JP2007278606A - Refrigerating cycle - Google Patents

Refrigerating cycle Download PDF

Info

Publication number
JP2007278606A
JP2007278606A JP2006106102A JP2006106102A JP2007278606A JP 2007278606 A JP2007278606 A JP 2007278606A JP 2006106102 A JP2006106102 A JP 2006106102A JP 2006106102 A JP2006106102 A JP 2006106102A JP 2007278606 A JP2007278606 A JP 2007278606A
Authority
JP
Japan
Prior art keywords
refrigerant
path
evaporator
expansion device
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006106102A
Other languages
Japanese (ja)
Inventor
Kenji Iijima
健次 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Valeo Thermal Systems Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermal Systems Japan Corp filed Critical Valeo Thermal Systems Japan Corp
Priority to JP2006106102A priority Critical patent/JP2007278606A/en
Publication of JP2007278606A publication Critical patent/JP2007278606A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator

Abstract

<P>PROBLEM TO BE SOLVED: To suppress abnormal rising of a high pressure side pressure of a refrigerating cycle in its starting, even when the refrigerating cycle is provided with a fixed displacement type compressor and a supercritical fluid such as carbon dioxide is used as coolant. <P>SOLUTION: The refrigerating cycle 1 has a subordinate passage 9 different from a main passage 7 comprised by serially joining the compressor 2, a heat radiator 3, an expansion device 4, an evaporator 5, and an accumulator 6 in sequence. In the subordinate passage 9, its upstream end is connected to a high pressure side 7A of the main passage 7 in an upstream side of the expansion device 4, and its downstream end is connected to a low pressure side 7B of the main passage 7 between the evaporator 5 and the accumulator 6. A relief valve 10 is positioned on the subordinate passage 9. The coolant passing through the relief valve 10 bypasses not only a pressure reduction regulating valve 8 of the expansion device 4, but also the evaporator 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、二酸化炭素(CO2)などの超臨界流体が冷媒として用いられる冷凍サイクルに関する。   The present invention relates to a refrigeration cycle in which a supercritical fluid such as carbon dioxide (CO2) is used as a refrigerant.

この種の二酸化炭素(CO2)などの超臨界流体が冷媒として用いられる冷凍サイクルでは、冷凍サイクルの停止時において当該冷凍サイクル内の高圧側圧力と低圧側圧力とが平衡になるが、夏場等の外気温が相対的に高い環境下で放置された状態にあると、冷凍サイクルが設置されている周囲(例えばエンジンルーム内)の温度は、当該冷媒の臨界温度(31℃)に比しても非常に高くなっているので、平衡圧力値が10MPa近くまで上昇してしまう。このため、この状態からエアコンスイッチをONにして冷凍サイクルを起動させると高圧側圧力が容易に冷凍サイクルの設計許容圧力値近くまで上昇することとなる。また、超臨界流体が冷媒として用いられる冷凍サイクルの高圧側では超臨界状態でも冷媒が液化することがなく、冷媒の密度が上がらないので、通常の亜臨界の冷凍サイクルに比べ高圧側圧力が上昇し易いことも、冷凍サイクルの高圧側圧力が容易に上昇する要因となる。   In a refrigeration cycle in which a supercritical fluid such as carbon dioxide (CO2) of this type is used as a refrigerant, the high pressure side pressure and the low pressure side pressure in the refrigeration cycle are balanced when the refrigeration cycle is stopped. If the outside air temperature is left in a relatively high environment, the temperature around the refrigeration cycle (for example, in the engine room) is higher than the critical temperature (31 ° C.) of the refrigerant. Since it is very high, the equilibrium pressure value rises to near 10 MPa. For this reason, when the refrigeration cycle is started by turning on the air conditioner switch from this state, the high-pressure side pressure easily rises to near the design allowable pressure value of the refrigeration cycle. Also, on the high-pressure side of the refrigeration cycle where supercritical fluid is used as the refrigerant, the refrigerant does not liquefy even in the supercritical state, and the refrigerant density does not increase, so the high-pressure side pressure increases compared to the normal subcritical refrigeration cycle. This is also a factor that the high-pressure side pressure of the refrigeration cycle easily rises.

このような不具合を解消するために冷凍サイクルを構成する圧縮機として可変容量型圧縮機を用いることにより冷媒流量を制御する方法(例えば、特許文献1を参照。)や、冷凍サイクル上において膨張装置と並行にリリーフ装置を配置し、高圧側圧力がある規定値(例えば15MPa)を超えた場合に開弁して冷凍サイクルの高圧側と低圧側とを連通させることで、異常高圧に対処する方法(例えば、特許文献2を参照。)は、既に本願出願人等によって提案されている。   In order to eliminate such problems, a method of controlling the refrigerant flow rate by using a variable displacement compressor as a compressor constituting the refrigeration cycle (see, for example, Patent Document 1), or an expansion device on the refrigeration cycle The relief device is arranged in parallel with the valve, and when the high-pressure side pressure exceeds a specified value (for example, 15 MPa), the valve is opened and the high-pressure side and the low-pressure side of the refrigeration cycle are communicated to deal with abnormally high pressure. (See, for example, Patent Document 2) has already been proposed by the present applicant.

一方、本願出願人は、固定容量型圧縮機を備えた冷凍サイクルに対して二酸化炭素(CO2)などの超臨界流体を冷媒として用いる構成についても既に提案している(例えば、特許文献3を参照。)。
特開2003−28522号公報 特開2000−205671号公報 特開平11−63692号公報
On the other hand, the applicant of the present application has already proposed a configuration in which a supercritical fluid such as carbon dioxide (CO2) is used as a refrigerant for a refrigeration cycle having a fixed capacity compressor (see, for example, Patent Document 3). .)
JP 2003-28522 A JP 2000-205671 A Japanese Patent Laid-Open No. 11-63692

もっとも、上記特許文献3のように、単に固定容量型圧縮機を用いた場合には、当然ながら可変容量型圧縮機のような冷媒流量を可変制御する方法を採ることができないので、冷凍サイクルの高圧側圧力が上昇し、安全装置により圧縮機のクラッチの断続が繰り返し継続的に行なわれるという不具合が生ずる虞れがある。   However, as in the above-mentioned Patent Document 3, when a fixed capacity compressor is simply used, naturally, a method of variably controlling the refrigerant flow rate like a variable capacity compressor cannot be adopted. There is a risk that the high-pressure side pressure rises and the safety device repeatedly and continuously engages and disengages the compressor clutch.

また、リリーフ弁を膨張弁(減圧調整弁)とのみ並行に設ける構造では、膨張弁とリリーフ弁との双方を開弁する場合には、膨張弁を通過した冷媒も、リリーフ弁を通過した冷媒も、蒸発器で加熱されることとなるので、冷凍サイクル全体の熱量をなかなか低下させることができない。更にまた、冷凍サイクルの高圧側から開放された冷媒が気液体混合状態のまま圧縮機に吸い込まれることがあり、逆に圧縮機の吸い込み冷媒流量が増大してしまうため冷凍サイクルの高圧側圧力を効果的に下げることができない。その結果として、冷凍サイクルの高圧側圧力の上昇を招き、圧縮機のクラッチの断続が繰り返し継続的に行われるという不具合が生ずる。   In the structure in which the relief valve is provided only in parallel with the expansion valve (decompression adjusting valve), when both the expansion valve and the relief valve are opened, the refrigerant that has passed through the expansion valve is also the refrigerant that has passed through the relief valve. However, since it will be heated by an evaporator, the amount of heat of the entire refrigeration cycle cannot be easily reduced. Furthermore, the refrigerant released from the high-pressure side of the refrigeration cycle may be sucked into the compressor while being in a gas-liquid mixed state, and conversely the suction refrigerant flow rate of the compressor will increase. It cannot be lowered effectively. As a result, an increase in the high-pressure side pressure of the refrigeration cycle is caused, resulting in a problem that the clutch of the compressor is repeatedly engaged and discontinuously performed.

そこで、本発明は、固定容量型圧縮機を備えると共に二酸化炭素などの超臨界流体を冷媒として用いる冷凍サイクルであっても、その起動時において冷凍サイクルの高圧側圧力の異常上昇を抑制可能とすることを目的とする。   Therefore, the present invention can suppress an abnormal increase in the high-pressure side pressure of the refrigeration cycle even when the refrigeration cycle includes a fixed capacity compressor and uses a supercritical fluid such as carbon dioxide as a refrigerant. For the purpose.

この発明に係る冷凍サイクルは、冷媒に二酸化炭素を使用する冷凍サイクルであって、冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒を冷却する放熱装置と、前記放熱装置で冷却された冷媒を減圧する減圧調整弁を備えた膨張装置と、前記膨張装置から流出する冷媒を蒸発させる蒸発器と、所定条件下で高圧側と低圧側とを連通させるリリーフ弁とを有して構成され、前記リリーフ弁は、前記圧縮機、前記放熱装置、前記膨張装置、前記蒸発器を直列的に接合して成る冷媒の主経路とは別となる副次経路上に位置し、この副次経路は、その上流側端が前記膨張装置よりも上流側で前記主経路と接続し、且つその下流側端は前記蒸発器よりも下流側で前記主経路と接続していることを特徴としている(請求項1)。ここで、冷媒は、二酸化炭素(CO2)などの超臨界流体である。前記圧縮機は、主として、固定容量式の圧縮機である(請求項6)。これは、下記の冷媒、圧縮機についても同様である。そして、この発明に係る冷凍サイクルは、前記蒸発器から流出した冷媒を気液分離するアキュムレータを有し、前記副次経路の下流側端は、このアキュムレータよりも上流側で前記主経路と接続するようにしても良い(請求項7)。   The refrigeration cycle according to the present invention is a refrigeration cycle that uses carbon dioxide as a refrigerant, and is cooled by a compressor that compresses the refrigerant, a heat radiating device that cools the refrigerant compressed by the compressor, and the heat radiating device. An expansion device having a pressure reducing valve for reducing the pressure of the refrigerant, an evaporator for evaporating the refrigerant flowing out of the expansion device, and a relief valve for communicating the high pressure side and the low pressure side under a predetermined condition The relief valve is located on a secondary path different from the main path of the refrigerant formed by joining the compressor, the heat dissipation device, the expansion device, and the evaporator in series. The path is characterized in that its upstream end is connected to the main path upstream from the expansion device, and its downstream end is connected to the main path downstream from the evaporator. (Claim 1). Here, the refrigerant is a supercritical fluid such as carbon dioxide (CO2). The compressor is mainly a fixed capacity type compressor. The same applies to the refrigerant and compressor described below. The refrigeration cycle according to the present invention includes an accumulator that gas-liquid separates the refrigerant flowing out of the evaporator, and a downstream end of the secondary path is connected to the main path upstream of the accumulator. You may make it (Claim 7).

また、この発明に係る冷凍サイクルは、冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒を冷却する放熱装置と、前記放熱装置で冷却された冷媒を減圧する減圧調整弁を備えた膨張装置と、前記膨張装置から流出する冷媒を蒸発させる蒸発器と、この蒸発器から流出した冷媒を気液分離するアキュムレータと、所定条件下で高圧側と低圧側とを連通させるリリーフ弁とを有して構成され、前記リリーフ弁は、前記圧縮機、前記放熱装置、前記膨張装置、前記蒸発器及び前記アキュムレータを直列的に接合して成る冷媒の主経路とは別となる副次経路上に位置し、この副次経路は、その上流側端が前記膨張装置よりも上流側で前記主経路と接続し、且つその下流側端は前記蒸発器と前記アキュムレータとの間にて前記主経路と接続していることを特徴としている(請求項2)。   In addition, the refrigeration cycle according to the present invention includes a compressor that compresses the refrigerant, a heat radiating device that cools the refrigerant compressed by the compressor, and a pressure reducing valve that depressurizes the refrigerant cooled by the heat radiating device. An expansion device, an evaporator for evaporating the refrigerant flowing out of the expansion device, an accumulator for separating the refrigerant flowing out of the evaporator from gas and liquid, and a relief valve for communicating the high pressure side and the low pressure side under predetermined conditions The relief valve is arranged on a secondary path different from a refrigerant main path formed by joining the compressor, the heat dissipation device, the expansion device, the evaporator, and the accumulator in series. The secondary path has an upstream end connected to the main path upstream of the expansion device, and a downstream end connected between the evaporator and the accumulator. Connect with It is characterized in that (claim 2).

そして、前記膨張装置は、前記減圧調整弁と前記リリーフ弁とが一体化していることを特徴としている(請求項3)。具体例には、前記膨張装置は、ハウジング内に、冷媒が前記主経路の高圧側から流入する流入通路と、冷媒が前記主経路の前記蒸発器よりも上流側に流出する流出通路と、これらの通路が開口する高圧空間と、前記流出通路の開口部を開閉する減圧調整弁と、一方端が前記副次経路の上流側部位と接続し、他方が前記副次的経路の下流側部位と接続する連通路と、この連通路と高圧空間とを連通する連通孔を開閉するリリーフ弁とを有することを特徴としている(請求項4)。この減圧調整弁は、例えば、冷凍サイクルの高圧側と低圧側との圧力差、高圧側冷媒温度等で弁開度を制御する。リリーフ弁は、高圧感圧素子等が用いられ、高圧側圧力が所定値以上の高圧となることにより開くものである。   The expansion device is characterized in that the pressure reducing adjustment valve and the relief valve are integrated (claim 3). Specifically, the expansion device includes an inflow passage through which refrigerant flows in from a high pressure side of the main path, an outflow path through which refrigerant flows out upstream of the evaporator in the main path, and these. A high-pressure space in which the passage is opened, a pressure-reducing control valve that opens and closes the opening of the outflow passage, one end is connected to an upstream portion of the secondary path, and the other is a downstream portion of the secondary path It is characterized by having a communicating path to be connected and a relief valve for opening and closing a communicating hole that communicates the communicating path and the high-pressure space (claim 4). This decompression control valve controls the valve opening degree by, for example, the pressure difference between the high pressure side and the low pressure side of the refrigeration cycle, the high pressure side refrigerant temperature, and the like. The relief valve uses a high-pressure sensor or the like, and opens when the high-pressure side pressure becomes a high pressure equal to or higher than a predetermined value.

また、前記膨張装置は、ハウジング内に、冷媒が前記主経路の高圧側から流入する流入通路と、冷媒が前記主経路の前記蒸発器よりも上流側に流出する流出通路と、これらの通路が開口する高圧空間と、一方端が前記副次経路の上流側部位と接続し、他方が前記副次的経路の下流側部位と接続する連通路と、第一次弁で前記流出通路の開口部を開閉すると共に第二次弁で前記連通路と高圧空間とを連通する連通孔を開閉する減圧調整、リリーフ兼用弁とを有することを特徴としている(請求項5)。減圧調整、リリーフ兼用弁は、高圧感圧素子等が用いられ、高圧側圧力が所定値以上の高圧となることにより第一次弁体に併せて第二次弁体も開くものである。   Further, the expansion device includes an inflow passage through which refrigerant flows in from a high pressure side of the main path, an outflow path through which refrigerant flows out upstream of the evaporator in the main path, and these passages in the housing. A high-pressure space that opens, a communication path that has one end connected to an upstream part of the secondary path and the other connected to a downstream part of the secondary path, and an opening of the outflow path by a primary valve And a pressure reducing adjustment / relief valve that opens and closes a communication hole that communicates the communication path and the high-pressure space with a secondary valve (Claim 5). The decompression adjustment / relief valve uses a high-pressure pressure sensing element or the like, and opens the secondary valve body together with the primary valve body when the high-pressure side pressure becomes a high pressure equal to or higher than a predetermined value.

よって、請求項1に記載の発明によれば、冷凍サイクルの起動時に当該冷凍サイクルの高圧側圧力が上昇すると減圧調整弁とリリーフ弁とが開き、このリリーフ弁で膨張した冷媒は蒸発器で加熱されることなく冷凍サイクルの低圧側に開放される。これにより、冷凍サイクル全体の熱量を迅速に低下させることができ、それに伴い冷凍サイクルの高圧側の圧力の上昇が抑制される。   Therefore, according to the first aspect of the present invention, when the high-pressure side pressure of the refrigeration cycle rises at the start of the refrigeration cycle, the pressure reducing adjustment valve and the relief valve are opened, and the refrigerant expanded by the relief valve is heated by the evaporator. Without opening to the low pressure side of the refrigeration cycle. Thereby, the calorie | heat amount of the whole refrigerating cycle can be reduced rapidly, and the raise of the pressure of the high voltage | pressure side of a refrigerating cycle is suppressed in connection with it.

また、請求項2に記載の発明によれば、このリリーフ弁を通過した気液混合状態の冷媒のうち液状冷媒はアキュムレータ内に溜まり、減圧された気状冷媒のみが圧縮機に戻されるので、冷凍サイクルでの余剰の冷媒がアキュムレータに貯蔵され冷凍サイクルの低圧側圧力が低下する。そして、冷凍サイクルの低圧側圧力が下がることにより圧縮機の吸込み冷媒密度も下がるので、冷凍サイクル内の循環する冷媒流量が減少する。しかるに、この冷媒の循環冷媒流量の低減により冷凍サイクルの高圧側圧力の上昇が抑制される。尚、冷凍サイクルの高圧側圧力が低下するとリリーフ弁が閉じて減圧調整弁のみを冷媒が通過する通常運転に移行する。   According to the invention described in claim 2, the liquid refrigerant in the gas-liquid mixed state refrigerant that has passed through the relief valve accumulates in the accumulator, and only the decompressed gaseous refrigerant is returned to the compressor. Excess refrigerant in the refrigeration cycle is stored in the accumulator, and the low-pressure side pressure of the refrigeration cycle decreases. And since the refrigerant | coolant suction refrigerant density also falls by the low pressure side pressure of a refrigerating cycle falling, the refrigerant | coolant flow volume which circulates in a refrigerating cycle reduces. However, an increase in the high-pressure side pressure of the refrigeration cycle is suppressed by reducing the circulating refrigerant flow rate of the refrigerant. When the high-pressure side pressure of the refrigeration cycle is reduced, the relief valve is closed and the operation shifts to a normal operation in which the refrigerant passes only through the pressure reducing adjustment valve.

特に請求項3乃至5に記載の発明によれば、膨張装置に減圧調整弁とリリーフ弁とを一体化することにより膨張弁とリリーフ弁とを別個の機器とする場合よりも弁体の機構等が集約されて小型化、製造コストの低廉化を図ることができる。   In particular, according to the third to fifth aspects of the present invention, the mechanism of the valve body and the like are compared with the case where the expansion valve and the relief valve are separated from each other by integrating the decompression adjustment valve and the relief valve into the expansion device. As a result, the size can be reduced and the manufacturing cost can be reduced.

以下、この発明の実施形態を図面により説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1において、この発明に係る冷凍サイクル1の一例が示されている。この冷凍サイクル1は、例えば、二酸化炭素(CO2)等の超臨界流体を冷媒に用いた超臨界冷凍サイクルであり、冷媒を自身の臨界圧力を越える圧力まで昇圧する圧縮機2と、この圧縮機2で圧縮された冷媒を冷却する例えばガスクーラ等の放熱装置3と、この放熱装置3により冷却された冷媒を減圧する減圧調整弁8を有する膨張装置4と、この減圧調整弁8により減圧された冷媒を蒸発気化する例えばエバポレータ等の蒸発器5と、この蒸発器5から流出した冷媒を気液分離するアキュムレータ6とを有して構成されている。尚、冷凍サイクル1は、アキュムレータ6から圧縮機2へ導かれる低圧冷媒と放熱装置3から膨張装置4の減圧調整弁8へ導かれる高圧冷媒とを熱交換させる内部熱交換器(図示しない)を更に有して構成されていても良い。   FIG. 1 shows an example of a refrigeration cycle 1 according to the present invention. The refrigeration cycle 1 is a supercritical refrigeration cycle using, for example, a supercritical fluid such as carbon dioxide (CO2) as a refrigerant. The compressor 2 boosts the refrigerant to a pressure exceeding its critical pressure, and the compressor. For example, a heat radiating device 3 such as a gas cooler that cools the refrigerant compressed in 2, an expansion device 4 having a pressure reducing adjustment valve 8 that depressurizes the refrigerant cooled by the heat radiating device 3, and the pressure reducing pressure adjusting valve 8 reduces the pressure. For example, an evaporator 5 such as an evaporator for evaporating and evaporating the refrigerant and an accumulator 6 for separating the refrigerant flowing out of the evaporator 5 into gas and liquid are provided. The refrigeration cycle 1 includes an internal heat exchanger (not shown) for exchanging heat between the low-pressure refrigerant guided from the accumulator 6 to the compressor 2 and the high-pressure refrigerant guided from the heat radiating device 3 to the pressure reducing adjustment valve 8 of the expansion device 4. Further, it may be configured.

すなわち、この冷凍サイクル1は、圧縮機2の吐出側が放熱器3を介して膨張装置4と配管接続され、且つ、膨張装置4の流出側が蒸発器5を介して圧縮機2の吸入側とが接続されて成る主経路7を有している。従って、この主経路7は、圧縮機2の吐出側から放熱装置3を介して膨張装置4に至る高圧側7A(図1の矢印にて示す)が構成され、膨張装置4の流出側から蒸発器5、アキュムレータ6を介して圧縮機2に至る低圧側7B(図1の白抜き矢印にて示す)が構成されている。   That is, in the refrigeration cycle 1, the discharge side of the compressor 2 is connected to the expansion device 4 via the radiator 3, and the outflow side of the expansion device 4 is connected to the suction side of the compressor 2 via the evaporator 5. The main path 7 is connected. Therefore, the main path 7 is configured with a high pressure side 7A (indicated by an arrow in FIG. 1) from the discharge side of the compressor 2 to the expansion device 4 via the heat radiating device 3, and evaporates from the outflow side of the expansion device 4. A low pressure side 7B (indicated by a white arrow in FIG. 1) reaching the compressor 2 via the device 5 and the accumulator 6 is configured.

また、冷凍サイクル1は、主経路7とは別に副次経路9を有している。この副次経路9は、その上流側端が膨張装置4よりも上流側で主経路7と接続し、且つその下流側端は蒸発器5とアキュムレータ6との間にて主経路7と接続しているもので、この副次経路9上にリリーフ弁10が位置している。すなわち、このリリーフ弁10は、膨張装置4の減圧調整弁8と並行に位置していると共に、リリーフ弁10が開放されることで、主経路7の高圧側7Aから副次経路9に入った冷媒は、減圧調整弁8及び蒸発器5をバイパスして主経路7のうちアキュムレータ6よりも上流側となる主経路7の低圧側7Bに送られる。   Further, the refrigeration cycle 1 has a secondary path 9 in addition to the main path 7. The secondary path 9 has an upstream end connected to the main path 7 upstream of the expansion device 4, and a downstream end connected to the main path 7 between the evaporator 5 and the accumulator 6. Therefore, the relief valve 10 is located on the secondary path 9. That is, the relief valve 10 is positioned in parallel with the pressure reducing adjustment valve 8 of the expansion device 4 and enters the secondary path 9 from the high pressure side 7A of the main path 7 by opening the relief valve 10. The refrigerant bypasses the pressure reducing adjustment valve 8 and the evaporator 5 and is sent to the low pressure side 7B of the main path 7 which is upstream of the accumulator 6 in the main path 7.

このように、冷媒が蒸発器5をバイパスすることにより、リリーフ弁10で膨張された冷媒は蒸発器5で加熱されることなく主経路7の低圧側7Bに開放されるので、冷凍サイクル1全体の熱量を迅速に低下させることができ、それに伴い、主経路7の高圧側7Aの圧力の上昇が抑制される。   Thus, since the refrigerant bypasses the evaporator 5, the refrigerant expanded by the relief valve 10 is opened to the low pressure side 7 </ b> B of the main path 7 without being heated by the evaporator 5. The amount of heat can be quickly reduced, and accordingly, an increase in pressure on the high-pressure side 7A of the main path 7 is suppressed.

また、冷凍サイクル1の起動時に当該冷凍サイクル1の主経路7のうち高圧側7Aの圧力が上昇すると減圧調整弁8とリリーフ弁10との双方が開くことで、リリーフ弁10で膨張した気液混合状態の冷媒のうち液状冷媒はアキュムレータ6内に溜まり、減圧された気状冷媒のみが圧縮機2に戻されるので、冷凍サイクル1の主経路7のうち低圧側7Bの圧力が低下する。そして、主経路7の低圧側7Bの圧力が下がることにより圧縮機2の吸込み冷媒密度も下がるので、冷凍サイクル1内の循環する冷媒流量が減少する。しかるに、この冷媒の循環冷媒流量の低減により主経路7の高圧側7Aにおける圧力の上昇が抑制される。   Further, when the pressure on the high pressure side 7A of the main path 7 of the refrigeration cycle 1 is increased when the refrigeration cycle 1 is started, both the pressure reducing adjustment valve 8 and the relief valve 10 are opened, so that the gas-liquid expanded by the relief valve 10 Among the mixed refrigerants, the liquid refrigerant is accumulated in the accumulator 6 and only the decompressed gaseous refrigerant is returned to the compressor 2, so that the pressure on the low pressure side 7 </ b> B in the main path 7 of the refrigeration cycle 1 decreases. And since the suction refrigerant density of the compressor 2 also falls by the pressure of the low pressure side 7B of the main path | route 7, the refrigerant | coolant flow volume which circulates in the refrigerating cycle 1 reduces. However, an increase in pressure on the high pressure side 7A of the main path 7 is suppressed by reducing the circulating refrigerant flow rate of the refrigerant.

ところで、この実施形態では、減圧調整弁8とリリーフ弁10とは、図2に示されるように、膨張装置4に併存的に一体化されている。すなわち、膨張装置4は、ハウジング12内に、主経路7の高圧側7Aと接続されて、冷媒がこの主経路7の高圧側7Aから流入する高圧側となる流入通路13、主経路7の低圧側7Bと接続されて、冷媒を主経路7の蒸発器5よりも上流側に流出させる低圧側となる流出通路14、これらの通路13、14のハウジング12外部とは反対側端が開口する高圧空間15とが画成されている。また、膨張装置4は、一方端が副次経路9の上流側部位9Aと接続し、他方が副次的経路9の下流側部位9Bと接続する連通路16が画成され、この連通路16はその側方にて高圧空間15と通孔17を介して連通している。   By the way, in this embodiment, the pressure-reducing adjustment valve 8 and the relief valve 10 are integrated with the expansion device 4 as shown in FIG. That is, the expansion device 4 is connected to the high pressure side 7A of the main path 7 in the housing 12, and the inflow passage 13 serving as the high pressure side from which the refrigerant flows in from the high pressure side 7A of the main path 7 and the low pressure of the main path 7 are provided. An outlet passage 14 that is connected to the side 7B and that flows out of the refrigerant to the upstream side of the evaporator 5 of the main passage 7 is a low-pressure side, and a high-pressure that opens the opposite end of the passages 13 and 14 to the outside of the housing 12. A space 15 is defined. Further, the expansion device 4 has a communication path 16 having one end connected to the upstream part 9A of the secondary path 9 and the other connected to the downstream part 9B of the secondary path 9. Is communicated with the high-pressure space 15 through the through-hole 17 on the side thereof.

そして、高圧空間15内に減圧調整弁8及びリリーフ弁10が配置されている。このうち、減圧調整弁8は、この実施形態では非電気式のもので、流出通路14の高圧空間側開口に例えばテーパ状に形成された弁座に着座可能な形状な弁体20と、この弁体20と一体をなすロッド21と、ガス等が封入され、ロッド21に接合してこれらロッド21、弁体20と一体をなして動くベローズ22とで構成されている。但し、減圧調整弁8は、図示しないが、駆動コイルに供給される励磁電流を制御して弁体の位置を調節することで流入通路13と流出通路14との間の連通状態を制御する電気式のものであっても良い。   In the high-pressure space 15, the pressure reducing adjustment valve 8 and the relief valve 10 are arranged. Among these, the pressure reducing adjustment valve 8 is a non-electric type in this embodiment, and a valve body 20 having a shape that can be seated on, for example, a tapered valve seat in the high-pressure space side opening of the outflow passage 14, A rod 21 that is integrated with the valve body 20 and a bellows 22 that is sealed with gas and is joined to the rod 21 and moves integrally with the valve body 20 are configured. However, although not shown, the pressure reducing adjustment valve 8 is an electric that controls the communication state between the inflow passage 13 and the outflow passage 14 by controlling the excitation current supplied to the drive coil and adjusting the position of the valve body. It may be of the formula.

リリーフ弁10は、通孔17の高圧空間側開口に例えばテーパ状に形成された弁座に着座可能な形状な弁体24と、この弁体24と一体をなすロッド25と、ガス等が封入され、ロッド25に接合してこれらロッド25、弁体24と一体をなして動くベローズ26とで構成されている。   The relief valve 10 includes a valve body 24 having a shape that can be seated on, for example, a tapered valve seat in the opening on the high-pressure space side of the through-hole 17, a rod 25 integrated with the valve body 24, and gas or the like. The rod 25 is joined to the rod 25 and a bellows 26 that moves integrally with the valve body 24.

また、膨張装置4は、図3に示されるように、減圧調整、リリーフ兼用弁29を採用することで、減圧調整弁とリリーフ弁とを構造的に一体化させたものとしても良い。この膨張装置4の構造について、図3に基づいて以下に説明する。この膨張装置4は、ハウジング12内に、流入通路13、流出通路14、これらの通路13、14のハウジング12外部とは反対側端が開口する高圧空間15とが画成されている点、及び、連通路16が画成され、この連通路16はその側方にて高圧空間15と通孔17を介して連通している点については先述の図2に示す膨張装置4と同様である。尚、これらの流出入通路13、14、高圧空間15、連通路16、並びに連通孔17の説明は、先の実施形態と同様の符号を付すことで省略した。   Further, as shown in FIG. 3, the expansion device 4 may adopt a decompression adjustment / relief valve 29 so that the decompression adjustment valve and the relief valve are structurally integrated. The structure of the expansion device 4 will be described below with reference to FIG. The expansion device 4 includes an inflow passage 13, an outflow passage 14, and a high-pressure space 15 that is open at the opposite end of the passages 13 and 14 to the outside of the housing 12. The communication path 16 is defined, and the communication path 16 is communicated with the high-pressure space 15 via the through-hole 17 on the side thereof in the same manner as the expansion device 4 shown in FIG. In addition, description of these inflow / outflow passages 13 and 14, the high-pressure space 15, the communication path 16, and the communication hole 17 is omitted by attaching the same reference numerals as in the previous embodiment.

これに対し、減圧調整、リリーフ兼用弁29は、この実施形態では非電気式のもので、流出通路14の高圧空間側開口に例えばテーパ状に形成された弁座に着座可能な形状な第一次弁体30と、この第一次弁体30の先端部から軸方向に延出して連通孔17に挿通可能な第二次弁体31と、これら弁体30、31と一体をなすロッド32と、ガス等が封入され、ロッド32に接合してこれらロッド32、弁体30、31と一体をなして動くベローズ33とで構成されている。   On the other hand, the decompression adjustment / relief valve 29 is a non-electric type in this embodiment, and is a first shape that can be seated on, for example, a tapered valve seat in the high-pressure space side opening of the outflow passage 14. The secondary valve body 30, the secondary valve body 31 that extends in the axial direction from the tip of the primary valve body 30 and can be inserted into the communication hole 17, and the rod 32 that is integral with the valve bodies 30 and 31. And a bellows 33 which is filled with gas and joined to the rod 32 and moves integrally with the rod 32 and the valve bodies 30 and 31.

以上のような膨張装置4を採択することにより、膨張弁とリリーフ弁とを別個の機器とする場合よりも弁体の機構等が集約されて小型化、製造コストの低廉化を図ることができる。   By adopting the expansion device 4 as described above, it is possible to reduce the size and the manufacturing cost by integrating the valve mechanism and the like as compared with the case where the expansion valve and the relief valve are separate devices. .

図1は、この発明の冷凍サイクルを示す模式図である。FIG. 1 is a schematic diagram showing a refrigeration cycle of the present invention. 図2は、この発明の冷凍サイクルに用いられる膨張装置の一例である。FIG. 2 is an example of an expansion device used in the refrigeration cycle of the present invention. 図3は、同上の膨張装置の他の例である。FIG. 3 shows another example of the expansion device.

符号の説明Explanation of symbols

1 冷凍サイクル
2 圧縮機
3 放熱装置
4 膨張装置
5 蒸発器
6 アキュムレータ
7 主経路
7A 主経路の高圧側
8 減圧調整弁
9 副次経路
10 リリーフ弁
12 ハウジング
13 流入通路
14 流出通路
15 高圧室
29 減圧調整、リリーフ兼用弁
DESCRIPTION OF SYMBOLS 1 Refrigeration cycle 2 Compressor 3 Heat radiating device 4 Expansion device 5 Evaporator 6 Accumulator 7 Main path 7A High pressure side of main path 8 Depressurization adjusting valve 9 Secondary path 10 Relief valve 12 Housing 13 Inflow path 14 Outflow path 15 High pressure chamber 29 Depressurization Adjustment and relief valve

Claims (7)

冷媒に二酸化炭素を使用する冷凍サイクルであって、
冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒を冷却する放熱装置と、前記放熱装置で冷却された冷媒を減圧する減圧調整弁を備えた膨張装置と、前記膨張装置から流出する冷媒を蒸発させる蒸発器と、所定条件下で高圧側と低圧側とを連通させるリリーフ弁とを有して構成され、
前記リリーフ弁は、前記圧縮機、前記放熱装置、前記膨張装置、前記蒸発器を直列的に接合して成る冷媒の主経路とは別となる副次経路上に位置し、この副次経路は、その上流側端が前記膨張装置よりも上流側で前記主経路と接続し、且つその下流側端は前記蒸発器よりも下流側で前記主経路と接続していることを特徴とする冷凍サイクル。
A refrigeration cycle using carbon dioxide as a refrigerant,
A compressor that compresses the refrigerant; a heat radiating device that cools the refrigerant compressed by the compressor; an expansion device that includes a pressure reducing valve that depressurizes the refrigerant cooled by the heat radiating device; and an outflow from the expansion device An evaporator that evaporates the refrigerant, and a relief valve that communicates the high pressure side and the low pressure side under a predetermined condition,
The relief valve is located on a secondary path different from the refrigerant main path formed by joining the compressor, the heat dissipation device, the expansion device, and the evaporator in series. The refrigerating cycle is characterized in that its upstream end is connected to the main path upstream from the expansion device, and its downstream end is connected to the main path downstream from the evaporator. .
冷媒を圧縮する圧縮機と、前記圧縮機によって圧縮された冷媒を冷却する放熱装置と、前記放熱装置で冷却された冷媒を減圧する減圧調整弁を備えた膨張装置と、前記膨張装置から流出する冷媒を蒸発させる蒸発器と、この蒸発器から流出した冷媒を気液分離するアキュムレータと、所定条件下で高圧側と低圧側とを連通させるリリーフ弁とを有して構成され、
前記リリーフ弁は、前記圧縮機、前記放熱装置、前記膨張装置、前記蒸発器及び前記アキュムレータを直列的に接合して成る冷媒の主経路とは別となる副次経路上に位置し、この副次経路は、その上流側端が前記膨張装置よりも上流側で前記主経路と接続し、且つその下流側端は前記蒸発器と前記アキュムレータとの間にて前記主経路と接続していることを特徴とする冷凍サイクル。
A compressor that compresses the refrigerant; a heat radiating device that cools the refrigerant compressed by the compressor; an expansion device that includes a pressure reducing valve that depressurizes the refrigerant cooled by the heat radiating device; and an outflow from the expansion device An evaporator that evaporates the refrigerant, an accumulator that gas-liquid separates the refrigerant that has flowed out of the evaporator, and a relief valve that communicates the high-pressure side and the low-pressure side under predetermined conditions,
The relief valve is located on a secondary path different from the refrigerant main path formed by serially joining the compressor, the heat dissipation device, the expansion device, the evaporator and the accumulator. The next path has an upstream end connected to the main path upstream from the expansion device, and a downstream end connected to the main path between the evaporator and the accumulator. A refrigeration cycle characterized by
前記膨張装置は、前記減圧調整弁と前記リリーフ弁とが一体化していることを特徴とする請求項1又は2に記載の冷凍サイクル。 The refrigerating cycle according to claim 1 or 2, wherein in the expansion device, the decompression control valve and the relief valve are integrated. 前記膨張装置は、ハウジング内に、冷媒が前記主経路の高圧側から流入する流入通路と、冷媒が前記主経路の前記蒸発器よりも上流側に流出する流出通路と、これらの通路が開口する高圧空間と、前記流出通路の開口部を開閉する減圧調整弁と、一方端が前記副次経路の上流側部位と接続し、他方が前記副次的経路の下流側部位と接続する連通路と、この連通路と高圧空間とを連通する連通孔を開閉するリリーフ弁とを有することを特徴とする請求項1、2又は3に記載の冷凍サイクル。 The expansion device has an inflow passage through which a refrigerant flows in from a high pressure side of the main path, an outflow path through which the refrigerant flows out upstream of the evaporator in the main path, and the passages in the housing. A high-pressure space, a pressure-reducing control valve that opens and closes an opening of the outflow passage, a communication passage that has one end connected to an upstream portion of the secondary path and the other connected to a downstream portion of the secondary path The refrigeration cycle according to claim 1, further comprising a relief valve that opens and closes a communication hole that communicates the communication path and the high-pressure space. 前記膨張装置は、ハウジング内に、冷媒が前記主経路の高圧側から流入する流入通路と、冷媒が前記主経路の前記蒸発器よりも上流側に流出する流出通路と、これらの通路が開口する高圧空間と、一方端が前記副次経路の上流側部位と接続し、他方が前記副次的経路の下流側部位と接続する連通路と、第一次弁で前記流出通路の開口部を開閉すると共に第二次弁で前記連通路と高圧空間とを連通する連通孔を開閉する減圧調整、リリーフ兼用弁とを有することを特徴とする請求項1、2又は3に記載の冷凍サイクル。 The expansion device has an inflow passage through which a refrigerant flows in from a high pressure side of the main path, an outflow path through which the refrigerant flows out upstream of the evaporator in the main path, and the passages in the housing. Opening and closing the opening of the outflow passage with a high pressure space, one end connected to the upstream portion of the secondary path, the other connected to the downstream portion of the secondary path, and a primary valve The refrigeration cycle according to claim 1, 2 or 3, further comprising: a pressure reducing adjustment / relief valve that opens and closes a communication hole that communicates the communication path and the high-pressure space with a secondary valve. 前記圧縮機は、固定容量式の圧縮機であることを特徴とする請求項1又は2に記載の冷凍サイクル。 The refrigeration cycle according to claim 1 or 2, wherein the compressor is a fixed capacity type compressor. 前記蒸発器から流出した冷媒を気液分離するアキュムレータを有し、前記副次経路の下流側端は、このアキュムレータよりも上流側で前記主経路と接続していることを特徴とする請求項1に記載の冷凍サイクル。 2. An accumulator for separating the refrigerant flowing out of the evaporator from gas and liquid, and a downstream end of the secondary path is connected to the main path upstream of the accumulator. The refrigeration cycle described in 1.
JP2006106102A 2006-04-07 2006-04-07 Refrigerating cycle Pending JP2007278606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006106102A JP2007278606A (en) 2006-04-07 2006-04-07 Refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006106102A JP2007278606A (en) 2006-04-07 2006-04-07 Refrigerating cycle

Publications (1)

Publication Number Publication Date
JP2007278606A true JP2007278606A (en) 2007-10-25

Family

ID=38680219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006106102A Pending JP2007278606A (en) 2006-04-07 2006-04-07 Refrigerating cycle

Country Status (1)

Country Link
JP (1) JP2007278606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016796A (en) * 2016-06-27 2016-10-12 珠海格力电器股份有限公司 Refrigerating system and refrigerating transport vehicle provided with same
WO2017149896A1 (en) * 2016-02-29 2017-09-08 株式会社リコー Strand manufacturing apparatus and strand manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149896A1 (en) * 2016-02-29 2017-09-08 株式会社リコー Strand manufacturing apparatus and strand manufacturing method
CN108602203A (en) * 2016-02-29 2018-09-28 株式会社理光 Strand manufacturing equipment and strand manufacturing method
JPWO2017149896A1 (en) * 2016-02-29 2018-11-29 株式会社リコー Strand manufacturing apparatus and strand manufacturing method
CN106016796A (en) * 2016-06-27 2016-10-12 珠海格力电器股份有限公司 Refrigerating system and refrigerating transport vehicle provided with same
CN106016796B (en) * 2016-06-27 2019-08-06 珠海格力电器股份有限公司 A kind of refrigeration system and the refrigerating transport vehicle with it

Similar Documents

Publication Publication Date Title
JP4776438B2 (en) Refrigeration cycle
JP4569508B2 (en) Expansion valves used in supercritical and refrigeration cycles
ES2307033T3 (en) REGULATION OF SUPERCRITICAL PRESSURE OF AN ECONOMIZED REFRIGERATION SYSTEM.
JP2007240041A (en) Expansion valve
JP5292537B2 (en) Expansion device
US11391499B2 (en) Heat pump cycle device and valve device
JP2007155229A (en) Vapor compression type refrigerating cycle
EP1538405A2 (en) Refrigeration cycle apparatus
US20050262873A1 (en) Refrigeration cycle
US20060150650A1 (en) Expansion valve for refrigerating cycle
WO2017175728A1 (en) Integrated valve device
JP4179231B2 (en) Pressure control valve and vapor compression refrigeration cycle
JP2007303709A (en) Refrigerating cycle
JP2007278606A (en) Refrigerating cycle
JP2008164239A (en) Pressure regulation valve
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
JP2006234207A (en) Refrigerating cycle pressure reducing device
JP2002221376A (en) Refrigerating cycle
JP2005098635A (en) Refrigeration cycle
JP2008196774A (en) Pressure control valve
JP4676166B2 (en) Safety valve device for refrigeration cycle
WO2019181244A1 (en) Compressor and heat pump system
JP4096796B2 (en) Refrigeration cycle equipment
JP2002061990A (en) Refrigerating cycle
JP2001116398A (en) Refrigeration cycle