JP3616079B2 - Electrolytic ozone water production system - Google Patents

Electrolytic ozone water production system Download PDF

Info

Publication number
JP3616079B2
JP3616079B2 JP2002220842A JP2002220842A JP3616079B2 JP 3616079 B2 JP3616079 B2 JP 3616079B2 JP 2002220842 A JP2002220842 A JP 2002220842A JP 2002220842 A JP2002220842 A JP 2002220842A JP 3616079 B2 JP3616079 B2 JP 3616079B2
Authority
JP
Japan
Prior art keywords
water
ozone
reaction vessel
ion exchange
exchange membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002220842A
Other languages
Japanese (ja)
Other versions
JP2004060011A (en
Inventor
博一 塩田
Original Assignee
ネオオゾン株式会社
株式会社アイ電子工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ネオオゾン株式会社, 株式会社アイ電子工業 filed Critical ネオオゾン株式会社
Priority to JP2002220842A priority Critical patent/JP3616079B2/en
Publication of JP2004060011A publication Critical patent/JP2004060011A/en
Application granted granted Critical
Publication of JP3616079B2 publication Critical patent/JP3616079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、水を電気分解して、オゾン発生触媒機能を有した材質で製造した陽極電極側に発生する酸素中に、一部オゾンを生成するようになし、この電気分解で発生したオゾンが、電気分解中の水に溶け込んで、オゾン水となるようになした電解式オゾン水製造装置に関するものである。
【0002】
【従来の技術】
従来、オゾン水(オゾンを溶解した水)の製造装置としては、主として、曝気式が採用されている。この曝気式オゾン水製造装置は、原料酸素と、該原料酸素をオゾン化する無声放電式オゾナイザーと、この無声放電式オゾナイザーで製造した気相のオゾンを原料水中に溶解する曝気装置(気液接触装置)とで構成されている。しかし、この曝気式のオゾン水製造装置は、先ず、ボンベに入った酸素が必要で原料酸素の入手が煩雑であるという問題点を有し、また、無声放電のために高電圧を必要とするので、そのための電源装置が大型となるという問題点を有している。また、上記気液接触装置にも相応の容量の反応槽が必要とされ、全体の装置が大型なものとなるという問題点を有している。さらには、無声放電オゾナイザーで得られた気相のオゾンは、万が一漏れ出ると人間にとっても危険であるので、オゾン水の使用場所で、所望量のオゾン水を手軽に製造することができないという問題点を有しており、オゾン水の利用が普及しないでいる。
【0003】
そこで、上記曝気式のオゾン水製造装置に対して、最近は電解式オゾン水製造装置が注目されている。この電解式オゾン水製造装置は、水を電気分解すると陽極電極側に発生する酸素の一部にオゾンが混ざることを利用したもので、イオン交換膜の両面に電極を重ねることで電気分解用の電極間隔が近接してオゾン発生に効果的な非常に激しい電気分解が実現可能となり、また、電極の材質をオゾン発生触媒機能を有するものを選定し、さらには、その形状を適宜に選定することで、最近ではオゾン発生効率が顕著に向上されてきている。
【0004】
具体的な従来例としての電解式オゾン水製造装置としては、100mm角程度の大きさのイオン交換膜の一面側に50メッシュの白金製の陽極電極を、他面側に同じ陽極電極を重ね、両電極に、電圧が十数ボルトの直流電圧を印加し、該イオン交換膜の陽極電極面側に原料水を沿わせて流過させると、このようなコンパクトで簡易な構成で、数PPMのオゾン水が得られる。従って、オゾン水を使用する場所で手軽に所望量得られるものである。さらに、この電解式オゾン水製造装置は、発生したオゾンは、発生すると同時にほとんどその全量が原料水中に溶け込んでしまい、大気中に放散されるオゾンがほとんど無いので、安全性も非常に高いものである。
【0005】
しかし、これら電解式オゾン水製造装置としては、当初、オゾン発生触媒機能を有する電極材として酸化鉛が使用されていた。この酸化鉛で構成した電極は、加工性が悪く、オゾン生成効率を高く保つ電極板形状が形成できないという問題点と、製造したオゾン水中に、鉛が溶け出す危惧とを有していた。
【0006】
そこで、電極材の選定が種々試行され、最近は酸化鉛に代え、白金(Pt).金(Au)等の貴金属又はチタン(Ti)等が使用されるようになり、これら金属はいずれのものも加工性がよいので、種々の形状に加工されて、オゾン発生効率を向上する試みが、種々なされてきた。そして、この種の新たな電極材は、金網状にして、イオン交換膜をその間に挟むことで、電極がイオン交換膜を覆う部位と、イオン交換膜が露出する部位との境界を多く得られ、かつ、金網とイオン交換膜との接触部位は、該金網構成線には直線的な部位がないので、イオン交換膜と電極との接触部は、接触した部位から順次離れる部位が多数形成され、この境界各部位で、オゾン発生に有利な激しい電気分解が発生するので、全体的に高いオゾン発生効率が得られるようになってきた。
【0007】
そして、本発明者等は、さらなるオゾン発生効率の向上のため、従来、次のような提案を行い、予想以上の効果が得られることを確認した。第一の提案は、コンパクト化と反応距離(反応時間)の確保で、従来イオン交換膜を始め、金網状の陽極電極と陰極電極とは、夫々を平面的なまま使用し、その陽極電極側に原料水を沿わせて流過させていた。すなわち、扁平箱状の容器を平らなイオン交換膜で縦方向に2分して(該イオン交換膜で扁平な陽極室と陰極室とに仕切られるように二分し)仕切り、このイオン交換膜の一面側に金網状の陽極電極、他面側に同じく金網状の陰極電極を重ね、該容器の陽極電極側を原料水が通過するようになし(上記陽極室の一端に原料水流入口、他端側にオゾン水流出口を設ける。)てある。しかし、この方式は、上記陽極室内全体に均一に原料水が流れるように工夫した各種整流装置を使用するも、原料水が偏った特定部位に局所的に流れる等の現象が確実に抑止することが難しく、オゾン発生量の安定性が保証しきれないことがあった。
【0008】
そこで、本発明者等は、上記イオン交換膜と陽極電極と陰極電極とを重ねて組み合わせたものを筒状に巻いて、この筒状の陽極電極面の周面を螺旋状に進む流路に案内されて原料水が流過するようになすことで、原料水が長時間・確実に、電気分解雰囲気中にとどまる(電気分解のための放電界と原料水とが長時間・確実に接触する)ことで、コンパクトな構造で、高いオゾン生成効率が得られるようになしたものである。
【0009】
図6によって、この提案の一例を具体的に説明すると、円柱体20aの外周に所定の太さのスぺーサー20bを螺旋状に巻いて、このスぺーサー20bのピッチ幅によって確保される間隙部が螺旋状の流路Rを形成するようになしてある。そして、このスぺーサー20bの外側に白金(Pt)金網製の陽極電極13を、その外側にイオン交換膜14を、さらにその外側に、同じく白金(Pt)金網製の陰極電極15を順に巻きつけてなる。そして、上記陰極電極15の外側には所定の太さのスペーサー20cを螺旋状に巻きつけ、上記円柱体20a乃至スペーサー20cは円筒状の反応槽本体部10内に圧入・嵌入してある。なお、円筒状の反応槽本体部10の長手方向両端部位には、その内周面と円柱体20aの周面との間隙を塞ぐエンドリング20d,20dが設けられ、一方のエンドリング20dは原料水の流入口10aが前記流路Rの一端に連通して設けられ、他方のエンドリング20d(図6では、円筒状の反応槽本体部10の上部にあって明示していない。)は流出口10bが前記流路Rの他端に連通して設けられている。また、円筒状の反応槽本体部10には、前記スペーサー20cで構成される流路R4に連通する洗浄水の流入口16aと流出口16bとを設けてなる。
【0010】
なお、図6において、40は陽極電極13と陰極電極15とに直流電圧を印加する電源装置、50bは洗浄水タンク、41は該洗浄水タンク50bと前記洗浄水の流入口16aと流出口16bとに連結した、洗浄水循環ポンプを示すものである。
【0011】
次に、第2の提案は、上記の提案とは一見して矛盾するようにも見えるが、一度発生したオゾンが電気分解のための電界の影響を受けて分解されることを防ぐため、発生したオゾンを直ちに発生場所から別の場所に移動する工夫である。この工夫として、前記図6のような螺旋状の流路Rを使用するも、イオン交換膜と陽極電極と陰極電極とを組み合わせたものは筒状の全周ではなく、該螺旋状の流路Rの各半周部位にのみ設けることで、流路Rによって旋回して流れる原料水が、電界部位との接触と隔離とを順次繰り返すようになしたものである。この提案に基づく実験例は、当初オゾン発生効率が半減するものと当然予想されたが、実際には、電極面積を半減しても、オゾン水のオゾン濃度は通常10〜15%程度低下するのみであり、消費電力に対するオゾン生成効率は明らかに向上するものであった。
【0012】
次いで、第三の提案は、電解用の両電極近傍部位の洗浄である。電気分解が長時間連続すると、原料水中に溶存している、カルシウムイオンやマグネシウムイオン等が、析出してイオン交換膜の表面等に(正確には、イオン交換膜と両電極との接触面部の間隙部位等に)堆積する。そして、これらカルシウムやマグネシウムの堆積物は絶縁性を有するため、電気分解のための電流の流れを阻害してしまうことになる。そこで、これら析出・堆積物の防止のための、陰極電極側に、これらカルシウムイオンやマグネシウムイオン等が、溶け込むことのできる電解液を使用するものである。
【0013】
この種、電解式のオゾン水製造装置には、原料水に純水をするのが望ましいが、入手が比較的難しい純水のみを使用できるとは限らず、原料水中の溶存物質が電気分解にともなって析出・堆積する現象が、今なお、電解式オゾン水製造装置の最も大きな問題点とされている。そして、このような絶縁物質の析出・堆積の従来の防止策としては、水流による物理的洗浄として、原料水の流路を限定して流速を高め堆積を防止する方法、定期的に電極の極性を反転して洗浄用運転をする方法等の試みがなされたが、これらは、安定運転期間を延長できて効果的ではあるも、未だ、その延長期間も充分満足できるものではなかった。そこで、陰極電極側に電解液を接触させておくことで、原料水中の溶存物質を、該イオン交換膜を透過させ陰極電極側に円滑に移動させ、かつ陰極電極側にある電解液(洗浄水と称する。)に溶け込ませることで、溶存物質の析出自体を抑止して、より長期間、安定的な電気分解を保つことができるようになしたものである。
【0014】
以上のような提案の組み合わせで、図6のような装置で、常温水道水を原料水として、15V・7アンペアの消費電力で、オゾン濃度4PPMのオゾン水を、毎分2リットルの量で安定的に得られるようになり、この装置を直列に二台連結することで、オゾン濃度5〜7PPMのオゾン水を、毎分2リットルの量で得られようになった。そして、オゾン濃度3PPM以上のオゾン水は、手などの消毒・殺菌に充分な殺菌力を有し、オゾン濃度5〜7PPM以上のオゾン水は、殺菌力は無論、脱臭効果や有機物の分解力も利用でき、オゾン水の実用的な利用が注目されてきている。
【0015】
しかし、最近になって、オゾン水の新たな要望として、シャワー等での全身殺菌等にオゾン温水が利用できないかとの要望が寄せられた。すなわち、30〜45℃といった、比較的高温のオゾン水の供給装置が要求されるようになってきたが、オゾンを溶解させるには、原料水の温度が低いほど有利なのは無論で、このような、高温度のオゾン水を得るにはさらなる効率向上が要求されるものである。
【0016】
高温のオゾン水を得るには、低温の原料水で高濃度のオゾン水を製造し、このオゾン水を所望温度まで加温する方法も想定できるが、この方法では、加温中に危険な気相オゾンが放出されることもあるので、オゾン水を加温するより、使用する温度の原料水を予め用意して電解式オゾン水製造装置でオゾン水を得る方が安全性が高いことは明らかであるが、このような、高温の原料水を用いたオゾン水製造装置はこれまで実現不可能とされていた。なお、結果の比較で、詳細な理由は判明していないが、37℃の水に、オゾン濃度2PPMとなるまで気相のオゾンを曝気したものと、37℃の水を電気分解してオゾン濃度2PPMとなしたものを夫々毎分1.5リッターで流しながら手洗いに使用したとところ、気相オゾンを曝気したオゾン水は比較的強いオゾン臭を確認できたが、電気分解で得たオゾン水は同じ温度でも、オゾン臭はほとんど確認できないものであり、オゾン温水は、電解式で製造する方が有利であることが確認できた。
【0017】
【発明が解決しようとする課題】
そこで、本発明は、上記の問題点及び要望に鑑みなされたもので、より効率を向上し、原料水が比較的高温で、カルシウムイオン等が混入されている商用の水道水(硬水)でも、所定のオゾン濃度のオゾン水が得られる電解式オゾン水製造装置を提供することを課題としたものである。
【0018】
【課題を解決するための手段】
上記課題を達成するため、本発明は、一端側に原料水流入口10aを、他端側に流出口10bを有した円筒状の反応槽本体部10内に、該円筒状の反応槽本体部10内を流過する原料水が旋回流となるようになした旋回流生成装置20を収納し、上記円筒状の反応槽本体部10には、その円筒部を輪切り状とする断面形状が、欠円状となる窓孔11を設け、さらに、該円筒状の反応槽本体部10には、該窓孔11を接線方向に塞ぐ平面的な主反応室部12を連設し、上記主反応室部12内には、内側に金網状のオゾン発生触媒機能を有した陽極電極13を、その外側にイオン交換膜14を、さらに、その外側に耐食金属で構成した金網状の陰極電極15を、夫々重ねて収納し、上記主反応室部12の外面には前記イオン交換膜14の陰極電極15側面が洗浄水室50bに露出する窓孔17を設けてなる技術的手段を講じたものである。
【0019】
それ故、本発明電解式オゾン水製造装置は、陽極電極13と陰極電極15との間に直流電圧を印加し、円筒状の反応槽本体部10内を原料水が流過するようになす。すると、原料水は円筒状の反応槽本体部10内を螺進しながら、主反応室部12内の陽極電極13を重ねたイオン交換膜14の面に間欠的に衝突し、衝突と螺進とを繰り返す。そして、イオン交換膜14の一面に衝突する際、該原料水は電気分解され、陽極電極13側に酸素とオゾンとを発生し、この発生したオゾンは、酸素の約8倍水に溶け易いとされる上、微少気泡であると共に、発生期の非常に反応性の高い状態にあるので、そのほぼ全量が原料水中に溶け込む。そして、円筒状の反応槽本体部10と主反応室部12とは、一部のみが連通しているので、螺進する原料水はイオン交換膜14の一面に衝突した後に、直ちに電解(電界)部位から離れ、オゾンの混入と、混入したオゾンの原料水中への溶解時間の確保との作用が繰り返される作用を呈する。
【0020】
上記が本発明の基本的作用であるが、本発明の特長的な作用としては、さらに、原料水加圧作用と、衝突撹拌作用と、密閉性の保証に伴う効率向上作用とが期待できる。先ず、原料水加圧作用であるが、旋回・螺進する原料水は主反応室部12内において、遠心力を受けてオン交換膜14の一面に衝突する。したがって、原料水はこの部位で局所的に加圧される(内圧が高まる)ことになる。そして、原料水が加圧状態にあると電気分解で発生したオゾンは、その分原料水中に溶け込み易くなる作用を呈するものである。
【0021】
次に、本発明は、上記衝突で、衝突撹拌作用を呈する。撹拌方式の一つとして衝突板方式というものがある。この衝突板方式は、流体の衝突によって気泡等が細かく分断されるので、特に、気液混合には効率的な混合方式とされているが、本発明では、電気分解が集中的に発生している場所に原料水が衝突するので、まさに、この効率的な衝突板方式の気液混合が行われる作用を呈するものである。なお、電気分解により発生した気泡状の酸素及びオゾンは、これもまた水に比較しては絶縁性を有するものと言え、電気分解の場所に長く止まると電流を遮断して継続的な電気分解の阻害原因になるが、本発明はこの気泡を原料水の衝突流によりその部位から払拭する作用をも呈するものである。
【0022】
次に、前記した密閉性の保証に伴う効率向上作用であるが、実は、従来例で説明した、イオン交換膜14と陽極電極13と陰極電極15とを組み合わせたものを筒状に構成し、その周面に沿わせて原料水を螺旋状に流過させるようになしたものは、本発明とその構成がよく似ているが、大きな相違点は、該イオン交換膜14を仕切り材として、陽極電極13側と陰極電極15側とをいかに信頼性高く密閉、シールすることができるかにある。図6従来例で、平面的な陽極電極13、イオン交換膜14、陰極電極15は夫々を順に巻いて、端部を重ねて密閉性を確保しているが、いくら、平面的なイオン交換膜14を巻き重ねることで密閉性を確保しているが、これだけでは確実な密閉が保たれるとは限らない。そして、この密閉が保証できないと、陽極電極13側と陰極電極15側との間に移動可能な水が存在することになり、それが原因で電気分解に有効な電位差が低減し、電気分解に電流が消費されず、その分オゾン発生効率が低下する。しかし、本発明では、陽極電極13、イオン交換膜14、陰極電極15は、夫々を全て平面的なまま使用するので、通常のオーリング等のシール材で信頼性の高い密閉が行え、その分、オゾン発生の効率化が行える作用を呈するものである。
【0023】
次に、請求項2の発明は、一端側に原料水流入口10aを、他端側に流出口10bを有した円筒状の反応槽本体部10内に、外周面に螺旋状の流路R用の溝を設けた螺子棒状の旋回流発生装置20を嵌入して、該円筒状の反応槽本体部10内を流過する原料水が該流路Rに案内されて旋回流となるようになし、上記円筒状の反応槽本体部10には、その円筒部を輪切り状とする断面形状が、欠円状となる窓孔11を設け、さらに、該円筒状の反応槽本体部10には、該窓孔11を接線方向に塞ぐ平面的な主反応室部12を連設し、上記主反応室部12内には、内側に金網状のオゾン発生触媒機能を有した陽極電極13を、その外側にイオン交換膜14を、さらに、その外側に耐食金属で構成した金網状の陰極電極15を、夫々重ねて収納し、上記主反応室部12の外面には前記イオン交換膜14の陰極電極15側面が、電解溶液を収容した洗浄水室50bに露出する窓孔17を設けてなる技術的手段を講じたものである。
【0024】
それ故、本発明電解式オゾン水製造装置は、請求項1の作用に加えて、旋回流生成装置20を、外周面に螺旋状の流路R用の溝を設けた螺子棒状で構成して、この旋回流生成装置20を円筒状の反応槽本体部10内に嵌入してなるので、原料水流入口10aから流入した原料水は、流路Rに確実に案内されて、所謂、明確に画定された旋回流となり、流路の断面積とそのピッチとで決定する圧力損失のもと、原料水が流出口10bから流出するまでに主反応室部12と衝突する回数を所定回数に決定する作用を呈するものである。
【0025】
次に、請求項3の発明は、一端側に原料水流入口10aを、他端側に流出口10bを有した円筒状の反応槽本体部10内に、外周面に螺旋状の流路R用の溝を設けた螺子棒状の旋回流発生装置20を嵌入して、該円筒状の反応槽本体部10内を流過する原料水が該流路Rに案内されて旋回流となるようになし、上記円筒状の反応槽本体部10には、その円筒部を輪切り状とする断面形状が、欠円状となる窓孔11を設けると共に、この窓孔11の外周部位には、円筒部の接線方向に伸びるフランジ部11aを設け、さらに、該円筒状の反応槽本体部10には、上記フランジ部11aに密接して、該窓孔11を塞ぐ蓋板12aによって平面的な主反応室部12を連設し、上記主反応室部12内には、フランジ部11aと蓋板12aとで密閉シールリング18を介装して挟持されるイオン交換膜14を設け、この内イオン交換膜14の内側に金網状のオゾン発生触媒機能を有した陽極電極13を、該イオン交換膜14の外面側に耐食金属で構成した金網状の陰極電極15を、夫々重ねて収納し、上記陽極電極13と陰極電極15とは、パルス状の直流電圧を発生する電源装置40に連結し、上記主反応室部12の外面には前記イオン交換膜14の陰極電極15側面が、電解溶液を収容した洗浄水室50bに露出する窓孔17を設け、この洗浄水室50bは洗浄水を冷却するゼーベック素子41を、該陰極電極15と所定の間隔を設けて配してなる技術的手段を講じたものである。
【0026】
それ故、本発明電解式オゾン水製造装置は、請求項2の作用にさらに加えて、窓孔11の外周部位には、円筒部の接線方向に伸びるフランジ部11aを設け、さらに、該円筒状の反応槽本体部10には、上記フランジ部11aに密接して、該窓孔11を塞ぐ蓋板12aによって平面的な主反応室部12を連設し、上記主反応室部12内には、フランジ部11aと蓋板12aとで密閉シールリング18を介装して挟持されるイオン交換膜14を設けてなるので、薄いイオン交換膜14を使用しても、陽極側と陰極側とを信頼性高く確実に仕切ることができ、効率的な電気分解保証する作用を呈するものである。
【0027】
なお、パルス状の直流電圧を発生する電源装置40は、放電に伴う発熱量を抑止する作用を、ゼーベック素子41は電解部位の冷却作用を呈し、共に電解部位の発熱によるオゾン生成能力の低下を防止する作用を呈するものである。
【0028】
【実施例】
次に、本発明の実施例を添付図面にもとづいて詳細に説明する。図中、10が円筒状の反応槽本体で、この反応槽本体10は、一端側に原料水流入口10aを、他端側に流出口10bを有した円筒状となし、該反応槽本体10内を流過(図1において、下端側より上端側に向けて流過)する原料水が、該反応槽本体10内で旋回流となるようになした旋回流生成装置20を収納してある。
【0029】
上記旋回流発生装置20としては、上記した原料水流入口10aと流出口10bとを、円筒状の反応槽本体10の接線方向に設けたり、図示しないヒネリ翼(一般に、ヒネリ翼式スタテックミキサーと称される。)等を使用してもよいが、本発明で利用しようとしている原料水の旋回流は、限られた反応槽本体10の軸方向の長さ内で、多数回数の確実な旋回が行われるものを想定しているもので、本実施例では該旋回流発生装置20を、螺旋状の流路Rをその外周面に設けた螺子棒形状となし、この旋回流発生装置20を反応槽本体10内に貫入して、原料水は該流路Rにのみ案内されて、原料水流入口10aから流出口10b側に矢印P1,P1,P1・・・で示すように、旋回して流れるようになしてある。すなわち、上記流路Rは、反応槽本体10の内径に一致する太さの円柱体に螺旋状に凹設して形成され(図6従来例のように、スペーサーbで該流路Rを確保しても無論差し支えない。)、この円柱体を反応槽本体10内に嵌入して、該反応槽本体10内周面が流路Rを画定する一部となるようになしてある。
【0030】
そして、上記反応槽本体10には、その円筒状本体を輪切り状とすると、その断面形状が、欠円状となる窓孔部11を設け、さらに、該反応槽本体10には、該窓孔11を略接線方向に塞ぐ平面的な主反応室部12を連設してある。この窓孔部11は、反応槽本体10の周面の一部を削り取ることで形成でき、図1において、右側面側から見るとこの窓孔部11は縦長の長方形状となるようになっている。そして、本発明では、該反応槽本体10には、該窓孔11を略接線方向に塞ぐ平面的な主反応室部12を連設してある。
【0031】
上記主反応室部12は、蓋板12aで蓋をすることで平面的な箱状に構成され、所定の容積を有してなるが、その内部は後記する陽極電極13と、イオン交換膜14と、陰極電極15とでほぼ占有され、実質的な主反応室部12は前記流路Rの一部が利用されるようになしてある。また、この主反応室12は蓋板12aで塞ぐとしたが、この蓋板12aには、後記する窓孔17が設けられることによって、主反応室12として塞がれることはないが、イオン交換膜14が仕切りとして機能し、流路R側と該窓孔17側(窓孔17の図1右側)とは仕切られることになる。なお、この流路Rは圧力損失が小さくなるよう、比較的断面積を大きく設定することが望ましく、本実施例では3mm角(断面積略9mm)の流路を確保した。
【0032】
そして、上記主反応室部12内には、内側に金網状のオゾン発生触媒機能を有した陽極電極13を、その外側にイオン交換膜14を、さらに、その外側に耐食金属で構成した金網状の陰極電極15を、夫々重ねて収納してある。すなわち、上記主反応室部12は、一面を流路Rに向けて解放し、上記陽極電極13と、イオン交換膜14と、陰極電極15とを保持するものであればよく、本実施例では、前記窓孔部12の外周部には反応槽本体10の略接線方向にフランジ部11aを設け、該反応槽本体10は図2に最も明らかに示すように、断面略Ω形となるようになしてある。そして、このフランジ部11aに重なる蓋板12aとで、陽極電極13と、イオン交換膜14と、陰極電極15とをその周縁部で挟持している。
【0033】
陽極電極13と、陰極電極15とは、本実施例では、白金の金網を使用しているが、その他、金、銀、チタン等を使用するとオゾン発生触媒機能が期待できるとされている。特に、陰極電極15はステンレス等の耐食金属でも充分とされているが、陽極電極13と同様に、白金、金、銀、チタン等の金網を使用するのがオゾン発生効率上望ましいものであり、また、後記する洗浄水の機能を確保するためには、この種、オゾン発生触媒機能を有した陰極電極15を使用することが、より望ましいものであることは実験の結果確認済みである。また、上記イオン交換膜14には、米国デュポン社製、商品名ナフィオン450等を使用すればよい。
【0034】
なお、図1実施例では、上記陽極電極13と、イオン交換膜14と、陰極電極15とを三枚重ねとして、上記フランジ部11aと蓋板12aとで挟持しているが、この方法だと確実な密閉性が確保されないのと、両電極13,15等の平面性が確保できないので、実際には、別途集電板19,19の使用と、イオン交換膜14のみの密閉機構の併用とを行っている。
【0035】
上記集電板19,19は、陽極電極13と、陰極電極15とが高価(実施例として白金を使用するが、チタンに白金を鍍金したものを使用してもよい。)であるので、細い金網で製造してあり、変形しやすいので、荒い網目の金網や変形静来多孔板の集電板19,19を、前記陽極電極13の内側と、陰極電極15の外側とにさらに重ね、この両集電板19,19で、陽極電極13と、イオン交換膜14と、陰極電極15とが変形しないように保持している。なお、この集電板19、19は、電源40に直接連結し、この集電板19,19と接触する陽極電極13と陰極電極15とが電気的にも連結されるようになしてあるのは無論である。なお、図示はしていないが、この集電板19の実施例として、金属板に多数のスリットを入れ、これを、スリットとは直交方向に引き延ばして、各スリット部が開いて網目状となした、所謂ラス網状のものを使用すると、変形が少なくて最適であった。なお、このラス網は、表裏両面に尖った部位があるので、この尖った部位をプレスして平面的に潰して使用して、電極13,15やイオン交換膜14を損傷しないようになしたものを使用した。
【0036】
また、上記イオン交換膜14のみの密閉機構の併用とは、多孔性の陽極電極13と陰極電極15と集電板19,19とは、多孔性であるが故、その確実な密閉は相当に困難なので、これらの挟持部は、密閉を行わず、これらを保持するのみに止め、イオン交換膜14は一回り大きき設定してこの部位を密閉用部として、別途図3に示すように、フランジ部11aと蓋板12aとで密閉シールリング18,18等を介装して挟持されるようになし、該密閉シールリング18,18等で容易・確実な密閉性を確保するようになしてある。
【0037】
そして、上記主反応室部12の外面には、前記イオン交換膜14の陰極電極15側面が洗浄水室50bに露出する窓孔17を設けてなる。前記イオン交換膜14の陰極電極15側面には水は不要であるとする報告もあるが、実際には、この面を水で満たすことが円滑な電気分解に必要であることが多くの実験例から確認されており、最近の本発明者等の実験では、この陰極電極15側面の水を電解液とすると、原料水中のイオン物質が、イオン交換膜14を透過して、陰極電極15側面の水に溶け込む現象を見いだした。従って、この陰極電極15側面の電解液はイオン物質がイオン交換膜14の表面に析出、堆積するのを防止できることから、この電解液を洗浄水として利用できるものである。なお、この洗浄水は図1及び図2では省略してあるが、イオン交換膜14の陰極電極15側を覆う、適宜形状の水槽を設けて、この水槽内に該洗浄水を満たせばよいのは無論である。また、この洗浄水は図6従来例のように循環するようになしてもよいのも無論である。
【0038】
上記窓孔17は、蓋体12aを枠状に形成することで実現でき、この窓孔17に連通して適宜な洗浄水槽を連設すればよいが、図4例では、反応槽本体10を水没循環式となしている。上記反応槽本体10は、仕切板51でオゾン水室50aと洗浄水室50bとに仕切られた水槽50の、洗浄水室50b内に収納される。この水槽50は、該耐オゾン水性のガラス、又はアクリル樹脂等で製造されている。そして、このオゾン水室50aには水道水等の原料水が所定量注入され、本発明の主要部である上記反応槽本体10を水没してある。また、このオゾン水室50a内には水中ポンプ52も収納され、該オゾン水室50a内の原料水は該水中ポンプ52で反応槽本体10の原料水流入口10aから該反応槽本体10内に圧送・供送されるようになしてある。
【0039】
そして、該反応槽本体10の流出口10bにはオゾン水室50aの外に伸びる流路R1が連結され、この流路R1はオゾン水使用場所まで延設される。そして、該流路R1の先端部位近くには、手元弁53が設けられ、この手元弁53は常時は該流路R1を閉じているが、オゾン水使用時のみ該流路R1を手動等で開いてオゾン水を該流路R1の先端より排出・供給するようになしている。なお、上記流路R1の途中には、リリーフ弁54が設けられ、手元弁53が閉じられて流路R1内の内圧が所定以上に高まると、該リリーフ弁54の流出口10cからオゾン水が流出し。このオゾン水はオゾン水室50a内に流出して環流するようになしてある。
【0040】
なお、上記仕切板51には、窓孔55が設けられ、この窓孔55と反応槽本体10の窓孔17とが連通するようになして、該反応槽本体10を仕切り板51に取り付けてある。すなわち、洗浄水室50bはオゾン水室50aとは気密を保つと共に、該洗浄水室50b内の洗浄水は、両窓孔55,17を介してイオン交換膜14の陰極電極15面側に接触できるようになしてある。なお、この洗浄水室50b内の洗浄水としては塩化ナトリウム水溶液、又はクエン酸水溶液等(電導率300μS・cm マイクロシーベルト・センチメートル以上の電解質の水が望ましい。)が使用できる。
【0041】
なお、上記洗浄水は図示しないポンプと流路等で循環式としてもよいが、本実施例では電気分解で発生する水素が気泡となって浮上することで、洗浄液が循環するように、窓孔55に近接して後記するゼーベック素子41を設け、局所的な部位を浮上する水素気泡が、底部の流路面積を縮小した堰部41aより該洗浄水を導入して、共に随伴して上昇するようになしてある。なお、洗浄水室50bの上部には水素処理触媒室56が設けられ、電気分解で発生した、水素は水素処理触媒室56内の触媒と接して大気中の酸素と反応して水に戻るようになしている。
【0042】
また、上記オゾン水室50aには、上下一対の水位計57a,57bと、反応槽本体10の流入口10a側と流出口10bとに一対のオゾン濃度センサー58a,58bとが設けてある。この水位計57a,57bは、オゾン水室50a内の水量を所定の範囲内に確保するためのもので、上限の水位計57aが水位上昇を検知すると、水槽50の上に設けた電源・制御回路70中の、図5に示す電磁弁電源回路71を介して原料水供給源の電磁弁59を閉じ、下限の水位計が水位の低下を検知すると該電磁弁59を開いて、この電磁弁59に連結した商用水道水等の原料水を、該オゾン水室50a内に供給・注入するといった、従来公知な使用法で使用される。
【0043】
また、上記オゾン濃度センサー58a,58bは、検出電極と相手電極とを所定距離離して対設してなり、その間をオゾン水で満たすことで、一種のガルバニー電池としての起電力が発生し、流れる電流値の変化でオゾン濃度を検出する従来公知なものが使用される。そして、このオゾン濃度センサー58a,58bはオゾン濃度が所定の濃度に達しているか否かを判定する他、電気分解用の両電極13,15の汚染をも検出するようになしている。先ず、両オゾン濃度センサー58a,58bの測定値は判断回路72で整理判断され、その測定数値を表示装置73に表示するが、一方又は双方の測定値でオゾン濃度が所定値以下となっていると、使用不可の赤ランプL1を点灯し、オゾン濃度が所定値以上となると、使用不可の赤ランプL1を消灯して、使用可の青ランプL2を点灯する。なお、オゾン濃度が所定値以上となると、陽極電極13と陰極電極15とへの荷電を停止するようになしてもよい。
【0044】
そして、新たな原料水が大量に供給されて、オゾン水室50a内のオゾン水のオゾン濃度がある設定値以下の場合に、両オゾン濃度センサー58a,58bの測定値の差が一定値以下の状態が所定時間継続されると、電極が汚染されているものと判断して、赤ランプL1を点滅する。すなわち、本発明に使用される反応槽本体10はワンパスで、原料水を3PPM程度上昇することが可能で、オゾン水室50aに新たな原料水が追加された当初の、オゾン濃度が低下して状態では、電気分解が初期の設定条件で生じていれば、両オゾン濃度センサー58a,58bの測定値の差が一定値以上となるわけであるが、万が一、両オゾン濃度センサー58a,58bの測定値の差が一定値以下の状態が所定時間継続されると、正常な電気分解が生じていないことは明らかで、その主な原因は電極の汚染であることが考えられる。
【0045】
なお、上記電源・制御回路70には、図5に示すような、必要箇所に所定の電圧を印可する電源回路40,40aと、通電時間スイッチS1乃至S4の閉成時間を積算して一定時間が経過すると洗浄水の劣化を知らせる、洗浄水監視回路74(カウンター回路)が収納されている。洗浄水の監視は導電性の変化、PH値の変化等でも把握できるが、これらは実際には、装置も複雑で、誤動作も多いので、本実施例では、最も簡単で、経験則から正確に判断できる、電気分解の総時間の経過で、洗浄水が劣化し、交換時期が来たことを検出し、ブザー75、表示装置75a等で知らせるようになしている。なお、図5の符号76は、洗浄水監視回路74のリセットスイッチ、61,62はドレーン排出用弁である。また、本実施例では、スイッチS1ないしS4は全て連動してON・OFFされるようになしてある。
【0046】
次に、請求項2の発明は、一端側に原料水流入口10aを、他端側に流出口10bを有した円筒状の反応槽本体10内に、外周面に螺旋状の流路R用の溝を設けた螺子棒形状の旋回流発生装置20を嵌入して、該反応槽本体10内を流過する原料水が該流路Rに案内されて旋回流となるようになし、上記反応槽本体10には、その円筒部を輪切り状とする断面形状が、欠円状となる窓孔11を設け、さらに、該反応槽本体部10には、該窓孔11を接線方向に塞ぐ平面的な主反応室部12を連設し、上記主反応室部12内には、内側に金網状のオゾン発生触媒機能を有した陽極電極13を、その外側にイオン交換膜14を、さらに、その外側に耐食金属で構成した金網状の陰極電極15を、夫々重ねて収納し、上記主反応室部12の外面には前記イオン交換膜14の陰極電極15側面が、電解溶液を収容した洗浄水室50bに露出する窓孔17を設けてなるものである。
【0047】
すなわち、本発明は請求項1の旋回流生成装置20を、一端側に原料水流入口10aを、他端側に流出口10bを有した円筒状の反応槽本体10内に、外周面に螺旋状の流路R用の溝を設けた螺子棒形状の旋回流発生装置20を嵌入して、該反応槽本体10内を流過する原料水が該流路Rに案内されて旋回流となるようになしたものである。原料水を旋回流となす旋回流生成装置20としては、前記もしたように接線方向からの原料水の圧入、ヒネリ翼等種々の方式が想定できるほか、回転翼による駆動等の考えられるが、本発明はこれらの内、特に強制的に設定された回数の旋回が行われる方式として、螺旋状の流路Rを予め用意したものである。
【0048】
旋回する原料水が、平面的な主反応室部12、すなわち陽極電極13に衝突することで、この部位には激しく細かな渦流が生じ、電気分解で発生する、酸素、オゾンは払拭されるようにその発生場所から、渦流と旋回流に載って移動することになり、電気分解雰囲気への原料水の衝突と、オゾンの原料水中への溶解反応時間の確保とが交互に繰り返され、前記したように円滑な電気分解の確保と、効率的な発生オゾンの原料水中への溶解とが確保され、結果として効果的なオゾン水生成が可能となるものである。
【0049】
次に、請求項3の発明は、一端側に原料水流入口10aを、他端側に流出口10bを有した円筒状の反応槽本体10内に、外周面に螺旋状の流路R用の溝を設けた螺子棒形状の旋回流発生装置20を嵌入して、該反応槽本体10内を流過する原料水が該流路Rに案内されて旋回流となるようになしてあるのは、前記請求項2の発明と同じ構成である。
【0050】
そして、上記反応槽本体部10には、その円筒部を輪切り状とする断面形状が、欠円状となる窓孔11を設けると共に、この窓孔11の外周部位には、円筒部の略接線方向に伸びるフランジ部11aを設けてある。このフランジ部11aは、図2に示すように、窓孔11の外周部位を、円筒部の略接線方向にフランジ部11aを延設して形成すればよいが、図2の奥手前側には該フランジ部11aと同一平面の平面部11b,11b(図1参照)を有して、該窓孔11の外周には同一平面のフランジ状枠が形成されるようになしてある。
【0051】
さらに、該反応槽本体部10には、上記フランジ部11aに密接して、該窓孔11を塞ぐ蓋板12aによって平面的な主反応室部12を連設し、上記主反応室部12内には、フランジ部11aと蓋板12aとで密閉シールリング18,18を介装して挟持されるイオン交換膜14を設け、このイオン交換膜14の内側に金網状のオゾン発生触媒機能を有した陽極電極13を、該イオン交換膜14の外面側に耐食金属で構成した金網状の陰極電極15を、夫々重ねて収納してある。イオン交換膜14の一面に陽極電極13を他面に金網状の陰極電極15を重ねたものを、密閉性を確保して保持することは、金網状の陽極電極13と同じく金網状の陰極電極15とが密閉性を困難とする。そこで、本発明では両電極13,15より一回り大きくした両面が平面のイオン交換膜14を密閉シールリング18,18を介して密閉性を確保したものである。
【0052】
上記陽極電極13と陰極電極15とは、パルス状の直流電圧を発生する電源装置40に連結してある。電気分解には通常の直流電源を使用すればよいが、本発明では、原料水が高温な場合でもオゾン発生能力を確保するため、放電に伴う発熱を少しでも抑えるため、パルス状の直流電圧を使用した。オゾン発生量は流れた電流に比例するため、この種パルス状の直流電圧を使用すると、電圧か低下している瞬間は電気分解が当然発生せず、その分オゾン生成能力は低下する。しかし、この電圧がパルス状に加わることで発熱量が低下し、その分はオゾンの発生量が増加(発生したオゾンが分解されないと理解することもできる。)するものである。なお、パルス状の電圧は、半波整流電圧や全波整流電圧でもよいが、図5のスイッチS1と陽極電極13との間に記したような矩形波パルス電圧を使用するのが、最も発熱量が少なく望ましいものである。
【0053】
そして、本発明は上記主反応室部12の外面には前記イオン交換膜14の陰極電極15側面が、電解溶液を収容した洗浄水室50bに露出する窓孔17を設け、この洗浄水室50bは洗浄水を冷却するゼーベック素子41を該陰極電極15と所定の間隔を設けて配してなるものである。このゼーベック素子41は異種金属乃至異種半導体が重ねられて構成され、直流電圧を印加することで一面側が冷却され、他面側が加熱される従来公知なものが使用でき、無論、冷却面を陰極電極15側に向け、電気分解用の放電での発熱を洗浄水を介して冷却する。なお、該ゼーベック素子41の加熱側面には原料水を接触させて、原料水の保温・加熱用に使用するとよく、図実施例では、ゼーベック素子41の加熱側面には独立した熱交換用水槽部50dを設け、この熱交換用水槽部50dとオゾン水室50aとを復路用流路R2で連通すると共に、オゾン水室50a内に収納した第二循環ポンプ52aの吐き出し口と熱交換用水槽部50bとを往路用流路R3で連通している。
【0054】
【発明の効果】
本発明は、温度42℃の温水を原料水に使用したところ、容量20リットルのオゾン水室50a内の原料水を3分で4PPMのオゾン濃度となすことができ、この状態は毎分4リッターでオゾン水を使用し続けても変化することはなかった。
【図面の簡単な説明】
【図1】本発明電解式オゾン水製造装置の主要部である反応槽本体部の一部切欠正面図である。
【図2】反応槽本体の横断面図である。
【図3】電極部上部の一例を示す部分断面図である。
【図4】本発明電解式オゾン水製造装置の、一実施例縦断面図である。
【図5】本発明に使用される電気回路部に一実施例回路図である。
【図6】従来例の電解式オゾン水製造装置の反応槽本体部の一部切欠正面図である。
【符号の説明】
10 反応槽本体
10a 原料水流入口
10b 流出口
11 窓孔
11a フランジ部
12a 蓋板
12 主反応室部
14 イオン交換膜
13 陽極電極
15 陰極電極
18 密閉シールリング
20 旋回流発生装置
40 電源装置
41 ゼーベック素子
50a イオン水室
50b 洗浄水室
R 流路
[0001]
BACKGROUND OF THE INVENTION
In the present invention, water is electrolyzed so that ozone is partially generated in oxygen generated on the anode electrode side made of a material having an ozone generation catalytic function, and the ozone generated by this electrolysis is generated. The present invention relates to an electrolytic ozone water production apparatus that is dissolved in water being electrolyzed to become ozone water.
[0002]
[Prior art]
Conventionally, as an apparatus for producing ozone water (water in which ozone is dissolved), an aeration type is mainly employed. This aeration type ozone water production apparatus includes raw material oxygen, a silent discharge type ozonizer that ozonizes the raw material oxygen, and an aeration unit that dissolves gas phase ozone produced by this silent discharge type ozonizer in raw material water (gas-liquid contact Device). However, this aeration type ozone water production apparatus has the problem that the oxygen in the cylinder is necessary and the acquisition of the raw material oxygen is complicated, and a high voltage is required for silent discharge. Therefore, there is a problem that the power supply device for that purpose becomes large. In addition, the gas-liquid contact device also requires a reaction tank having an appropriate volume, and has a problem that the entire device becomes large. Furthermore, the gas phase ozone obtained with the silent discharge ozonizer is dangerous for human beings if it leaks out, so that the desired amount of ozone water cannot be easily produced at the place where the ozone water is used. The use of ozone water is not widespread.
[0003]
Therefore, recently, an electrolytic ozone water production apparatus has attracted attention as compared to the aeration type ozone water production apparatus. This electrolytic ozone water production device utilizes the fact that ozone is mixed with a part of oxygen generated on the anode electrode side when water is electrolyzed. The electrode is used for electrolysis by stacking electrodes on both sides of the ion exchange membrane. It is possible to realize extremely intense electrolysis effective for ozone generation due to the close proximity of the electrodes, and select the electrode material that has an ozone generation catalyst function, and further select the shape appropriately. Recently, ozone generation efficiency has been remarkably improved.
[0004]
As an electrolytic ozone water production apparatus as a specific conventional example, a 50 mesh platinum anode electrode is stacked on one surface side of an ion exchange membrane having a size of about 100 mm square, and the same anode electrode is stacked on the other surface side. When a DC voltage having a voltage of several tens of volts is applied to both electrodes and the raw material water is allowed to flow along the anode electrode surface side of the ion exchange membrane, several PPM of several PPM can be obtained with such a compact and simple configuration. Ozone water is obtained. Therefore, a desired amount can be easily obtained at a place where ozone water is used. Furthermore, this electrolytic ozone water production system is very safe because the generated ozone is almost completely dissolved in the raw material water at the same time as it is generated, and there is almost no ozone released into the atmosphere. is there.
[0005]
However, as these electrolytic ozone water production equipment, as an electrode material having an ozone generation catalyst function at first, Lead oxide Was used. this Lead oxide The electrode constituted by the above has a problem that the processability is poor and an electrode plate shape that maintains high ozone generation efficiency cannot be formed, and there is a concern that lead may be dissolved in the produced ozone water.
[0006]
Therefore, various selections of electrode materials were tried, and recently Lead oxide Instead of platinum (Pt). Noble metals such as gold (Au) or Titanium (Ti) Since all of these metals have good workability, various attempts have been made to improve the ozone generation efficiency by processing into various shapes. And this kind of new electrode material is made into a wire mesh, and the ion exchange membrane is sandwiched between them, so that many boundaries between the portion where the electrode covers the ion exchange membrane and the portion where the ion exchange membrane is exposed can be obtained. In addition, the wire mesh and the ion exchange membrane do not have a linear portion in the wire mesh constituent line, and therefore, the contact portion between the ion exchange membrane and the electrode is formed with many portions that are sequentially separated from the contacted portion. In each part of the boundary, since vigorous electrolysis advantageous for ozone generation occurs, high ozone generation efficiency can be obtained as a whole.
[0007]
The inventors have made the following proposals to further improve the ozone generation efficiency, and confirmed that an effect more than expected can be obtained. The first proposal is to reduce the size and secure the reaction distance (reaction time). Conventional ion exchange membranes, wire mesh-like anode electrodes and cathode electrodes are used as they are in the plane, and the anode electrode side It was allowed to flow along with the raw water. That is, a flat box-like container is divided into two parts in the vertical direction by a flat ion exchange membrane (divided into two parts so as to be divided into a flat anode chamber and a cathode chamber by the ion exchange membrane). A metal mesh-like anode electrode is placed on one side and a metal mesh-like cathode electrode is placed on the other side, so that raw water does not pass through the anode electrode side of the vessel. Ozone water outlet is provided on the side.) However, this method uses various rectifiers designed to allow the raw material water to flow uniformly throughout the anode chamber, but reliably suppresses phenomena such as local flow of the raw material water locally to a specific part. However, the stability of ozone generation could not be guaranteed.
[0008]
Accordingly, the present inventors wound a cylindrical combination of the ion exchange membrane, the anode electrode, and the cathode electrode into a cylindrical shape, and turned the circumferential surface of the cylindrical anode electrode surface into a flow path that spirals. By guiding the raw material water to flow, the raw material water stays in the electrolysis atmosphere for a long time and reliably (the discharge field for electrolysis and the raw material water are in contact with each other for a long time and reliably) Therefore, high ozone generation efficiency can be obtained with a compact structure.
[0009]
An example of this proposal will be described in detail with reference to FIG. 6. A space 20b having a predetermined thickness is spirally wound around the outer circumference of the cylindrical body 20a, and a gap secured by the pitch width of the spacer 20b. The portion forms a spiral flow path R. Then, an anode electrode 13 made of platinum (Pt) wire mesh is wound around the outer side of the spacer 20b, an ion exchange membrane 14 is wound around the outside, and a cathode electrode 15 made of platinum (Pt) wire mesh is wound around the outer side in turn. Come on. A spacer 20c having a predetermined thickness is spirally wound around the outside of the cathode electrode 15, and the columnar bodies 20a to 20c are press-fitted and fitted into the cylindrical reaction vessel main body 10. In addition, end rings 20d and 20d that close the gap between the inner peripheral surface of the cylindrical reaction vessel main body 10 and the peripheral surface of the columnar body 20a are provided at both ends in the longitudinal direction, and one end ring 20d is a raw material. A water inflow port 10a is provided in communication with one end of the flow path R, and the other end ring 20d (in FIG. 6, above the cylindrical reaction tank main body 10 and not shown) flows. An outlet 10b is provided in communication with the other end of the flow path R. Further, the cylindrical reaction vessel main body 10 is provided with an inlet 16a and an outlet 16b for the washing water communicating with the flow path R4 constituted by the spacer 20c.
[0010]
In FIG. 6, reference numeral 40 denotes a power supply device for applying a DC voltage to the anode electrode 13 and the cathode electrode 15, 50b denotes a washing water tank, 41 denotes the washing water tank 50b, the washing water inlet 16a and the outlet 16b. The wash water circulation pump connected to is shown.
[0011]
Next, the second proposal seems to contradict the above proposal at first glance, but it is generated in order to prevent ozone once generated from being decomposed under the influence of the electric field for electrolysis. It is a device to immediately move the generated ozone from the place of occurrence to another place. As a contrivance, the spiral flow path R as shown in FIG. 6 is used, but the combination of the ion exchange membrane, the anode electrode, and the cathode electrode is not the entire circumference of the cylinder, but the spiral flow path. By providing only in each half circumference part of R, the raw material water swirling by the flow path R repeats contact and isolation with the electric field part in order. In the experimental example based on this proposal, it was naturally expected that the ozone generation efficiency was initially halved, but in reality, even if the electrode area was halved, the ozone concentration of ozone water usually only decreased by about 10 to 15%. The ozone generation efficiency with respect to the power consumption was clearly improved.
[0012]
Next, the third proposal is cleaning of the vicinity of both electrodes for electrolysis. When electrolysis continues for a long time, calcium ions, magnesium ions, etc. dissolved in the raw material water are deposited on the surface of the ion exchange membrane (to be precise, the contact surface portion between the ion exchange membrane and both electrodes). It accumulates in a gap part etc.). And since the deposit of these calcium and magnesium has insulation, the flow of the electric current for electrolysis will be inhibited. Therefore, an electrolytic solution that can dissolve these calcium ions, magnesium ions, and the like is used on the cathode electrode side for preventing these precipitates and deposits.
[0013]
In this type of electrolytic ozone water production equipment, it is desirable to use pure water as raw material water. However, it is not always possible to use pure water that is relatively difficult to obtain, and dissolved substances in raw material water are used for electrolysis. The phenomenon of precipitation and deposition is still the biggest problem of the electrolytic ozone water production equipment. And, as a conventional preventive measure for the deposition / deposition of such an insulating material, as a physical cleaning by a water flow, a method of limiting the flow rate of the raw material water to increase the flow rate and preventing the deposition, the polarity of the electrode periodically Attempts have been made to perform a washing operation by reversing the above, but these are effective because the stable operation period can be extended, but the extension period has not yet been fully satisfactory. Therefore, by bringing the electrolyte solution into contact with the cathode electrode side, the dissolved substances in the raw material water can be smoothly transferred to the cathode electrode side through the ion exchange membrane, and the electrolyte solution (washing water) on the cathode electrode side can be moved. In this case, it is possible to suppress the deposition of dissolved substances and to maintain stable electrolysis for a longer period.
[0014]
With the combination of the above proposals, the device shown in Fig. 6 is used to stabilize ozone water with an ozone concentration of 4 PPM at a rate of 2 liters per minute, using room-temperature tap water as raw water and power consumption of 15V, 7 amps. By connecting two devices in series, ozone water having an ozone concentration of 5 to 7 PPM can be obtained in an amount of 2 liters per minute. Ozone water with an ozone concentration of 3 PPM or higher has sufficient sterilizing power for disinfection and sterilization of hands, etc., and ozone water with an ozone concentration of 5 to 7 PPM and higher uses sterilization power, deodorizing effect and organic substance decomposing power. The practical use of ozone water has attracted attention.
[0015]
However, recently, as a new request for ozone water, there has been a request that ozone hot water can be used for whole body sterilization in a shower or the like. That is, a relatively high-temperature ozone water supply device such as 30 to 45 ° C. has been required. Of course, the lower the raw material water temperature, the more advantageous it is to dissolve ozone. In order to obtain high-temperature ozone water, further efficiency improvement is required.
[0016]
In order to obtain high-temperature ozone water, it is possible to envisage a method in which high-concentration ozone water is produced with low-temperature raw water and this ozone water is heated to a desired temperature. Phase ozone may be released, so it is clear that it is safer to prepare raw water at the temperature to be used in advance and obtain ozone water with an electrolytic ozone water production device rather than warming ozone water However, such an ozone water production apparatus using high-temperature raw material water has been considered impossible until now. In addition, although the detailed reason is not clarified by the comparison of the results, the ozone concentration is obtained by electrolyzing the water at 37 ° C. with the water aerated at 37 ° C. until the ozone concentration becomes 2 PPM. When 2PPM was used for hand washing while flowing at 1.5 liters per minute, the ozone water aerated with gas-phase ozone confirmed a relatively strong ozone odor, but the ozone water obtained by electrolysis Even at the same temperature, ozone odor was hardly confirmed, and it was confirmed that it was more advantageous to produce ozone warm water by electrolytic method.
[0017]
[Problems to be solved by the invention]
Therefore, the present invention has been made in view of the above problems and demands, and further improves efficiency, even in commercial tap water (hard water) in which raw water is relatively high temperature and calcium ions are mixed, It is an object of the present invention to provide an electrolytic ozone water production apparatus that can obtain ozone water having a predetermined ozone concentration.
[0018]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a cylindrical reaction vessel main body 10 in a cylindrical reaction vessel main body 10 having a raw material water inlet 10a on one end side and an outlet 10b on the other end side. The swirling flow generating device 20 in which the raw material water flowing inside becomes a swirling flow is accommodated, and the cylindrical reaction vessel main body 10 has a cross-sectional shape in which the cylindrical portion is cut into a circular shape. A circular window hole 11 is provided, and the cylindrical reaction vessel main body 10 is further provided with a planar main reaction chamber portion 12 that closes the window hole 11 in a tangential direction, and the main reaction chamber is provided. Inside the portion 12, an anode electrode 13 having a metal mesh-like ozone generating catalyst function is provided on the inside, an ion exchange membrane 14 on the outside, and a wire mesh cathode electrode 15 made of a corrosion-resistant metal on the outside. Each of them is stored in a stacked manner, and on the outer surface of the main reaction chamber 12 is a cathode electrode of the ion exchange membrane 14 5 in which sides took technical means formed by providing a window hole 17 which is exposed to the cleaning water chamber 50b.
[0019]
Therefore, the electrolytic ozone water production apparatus of the present invention applies a DC voltage between the anode electrode 13 and the cathode electrode 15 so that the raw material water flows through the cylindrical reaction vessel main body 10. Then, the raw material water intermittently collides with the surface of the ion exchange membrane 14 on which the anode electrode 13 in the main reaction chamber 12 is overlapped while spiraling through the cylindrical reaction vessel main body 10, and the collision and screwing are performed. And repeat. When the raw material water collides with one surface of the ion exchange membrane 14, the raw water is electrolyzed to generate oxygen and ozone on the anode electrode 13 side. The generated ozone is easily dissolved in water about 8 times as much as oxygen. In addition, since it is a microbubble and is in a highly reactive state in the generation period, almost all of it dissolves in the raw material water. Since only a part of the cylindrical reaction vessel main body 10 and the main reaction chamber 12 communicates with each other, the raw material water that is screwed collides with one surface of the ion exchange membrane 14 and is immediately subjected to electrolysis (electric field). ) It separates from the part and exhibits the action of mixing ozone and ensuring the dissolution time of the mixed ozone in the raw material water.
[0020]
Although the above is the basic action of the present invention, as the characteristic action of the present invention, it is possible to further expect the raw material water pressurizing action, the collision stirring action, and the efficiency improving action accompanying the guarantee of the sealing property. First, as the raw water pressurizing action, the raw water swirling and screwing collides with one surface of the on-exchange membrane 14 in the main reaction chamber 12 due to centrifugal force. Accordingly, the raw water is locally pressurized at this site (internal pressure is increased). When the raw material water is in a pressurized state, ozone generated by electrolysis exhibits an action that makes it easier to dissolve in the raw material water.
[0021]
Next, the present invention exhibits a collision stirring action in the above collision. One of the stirring methods is a collision plate method. This collision plate method is an efficient mixing method especially for gas-liquid mixing because bubbles etc. are finely divided by the collision of fluid, but in the present invention, electrolysis occurs intensively. Since the raw material water collides with the place where it is located, it has the effect of performing this efficient collision plate type gas-liquid mixing. In addition, it can be said that the bubble-like oxygen and ozone generated by the electrolysis are also insulative compared to water, and if the electrolysis is stopped for a long time, the current is cut off and the continuous electrolysis is performed. However, the present invention also exhibits an effect of wiping the bubbles from the site by the collision flow of the raw material water.
[0022]
Next, it is the efficiency improvement effect accompanying the guarantee of the sealing property described above, but in fact, the combination of the ion exchange membrane 14, the anode electrode 13, and the cathode electrode 15 described in the conventional example is configured in a cylindrical shape, The structure in which the raw water is allowed to flow spirally along its peripheral surface is similar in structure to the present invention, but the major difference is that the ion exchange membrane 14 is used as a partition material. The reason is that the anode electrode 13 side and the cathode electrode 15 side can be sealed and sealed with high reliability. In the conventional example of FIG. 6, the planar anode electrode 13, the ion exchange membrane 14, and the cathode electrode 15 are wound in order, and the end portions are overlapped to ensure hermeticity. Although the sealing performance is ensured by winding 14, a reliable sealing is not always maintained by this. If this sealing cannot be guaranteed, there will be water that can move between the anode electrode 13 side and the cathode electrode 15 side, which reduces the potential difference effective for electrolysis, resulting in electrolysis. No current is consumed, and the ozone generation efficiency is reduced accordingly. However, in the present invention, since the anode electrode 13, the ion exchange membrane 14, and the cathode electrode 15 are all used in a flat state, a highly reliable sealing can be performed with a normal sealing material such as an O-ring. It exhibits the effect of improving the efficiency of ozone generation.
[0023]
Next, in the invention of claim 2, the raw material water inlet 10a on one end side and the cylindrical reaction vessel main body 10 having the outlet 10b on the other end side, and the spiral flow path R for the outer peripheral surface. A screw rod-shaped swirling flow generating device 20 provided with a groove is inserted, and the raw material water flowing through the cylindrical reaction vessel main body 10 is guided to the flow path R to form a swirling flow. The cylindrical reaction vessel main body 10 is provided with a window hole 11 having a cross-sectional shape with a circular section of the cylindrical portion, and the cylindrical reaction vessel main body 10 further includes A planar main reaction chamber portion 12 that blocks the window hole 11 in a tangential direction is continuously provided. Inside the main reaction chamber portion 12, an anode electrode 13 having a metal mesh-like ozone generation catalyst function is provided inside. An ion exchange membrane 14 on the outer side, and a metal mesh-like cathode electrode 15 made of a corrosion-resistant metal on the outer side are respectively stacked and stored, A technical means is provided in which the side surface of the cathode electrode 15 of the ion exchange membrane 14 is provided with a window hole 17 exposed to the washing water chamber 50b containing the electrolytic solution on the outer surface of the main reaction chamber portion 12. .
[0024]
Therefore, in addition to the operation of the first aspect, the electrolytic ozone water production apparatus of the present invention comprises the swirl flow generating device 20 in the shape of a screw rod having a spiral groove R provided on the outer peripheral surface. Since the swirling flow generating device 20 is inserted into the cylindrical reaction tank main body 10, the raw water flowing in from the raw water inlet 10a is reliably guided to the flow path R, so-called clearly defined. Based on the pressure loss determined by the cross-sectional area of the flow path and its pitch, the number of times the raw water collides with the main reaction chamber section 12 before flowing out from the outlet 10b is determined to be a predetermined number. It exhibits an action.
[0025]
Next, the invention of claim 3 is for the spiral flow path R on the outer peripheral surface in the cylindrical reaction vessel main body 10 having the raw material water inlet 10a on one end side and the outlet 10b on the other end side. A screw rod-shaped swirling flow generating device 20 provided with a groove is inserted, and the raw material water flowing through the cylindrical reaction vessel main body 10 is guided to the flow path R to form a swirling flow. The cylindrical reaction vessel main body 10 is provided with a window hole 11 having a cross-sectional shape in which the cylindrical part is cut into a circular shape, and a cylindrical portion is provided at an outer peripheral portion of the window hole 11. A flange portion 11a extending in a tangential direction is provided, and the cylindrical reaction vessel main body portion 10 is in a flat main reaction chamber portion by a cover plate 12a that is in close contact with the flange portion 11a and closes the window hole 11. 12 is connected to the main reaction chamber 12 with a flange portion 11a and a cover plate 12a. An ion exchange membrane 14 sandwiched by a ring 18 is provided, and an anode electrode 13 having a metal mesh-like ozone generation catalyst function is provided inside the ion exchange membrane 14 on the outer surface side of the ion exchange membrane 14. Wire mesh-like cathode electrodes 15 made of corrosion-resistant metal are accommodated in an overlapping manner, and the anode electrode 13 and the cathode electrode 15 are connected to a power supply device 40 that generates a pulsed DC voltage, and the main reaction chamber section. 12, the side surface of the cathode electrode 15 of the ion exchange membrane 14 is provided with a window hole 17 exposed to a cleaning water chamber 50b containing an electrolytic solution. The cleaning water chamber 50b includes a Seebeck element 41 for cooling the cleaning water. The technical means is arranged with a predetermined distance from the cathode electrode 15.
[0026]
Therefore, in addition to the operation of the second aspect, the electrolytic ozone water production apparatus of the present invention is further provided with a flange portion 11a extending in the tangential direction of the cylindrical portion at the outer peripheral portion of the window hole 11, and further having the cylindrical shape. The main reaction chamber portion 10 is connected to a planar main reaction chamber portion 12 in close contact with the flange portion 11 a by a cover plate 12 a that closes the window hole 11. Since the ion exchange membrane 14 sandwiched between the flange portion 11a and the cover plate 12a via the hermetic seal ring 18 is provided, the anode side and the cathode side can be separated even if the thin ion exchange membrane 14 is used. It can be partitioned reliably and reliably, and exhibits the effect of ensuring efficient electrolysis.
[0027]
The power supply device 40 that generates a pulsed DC voltage suppresses the amount of heat generated by the discharge, and the Seebeck element 41 exhibits a cooling action of the electrolysis site, both of which reduce the ozone generation ability due to the heat generation of the electrolysis site. It exhibits an action to prevent.
[0028]
【Example】
Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the figure, reference numeral 10 denotes a cylindrical reaction vessel main body. The reaction vessel main body 10 has a cylindrical shape having a raw material water inlet 10a on one end side and an outlet 10b on the other end side. Is stored in the swirling flow generating device 20 in which the raw material water that flows through (in FIG. 1, flowing from the lower end side toward the upper end side) turns into a swirling flow in the reaction tank body 10.
[0029]
As the swirling flow generator 20, the raw material water inlet 10a and the outlet 10b described above are provided in the tangential direction of the cylindrical reaction vessel body 10, or a wing blade (generally, a wing blade-type static mixer). However, the swirling flow of the raw material water to be used in the present invention can be swirled many times within the limited axial length of the reaction vessel main body 10. In this embodiment, the swirling flow generating device 20 is formed into a screw rod shape having a spiral flow path R provided on the outer peripheral surface thereof. The raw material water penetrates into the reaction vessel main body 10 and is guided only to the flow path R, and swirls from the raw material water inlet 10a to the outlet 10b side as indicated by arrows P1, P1, P1,. It is supposed to flow. That is, the flow path R is formed by spirally recessing a cylindrical body having a thickness corresponding to the inner diameter of the reaction vessel main body 10 (the flow path R is secured by the spacer b as in the conventional example of FIG. 6). Of course, this cylindrical body is fitted into the reaction vessel main body 10 so that the inner peripheral surface of the reaction vessel main body 10 becomes a part defining the flow path R.
[0030]
The reaction vessel main body 10 is provided with a window hole portion 11 having a circular cross section when the cylindrical main body is cut into a circular shape, and the reaction vessel main body 10 further includes the window hole. A planar main reaction chamber portion 12 that blocks 11 in a substantially tangential direction is continuously provided. The window hole portion 11 can be formed by scraping off a part of the peripheral surface of the reaction vessel main body 10, and when viewed from the right side surface in FIG. 1, the window hole portion 11 has a vertically long rectangular shape. Yes. In the present invention, the reaction vessel body 10 is provided with a planar main reaction chamber portion 12 that closes the window hole 11 in a substantially tangential direction.
[0031]
The main reaction chamber portion 12 is formed in a planar box shape by being covered with a cover plate 12a and has a predetermined volume. The inside thereof has an anode electrode 13 and an ion exchange membrane 14 which will be described later. And the cathode electrode 15 is almost occupied, and a substantial part of the flow path R is used for the substantial main reaction chamber 12. The main reaction chamber 12 is closed by the cover plate 12a, but the cover plate 12a is not closed as the main reaction chamber 12 by providing a window hole 17 to be described later. The membrane 14 functions as a partition, and the flow path R side and the window hole 17 side (the right side of the window hole 17 in FIG. 1) are partitioned. In addition, it is desirable to set this flow path R to have a relatively large cross-sectional area so that the pressure loss is small. 2 ) Was secured.
[0032]
In the main reaction chamber section 12, an anode electrode 13 having a metal mesh-like ozone generation catalyst function is formed on the inner side, an ion exchange membrane 14 is formed on the outer side, and a metal mesh-like structure is formed on the outer side with a corrosion-resistant metal. The cathode electrodes 15 are stacked and stored. That is, the main reaction chamber portion 12 may be any member as long as it releases one surface toward the flow path R and holds the anode electrode 13, the ion exchange membrane 14, and the cathode electrode 15. In addition, a flange portion 11a is provided on the outer peripheral portion of the window hole portion 12 in a substantially tangential direction of the reaction vessel main body 10 so that the reaction vessel main body 10 has a substantially Ω-shaped cross section as shown most clearly in FIG. There is. And the anode electrode 13, the ion exchange membrane 14, and the cathode electrode 15 are clamped by the peripheral part with the cover plate 12a which overlaps with this flange part 11a.
[0033]
In the present embodiment, the anode electrode 13 and the cathode electrode 15 use a platinum wire mesh. However, if gold, silver, titanium, or the like is used, an ozone generation catalyst function can be expected. In particular, the corrosion resistance metal such as stainless steel is sufficient for the cathode electrode 15, but similarly to the anode electrode 13, it is desirable to use a wire mesh such as platinum, gold, silver, and titanium in terms of ozone generation efficiency. Moreover, in order to ensure the function of the washing water described later, it has been confirmed as a result of experiments that it is more desirable to use this kind of cathode electrode 15 having an ozone generation catalyst function. The ion exchange membrane 14 may be made of DuPont, Inc., trade name Nafion 450 or the like.
[0034]
In the embodiment of FIG. 1, the anode electrode 13, the ion exchange membrane 14, and the cathode electrode 15 are overlapped and sandwiched between the flange portion 11a and the cover plate 12a. The fact that reliable sealing is not ensured and the flatness of both electrodes 13 and 15 cannot be ensured. In practice, therefore, the use of separate current collecting plates 19 and 19 and the combined use of a sealing mechanism consisting only of the ion exchange membrane 14 It is carried out.
[0035]
The current collecting plates 19 and 19 are thin because the anode electrode 13 and the cathode electrode 15 are expensive (platinum is used as an example, but platinum plated with platinum may be used). Since it is made of a wire mesh and is easily deformed, a current collector plate 19 or 19 of a rough mesh wire mesh or a deformed perforated porous plate is further stacked on the inside of the anode electrode 13 and the outside of the cathode electrode 15. The current collector plates 19, 19 hold the anode electrode 13, the ion exchange membrane 14, and the cathode electrode 15 so as not to be deformed. The current collector plates 19 and 19 are directly connected to the power source 40, and the anode electrode 13 and the cathode electrode 15 that are in contact with the current collector plates 19 and 19 are also electrically connected. Of course. Although not shown in the drawings, as an example of the current collector plate 19, a large number of slits are put in a metal plate, and the slits are stretched in a direction orthogonal to the slits so that each slit portion is opened to form a mesh shape. The use of a so-called lath net-like material was optimal with little deformation. In addition, since this lath net has pointed parts on both the front and back sides, this pointed part is pressed and flattened and used so as not to damage the electrodes 13, 15 and the ion exchange membrane 14. I used something.
[0036]
Further, the combined use of the sealing mechanism of only the ion exchange membrane 14 means that since the porous anode electrode 13, the cathode electrode 15 and the current collecting plates 19 and 19 are porous, the reliable sealing is considerably achieved. Since it is difficult, these clamping parts do not perform sealing, but only hold them, and the ion exchange membrane 14 is set slightly larger and this part is used as a sealing part, as shown in FIG. The flange portion 11a and the cover plate 12a are sandwiched between the sealing seal rings 18, 18 and the like, and the sealing seal rings 18, 18 etc. ensure easy and reliable sealing performance. is there.
[0037]
The outer surface of the main reaction chamber 12 is provided with a window hole 17 through which the side surface of the cathode electrode 15 of the ion exchange membrane 14 is exposed to the cleaning water chamber 50b. Although there are reports that water is not required on the side of the cathode electrode 15 of the ion exchange membrane 14, in practice, it is often necessary to fill this surface with water for smooth electrolysis. In recent experiments by the present inventors, when water on the side surface of the cathode electrode 15 is used as an electrolyte, ionic substances in the raw material water permeate the ion exchange membrane 14 and I found a phenomenon that dissolved in water. Therefore, since the electrolytic solution on the side surface of the cathode electrode 15 can prevent the ionic substance from being deposited and deposited on the surface of the ion exchange membrane 14, this electrolytic solution can be used as cleaning water. Although this washing water is omitted in FIGS. 1 and 2, it is only necessary to provide an appropriately shaped water tank that covers the cathode electrode 15 side of the ion exchange membrane 14 and to fill the water tank with the washing water. Of course. Of course, this washing water may be circulated as in the conventional example of FIG.
[0038]
The window hole 17 can be realized by forming the lid 12a in a frame shape, and an appropriate washing water tank may be connected to the window hole 17; however, in the example of FIG. Submerged circulation type. The reaction tank main body 10 is accommodated in the washing water chamber 50b of the water tank 50 partitioned by the partition plate 51 into the ozone water chamber 50a and the washing water chamber 50b. The water tank 50 is made of the ozone-resistant glass or acrylic resin. A predetermined amount of raw water such as tap water is injected into the ozone water chamber 50a, and the reaction vessel body 10 which is a main part of the present invention is submerged. The ozone water chamber 50a also contains a submersible pump 52, and the raw water in the ozone water chamber 50a is pumped from the raw water inlet 10a of the reaction tank body 10 into the reaction tank body 10 by the submersible pump 52.・ It is supposed to be delivered.
[0039]
And the flow path R1 extended outside the ozone water chamber 50a is connected with the outflow port 10b of this reaction tank main body 10, and this flow path R1 is extended to the ozone water use place. A hand valve 53 is provided near the tip portion of the flow path R1, and the hand valve 53 normally closes the flow path R1, but the flow path R1 is manually opened only when ozone water is used. The ozone water is opened and discharged and supplied from the tip of the flow path R1. A relief valve 54 is provided in the middle of the flow path R1, and when the hand valve 53 is closed and the internal pressure in the flow path R1 increases to a predetermined level or higher, ozone water flows from the outlet 10c of the relief valve 54. Leaked. This ozone water flows out into the ozone water chamber 50a and circulates.
[0040]
The partition plate 51 is provided with a window hole 55. The window hole 55 and the window hole 17 of the reaction tank body 10 communicate with each other, and the reaction tank body 10 is attached to the partition plate 51. is there. That is, the cleaning water chamber 50b is kept airtight with the ozone water chamber 50a, and the cleaning water in the cleaning water chamber 50b contacts the surface of the cathode electrode 15 of the ion exchange membrane 14 through both the window holes 55 and 17. It is made possible. As the cleaning water in the cleaning water chamber 50b, a sodium chloride aqueous solution, a citric acid aqueous solution, or the like (electrolytic water having an electrical conductivity of 300 μS · cm, microsievert, centimeter or more is desirable) can be used.
[0041]
The cleaning water may be circulated by a pump and a flow passage (not shown), but in this embodiment, the window hole is formed so that the cleaning liquid circulates when hydrogen generated by electrolysis floats as bubbles. The Seebeck element 41, which will be described later, is provided in the vicinity of 55, and hydrogen bubbles floating on a local site are introduced together from the weir part 41a having a reduced flow path area at the bottom, and rise together with it. It ’s like that. A hydrogen treatment catalyst chamber 56 is provided above the washing water chamber 50b, and hydrogen generated by electrolysis comes into contact with the catalyst in the hydrogen treatment catalyst chamber 56 to react with oxygen in the atmosphere and return to water. It is.
[0042]
The ozone water chamber 50a is provided with a pair of upper and lower water level gauges 57a and 57b, and a pair of ozone concentration sensors 58a and 58b on the inlet 10a side and outlet 10b of the reaction tank body 10. These water level gauges 57a and 57b are for securing the amount of water in the ozone water chamber 50a within a predetermined range. When the upper limit water level gauge 57a detects a rise in the water level, the power supply / control provided on the water tank 50 is provided. The electromagnetic valve 59 of the raw material water supply source is closed via the electromagnetic valve power supply circuit 71 shown in FIG. 5 in the circuit 70, and when the lower limit water level gauge detects a drop in the water level, the electromagnetic valve 59 is opened. The raw water such as commercial tap water connected to 59 is used in a conventionally known usage method such as supplying / injecting water into the ozone water chamber 50a.
[0043]
The ozone concentration sensors 58a and 58b are configured such that the detection electrode and the counterpart electrode are opposed to each other at a predetermined distance, and an electromotive force as a kind of galvanic battery is generated and flows by filling the space with ozone water. A conventionally known one that detects the ozone concentration by changing the current value is used. The ozone concentration sensors 58a and 58b determine whether or not the ozone concentration has reached a predetermined concentration, and also detect contamination of both electrodes 13 and 15 for electrolysis. First, the measured values of both ozone concentration sensors 58a and 58b are organized and determined by the determination circuit 72, and the measured numerical values are displayed on the display device 73, but the ozone concentration is below a predetermined value in one or both measured values. Then, the unusable red lamp L1 is turned on, and when the ozone concentration exceeds a predetermined value, the unusable red lamp L1 is turned off and the usable blue lamp L2 is turned on. In addition, when the ozone concentration becomes a predetermined value or more, charging to the anode electrode 13 and the cathode electrode 15 may be stopped.
[0044]
When a large amount of new raw material water is supplied and the ozone concentration of the ozone water in the ozone water chamber 50a is below a certain set value, the difference between the measured values of both ozone concentration sensors 58a, 58b is below a certain value. When the state continues for a predetermined time, it is determined that the electrode is contaminated, and the red lamp L1 is blinked. That is, the reaction vessel main body 10 used in the present invention is one-pass, and can raise the raw water by about 3 PPM, and the initial ozone concentration when new raw water is added to the ozone water chamber 50a decreases. In the state, if electrolysis occurs under the initial setting conditions, the difference between the measured values of both ozone concentration sensors 58a and 58b is equal to or greater than a certain value. It is clear that normal electrolysis does not occur when the value difference is kept below a certain value for a predetermined time, and the main cause is considered to be electrode contamination.
[0045]
The power supply / control circuit 70 is integrated with power supply circuits 40, 40a for applying a predetermined voltage to necessary portions as shown in FIG. 5 and the closing times of the energization time switches S1 to S4 for a certain time. A cleaning water monitoring circuit 74 (counter circuit) is stored to notify the deterioration of the cleaning water when the time elapses. Cleaning water can be monitored by changes in conductivity, changes in pH value, etc., but these are actually complicated and have many malfunctions. In this embodiment, this is the simplest and accurate from the rule of thumb. When the total time of electrolysis that can be judged has elapsed, it is detected that the cleaning water has deteriorated and the replacement time has come, and the buzzer 75, the display device 75a, and the like are informed. 5 is a reset switch of the cleaning water monitoring circuit 74, and 61 and 62 are drain discharge valves. In this embodiment, the switches S1 to S4 are all turned on and off in conjunction with each other.
[0046]
Next, in the invention of claim 2, the raw material water inlet 10a on one end side and the cylindrical reaction vessel main body 10 having the outlet 10b on the other end side are provided for the spiral flow path R on the outer peripheral surface. A screw rod-shaped swirling flow generating device 20 provided with a groove is inserted so that the raw water flowing through the reaction vessel main body 10 is guided to the flow path R to form a swirling flow. The main body 10 is provided with a window hole 11 having a circular cross-section of the cylindrical portion, and the reaction vessel main body 10 has a planar shape that closes the window hole 11 in a tangential direction. The main reaction chamber 12 is continuously provided, and in the main reaction chamber 12, an anode electrode 13 having a metal mesh-like ozone generation catalyst function is provided on the inner side, an ion exchange membrane 14 is provided on the outer side, and Wire mesh-like cathode electrodes 15 made of a corrosion-resistant metal are stored on the outside, and are stacked on the outer surface of the main reaction chamber 12. Cathode electrode 15 side of the serial ion exchange membrane 14 is made of providing a window hole 17 which is exposed to the cleaning water chamber 50b accommodating the electrolyte solution.
[0047]
That is, the present invention provides a swirling flow generating device 20 according to claim 1 in a cylindrical reaction vessel main body 10 having a raw material water inlet 10a on one end side and an outlet 10b on the other end side, and spiral on the outer peripheral surface. A screw rod-shaped swirling flow generating device 20 provided with a groove for the flow path R is inserted, and the raw material water flowing through the reaction tank body 10 is guided to the flow path R to be swirled. It was made. As the swirl flow generating device 20 that turns the raw material water into a swirl flow, various methods such as press-fitting of raw material water from the tangential direction and a wing blade can be assumed, as well as driving by a rotary blade, etc. In the present invention, a spiral flow path R is prepared in advance as a method in which the swirl is performed for a forcibly set number of times.
[0048]
The swirling raw material water collides with the planar main reaction chamber 12, that is, the anode electrode 13, so that a vigorous and fine vortex flow is generated in this portion, so that oxygen and ozone generated by electrolysis are wiped away. From the generation location, the material water moves on the swirl and swirl, and the collision of the raw material water with the electrolysis atmosphere and the securing of the dissolution reaction time of ozone in the raw material water are repeated alternately. Thus, it is possible to ensure smooth electrolysis and efficiently dissolve the generated ozone in the raw material water, and as a result, effective ozone water generation is possible.
[0049]
Next, the invention according to claim 3 is a cylindrical reaction vessel main body 10 having a raw material water inlet 10a on one end side and an outlet 10b on the other end side. The screw rod-shaped swirling flow generating device 20 provided with a groove is inserted, and the raw water flowing through the reaction vessel main body 10 is guided to the flow path R to be swirled. The configuration is the same as that of the invention of claim 2.
[0050]
The reaction vessel body 10 is provided with a window hole 11 having a circular cross-section of the cylindrical portion, and a substantially tangential line of the cylindrical portion at the outer peripheral portion of the window hole 11. A flange portion 11a extending in the direction is provided. As shown in FIG. 2, the flange portion 11a may be formed by extending the outer peripheral portion of the window hole 11 by extending the flange portion 11a in a substantially tangential direction of the cylindrical portion. It has flat portions 11b and 11b (see FIG. 1) which are flush with the flange portion 11a, and a flange-like frame which is flush with the outer periphery of the window hole 11 is formed.
[0051]
Further, a planar main reaction chamber portion 12 is connected to the reaction vessel body portion 10 in close contact with the flange portion 11 a by a cover plate 12 a that closes the window hole 11, and the inside of the main reaction chamber portion 12. Is provided with an ion exchange membrane 14 sandwiched between the flange portion 11a and the cover plate 12a with hermetic seal rings 18 and 18 interposed therebetween, and has a metal mesh-like ozone generation catalyst function inside the ion exchange membrane 14. The metal mesh-like cathode electrodes 15 made of a corrosion-resistant metal are stacked and stored on the outer surface side of the ion exchange membrane 14. As with the metal mesh-like anode electrode 13, the metal mesh-like cathode electrode, which is obtained by holding the anode electrode 13 on one surface of the ion-exchange membrane 14 and the metal mesh-like cathode electrode 15 on the other surface while ensuring hermeticity, is maintained. 15 makes it difficult to seal. Therefore, in the present invention, the ion exchange membrane 14 whose both surfaces are one size larger than both the electrodes 13 and 15 is planar and the hermeticity is secured via the hermetic seal rings 18 and 18.
[0052]
The anode electrode 13 and the cathode electrode 15 are connected to a power supply device 40 that generates a pulsed DC voltage. A normal direct current power source may be used for the electrolysis, but in the present invention, in order to secure the ozone generation ability even when the raw material water is at a high temperature, a pulsed direct current voltage is used in order to suppress the heat generated by the discharge as much as possible. used. Since the amount of ozone generated is proportional to the flowing current, if this type of pulsed DC voltage is used, electrolysis does not naturally occur at the moment when the voltage drops, and the ozone generation capability decreases accordingly. However, when this voltage is applied in the form of pulses, the amount of heat generation decreases, and the amount of ozone generated increases accordingly (it can be understood that the generated ozone is not decomposed). The pulse-like voltage may be a half-wave rectified voltage or a full-wave rectified voltage, but using a rectangular-wave pulse voltage as described between the switch S1 and the anode electrode 13 in FIG. Small amount is desirable.
[0053]
In the present invention, the side surface of the cathode electrode 15 of the ion exchange membrane 14 is provided on the outer surface of the main reaction chamber 12 so as to be exposed to the cleaning water chamber 50b containing the electrolytic solution, and this cleaning water chamber 50b is provided. Is formed by arranging a Seebeck element 41 for cooling the cleaning water at a predetermined distance from the cathode electrode 15. The Seebeck element 41 is formed by stacking different kinds of metals or different kinds of semiconductors. A conventionally known element in which one side is cooled by applying a DC voltage and the other side is heated can be used. The heat generated by the electrolysis discharge is cooled through the washing water toward the side 15. The heating side surface of the Seebeck element 41 is preferably brought into contact with the raw water and used for heat insulation and heating of the raw material water. In the illustrated embodiment, an independent water exchange water tank section is provided on the heating side surface of the Seebeck element 41. 50d is provided, and the heat exchange water tank 50d and the ozone water chamber 50a communicate with each other through the return flow path R2, and the discharge port of the second circulation pump 52a accommodated in the ozone water chamber 50a and the heat exchange water tank 50b communicates with the forward flow path R3.
[0054]
【The invention's effect】
In the present invention, when hot water having a temperature of 42 ° C. is used as raw material water, the raw water in the ozone water chamber 50a having a capacity of 20 liters can be made into an ozone concentration of 4 PPM in 3 minutes, and this state is 4 liters per minute. Even if ozone water was used continuously, there was no change.
[Brief description of the drawings]
FIG. 1 is a partially cutaway front view of a reaction tank body which is a main part of an electrolytic ozone water production apparatus of the present invention.
FIG. 2 is a cross-sectional view of a reaction vessel main body.
FIG. 3 is a partial cross-sectional view showing an example of an upper part of an electrode part.
FIG. 4 is a longitudinal sectional view of an embodiment of the electrolytic ozone water production apparatus of the present invention.
FIG. 5 is a circuit diagram of an embodiment of an electric circuit unit used in the present invention.
FIG. 6 is a partially cutaway front view of a reaction tank main body of an electrolytic ozone water producing apparatus of a conventional example.
[Explanation of symbols]
10 Reaction tank body
10a Raw material water inlet
10b outlet
11 Window hole
11a Flange
12a Cover plate
12 Main reaction chamber
14 Ion exchange membrane
13 Anode electrode
15 Cathode electrode
18 Sealing ring
20 Swirling flow generator
40 Power supply
41 Seebeck element
50a ion water chamber
50b Washing water chamber
R channel

Claims (3)

一端側に原料水流入口(10a)を、他端側に流出口(10b)を有した円筒状の反応槽本体(10)内に、該反応槽本体(10)内を流過する原料水が旋回流となるようになした旋回流生成装置(20)を収納し、
上記反応槽本体(10)には、その円筒部を輪切り状とする断面形状が、欠円状となる窓孔部(11)を設け、さらに、該反応槽本体(10)には、該窓孔(11)を略接線方向に塞ぐ平面的な主反応室部(12)を連設し、
上記主反応室部(12)内には、内側に金網状のオゾン発生触媒機能を有した陽極電極(13)を、その外側にイオン交換膜(14)を、さらに、その外側に耐食金属で構成した金網状の陰極電極(15)を、夫々重ねて収納し、
上記主反応室部(12)の外面には、前記イオン交換膜(14)の陰極電極(15)側面が洗浄水室(50b)に露出する窓孔(17)を設けてなる電解式オゾン水製造装置。
In the cylindrical reaction vessel body (10) having the raw material water inlet (10a) at one end and the outlet (10b) at the other end, the raw water flowing through the reaction vessel main body (10) The swirl flow generator (20) adapted to be swirl flow is housed,
The reaction vessel main body (10) is provided with a window hole portion (11) having a circular cross-section of the cylindrical portion, and the reaction vessel main body (10) includes the window. A planar main reaction chamber (12) that closes the hole (11) in a substantially tangential direction is provided continuously,
In the main reaction chamber (12), an anode electrode (13) having a metal mesh-like ozone generation catalyst function is provided on the inside, an ion exchange membrane (14) on the outside, and a corrosion-resistant metal on the outside. The configured metal mesh-like cathode electrodes (15) are stacked and stored, respectively.
Electrolytic ozone water in which the outer surface of the main reaction chamber (12) is provided with a window hole (17) in which the side surface of the cathode electrode (15) of the ion exchange membrane (14) is exposed to the washing water chamber (50b). manufacturing device.
一端側に原料水流入口(10a)を、他端側に流出口(10b)を有した円筒状の反応槽本体(10)内に、外周面に螺旋状の流路(R)用の溝を設けた螺子棒形状の旋回流発生装置(20)を嵌入して、該反応槽本体(10)内を流過する原料水が該流路(R)に案内されて旋回流となるようになし、
上記反応槽本体(10)には、その円筒部を輪切り状とする断面形状が、欠円状となる窓孔(11)を設け、さらに、該反応槽本体部(10)には、該窓孔(11)を接線方向に塞ぐ平面的な主反応室部(12)を連設し、
上記主反応室部(12)内には、内側に金網状のオゾン発生触媒機能を有した陽極電極(13)を、その外側にイオン交換膜(14)を、さらに、その外側に耐食金属で構成した金網状の陰極電極(15)を、夫々重ねて収納し、
上記主反応室部(12)の外面には前記イオン交換膜(14)の陰極電極(15)側面が、電解溶液を収容した洗浄水室(50b)に露出する窓孔(17)を設けてなる電解式オゾン水製造装置。
In the cylindrical reaction vessel body (10) having the raw material water inlet (10a) on one end side and the outlet (10b) on the other end side, a spiral channel (R) groove is formed on the outer peripheral surface. By inserting the provided screw rod-shaped swirling flow generator (20), the raw material water flowing through the reaction vessel main body (10) is guided to the flow path (R) to be swirled. ,
The reaction vessel main body (10) is provided with a window hole (11) having a cross-sectional shape with a circular section of the cylindrical portion, and the reaction vessel main body (10) includes the window. A planar main reaction chamber (12) that blocks the hole (11) in the tangential direction is connected,
In the main reaction chamber (12), an anode electrode (13) having a metal mesh-like ozone generation catalyst function is provided on the inside, an ion exchange membrane (14) on the outside, and a corrosion-resistant metal on the outside. The configured metal mesh-like cathode electrodes (15) are stacked and stored, respectively.
The outer surface of the main reaction chamber (12) is provided with a window hole (17) in which the side surface of the cathode electrode (15) of the ion exchange membrane (14) is exposed to the washing water chamber (50b) containing the electrolytic solution. An electrolytic ozone water production device.
一端側に原料水流入口(10a)を、他端側に流出口(10b)を有した円筒状の反応槽本体(10)内に、外周面に螺旋状の流路(R)用の溝を設けた螺子棒形状の旋回流発生装置(20)を嵌入して、該反応槽本体(10)内を流過する原料水が該流路(R)に案内されて旋回流となるようになし、
上記反応槽本体部(10)には、その円筒部を輪切り状とする断面形状が、欠円状となる窓孔(11)を設けると共に、この窓孔(11)の外周部位には、円筒部の略接線方向に伸びるフランジ部(11a)を設け、
さらに、該反応槽本体部(10)には、上記フランジ部(11a)に密接して、該窓孔(11)を塞ぐ蓋板(12a)によって平面的な主反応室部(12)を連設し、
上記主反応室部(12)内には、フランジ部(11a)と蓋板(12a)とで密閉シールリング(18)を介装して挟持されるイオン交換膜(14)を設け、この内イオン交換膜(14)の内側に金網状のオゾン発生触媒機能を有した陽極電極(13)を、該イオン交換膜(14)の外面側に耐食金属で構成した金網状の陰極電極(15)を、夫々重ねて収納し、
上記陽極電極(13)と陰極電極(15)とは、パルス状の直流電圧を発生する電源装置(40)に連結し、
上記主反応室部(12)の外面には前記イオン交換膜(14)の陰極電極(15)側面が、電解溶液を収容した洗浄水室(50b)に露出する窓孔(17)を設け、この洗浄水室(50b)は洗浄水を冷却するゼーベック素子(41)を、該陰極電極(15)と所定の間隔を設けて配してなる電解式オゾン水製造装置。
In the cylindrical reaction vessel body (10) having the raw material water inlet (10a) on one end side and the outlet (10b) on the other end side, a spiral channel (R) groove is formed on the outer peripheral surface. By inserting the provided screw rod-shaped swirling flow generator (20), the raw material water flowing through the reaction vessel main body (10) is guided to the flow path (R) to be swirled. ,
The reaction vessel main body (10) is provided with a window hole (11) having a circular cross-section of the cylindrical portion, and a cylindrical shape at the outer peripheral portion of the window hole (11). A flange portion (11a) extending in a substantially tangential direction of the portion,
Further, a planar main reaction chamber (12) is connected to the reaction vessel main body (10) by a cover plate (12a) that is in close contact with the flange (11a) and closes the window hole (11). Set up
The main reaction chamber (12) is provided with an ion exchange membrane (14) sandwiched between a flange (11a) and a cover plate (12a) via a hermetic seal ring (18). An anode electrode (13) having a wire mesh-like ozone generation catalyst function inside the ion exchange membrane (14), and a wire mesh cathode electrode (15) made of a corrosion-resistant metal on the outer surface side of the ion exchange membrane (14). Are stored in layers,
The anode electrode (13) and the cathode electrode (15) are connected to a power supply device (40) that generates a pulsed DC voltage,
The outer surface of the main reaction chamber (12) is provided with a window hole (17) in which the side surface of the cathode electrode (15) of the ion exchange membrane (14) is exposed to the washing water chamber (50b) containing the electrolytic solution, This washing water chamber (50b) is an electrolytic ozone water production apparatus in which a Seebeck element (41) for cooling washing water is arranged at a predetermined distance from the cathode electrode (15).
JP2002220842A 2002-07-30 2002-07-30 Electrolytic ozone water production system Expired - Fee Related JP3616079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220842A JP3616079B2 (en) 2002-07-30 2002-07-30 Electrolytic ozone water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220842A JP3616079B2 (en) 2002-07-30 2002-07-30 Electrolytic ozone water production system

Publications (2)

Publication Number Publication Date
JP2004060011A JP2004060011A (en) 2004-02-26
JP3616079B2 true JP3616079B2 (en) 2005-02-02

Family

ID=31941325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220842A Expired - Fee Related JP3616079B2 (en) 2002-07-30 2002-07-30 Electrolytic ozone water production system

Country Status (1)

Country Link
JP (1) JP3616079B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921790A (en) * 2019-12-09 2020-03-27 北京师范大学 Surrounding radiation type electro-catalytic device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256155A (en) * 2004-03-11 2005-09-22 Uerushii:Kk Electrolytic hydrogen feeding device composed of high efficiency electrode arrangement and water treatment method using the same
JP4903405B2 (en) 2005-08-10 2012-03-28 東海旅客鉄道株式会社 Ozone water generation method and ozone water generation apparatus
JP2007283180A (en) * 2006-04-14 2007-11-01 Ozotech:Kk Ozone water generator and ozone water generation method
JP2007301487A (en) * 2006-05-11 2007-11-22 Eiji Matsumura Ozone water generation method, ozone water and ozone water generator
JP4740813B2 (en) * 2006-09-05 2011-08-03 株式会社オゾテック Deodorization and sterilization equipment
JP4838705B2 (en) * 2006-12-28 2011-12-14 株式会社アイ電子工業 Ozone water generator
US20090127128A1 (en) 2007-11-15 2009-05-21 Permelec Electrode Ltd. Membrane-electrode assembly, electrolytic cell employing the same, electrolytic-water sprayer, and method of sterilization
JP2011032507A (en) * 2009-07-30 2011-02-17 Sanyo Electric Co Ltd Electrolytic electrode material, electrolytic electrode and method of producing the same
JP5544181B2 (en) * 2010-01-29 2014-07-09 公立大学法人 滋賀県立大学 Electrochemical synthesis of ozone fine bubbles
KR101194796B1 (en) 2012-08-28 2012-10-25 (주)대진환경개발 Water purification apparatus using pulsed electric field
KR102218711B1 (en) * 2018-12-18 2021-02-22 세메스 주식회사 Dissolved ozone removal unit and Apparatus for treating a substrate including the unit, Method for treating a substrate
CN111533253B (en) * 2020-04-27 2022-07-15 杭州康诺环境技术工程有限公司 Anaerobic reaction tank
CN112481642A (en) * 2020-11-12 2021-03-12 江西强盛科技有限公司 PEM low-pressure hydrolysis ozone preparation equipment capable of improving efficiency and purity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267389A (en) * 1990-03-16 1991-11-28 O D S:Kk Electrolytic ozonizer
JP2000051860A (en) * 1998-08-07 2000-02-22 Sanyo Electric Co Ltd Electrolytic water making apparatus
JP3073990B1 (en) * 1999-10-20 2000-08-07 博一 塩田 Ozonizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921790A (en) * 2019-12-09 2020-03-27 北京师范大学 Surrounding radiation type electro-catalytic device

Also Published As

Publication number Publication date
JP2004060011A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP3616079B2 (en) Electrolytic ozone water production system
EP3199495B1 (en) Electrolytic liquid generating device, liquid modifying device provided with electrolytic liquid generating device, and electric apparatus using electrolytic liquid generated by means of electrolytic liquid generating device
TW309507B (en)
JP5544181B2 (en) Electrochemical synthesis of ozone fine bubbles
KR20130030760A (en) - membrane-electrode assembly electrolytic cell using the same method and apparatus for producing ozone water method for disinfection and method for wastewater or waste fluid treatment
JP5710691B2 (en) Membrane-electrode assembly and electrolyzed water generator using the same
JP5210455B1 (en) Wash water generator
JPH0678592B2 (en) Ozone water production equipment
JP6936998B2 (en) Electrolyzed water generation method, production atomizer and generation sprayer
Kraft et al. Electrochemical water disinfection Part III: Hypochlorite production from potable water with ultrasound assisted cathode cleaning
JP3682275B2 (en) Ozone water production equipment
WO2018100356A1 (en) Electrochemical cell assembly and method for operation of the same
KR100958677B1 (en) High efficient un-divided electrochemical cell and apparatus for manufacturing of chlorine dioxide using it
JP5244038B2 (en) Electrolyzed water mixing device
JP3886378B2 (en) Seawater sterilization method and apparatus
JP3727579B2 (en) Hydrothermal electrolysis reactor and electrode
JP6000673B2 (en) Ozone water generator refresh cleaning method
JP2021120140A (en) Ozone water generation method, generation sprayer and generation spraying device
JP2002069679A (en) Ozonizer
JP2001262636A (en) Water storage tank equipped with water purifier
JP2008086886A (en) Electrolytic water generator
WO2018100354A1 (en) Electrochemical cell assembly and method for operation of the same
JP2001347270A (en) Electrolytic apparatus
WO2018100361A1 (en) Electrochemical cell assembly and method for operation of the same
GB2556947B (en) Electrochemical cell and method for operation of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees