JP2007277632A - Method for producing ozone water - Google Patents

Method for producing ozone water Download PDF

Info

Publication number
JP2007277632A
JP2007277632A JP2006105066A JP2006105066A JP2007277632A JP 2007277632 A JP2007277632 A JP 2007277632A JP 2006105066 A JP2006105066 A JP 2006105066A JP 2006105066 A JP2006105066 A JP 2006105066A JP 2007277632 A JP2007277632 A JP 2007277632A
Authority
JP
Japan
Prior art keywords
catalyst
water
cation exchange
electrode
ozone water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006105066A
Other languages
Japanese (ja)
Other versions
JP4464362B2 (en
Inventor
Hiroichi Shioda
博一 塩田
Yoshiyuki Nishimura
喜之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikka Micron Co Ltd
Original Assignee
Nikka Micron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikka Micron Co Ltd filed Critical Nikka Micron Co Ltd
Priority to JP2006105066A priority Critical patent/JP4464362B2/en
Publication of JP2007277632A publication Critical patent/JP2007277632A/en
Application granted granted Critical
Publication of JP4464362B2 publication Critical patent/JP4464362B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing ozone water, which can easily produce a high concentration of ozone water even by using distilled water having low electroconductivity as raw water. <P>SOLUTION: A catalyst electrode 2 comprises: a plurality of cation exchange membranes 211 and 212 stacked so as to face each other; a catalyst 3 provided on each facing surface of the plurality of the cation exchange membranes 211 and 212; an anode electrode 22 pressure-welded onto the surface in a side opposite to the catalyst 3 of the cation exchange membrane 211; and a cathode electrode 23 pressure-welded onto the surface in a side opposite to the catalyst 3 of the cation exchange membrane 212. The production method includes applying direct current voltage between the anode electrode 22 and the cathode electrode 23, and bringing the raw water in contact with the anode electrode 22. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水の電気分解によりオゾン水を生成するオゾン水の生成方法に関する。   The present invention relates to a method for generating ozone water that generates ozone water by electrolysis of water.

近年、オゾン水は食品の殺菌や悪臭ガスの脱臭などの用途に広範に使用されており、さらに医療や介護の分野で、数多い知見例が発表され始めている。また、半導体製造領域においても、超微細構造に対するオゾン酸化の特徴が認められ、オゾン水の使用が必須とされている。
このようなオゾン水の製法として、陽イオン交換膜の一方の面に陽極電極を圧接させ、他方の面に陰極電極を圧接してなる触媒電極の電解面に原料水を直接接触させて、水の電気分解によりオゾン水を生成させる直接電解法を利用したものが知られている(例えば、特許文献1参照)。
In recent years, ozone water has been widely used for applications such as sterilization of foods and deodorization of malodorous gases, and many examples of knowledge have begun to be published in the fields of medical care and nursing care. Also in the semiconductor manufacturing area, the feature of ozone oxidation with respect to the ultrafine structure is recognized, and the use of ozone water is essential.
As such a method for producing ozone water, the anode electrode is pressed against one surface of the cation exchange membrane, and the raw material water is brought into direct contact with the electrolytic surface of the catalyst electrode formed by pressing the cathode electrode against the other surface. The thing using the direct electrolysis method which produces | generates ozone water by electrolysis of is known (for example, refer patent document 1).

食品の殺菌や、悪臭ガスの脱臭などの用途には、原料水として安価な水道水を使用すれば十分であるが、医療や半導体分野においては、原料水として蒸留水、パイロジェンフリー水、さらには超純水が要求されている。
特開平8−134678号公報
For applications such as food sterilization and deodorization of malodorous gases, it is sufficient to use cheap tap water as raw water, but in the medical and semiconductor fields, distilled water, pyrogen-free water, and more Ultrapure water is required.
JP-A-8-134678

しかしながら、電気分解を利用してオゾンガス又はオゾン水を生成する際の最大の問題点は、原料水の電導度であり、水道水のように水中に多くのミネラル分が溶解している場合、電導性が高いため、電解が容易であるが、蒸留水、さらに発熱物質を除去したパイロジェンフリー水、また半導体加工に使用される超純水などは電導性が極めて低く、これらの水を原料水として電解法でオゾン水を生成するためには、陽イオン交換膜中での水素の移動を加速するいくつかの手法が要求されるのである。
その一つの方法として、触媒活性の高い二酸化鉛を陽極電極に使用する方法があるが、鉛の毒性を避けるため、一旦オゾンガスにして系外に取り出し、それを水に溶解させる煩雑な方法が要求され、現在は半導体製造装置などに利用されている。他の方法としては、陰極電極に塩水、クエン酸水などの電導性の高いカソード水を接触させるカソード水法があり、かなり多くの分野で利用されているが、カソード水の定時取り替え等の手間がかかるのが欠点とされている。
さらに、最近、発明者等は、陰極電極に塩化銀を使用することにより、同じく触媒活性を高めて、蒸留水などの電解に成功しているが、陰極電極より発生する水素により塩化銀が還元されることの対策が必要であった。
本発明は、上記事情に鑑みてなされたもので、電導性の低い蒸留水を原料水としても高濃度のオゾン水を容易に生成することのできるオゾン水の生成方法を提供することを目的としている。
However, the biggest problem when generating ozone gas or ozone water using electrolysis is the conductivity of raw material water. When many minerals are dissolved in water like tap water, Electrolysis is easy because of its high conductivity, but distilled water, pyrogen-free water from which exothermic substances have been removed, and ultrapure water used in semiconductor processing have extremely low electrical conductivity. In order to generate ozone water by the electrolytic method, several methods for accelerating the movement of hydrogen in the cation exchange membrane are required.
One method is to use lead dioxide with high catalytic activity for the anode electrode, but in order to avoid the toxicity of lead, it is necessary to take ozone gas once out of the system and dissolve it in water. Currently, it is used in semiconductor manufacturing equipment. As another method, there is a cathode water method in which the cathode electrode is brought into contact with highly conductive cathode water such as salt water or citric acid water, which is used in quite a few fields. It is considered a drawback to take.
In addition, recently, the inventors have succeeded in electrolysis of distilled water and the like by using silver chloride for the cathode electrode, and also succeeding in electrolysis of distilled water, but the silver chloride is reduced by hydrogen generated from the cathode electrode. It was necessary to take measures to prevent this.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of generating ozone water that can easily generate high-concentration ozone water even when distilled water with low conductivity is used as raw water. Yes.

そこで、本発明者等は、従来陽極電極と陰極電極との間の陽イオン交換膜が1枚だけであったのに変えて、薄膜を複数枚重ねて使用し、複数の陽イオン交換膜間に触媒を挟んで水素の移動を加速させることを発明した。
上記課題を解決するため、請求項1の発明は、例えば図1に示すように、複数の陽イオン交換膜211,212を互いに対向して重ね、前記複数の陽イオン交換膜211,212の互いに対向する面に触媒3を設け、
前記複数の陽イオン交換膜のうち一方の陽イオン交換膜の、前記触媒と反対側の面に、陽極電極22を圧接し、他方の陽イオン交換膜の、前記触媒と反対側の面に、陰極電極23を圧接して触媒電極2とし、
前記陽極電極と前記陰極電極との間に直流電圧を印加し、前記陽極電極に原料水を接触させることによりオゾン水を生成することを特徴とする。
Therefore, the present inventors changed the conventional cation exchange membrane between the anode electrode and the cathode electrode to only one piece, and used a plurality of thin films in a stacked manner. It was invented to accelerate the movement of hydrogen with the catalyst in between.
In order to solve the above-mentioned problem, the invention of claim 1 is characterized in that, for example, as shown in FIG. 1, a plurality of cation exchange membranes 211, 212 are stacked to face each other, The catalyst 3 is provided on the opposite surface,
The anode electrode 22 is pressed against the surface of one of the plurality of cation exchange membranes opposite to the catalyst, and the other cation exchange membrane on the surface opposite to the catalyst. The cathode electrode 23 is pressed to form the catalyst electrode 2,
A direct current voltage is applied between the anode electrode and the cathode electrode, and raw water is brought into contact with the anode electrode to generate ozone water.

請求項1の発明によれば、複数の陽イオン交換膜の互いに対向する面に触媒を設けるので、陽極電極と陰極電極との間に直流電圧を印加し、陽極電極に原料水を接触させることにより、原料水中の水素が陽イオン交換膜中を通過して陰極電極に移動するが、このとき複数の陽イオン交換膜間の触媒の作用により移動が促進されることになる。その結果、電導性の低い蒸留水等を原料水としても電解して水素を引き出す結果、陽極電極においてオゾンを発生させ、高濃度のオゾン水を生成することができる。
また、触媒を複数の陽イオン交換膜の互いに対向する面に設けるだけで、単純な構造で容易にオゾン水を生成することができる。
According to the first aspect of the present invention, since the catalyst is provided on the mutually facing surfaces of the plurality of cation exchange membranes, a direct current voltage is applied between the anode electrode and the cathode electrode, and the raw water is brought into contact with the anode electrode. Thus, hydrogen in the raw material water passes through the cation exchange membrane and moves to the cathode electrode. At this time, the movement is promoted by the action of the catalyst between the plurality of cation exchange membranes. As a result, even when distilled water or the like having low conductivity is used as raw water to extract hydrogen, ozone can be generated at the anode electrode, and high-concentration ozone water can be generated.
Moreover, ozone water can be easily generated with a simple structure only by providing the catalyst on the surfaces of the plurality of cation exchange membranes facing each other.

請求項2の発明は、例えば、図2に示すように、請求項1に記載のオゾン水の生成方法において、
前記触媒3Aが塩化銀であることを特徴とする。
The invention of claim 2 is a method for producing ozone water according to claim 1, for example, as shown in FIG.
The catalyst 3A is silver chloride.

請求項2の発明によれば、触媒が塩化銀であるので、オゾン発生に必要なイオン移動性に富み、かつ、熱伝導性が高いので、水素の陽極電極から陰極電極への移動をより加速させることができ、電導性の低い蒸留水を原料水としても十分な電解電流が流れて、オゾンが発生し、オゾン水を生成することができる。また、請求項4のように銀とパラジウムからなる合金に比して低コストである。さらに、触媒に塩化銀を使用しても、陰極電極から発生する水素による還元も抑制できる。   According to the invention of claim 2, since the catalyst is silver chloride, it has a high ion mobility necessary for ozone generation and has high thermal conductivity, so that the movement of hydrogen from the anode electrode to the cathode electrode is further accelerated. Even if distilled water with low conductivity is used as raw material water, a sufficient electrolysis current flows, ozone is generated, and ozone water can be generated. In addition, the cost is lower than that of an alloy made of silver and palladium. Furthermore, even if silver chloride is used as the catalyst, reduction by hydrogen generated from the cathode electrode can be suppressed.

請求項3の発明は、例えば、図1に示すように、請求項1に記載のオゾン水の生成方法において、
前記触媒3が塩素系化合物であることを特徴とする。
The invention of claim 3 is, for example, in the method for generating ozone water according to claim 1, as shown in FIG.
The catalyst 3 is a chlorinated compound.

請求項3の発明によれば、触媒が塩素系化合物であるので、水素の陽極電極から陰極電極への移動をより加速させることができ、電導性の低い蒸留水を原料水としても十分な電解電流が流れて、オゾンが発生し、オゾン水を生成することができる。また、請求項4のように銀とパラジウムからなる合金に比して低コストである。   According to the invention of claim 3, since the catalyst is a chlorinated compound, the movement of hydrogen from the anode electrode to the cathode electrode can be further accelerated, and sufficient electrolysis is possible even when distilled water having low conductivity is used as the raw water. Electric current flows, ozone is generated, and ozone water can be generated. In addition, the cost is lower than that of an alloy made of silver and palladium.

請求項4の発明は、例えば、図3に示すように、請求項1に記載のオゾン水の生成方法において、
前記触媒3B(又は3C)が、銀とパラジウムからなる合金であることを特徴とする。
The invention of claim 4 is a method for producing ozone water according to claim 1, for example, as shown in FIG.
The catalyst 3B (or 3C) is an alloy composed of silver and palladium.

請求項4の発明によれば、触媒が銀とパラジウムからなる合金であるので、水素の陽極電極から陰極電極への移動をより一層加速させることができ、特に極めて電気抵抗の高い超純水を原料水としても、高濃度のオゾン水を生成することができる。   According to the invention of claim 4, since the catalyst is an alloy composed of silver and palladium, the movement of hydrogen from the anode electrode to the cathode electrode can be further accelerated. High concentration ozone water can also be produced as raw water.

請求項5の発明は、例えば、図3に示すように、請求項4に記載のオゾン水の生成方法において、
前記触媒3B(又は3C)は薄膜状であり、前記複数の陽イオン交換膜の互いに対向する面に薄膜状の触媒を固着することを特徴とする。
The invention of claim 5 is, for example, as shown in FIG. 3, in the method for generating ozone water according to claim 4,
The catalyst 3B (or 3C) has a thin film shape, and the thin film catalyst is fixed to the mutually facing surfaces of the plurality of cation exchange membranes.

請求項5の発明によれば、薄膜状の触媒を陽イオン交換膜の互いに対向する面に固着するので、例えば、上記合金を高価な金網状とする場合に比べて遜色なくオゾン水を生成することができ、また、コストの低減も図ることができる。   According to the invention of claim 5, since the thin-film catalyst is fixed to the mutually opposing surfaces of the cation exchange membrane, for example, ozone water is generated inferior to the case where the alloy is made of an expensive wire mesh. In addition, the cost can be reduced.

請求項6の発明は、例えば、図3に示すように、請求項5に記載のオゾン水の生成方法において、
前記複数の陽イオン交換膜の互いに対向する面に、前記薄膜状の触媒をスパッタリングにより固着することを特徴とする。
The invention of claim 6 is a method for producing ozone water according to claim 5, for example, as shown in FIG.
The thin film catalyst is fixed to the surfaces of the plurality of cation exchange membranes facing each other by sputtering.

請求項6の発明によれば、薄膜状の触媒を陽イオン交換膜の互いに対向する面にスパッタリングにより固着するので、触媒の陽イオン交換膜に対する付着力を高めることができ、また、容易に成膜することができる。   According to the invention of claim 6, since the thin-film catalyst is fixed to the mutually opposing surfaces of the cation exchange membrane by sputtering, the adhesion of the catalyst to the cation exchange membrane can be increased, and the catalyst can be easily formed. Can be membrane.

本発明によれば、複数の陽イオン交換膜の互いに対向する面に触媒を設けるので、電導性の低い蒸留水等を原料水としても高濃度なオゾン水を生成でき、しかも単純な構造で容易に生成することができる。   According to the present invention, since the catalyst is provided on the surfaces of the plurality of cation exchange membranes facing each other, high-concentration ozone water can be generated even when distilled water or the like having low conductivity is used as raw material water, and easily with a simple structure. Can be generated.

以下、本発明の実施の形態について図面を参照しながら説明する。
図1は、オゾン水生成装置100の概略を模式的に示した縦断面図である。
まず、本発明に係るオゾン水の生成方法で使用するオゾン水生成装置100について説明する。オゾン水生成装置100は、原料水(例えば、水)が流入される水槽1内に触媒電極2を配置して構成したもので、触媒電極2に直流電圧を印加することによってオゾン気泡を発生させて、そのオゾン気泡を水に溶解させることによりオゾン水を生成する装置である。
水槽1は、上下に長尺でその上下両端が閉塞された円筒状をなしており、下端部底面に、水槽1内に原料水を流入するための流入管11が設けられ、水槽1の上端部側周面に水槽1内で生成されたオゾン水を流出するための流出管12が設けられている。
流入管11は、例えば、原料水が貯留されたタンクに接続された低吐出圧の小型ポンプや、水道栓に連結されている。また、流出管12は、水槽1内で生成されたオゾン水を貯留するタンクに接続するためのポンプや、水槽1内で生成されたオゾン水を噴出させるノズル等に連結されている。
水槽1内には、流入管11によって原料水が流入されており、流入管11から流出管12へと水流が発生している。
また、水槽1を形成する側周面には、その一部が開口した開口部13が形成されており、その開口部13に触媒電極2が嵌め込まれて取り付けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view schematically showing an outline of the ozone water generator 100.
First, the ozone water generating apparatus 100 used in the ozone water generating method according to the present invention will be described. The ozone water generating device 100 is configured by arranging a catalyst electrode 2 in a water tank 1 into which raw water (for example, water) flows, and generates ozone bubbles by applying a DC voltage to the catalyst electrode 2. The device generates ozone water by dissolving the ozone bubbles in water.
The water tank 1 is formed in a cylindrical shape that is vertically long and closed at both upper and lower ends, and an inflow pipe 11 for inflowing raw material water into the water tank 1 is provided on the bottom surface of the lower end. An outflow pipe 12 for outflowing ozone water generated in the water tank 1 is provided on the peripheral surface of the section.
The inflow pipe 11 is connected to, for example, a small pump with a low discharge pressure connected to a tank in which raw water is stored, or a water tap. The outflow pipe 12 is connected to a pump for connecting to a tank for storing ozone water generated in the water tank 1, a nozzle for ejecting ozone water generated in the water tank 1, and the like.
The raw water is introduced into the water tank 1 through the inflow pipe 11, and a water flow is generated from the inflow pipe 11 to the outflow pipe 12.
Moreover, the opening part 13 which the part opened is formed in the side peripheral surface which forms the water tank 1, The catalyst electrode 2 is engage | inserted and attached to the opening part 13. As shown in FIG.

触媒電極2は、互いに対向配置された二枚の陽イオン交換膜211,212と、これら陽イオン交換膜211,212間に圧接された触媒3と、一方の陽イオン交換膜211の両面のうち外側の面(触媒3と反対側の面)に圧接された陽極電極22と、他方の陽イオン交換膜212の両面のうち外側の面(触媒3と反対側の面)に圧接された陰極電極23とを備えている。陽極電極22が水槽1内に配されて、陰極電極23が水槽1の外周面から外側に突出して外部に露出するように取り付けられている。また、陰極電極23が圧接された陽イオン交換膜212が、開口部13に嵌め込まれて水槽1の内周面及び外周面と略面一となるように配されている。なお、開口部13と触媒電極2との間は、防水処理がなされて水槽1内の原料水が漏れないような構造とされている。このように触媒電極2を配置することにより、流入管11から水槽1内に流入された原料水が陽極電極22面に連続接触するようになっている。
また、陽極電極22と陰極電極23との間には、電源装置(図示しない)の出力端24が電気的に連結され、直流電圧が印加されるように構成されている。すなわち、陽極電極22及び陰極電極23は、各電極22,23に導線を介して電源装置に連結されている。印加する直流電圧は、例えば6〜15ボルトが好ましい。
The catalyst electrode 2 includes two cation exchange membranes 211 and 212 arranged opposite to each other, a catalyst 3 pressed against the cation exchange membranes 211 and 212, and both surfaces of one cation exchange membrane 211. Anode electrode 22 in pressure contact with the outer surface (surface opposite to catalyst 3) and cathode electrode in pressure contact with the outer surface (surface opposite to catalyst 3) of both surfaces of the other cation exchange membrane 212 23. The anode electrode 22 is disposed in the water tank 1, and the cathode electrode 23 is attached so as to protrude outward from the outer peripheral surface of the water tank 1 and to be exposed to the outside. Further, a cation exchange membrane 212 with which the cathode electrode 23 is pressure-contacted is disposed so as to be fitted in the opening 13 and substantially flush with the inner and outer peripheral surfaces of the water tank 1. In addition, between the opening part 13 and the catalyst electrode 2, it is set as the structure where the waterproofing process is made and the raw material water in the water tank 1 does not leak. By disposing the catalyst electrode 2 in this way, the raw material water that has flowed into the water tank 1 from the inflow pipe 11 is in continuous contact with the surface of the anode electrode 22.
An output terminal 24 of a power supply device (not shown) is electrically connected between the anode electrode 22 and the cathode electrode 23 so that a DC voltage is applied. That is, the anode electrode 22 and the cathode electrode 23 are connected to the power supply device via the conductive wires to the electrodes 22 and 23. The applied DC voltage is preferably 6 to 15 volts, for example.

二枚の陽イオン交換膜211,212としては、従来公知のものを使用することができ、発生するオゾンに耐久性の強いフッ素系陽イオン交換膜を使用することができ、例えば厚さ200〜300μmが好ましい。   As the two cation exchange membranes 211 and 212, conventionally known ones can be used, and a fluorine-based cation exchange membrane having a high durability against the generated ozone can be used. 300 μm is preferred.

触媒3としては、二酸化鉛、塩化銀や塩化錫等の塩素系化合物、銀とパラジウムの合金等を使用することができる。二酸化鉛や塩化錫は、粉末状とし、一方の陽イオン交換膜211(又は212)上に散布し、他方の陽イオン交換膜212(又は211)によって圧接することが好ましい。図1では、粉末状の触媒3を用いた場合を示している。
また、触媒3として塩化銀を使用する場合には、図2に示すように、薄い銀製金網に塩化銀被覆を施したもの3Aを使用することが好ましい。この場合、簡単に塩化銀を被覆できる点で有効である。なお、図2中、211A,212Aは上述した陽イオン交換膜211,212と同様の陽イオン交換膜である。
さらに、銀とパラジウムの合金を使用する場合には、薄膜状とすることが好ましく、一方の陽イオン交換膜211(又は212)上にスパッタリング等の蒸着法によって成膜し、膜厚は、約0.5μm程度とすることが好ましい。薄膜状にした場合には、平板状よりも、図3(a)に示すように薄膜の触媒3Bに円形状の多数の孔31B,31B,…や、図3(b)に示すように薄膜の触媒3Cに四角形状の多数の孔31C,31C,…を形成することが好ましい。薄膜の触媒3B,3Cに多数の孔31B,31B,…、31C,31C,…を形成することによって、多数の孔31B,31B,…、31C,31C,…を介して水素イオンが通過でき、触媒3B,3Cによる水素イオンの流通が阻害されるのを防ぐことができる。なお、孔31B,31Cの形状や個数、配置等は適宜変更可能である。
As the catalyst 3, lead dioxide, chlorine compounds such as silver chloride and tin chloride, alloys of silver and palladium, and the like can be used. It is preferable that the lead dioxide or tin chloride is powdered and dispersed on one cation exchange membrane 211 (or 212) and pressed by the other cation exchange membrane 212 (or 211). FIG. 1 shows a case where a powdered catalyst 3 is used.
Moreover, when using silver chloride as the catalyst 3, as shown in FIG. 2, it is preferable to use the thin silver wire net | network 3A which gave silver chloride coating | cover. In this case, it is effective in that silver chloride can be easily coated. In FIG. 2, 211A and 212A are cation exchange membranes similar to the cation exchange membranes 211 and 212 described above.
Further, when an alloy of silver and palladium is used, it is preferably a thin film, and is formed on one cation exchange membrane 211 (or 212) by a vapor deposition method such as sputtering. The thickness is preferably about 0.5 μm. In the case of a thin film, the thin film catalyst 3B has a large number of circular holes 31B, 31B,... As shown in FIG. 3 (a), and the thin film as shown in FIG. It is preferable to form a large number of rectangular holes 31C, 31C,. By forming a large number of holes 31B, 31B, ..., 31C, 31C, ... in the thin film catalysts 3B, 3C, hydrogen ions can pass through the large number of holes 31B, 31B, ..., 31C, 31C, ... It is possible to prevent the hydrogen ions from flowing through the catalysts 3B and 3C. In addition, the shape, the number, the arrangement, and the like of the holes 31B and 31C can be changed as appropriate.

陽極電極22は、陽イオン交換膜211を全面的に覆い隠すように密着されるものではなく、多数の通孔を設けて、陽極電極22は陽イオン交換膜211に接触部と非接触部とを有して重ねられている。すなわち、陽極電極22はグレーチング状又はパンチングメタル状とすることが好ましい。なお、図1では陽極電極22がグレーチング状の場合を示している。具体的に、グレーチング状とは線材を溶接した格子状で、パンチングメタル状とは金属板に多数の通孔を形成した多孔板状である。   The anode electrode 22 is not in close contact with the cation exchange membrane 211 so as to cover the entire surface. The anode electrode 22 is provided with a large number of through holes, and the anode electrode 22 is connected to the cation exchange membrane 211 with a contact portion and a non-contact portion. Are stacked. That is, it is preferable that the anode electrode 22 has a grating shape or a punching metal shape. FIG. 1 shows a case where the anode electrode 22 has a grating shape. Specifically, the grating shape is a lattice shape in which wires are welded, and the punching metal shape is a porous plate shape in which a large number of through holes are formed in a metal plate.

陽極電極22としては、オゾン発生触媒機能を有した金属を使用し、この金属としては二酸化鉛が最も広く知られている。しかし、この二酸化鉛は加工が難しく、微小な通孔が不規則に存在するポーラス体を使用しているが、二酸化鉛のポーラス体は脆弱で耐久性に劣り、さらにはオゾン水中に鉛が溶出する可能性もあることから、純粋なオゾン水を得るため、白金又は白金被覆金属の電極を使用することが好ましく、特に、本発明ではチタンに白金を被覆した金属を使用することが好ましい。被覆処理としては、例えばメッキや熱着等により行うことができる。   As the anode electrode 22, a metal having an ozone generation catalytic function is used, and lead dioxide is most widely known as this metal. However, this lead dioxide is difficult to process and uses a porous body with irregularly small pores, but the porous body of lead dioxide is fragile and inferior in durability, and lead elutes into ozone water. Therefore, in order to obtain pure ozone water, it is preferable to use a platinum or platinum-coated metal electrode, and in the present invention, it is particularly preferable to use a metal in which titanium is coated with platinum. The coating process can be performed by, for example, plating or heat deposition.

このようにグレーチング状の陽極電極22とすることによって、陽極電極22を構成する部材の交点部位Pが尖って外面に突出し、水流と接触して渦流を生じ、陽極電極22で発生したオゾンの微泡を巻き込んで溶解を早めることができる。   By using the grating-like anode electrode 22 in this way, the intersection part P of the members constituting the anode electrode 22 is pointed and protrudes to the outer surface to generate a vortex in contact with the water flow. Bubbles can be involved to accelerate dissolution.

陰極電極23としては、金、銀、白金、チタンの金属や薄い銀製金網の表面を塩化銀被覆を施したものを使用することが好ましい。また、陰極電極23も陽極電極22と同様にグレーチング状とすることが好ましく、特に、陰極電極23は陽極電極22よりも目の粗さが粗くなるように形成されていることが好ましい。
以上の二枚の陽イオン交換膜211,212、触媒3、陽極電極22及び陰極電極23は、水槽1の内周面又は外周面に沿うように、それぞれ平板状に形成されており、これらを密着させた後、絶縁性の接合部材(図示しない)により接合されることによって触媒電極2とされている。
As the cathode electrode 23, it is preferable to use a metal such as gold, silver, platinum, titanium, or a thin silver wire mesh whose surface is coated with silver chloride. The cathode electrode 23 is also preferably formed in a grating shape like the anode electrode 22. In particular, the cathode electrode 23 is preferably formed so as to have coarser eyes than the anode electrode 22.
The two cation exchange membranes 211 and 212, the catalyst 3, the anode electrode 22 and the cathode electrode 23 are formed in a flat plate shape along the inner or outer peripheral surface of the water tank 1, respectively. After being brought into close contact, the catalyst electrode 2 is formed by bonding with an insulating bonding member (not shown).

次に、上述の構成からなるオゾン水生成装置100を使用したオゾン水生成方法について説明する。
流入管11から原料水を水槽1内に流入させて、陽極電極22面に原料水を連続接触させる。同時に、電源装置を駆動させることによって陽極電極22及び陰極電極23間に所定の電圧を印加する。この通電により原料水が電気分解されて、触媒3の作用によって、原料水中の水素が陽極電極22側から陽イオン交換膜211,212中を通過して陰極電極23側へと加速して移動する。その結果、陽極電極22側にはオゾン気泡が発生し、陰極電極23側には水素気泡が発生する。
Next, an ozone water generation method using the ozone water generation apparatus 100 having the above-described configuration will be described.
Raw material water is caused to flow into the water tank 1 from the inflow pipe 11, and the raw material water is continuously brought into contact with the surface of the anode electrode 22. At the same time, a predetermined voltage is applied between the anode electrode 22 and the cathode electrode 23 by driving the power supply device. By this energization, the raw water is electrolyzed, and by the action of the catalyst 3, hydrogen in the raw water passes through the cation exchange membranes 211 and 212 from the anode 22 side and accelerates and moves to the cathode 23 side. . As a result, ozone bubbles are generated on the anode electrode 22 side, and hydrogen bubbles are generated on the cathode electrode 23 side.

ここで、陽極電極22側では原料水はわずかな陽極電極22の凹凸によって流れの方向が複雑に変わり渦流となる。そのため、陽極電極22側では、発生したオゾン気泡をいち早く水中に取り込んで溶解させることによってオゾン水を生成し、陽極電極22と陽イオン交換膜21との間(正確には陽極電極22と陰極電極23との間)に電流が多く流れる状態を確保することになる。
このようにしてオゾン水が生成されると、オゾン水は流出管12へと流出されてオゾン水貯留タンク等に貯留される。
一方、陰極電極23側においては、水素気泡が発生し、水槽1の外周面に露出した陰極電極23面から水素気泡が系外に放出される。
Here, on the anode electrode 22 side, the direction of the flow of raw material water is complicated due to slight unevenness of the anode electrode 22 and becomes a vortex. Therefore, on the anode electrode 22 side, the generated ozone bubbles are quickly taken into water and dissolved to generate ozone water, and between the anode electrode 22 and the cation exchange membrane 21 (more precisely, the anode electrode 22 and the cathode electrode). 23), a state where a large amount of current flows is ensured.
When ozone water is generated in this way, the ozone water flows out to the outflow pipe 12 and is stored in an ozone water storage tank or the like.
On the other hand, hydrogen bubbles are generated on the cathode electrode 23 side, and hydrogen bubbles are released from the surface of the cathode electrode 23 exposed on the outer peripheral surface of the water tank 1 to the outside of the system.

以上、本発明の実施の形態によれば、陽イオン交換膜211,212の互いに対向する面に触媒3が設けられているので、陽極電極22と陰極電極23との間に直流電圧を印加し、陽極電極22に原料水を接触させることにより、原料水中の水素が陽イオン交換膜211,212中を通過して陰極電極23に移動するが、このとき触媒3の作用によりその移動が促進されることになる。その結果、電導性の低い蒸留水等を原料水としても電解して水素を引き出す結果、陽極電極22においてオゾンを発生させ、高濃度のオゾン水を生成することができる。
また、触媒3を陽イオン交換膜211,212の互いに対向する面に設けるだけで、単純な構造で容易にオゾン水を生成することができる。
As described above, according to the embodiment of the present invention, since the catalyst 3 is provided on the surfaces of the cation exchange membranes 211 and 212 facing each other, a DC voltage is applied between the anode electrode 22 and the cathode electrode 23. By bringing the raw material water into contact with the anode electrode 22, hydrogen in the raw material water passes through the cation exchange membranes 211 and 212 and moves to the cathode electrode 23. At this time, the movement of the catalyst 3 is promoted by the action of the catalyst 3. Will be. As a result, even when distilled water or the like having low conductivity is used as raw material water to extract hydrogen, ozone can be generated at the anode electrode 22 and high-concentration ozone water can be generated.
In addition, ozone water can be easily generated with a simple structure simply by providing the catalyst 3 on the surfaces of the cation exchange membranes 211 and 212 facing each other.

なお、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
例えば、陽イオン交換膜211,212は二枚用いるとしたが、三枚以上使用しても構わない。この場合、図示しないが各陽イオン交換膜間に触媒を挟む構造が望ましく、特に格子状の触媒とすることが好ましい。
In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary, it can change suitably.
For example, although two cation exchange membranes 211 and 212 are used, three or more may be used. In this case, although not shown, a structure in which the catalyst is sandwiched between the cation exchange membranes is desirable, and a lattice-like catalyst is particularly preferable.

また、水槽1内に、オゾン水のオゾン濃度を検出する濃度検出センサ(図示しない)を設け、検出したオゾン濃度に基づいて電源装置が触媒電極3への通電を制御するように構成しても良い。具体的に、濃度検出センサは、検出電極と電位測定の基準となる比較電極、これら検出電極及び比較電極の一方の端部に結線して電位を測定する電位差計等から構成し、検出電極及び比較電極の先端部(他方の端部)を水槽1内の溶液中に浸し、検出電極のオゾン濃度変化による検出電極と比較電極との電位差を検出して濃度を測定するものとする。
検出電極としては、例えば白金や金等からなる電極を使用し、比較電極としては銀/塩化銀を使用することが好ましい。このようにして検出されたオゾン濃度と、予め設定されたオゾン濃度とが一致するように電源装置が陽極電極22及び陰極電極23間の電圧を制御する。
Further, a concentration detection sensor (not shown) for detecting the ozone concentration of ozone water may be provided in the water tank 1 so that the power supply device controls the energization to the catalyst electrode 3 based on the detected ozone concentration. good. Specifically, the concentration detection sensor includes a detection electrode and a reference electrode serving as a reference for potential measurement, a potentiometer connected to one end of the detection electrode and the comparison electrode to measure a potential, and the like. The tip of the comparison electrode (the other end) is immersed in the solution in the water tank 1, and the concentration is measured by detecting the potential difference between the detection electrode and the comparison electrode due to the ozone concentration change of the detection electrode.
As the detection electrode, for example, an electrode made of platinum or gold is preferably used, and silver / silver chloride is preferably used as the comparison electrode. The power supply device controls the voltage between the anode electrode 22 and the cathode electrode 23 so that the ozone concentration detected in this manner matches the preset ozone concentration.

また、図示しないが水槽1内にポンプで駆動するインペラ等を設けても良い。この場合、水槽1内に旋回水流が発生するため、陽極電極22面に原料水を確実に接触させて陽極電極22から発生したオゾンの溶解度を上げることができる。
また、水槽1の形状や流入管11、流出管12等の位置も適宜変更可能である。
Although not shown, an impeller driven by a pump may be provided in the water tank 1. In this case, since a swirling water flow is generated in the water tank 1, the solubility of ozone generated from the anode electrode 22 can be increased by reliably bringing the raw material water into contact with the surface of the anode electrode 22.
Further, the shape of the water tank 1 and the positions of the inflow pipe 11 and the outflow pipe 12 can be changed as appropriate.

[実施例]
次に、本発明に係るオゾン水の生成方法による効果について実施例を挙げて説明する。
(本発明例1)
陽極電極に白金メッキを施した厚み1.2mmのチタン製のグレーチングを用い、陰極電極に厚み0.2mmの銀製のグレーチングに塩化銀被覆を施したものを使用し、二枚の陽イオン交換膜にはデュポン製のナフイオン1110膜を使用した。また、触媒としては、陰極電極と同じ塩化銀を使用し、40メッシュの銀製金網に塩化銀被覆を施したものを使用した。そして、これら触媒、二枚の陽イオン交換膜、陽極電極及び陰極電極を重ね合わせて圧接した触媒電極を、図1に示すように水槽内の所定位置に配置し、流入管から蒸留水を供給し、陽極電極及び陰極電極間に12Vの直流電圧を印加したところ、流量2L/分において約8Aの電流が流れ、流出管から3ppmのオゾン水を得た。さらに、触媒である塩化銀被覆した銀製金網を調べたところ、使用前と全く同じ状態であり、陰極電極で発生した水素による還元は行われていないことが確認された。したがって、本発明の効果が認められる。
(本発明例2)
上記本発明例1において、一方の陽イオン交換膜の内面にパラジウム90重量%、銀10重量%の触媒合金を真空雰囲気下においてスパッタリング法によって蒸着し、厚み1.5μmの薄膜を成膜した。その他、陽極電極、陰極電極、二枚の陽イオン交換膜については本発明例1と同様のものを使用して、上記と同様の条件で流入管からパイロジェンフリー水を供給し通電を行ったところ、電流は12A流れ、流出管から5ppmのオゾン水を得た。したがって、本発明の効果が認められる。
(比較例)
上記本発明例1において、二枚の陽イオン交換膜間に触媒を設けない触媒電極を使用して、上記と同様の条件で流入管からパイロジェンフリー水を供給し、通電を行ったところ、電流は2Aしか流れず、流出管から流出する水にはオゾンが含まれていなかった。したがって、オゾンが発生していないことが判明した。
以上の結果から明らかなように、本発明は、電気抵抗値の高い蒸留水やパイロジェンフロー水を原料水としても、医療、特に手術などの用途に必要な4ppm以上の高濃度のオゾン水を生成することができる。
[Example]
Next, the effect of the method for generating ozone water according to the present invention will be described with reference to examples.
(Invention Example 1)
Two cation exchange membranes using a 1.2 mm thick titanium grating with platinum plating on the anode electrode and a 0.2 mm thick silver grating with a silver chloride coating on the cathode electrode For this, a naphthion 1110 membrane made by DuPont was used. Further, as the catalyst, the same silver chloride as that of the cathode electrode was used, and a 40-mesh silver wire mesh coated with silver chloride was used. Then, a catalyst electrode in which these catalyst, two cation exchange membranes, an anode electrode and a cathode electrode are overlapped and pressed is disposed at a predetermined position in the water tank as shown in FIG. 1, and distilled water is supplied from the inflow pipe. Then, when a DC voltage of 12 V was applied between the anode electrode and the cathode electrode, a current of about 8 A flowed at a flow rate of 2 L / min, and 3 ppm of ozone water was obtained from the outflow pipe. Further, when the silver metal mesh coated with silver chloride as a catalyst was examined, it was confirmed that the state was exactly the same as before use, and reduction by hydrogen generated at the cathode electrode was not performed. Therefore, the effect of the present invention is recognized.
(Invention Example 2)
In Example 1 of the present invention, a catalyst alloy of 90 wt% palladium and 10 wt% silver was deposited on the inner surface of one cation exchange membrane by a sputtering method in a vacuum atmosphere to form a thin film having a thickness of 1.5 μm. In addition, the anode electrode, the cathode electrode, and the two cation exchange membranes were the same as those of Example 1 of the present invention, and were supplied with pyrogen-free water from the inlet pipe under the same conditions as described above, and energized. The current flowed 12A, and 5 ppm of ozone water was obtained from the outflow pipe. Therefore, the effect of the present invention is recognized.
(Comparative example)
In Example 1 of the present invention, when a catalyst electrode without a catalyst provided between two cation exchange membranes was used, pyrogen-free water was supplied from the inflow pipe under the same conditions as described above, and energization was performed. Only flowed 2A, and the water flowing out of the outflow pipe did not contain ozone. Therefore, it was found that ozone was not generated.
As is clear from the above results, the present invention produces high concentration ozone water of 4 ppm or more necessary for medical, especially surgery, even when distilled water or pyrogen flow water having a high electrical resistance value is used as raw material water. can do.

オゾン水生成装置100の概略を模式的に示した縦断面図である。1 is a longitudinal sectional view schematically showing an outline of an ozone water generator 100. FIG. 変形例を示したものであって、触媒3Aの斜視図である。It is a perspective view of catalyst 3A which shows a modification. 変形例を示したものであって、(a)は触媒3Bの平面図、(b)は触媒3Cの平面図である。FIG. 6 shows a modification, in which (a) is a plan view of the catalyst 3B, and (b) is a plan view of the catalyst 3C.

符号の説明Explanation of symbols

2 触媒電極
3,3A,3B,3C 触媒
22 陽極電極
23 陰極電極
211,212 陽イオン交換膜
2 Catalyst electrodes 3, 3A, 3B, 3C Catalyst 22 Anode electrode 23 Cathode electrodes 211, 212 Cation exchange membrane

Claims (6)

複数の陽イオン交換膜を互いに対向して重ね、前記複数の陽イオン交換膜の互いに対向する面に触媒を設け、
前記複数の陽イオン交換膜のうち一方の陽イオン交換膜の、前記触媒と反対側の面に、陽極電極を圧接し、他方の陽イオン交換膜の、前記触媒と反対側の面に、陰極電極を圧接して触媒電極とし、
前記陽極電極と前記陰極電極との間に直流電圧を印加し、前記陽極電極に原料水を接触させることによりオゾン水を生成することを特徴とするオゾン水の生成方法。
A plurality of cation exchange membranes are stacked facing each other, and a catalyst is provided on the mutually facing surfaces of the plurality of cation exchange membranes,
An anode electrode is pressed against a surface of one of the plurality of cation exchange membranes on the side opposite to the catalyst, and a cathode on the surface of the other cation exchange membrane on the side opposite to the catalyst. The electrode is pressed into a catalyst electrode,
A method for generating ozone water, comprising generating ozone water by applying a DC voltage between the anode electrode and the cathode electrode and bringing the raw material water into contact with the anode electrode.
前記触媒が塩化銀であることを特徴とする請求項1に記載のオゾン水の生成方法。   The method for producing ozone water according to claim 1, wherein the catalyst is silver chloride. 前記触媒が塩素系化合物であることを特徴とする請求項1に記載のオゾン水の生成方法。   The method for producing ozone water according to claim 1, wherein the catalyst is a chlorinated compound. 前記触媒が、銀とパラジウムからなる合金であることを特徴とする請求項1に記載のオゾン水の生成方法。   The method for producing ozone water according to claim 1, wherein the catalyst is an alloy composed of silver and palladium. 前記触媒は薄膜状であり、前記複数の陽イオン交換膜の互いに対向する面に薄膜状の触媒を固着することを特徴とする請求項4に記載のオゾン水の生成方法。   5. The method for producing ozone water according to claim 4, wherein the catalyst is in a thin film shape, and the thin film catalyst is fixed to the mutually facing surfaces of the plurality of cation exchange membranes. 前記複数の陽イオン交換膜の互いに対向する面に、前記薄膜状の触媒をスパッタリングにより固着することを特徴とする請求項5に記載のオゾン水の生成方法。   6. The method for producing ozone water according to claim 5, wherein the thin film catalyst is fixed to the surfaces of the plurality of cation exchange membranes facing each other by sputtering.
JP2006105066A 2006-04-06 2006-04-06 Ozone water generation method Expired - Fee Related JP4464362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006105066A JP4464362B2 (en) 2006-04-06 2006-04-06 Ozone water generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006105066A JP4464362B2 (en) 2006-04-06 2006-04-06 Ozone water generation method

Publications (2)

Publication Number Publication Date
JP2007277632A true JP2007277632A (en) 2007-10-25
JP4464362B2 JP4464362B2 (en) 2010-05-19

Family

ID=38679375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006105066A Expired - Fee Related JP4464362B2 (en) 2006-04-06 2006-04-06 Ozone water generation method

Country Status (1)

Country Link
JP (1) JP4464362B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209378A (en) * 2008-02-29 2009-09-17 Nikka Micron Kk Ozone water production apparatus
JP2010174328A (en) * 2009-01-29 2010-08-12 Nikka Micron Kk Ozone water generator
WO2011013261A1 (en) * 2009-07-30 2011-02-03 三洋電機株式会社 Electrode material for electrolysis, electrode for electrolysis, and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209378A (en) * 2008-02-29 2009-09-17 Nikka Micron Kk Ozone water production apparatus
JP4528840B2 (en) * 2008-02-29 2010-08-25 日科ミクロン株式会社 Ozone water generator
JP2010174328A (en) * 2009-01-29 2010-08-12 Nikka Micron Kk Ozone water generator
WO2011013261A1 (en) * 2009-07-30 2011-02-03 三洋電機株式会社 Electrode material for electrolysis, electrode for electrolysis, and method for producing same

Also Published As

Publication number Publication date
JP4464362B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
US7967958B2 (en) Electrode for water electrolysis
US8329024B2 (en) Electrochemical device and method for long-term measurement of hypohalites
JP5670889B2 (en) Tubular electrolysis cell including concentric electrodes and corresponding method
JP4637885B2 (en) Ozone water generator
JP2006322053A (en) Electrode for water electrolysis
JP5574877B2 (en) Ozone water generator
JP4528840B2 (en) Ozone water generator
JP4464362B2 (en) Ozone water generation method
JP2008086960A (en) Washing apparatus
JP5210455B1 (en) Wash water generator
JP3420820B2 (en) Method and apparatus for producing electrolytic acidic water
JP3616079B2 (en) Electrolytic ozone water production system
JP5785492B2 (en) Ion-exchange membrane electrolytic cell with gas diffusion electrode
JP4217233B2 (en) Ozone water generator
JP4373985B2 (en) Ozone water generator
JP3682275B2 (en) Ozone water production equipment
JP6710882B1 (en) Electrolytic cell, ozone water generator including the same, and method for recovering performance of electrolytic cell
JP5048878B1 (en) Ozone water generator
JP4291320B2 (en) Ozone water generator
JP2021120140A (en) Ozone water generation method, generation sprayer and generation spraying device
JP5547661B2 (en) Cleaning method of ozone water sensor
JP5791841B1 (en) Ozone water production equipment
JP5210456B1 (en) Wash water generator
JP7228846B2 (en) Electrolyte liquid generator
WO2022114142A1 (en) Method for producing ozone water, and apparatus for manufacturing ozone water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4464362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees