs to be a closed space, and the fluidity, diffusion coefficient, concentration, etc. of the solution are adjusted according to each cell. In the case where it is desired to measure the electrophysiological change generated by the cells due to the solution under various conditions with high accuracy, it is difficult to change the size of the fluid chamber according to the size of the cells in the fixed closed space as described above.

本発明は、前記従来の課題を解決するもので、種々の細胞に対しても高精度に効率よく電気生理現象を測定することができる細胞電気生理センサおよびこれを用いた細胞電気生理現象の測定方法を提供することを目的とするものである。   The present invention solves the above-described conventional problems, and is capable of measuring electrophysiological phenomena with high accuracy and efficiency even for various cells, and measurement of cell electrophysiological phenomena using the same. It is intended to provide a method.

前記従来の課題を解決するために、本発明は、第一の貫通孔を設けた薄板と、第二の貫通孔を設けた保持プレートと、インナーウエルを内包したウエルからなり、薄板を第二の貫通孔の内部に保持し、この第二の貫通孔の上部にウエルを配置して保持プレートに当接し、ウエルの内部に内包するように溶液または細胞を含んだ溶液を蓄積できるインナーウエルを設け、このインナーウエルの壁面部には第三の貫通孔を設け、この第三の貫通孔の一方の開口部は前記保持プレートの第二の貫通孔に向かって開口するように構成するものである。   In order to solve the conventional problem, the present invention comprises a thin plate provided with a first through hole, a holding plate provided with a second through hole, and a well containing an inner well. An inner well that can hold a solution or a solution containing cells so as to be contained in the well is placed inside the through hole of the second well, and a well is disposed on the upper portion of the second through hole to contact the holding plate. A third through hole is provided in the wall surface of the inner well, and one opening of the third through hole is configured to open toward the second through hole of the holding plate. is there.

本発明の細胞電気生理センサおよびこれを用いた細胞電気生理現象の測定方法は、形状、寸法精度、材質など所望のインナーウエルの上部に開放空間を持ちながら、薄板の第一の貫通孔へ保持させた種々の細胞に対しても細胞の近傍へ確実に薬剤供給を行うことができる構成を実現することによって、より高精度で効率的な測定を実現することができる細胞電気生理センサおよびこれを用いた細胞電気生理現象の測定方法を提供することができるものである。   The cell electrophysiological sensor of the present invention and the method for measuring a cell electrophysiological phenomenon using the same are held in the first through hole of the thin plate while having an open space above the desired inner well such as shape, dimensional accuracy, and material. A cell electrophysiological sensor capable of realizing highly accurate and efficient measurement by realizing a configuration capable of reliably supplying a drug to the vicinity of the various cells, and a It is possible to provide a method for measuring the cellular electrophysiological phenomenon used.

(実施の形態1)
以下、本発明の実施の形態1における細胞電気生理センサおよびこれを用いた細胞電気生理現象の測定方法について図面を用いて説明する。
(Embodiment 1)
Hereinafter, a cell electrophysiological sensor according to Embodiment 1 of the present invention and a method for measuring a cell electrophysiological phenomenon using the same will be described with reference to the drawings.

図1は本発明の細胞電気生理センサの斜視図であり、図2は図1のA−A部における断面図である。   FIG. 1 is a perspective view of a cell electrophysiological sensor of the present invention, and FIG. 2 is a cross-sectional view taken along a line AA in FIG.

図1および図2において、1は細胞電気生理センサであり、シリコンからなる薄板2と、樹脂などの絶縁性材料からなる保持プレート4と、樹脂などの成型性に優れた材料からなるウエル6と、このウエルに内包するように配置したインナーウエル8から構成しており、前記薄板2には少なくとも一つの第一の貫通孔3を1〜3μmの直径で設けている。そして、この薄板2を保持プレート4の第二の貫通孔5の内部へ固定している。   1 and 2, reference numeral 1 denotes a cell electrophysiological sensor, which includes a thin plate 2 made of silicon, a holding plate 4 made of an insulating material such as a resin, and a well 6 made of a material excellent in moldability such as a resin. The thin plate 2 is provided with at least one first through hole 3 having a diameter of 1 to 3 μm. The thin plate 2 is fixed inside the second through hole 5 of the holding plate 4.

さらに、ウエル6は保持プレート4の上部へ当接しているが、ウエル6または保持プレート4のいずれかが特定波長領域の光に対して透過性を有し、一方は不透過性であることが好ましい。これによって、ウエル6と保持プレート4は透過性である面から特定波長領域のレーザ光線を照射し、その接合面を熱溶着させて強固な接着面を形成することが容易に可能となる。   Furthermore, although the well 6 is in contact with the upper part of the holding plate 4, either the well 6 or the holding plate 4 is transparent to light in a specific wavelength region, and one of them is impermeable. preferable. As a result, the well 6 and the holding plate 4 can easily form a strong adhesive surface by irradiating a laser beam in a specific wavelength region from a transparent surface and thermally welding the joint surface.

また、ウエル6に開口部を設け、その開口部の内壁面に沿うようにインナーウエル8を挿入して保持しており、さらに、このインナーウエル8の壁面部9の内部には上面から下面に向かって第三の貫通孔7を設けており、一方の端はウエル6の下部に設けた溝10へ連通している。このように、インナーウエル8を内包したウエル6を保持プレート4へ密着させることによって、インナーウエル8の壁面部9に形成した第三の貫通孔7は一方の開口部が、保持プレート4の第二の貫通孔5もしくは第一の貫通孔3へ向かって開口している形状としている。このインナーウエル8をウエル6の開口部へ保持する方法は圧入、接着剤、溶融接合などの接合方法によって保持することができる。また、このインナーウエル8をウエル6から取り外しができるようにすることも可能である。   Further, an opening is provided in the well 6, and an inner well 8 is inserted and held along the inner wall surface of the opening. Further, the inner wall 8 of the inner well 8 has an inner surface extending from the upper surface to the lower surface. A third through hole 7 is provided toward the end, and one end communicates with a groove 10 provided in the lower portion of the well 6. In this way, by bringing the well 6 containing the inner well 8 into close contact with the holding plate 4, one opening of the third through hole 7 formed in the wall surface portion 9 of the inner well 8 is the second of the holding plate 4. The shape is open toward the second through hole 5 or the first through hole 3. The inner well 8 can be held in the opening of the well 6 by a bonding method such as press-fitting, an adhesive, or melt bonding. Further, the inner well 8 can be removed from the well 6.

以上のような構成によって、本実施の形態1における細胞電気生理センサ1は、後に述べるようにインナーウエル8から細胞23を含む溶液を投入しやすくなる。さらに、第三の貫通孔7から別の溶液を投入することもできることから、インナーウエル8の内部の溶液を効率よく他の溶液に交換することができる。   With the configuration as described above, the cell electrophysiological sensor 1 according to the first embodiment can easily inject a solution containing the cells 23 from the inner well 8 as described later. Furthermore, since another solution can be poured from the third through-hole 7, the solution inside the inner well 8 can be efficiently exchanged with another solution.

また、インナーウエル8の形状は微小な形状であり、設計が容易になるとともに高寸法精度に成型しておく必要があることからインナーウエル8のみを個別に寸法成型性に優れた樹脂材料を用いて成型し、その他の成型体(例えばウエル6など)は通常の精度で成型することも可能であり、これによって生産性を高めることができる。   In addition, since the shape of the inner well 8 is very small, it is easy to design and it is necessary to mold it with high dimensional accuracy. Therefore, only the inner well 8 is individually made of a resin material having excellent dimensional moldability. It is possible to mold other molded bodies (for example, well 6) with normal accuracy, and this can increase productivity.

次に、本実施の形態1の細胞電気生理センサを用いて細胞の電気生理現象の測定を行う方法について述べる。   Next, a method for measuring a cell electrophysiological phenomenon using the cell electrophysiological sensor of Embodiment 1 will be described.

図3〜図7は本実施の形態1における細胞の電気生理現象の測定を行う手順について説明するための断面図である。また図8〜図10は別の例の細胞電気生理センサを説明するための断面図であり、図11〜図13はさらに他の例の細胞電気生理センサを説明するための断面図である。   3 to 7 are cross-sectional views for explaining the procedure for measuring the electrophysiological phenomenon of cells in the first embodiment. 8 to 10 are sectional views for explaining another example of the cell electrophysiological sensor, and FIGS. 11 to 13 are sectional views for explaining another example of the cell electrophysiological sensor.

まず初めに、図3に示すようにウエル6に内包したインナーウエル8の上部から第一の溶液24を投入すると、図4に示すように第一の貫通孔3および保持プレート4の下部領域に第一の溶液24が浸透し、それぞれの領域において第一の溶液24は上部電極27および下部電極28と接触する。そして、この第一の溶液24はNaClを含む電解液であるので、上部電極27と下部電極28の間には通常1〜10MΩ程度の導通抵抗が発生する。   First, as shown in FIG. 3, when the first solution 24 is introduced from the upper part of the inner well 8 included in the well 6, as shown in FIG. 4, the first through hole 3 and the lower region of the holding plate 4 are placed. The first solution 24 penetrates, and the first solution 24 contacts the upper electrode 27 and the lower electrode 28 in each region. Since the first solution 24 is an electrolytic solution containing NaCl, a conduction resistance of about 1 to 10 MΩ is usually generated between the upper electrode 27 and the lower electrode 28.

なお、保持プレート4の下部領域には第一の溶液24とは別の溶液(例えばKclを含む電解液のような第三の溶液26)をあらかじめ入れておいても良い。   Note that a solution different from the first solution 24 (for example, a third solution 26 such as an electrolytic solution containing Kcl) may be placed in the lower region of the holding plate 4 in advance.

一方、インナーウエル8から投入された第一の溶液24はインナーウエル8の内部に設けられた第三の貫通孔7側にも少し進入するが、特に問題はない。   On the other hand, the first solution 24 introduced from the inner well 8 slightly enters the side of the third through hole 7 provided in the inner well 8, but there is no particular problem.

しかしながら、第一の貫通孔3の近傍に気泡が残っていると、先に述べた導通抵抗が確保できないことがあり、特に第三の貫通孔7の内部に空気が残っていると、後で第三の貫通孔7から別の溶液(例えば、第二の溶液25)を投入すると第一の貫通孔3の近傍に気泡が発生してしまう。このようなことがないようにするためには、図7に示したように第一の溶液24をインナーウエル8から投入する際、第三の貫通孔7から吸引することによって、気泡が第一の貫通孔3の付近に残ることが無くなるとともに、第一の溶液24は十分な量で第三の貫通孔7の内部を満たすことから、後で第三の貫通孔7に別の溶液を投入しても気泡の発生を防ぐことができる。   However, if bubbles remain in the vicinity of the first through-hole 3, the above-described conduction resistance may not be ensured. In particular, if air remains in the third through-hole 7, When another solution (for example, the second solution 25) is introduced from the third through hole 7, bubbles are generated in the vicinity of the first through hole 3. In order to prevent this, as shown in FIG. 7, when the first solution 24 is introduced from the inner well 8, the first bubble 24 is sucked from the third through-hole 7, so that the bubbles are first removed. Since the first solution 24 fills the inside of the third through hole 7 in a sufficient amount, another solution is poured into the third through hole 7 later. Even so, the generation of bubbles can be prevented.

次に、図5に示すように細胞23を含む第一の溶液24をインナーウエル8の内部へ投入し、その後、図6に示すように保持プレート4の下部を減圧すると、第一の溶液24および細胞23が第一の貫通孔3へ引き込まれる。ここで、第一の溶液24は第一の貫通孔3を通過するが、細胞23は第一の貫通孔3を通り抜けることができず、第一の貫通孔3の開口部付近で保持される。そして、この細胞23が適度な密着度で第一の貫通孔3を塞ぐように保持されると、第一の溶液24は電気的に保持プレート4の上下で分断され、上部電極27と下部電極28の間では十分に高い抵抗値、例えば100MΩ、好ましくは500MΩ以上となる。   Next, as shown in FIG. 5, the first solution 24 containing the cells 23 is put into the inner well 8, and then the lower portion of the holding plate 4 is decompressed as shown in FIG. And the cell 23 is drawn into the first through-hole 3. Here, the first solution 24 passes through the first through-hole 3, but the cell 23 cannot pass through the first through-hole 3 and is held near the opening of the first through-hole 3. . And if this cell 23 is hold | maintained so that the 1st through-hole 3 may be plugged with moderate adhesion, the 1st solution 24 will be electrically divided on the upper and lower sides of the holding | maintenance plate 4, and the upper electrode 27 and lower electrode Between 28, the resistance value is sufficiently high, for example, 100 MΩ, preferably 500 MΩ or more.

次に、上部電極27と下部電極28の間に、例えば10mV程度の固定電圧を印加すると細胞23の膜にかかる電位(膜電位)が固定され、この時の電流値を測定することで、細胞23の内部に存在するイオンチャンネルを流れる電流を測定することができる。   Next, when a fixed voltage of, for example, about 10 mV is applied between the upper electrode 27 and the lower electrode 28, the potential applied to the membrane of the cell 23 (membrane potential) is fixed, and the current value at this time is measured, whereby the cell It is possible to measure the current flowing through the ion channel existing in the 23.

なお、このイオンチャンネルを流れる電流を測定する詳細な手順については、従来の方法であるパッチクランプ法などで詳しく公開しているので、ここではその説明は省略する。   The detailed procedure for measuring the current flowing through the ion channel is disclosed in detail in the conventional method such as the patch clamp method, and the description thereof is omitted here.

また、別の例の細胞電気生理センサの構成として、図8に示したように細胞を含む溶液を投入する箇所として第三の貫通孔7から投入することもできる。これによって、細胞23は第一の貫通孔3の近傍へ確実に導入することができる。その後、図9に示すように保持プレート4の下部を減圧すると、第一の溶液24および細胞23が第一の貫通孔3へ引き込まれ、細胞23は第一の貫通孔3を通りぬけることができず、第一の貫通孔3の開口部付近で保持される。この構成によって、少量の細胞23であっても、確実に第一の貫通孔3を塞ぐように細胞23を配置し、保持することができる。   Further, as another example of the configuration of the cell electrophysiological sensor, it can be introduced from the third through-hole 7 as a portion to which a solution containing cells is introduced as shown in FIG. Thereby, the cell 23 can be reliably introduced into the vicinity of the first through hole 3. Thereafter, when the lower portion of the holding plate 4 is decompressed as shown in FIG. 9, the first solution 24 and the cells 23 are drawn into the first through-hole 3, and the cells 23 can pass through the first through-hole 3. It cannot be held and is held near the opening of the first through hole 3. With this configuration, even with a small amount of cells 23, the cells 23 can be arranged and held so as to reliably block the first through-hole 3.

さらに、別の例として、図10に示すように第三の貫通孔7から第二の溶液25を投入する。ここで、第三の貫通孔7の一方の開口部は第一の貫通孔3に向かって開口しているので、第一の貫通孔3付近の第一の溶液24は速やかに第二の溶液25へ交換することができる。   Furthermore, as another example, the second solution 25 is introduced from the third through-hole 7 as shown in FIG. Here, since one opening part of the 3rd through-hole 7 is opening toward the 1st through-hole 3, the 1st solution 24 of the 1st through-hole 3 vicinity is a 2nd solution quickly. 25 can be exchanged.

なお、このとき第三の貫通孔7を複数形成しておくことがより好ましい。これによって、一つの第三の貫通孔7から第二の溶液25を投入し(矢印の方向)、他の第三の貫通孔7から吸引(矢印の方向)を行うことによって、第一の溶液24から第二の溶液25への迅速な溶液交換が可能となる。このような構成とすることによって、イオンチャンネルを流れる電流を測定しながら保持プレート4の上部領域において溶液の交換を速やかに行うと、第一の溶液24には含まれないが第二の溶液25の中に含まれる薬剤成分(例えば特定のイオンチャンネルに対するチャンネル阻害剤)によるイオンチャンネル電流の変化を測定することで薬理効果判定が迅速に正確に行えるようになる。   At this time, it is more preferable to form a plurality of third through holes 7. Accordingly, the second solution 25 is introduced from one third through-hole 7 (in the direction of the arrow), and suction (in the direction of the arrow) is performed from the other third through-hole 7, whereby the first solution Rapid solution exchange from 24 to the second solution 25 is possible. With this configuration, when the exchange of the solution is quickly performed in the upper region of the holding plate 4 while measuring the current flowing through the ion channel, the second solution 25 is not included in the first solution 24. By measuring the change in the ion channel current due to the drug component (for example, the channel inhibitor for a specific ion channel) contained in the pharmacological effect, the pharmacological effect can be determined quickly and accurately.

さらに、本実施の形態1における細胞電気生理センサの他の例として、図11に示すようにインナーウエル8の下方の開口部13の形状を薄板2の外径より小さくすることによって、第三の貫通孔7から投入された液体(例えば第二の溶液25)は、より確実に薄板2の第一の貫通孔3の近傍の第一の溶液24を速やかに交換することができる。   Furthermore, as another example of the cellular electrophysiological sensor in the first embodiment, as shown in FIG. 11, the shape of the opening 13 below the inner well 8 is made smaller than the outer diameter of the thin plate 2, thereby The liquid (for example, the second solution 25) introduced from the through-hole 7 can promptly exchange the first solution 24 in the vicinity of the first through-hole 3 of the thin plate 2 more reliably.

また、さらに他の例として、図12に示すように薄板2を保持プレート4の第二の貫通孔5の下方に保持した場合、インナーウエル8の下方の開口部13に第二の貫通孔5の内下方へ突出する突出部11を設けておくことによって、より確実に第一の貫通孔3の近傍の溶液を速やかに交換することができる。   As still another example, when the thin plate 2 is held below the second through hole 5 of the holding plate 4 as shown in FIG. 12, the second through hole 5 is formed in the opening 13 below the inner well 8. By providing the projecting portion 11 projecting inwardly and downwardly, the solution in the vicinity of the first through-hole 3 can be quickly replaced more reliably.

また、さらに他の例として、図13に示すように薄板2の外周部に枠体12を接合し、この枠体12を第二の貫通孔5の内部に設置するとともに、インナーウエル8の下方の開口部13に枠体12の内下方へ突出する突出部11を設けておくことによって、より確実に第一の貫通孔3の近傍の溶液を速やかに交換することができる。   As still another example, as shown in FIG. 13, a frame body 12 is joined to the outer peripheral portion of the thin plate 2, and the frame body 12 is installed inside the second through-hole 5 and below the inner well 8. By providing the projecting portion 11 projecting inward and downward of the frame body 12 in the opening 13, the solution in the vicinity of the first through hole 3 can be more quickly exchanged more reliably.

なお、本実施の形態1のようにインナーウエル8をウエル6の内部に内包させる場合、第三の貫通孔7の形成は、より多様な構成に簡単に換えることができる。すなわち、図10〜図13で示した例はすべてウエル6の形状は同じであり、インナーウエル8のみを変更して設置すればよい。   When the inner well 8 is enclosed in the well 6 as in the first embodiment, the formation of the third through hole 7 can be easily changed to various configurations. That is, in all the examples shown in FIGS. 10 to 13, the shape of the well 6 is the same, and only the inner well 8 may be changed and installed.

また、図14はこの一例のインナーウエル8の斜視図であるが、このインナーウエル8をウエル6の内部へ設置することで、図15はウエルプレートの斜視図であり、図15に示したように異なった形状を有するインナーウエル8を比較的簡単に揃えることができる。   14 is a perspective view of the inner well 8 of this example. FIG. 15 is a perspective view of the well plate by installing the inner well 8 inside the well 6, as shown in FIG. The inner wells 8 having different shapes can be relatively easily aligned.

また、複数のウエル6に対して別形状のインナーウエル8を設置すれば複数の形状を持つウエルアレイを容易に作製することができる。   Further, if an inner well 8 having a different shape is provided for a plurality of wells 6, a well array having a plurality of shapes can be easily manufactured.

以上のように、本発明にかかる細胞電気生理センサおよびこれを用いた細胞電気生理現象の測定方法は、高精度に効率良く細胞の電気生理現象の変化を測定できることから、例えば高速で薬理判定を行う、薬品スクリーニング等の測定器として用いられる。   As described above, the cell electrophysiological sensor and the cell electrophysiological measurement method using the same according to the present invention can measure changes in the electrophysiological phenomenon of cells with high accuracy and efficiency. Used as a measuring instrument for chemical screening.

本発明の実施の形態1における細胞電気生理センサの斜視図The perspective view of the cell electrophysiological sensor in Embodiment 1 of this invention 同図1のA−A部における断面図Sectional drawing in the AA part of the same FIG. 同センサを用いて細胞の電気生理現象の測定方法を説明するための断面図Sectional drawing for demonstrating the measuring method of the electrophysiological phenomenon of a cell using the sensor 同断面図Cross section 同断面図Cross section 同断面図Cross section 同断面図Cross section 同別の例の細胞電気生理センサの断面図Sectional view of another example of cellular electrophysiological sensor 同断面図Cross section 同断面図Cross section 同他の例の細胞電気生理センサの断面図Cross-sectional view of another example of cell electrophysiological sensor 同他の例の細胞電気生理センサの断面図Cross-sectional view of another example of cell electrophysiological sensor 同他の例の細胞電気生理センサの断面図Cross-sectional view of another example of cell electrophysiological sensor 同インナーウエルの斜視図Perspective view of the inner well 同ウエルプレートの斜視図Perspective view of the well plate

符号の説明Explanation of symbols

1 細胞電気生理センサ
2 薄板
3 第一の貫通孔
4 保持プレート
5 第二の貫通孔
6 ウエル
7 第三の貫通孔
8 インナーウエル
9 壁面部
10 溝
11 突出部
12 枠体
13 開口部
23 細胞
24 第一の溶液
25 第二の溶液
26 第三の溶液
27 上部電極
28 下部電極
DESCRIPTION OF SYMBOLS 1 Cell electrophysiological sensor 2 Thin plate 3 1st through-hole 4 Holding plate 5 2nd through-hole 6 Well 7 3rd through-hole 8 Inner well 9 Wall surface part 10 Groove 11 Projection part 12 Frame body 13 Opening part 23 Cell 24 First solution 25 Second solution 26 Third solution 27 Upper electrode 28 Lower electrode

Claims (7)

少なくとも一つの第一の貫通孔を設けた薄板と、第二の貫通孔を設けた保持プレートと、インナーウエルを内包したウエルからなる細胞電気生理センサであって、前記薄板を第二の貫通孔の内部に保持し、この第二の貫通孔の上部にウエルを配置して保持プレートに当接し、前記ウエルの内部に内包するように溶液または細胞を含んだ溶液を蓄積できるインナーウエルを設け、このインナーウエルの壁面部には第三の貫通孔を設け、この第三の貫通孔の一方の開口部は前記保持プレートの第二の貫通孔に向かって開口している細胞電気生理センサ。 A cell electrophysiological sensor comprising a thin plate provided with at least one first through-hole, a holding plate provided with a second through-hole, and a well containing an inner well, wherein the thin plate is attached to the second through-hole. An inner well that can store a solution or a solution containing cells so as to be contained inside the well is disposed in contact with the holding plate by placing a well above the second through hole. A cell electrophysiological sensor in which a third through hole is provided in the wall surface of the inner well, and one opening of the third through hole opens toward the second through hole of the holding plate. インナーウエルの壁面部の保持プレート側の開口部の形状を薄板の外径よりも小さくした請求項1に記載の細胞電気生理センサ。 The cell electrophysiological sensor according to claim 1, wherein the shape of the opening on the holding plate side of the wall surface of the inner well is smaller than the outer diameter of the thin plate. インナーウエルの壁面部の保持プレート側の開口部に第二の貫通孔の内部へ突出した突出部を設けた請求項1に記載の細胞電気生理センサ。 The cell electrophysiological sensor according to claim 1, wherein a projecting portion projecting into the inside of the second through hole is provided in an opening portion on the holding plate side of the wall surface portion of the inner well. 薄板の外周部に枠体部を設け、この枠体部を保持プレートの第二の開口部に前記枠体部をインナーウエル側となるよう保持し、このインナーウエルの突出部を前記枠体部によって構成したキャビティの内部へ挿入した請求項3に記載の細胞電気生理センサ。 A frame body portion is provided on the outer peripheral portion of the thin plate, the frame body portion is held in the second opening of the holding plate so that the frame body portion is located on the inner well side, and the protruding portion of the inner well is disposed on the frame body portion. The cell electrophysiological sensor according to claim 3, which is inserted into a cavity constituted by 少なくとも一つの第一の貫通孔を設けた薄板と、第二の貫通孔を設けた保持プレートと、インナーウエルを内包したウエルからなり、前記薄板を第二の貫通孔の内部に保持し、この第二の貫通孔の上部にウエルを配置して保持プレートに当接し、前記ウエルの内部に内包するように溶液または細胞を含んだ溶液を蓄積できるインナーウエルを設け、このインナーウエルには第三の貫通孔を設け、この第三の貫通孔の一方の開口部は前記保持プレートの第二の貫通孔に向かって開口している細胞電気生理センサを準備する工程と、前記インナーウエルの内部に第一の溶液を蓄積する工程と、第三の貫通孔の内部へ第二の溶液を投入する工程を少なくとも含む細胞電気生理現象の測定方法。 A thin plate provided with at least one first through hole, a holding plate provided with a second through hole, and a well containing an inner well. The thin plate is held inside the second through hole. A well is disposed above the second through-hole and is in contact with the holding plate, and an inner well is provided that can accumulate a solution or a solution containing cells so as to be contained inside the well. A step of preparing a cell electrophysiological sensor in which one opening of the third through-hole opens toward the second through-hole of the holding plate; and inside the inner well A method for measuring a cell electrophysiological phenomenon, comprising at least a step of accumulating a first solution and a step of introducing a second solution into the inside of a third through hole. インナーウエルの内部の第一の溶液を第二の溶液へ交換する請求項5に記載の細胞電気生理現象の測定方法。 The method for measuring a cell electrophysiological phenomenon according to claim 5, wherein the first solution inside the inner well is replaced with a second solution. 第二の溶液に細胞を含ませる請求項6に記載の細胞電気生理現象の測定方法。 The method for measuring a cell electrophysiological phenomenon according to claim 6, wherein cells are contained in the second solution.
JP2006108434A 2006-04-11 2006-04-11 Cell electric physiological sensor, and method of measuring cell electric physiological phenomenon using this Pending JP2007278960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006108434A JP2007278960A (en) 2006-04-11 2006-04-11 Cell electric physiological sensor, and method of measuring cell electric physiological phenomenon using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006108434A JP2007278960A (en) 2006-04-11 2006-04-11 Cell electric physiological sensor, and method of measuring cell electric physiological phenomenon using this

Publications (1)

Publication Number Publication Date
JP2007278960A true JP2007278960A (en) 2007-10-25

Family

ID=38680542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006108434A Pending JP2007278960A (en) 2006-04-11 2006-04-11 Cell electric physiological sensor, and method of measuring cell electric physiological phenomenon using this

Country Status (1)

Country Link
JP (1) JP2007278960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523150A (en) * 2010-04-09 2013-06-17 モレキュラー デバイシズ,インコーポレーテッド High-throughput screening of ion channels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013523150A (en) * 2010-04-09 2013-06-17 モレキュラー デバイシズ,インコーポレーテッド High-throughput screening of ion channels

Similar Documents

Publication Publication Date Title
JP5233187B2 (en) Cell electrophysiological sensor
US7776193B2 (en) Cell electrophysiological sensor
KR20180125530A (en) Wafer-scale assembly of insulator-membrane-insulator devices for nanopore sensing
JP5375609B2 (en) Biosensor
JP2007174990A (en) Cellular electrophysiological sensor array and method for producing the same
JP4425891B2 (en) Cell electrophysiological sensor and manufacturing method thereof
JP4670713B2 (en) Cell electrophysiological sensor and cell electrophysiological measurement method using the same
JP2007278960A (en) Cell electric physiological sensor, and method of measuring cell electric physiological phenomenon using this
JP4682884B2 (en) Cell electrophysiological sensor and cell electrophysiological measurement method using the same
JP4742882B2 (en) Cell electrophysiological sensor and manufacturing method thereof
JP4816111B2 (en) Micropipette and cell measurement system using the same
JP2008000079A (en) Physiological sensor for cellular electricity
JP2008187968A (en) Cellular electrophysiological sensor
JP2008139069A (en) Cellular electrophysiological sensor
JP2009124968A (en) Apparatus for measuring electrophysiological phenomenon of cells
WO2013094696A1 (en) Cassette for electrophoresis, manufacturing method for same, and electrophoresis method
JP6654951B2 (en) Fluid handling device
JP5011961B2 (en) Cell electrophysiological sensor and manufacturing method thereof
JP2008039625A (en) Cell electrophysiologic sensor and its manufacturing method
JP4821449B2 (en) Cell electrophysiological sensor and method for measuring cell electrophysiology using the same
JP4973618B2 (en) Cell electrophysiological sensor manufacturing method and manufacturing apparatus
JP4830996B2 (en) Cell electrophysiological sensor device and cell electrophysiological sensor using the same
JP4747852B2 (en) Cell electrophysiological sensor and manufacturing method thereof
JP2007298350A (en) Cell electrophysiological sensor and cell electrophysiological phenomenon measuring method using this
JP2010101819A (en) Cell electrophysiological sensor