JP4217233B2 - Ozone water generator - Google Patents

Ozone water generator Download PDF

Info

Publication number
JP4217233B2
JP4217233B2 JP2005275847A JP2005275847A JP4217233B2 JP 4217233 B2 JP4217233 B2 JP 4217233B2 JP 2005275847 A JP2005275847 A JP 2005275847A JP 2005275847 A JP2005275847 A JP 2005275847A JP 4217233 B2 JP4217233 B2 JP 4217233B2
Authority
JP
Japan
Prior art keywords
water
electrode
ozone
anode electrode
purified water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005275847A
Other languages
Japanese (ja)
Other versions
JP2007083174A (en
Inventor
博一 塩田
喜之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikka Micron Co Ltd
Original Assignee
Nikka Micron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikka Micron Co Ltd filed Critical Nikka Micron Co Ltd
Priority to JP2005275847A priority Critical patent/JP4217233B2/en
Publication of JP2007083174A publication Critical patent/JP2007083174A/en
Application granted granted Critical
Publication of JP4217233B2 publication Critical patent/JP4217233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、水の電気分解によりオゾン水を生成するオゾン水生成装置に関するものであり、特に水が無菌の精製水であり、主として医療用に使用する電解式オゾン水生成装置に関する。   The present invention relates to an ozone water generating apparatus that generates ozone water by electrolysis of water, and more particularly to an electrolytic ozone water generating apparatus that is mainly used for medical purposes.

近年、オゾン水はクリーンな殺菌性や生物に対する活性増進などの効用が周知となり、食品工業・農業から栽培漁業の海域浄化までの広い範囲で利用されるようになったことが知られている。医療関連域でも、既に手洗い殺菌や内視鏡殺菌などの用途に普及し始め、多くの医療分野において治療に役立つという研究者の報文が年々発表されている。
現在、産業用に普及しているオゾン水の製法は大別して放電により生成したオゾンガスに溶解させるガス溶解法、電解により生成したオゾンガスを水に溶解させる電解ガス溶解法、電解面に原料水を直接接触させてオゾン水を生成させる直接電解法(例えば、特許文献1参照)の3方式が実用されている。
特に最近では、直接電解法が他のガス溶解法に比べ小型で経済的であり、かつ高濃度ガスの漏洩の危険がない等の理由から、野菜や食品の殺菌や付着農薬の分解など食品業界から農業分野にまで多く普及し始めている。
特開平8−134678号公報
In recent years, it has been known that ozone water has been used for a wide range of applications from the food industry / agriculture to the purification of cultivated fisheries and seawater, and the effects of clean bactericidal properties and increased activity on living organisms have become well known. Even in the medical-related area, researchers have already published reports every year that they have begun to spread to applications such as hand-washing sterilization and endoscope sterilization, and are useful for treatment in many medical fields.
Currently, the production methods of ozone water that are widely used for industrial use are broadly divided into gas dissolution methods that dissolve in ozone gas generated by discharge, electrolytic gas dissolution methods that dissolve ozone gas generated by electrolysis in water, and raw water directly on the electrolytic surface. Three methods of direct electrolysis (for example, refer patent document 1) which make ozone water by making it contact are utilized.
Especially recently, the direct electrolysis method is smaller and more economical than other gas dissolution methods, and there is no risk of leakage of high-concentration gas. To the agricultural sector.
JP-A-8-134678

ところで、上記従来のように白金を陽極触媒に使用する方法は、原料水が水道水又は地下水等の天然水又はそれを軟水器処理してカルシウムやマグネシウムの量を減らした水を原料としており、電解質が混合した電解質水であるため電導性を有している。そのため、このような電解質水は陽極電解面で電気分解が惹起され易く、水素がイオン交換膜を急速に陰極へと移動することから、陽極にオゾンが発生するというものである。
一方、原料水に純水又は精製水のような電導性の低い水を使用した場合は、陽極電解面における電導性が低いので電解電流が流れにくい。仮にさらに高電圧を印加して電流値を上げたとしても、陽極においては、酸素は発生するもののオゾンの発生はごく微量であるという現象が見られていた。
そこで、発明者等はこの現象をさらに追求し、陰極電極に電導性の高い食塩水や、さらに、陰極に洗浄作用のあるクエン酸水溶液などを接触させると、陽極−イオン交換膜−陰極によって構成されている電解系に流れる電流値が急増し、陽極に電気絶縁性の高い純水や精製水を供送しても陽極において活発な電気分解が惹起され、オゾンも活発に発生することを見いだした。そして、これをカソード水法として現在、殺菌脱臭等の用途として使用し始めている。
しかしながら、上記カソード水法は、カソード水が連続して陰極の水素発生面に接触しているため、運転を重ねるに従いカソード水が酸性化し、また系を通った微量成分が累積し、ある運転時間毎にカソード水の廃棄やその交換が必要であるという問題が生じていた
By the way, the method of using platinum as an anode catalyst as in the above-mentioned conventional method is that the raw material water is natural water such as tap water or groundwater or water that has been softened to reduce the amount of calcium or magnesium. Since it is electrolyte water mixed with electrolyte, it has conductivity. For this reason, such electrolyte water tends to cause electrolysis on the anode electrolysis surface, and hydrogen rapidly moves through the ion exchange membrane to the cathode, so that ozone is generated at the anode.
On the other hand, when water having low conductivity such as pure water or purified water is used as the raw material water, the electrolysis current hardly flows because the conductivity at the anode electrolysis surface is low. Even if a higher voltage was applied to increase the current value, oxygen was generated at the anode, but a very small amount of ozone was observed.
Therefore, the inventors have further pursued this phenomenon, and when the cathode electrode is brought into contact with highly conductive saline solution or a citric acid aqueous solution having a cleaning action on the cathode, it is constituted by an anode-ion exchange membrane-cathode. It has been found that the value of the current flowing through the electrolysis system has increased rapidly, and even when pure water or highly purified water with high electrical insulation is supplied to the anode, active electrolysis is induced at the anode and ozone is also actively generated. It was. And it is beginning to use this as a cathodic water method for uses such as sterilization and deodorization.
However, in the above cathode water method, since the cathode water is continuously in contact with the hydrogen generation surface of the cathode, the cathode water is acidified as the operation is repeated, and a small amount of components passing through the system is accumulated, and the operation time is increased. Each time there was a problem that the cathode water needs to be discarded or replaced

本発明は、上記事情に鑑みてなされたもので、カソード水の廃棄や交換を必要とせずに容易にオゾン水を生成することのできるオゾン水生成装置を提供することを目的としている。   This invention is made | formed in view of the said situation, and it aims at providing the ozone water production | generation apparatus which can produce | generate ozone water easily, without requiring disposal and replacement | exchange of cathode water.

上記課題を解決するため、請求項1の発明は、例えば、図1、図2に示すように、陽イオン交換膜21の一方の面に陽極電極22を圧接し、他方の面に陰極電極23を圧接してなる触媒電極2を備え、前記陽極電極に精製水を接触させて、前記陽極電極と前記陰極電極との間に直流電流を印加してオゾン水を発生させるオゾン水生成装置100において、
前記陽極電極に白金又は白金被覆金属を使用し、前記陰極電極に塩化銀層を有する銀又は銀被覆金属を使用し、
前記陰極電極に前記精製水の一部を供送することを特徴とする。
In order to solve the above-mentioned problem, the invention of claim 1 is configured such that, for example, as shown in FIGS. 1 and 2, an anode electrode 22 is pressed against one surface of a cation exchange membrane 21 and a cathode electrode 23 is bonded to the other surface. In an ozone water generating apparatus 100 that includes a catalyst electrode 2 formed by pressure-contacting, bringing purified water into contact with the anode electrode, and generating ozone water by applying a direct current between the anode electrode and the cathode electrode ,
Using platinum or platinum-coated metal for the anode electrode, using silver or silver-coated metal having a silver chloride layer for the cathode electrode,
A part of the purified water is supplied to the cathode electrode.

請求項1の発明によれば、陽極電極に白金又は白金被覆金属を使用し、陰極電極に塩化銀層を有する銀又は銀被覆金属を使用し、陽極電極に精製水を接触させ、その一部を陰極電極にも供送し、陽極電極と陰極電極との間に直流電流を印加することによって、精製水が陽極電極で電気分解され、水素が陽イオン交換膜を通って陰極電極に迅速に到達し、水分子より水素が引き抜かれた結果、元素としての酸素が、二価の酸素ガスと、三価のオゾンとして陽極電極において発生する。発生したオゾンは、精製水に容易に溶解しオゾン水化する。このように電気抵抗率の高い精製水を使用した場合でも、陰極電極に電導性の高い食塩水やクエン酸水溶液などを用いる必要がないので、カソード水の廃棄やその交換作業にかかる手間を省くことができ、容易にオゾン水を生成することができる。
また、陰極電極に精製水の一部を供送するので、陽極電極と陰極電極とにおける水流のバランスを調整することができる。
According to the invention of claim 1, platinum or platinum-coated metal is used for the anode electrode, silver or silver-coated metal having a silver chloride layer is used for the cathode electrode, and purified water is brought into contact with the anode electrode, and a part thereof The purified water is electrolyzed at the anode electrode by supplying a direct current between the anode electrode and the cathode electrode, and hydrogen passes through the cation exchange membrane to the cathode electrode quickly. As a result, oxygen as an element is generated at the anode electrode as divalent oxygen gas and trivalent ozone. The generated ozone is easily dissolved in purified water and turned into ozone water. Thus, even when purified water with high electrical resistivity is used, it is not necessary to use highly conductive saline solution or citric acid aqueous solution for the cathode electrode, so that it is not necessary to dispose of cathode water or to replace it. And ozone water can be generated easily.
Moreover, since a part of purified water is supplied to a cathode electrode, the balance of the water flow in an anode electrode and a cathode electrode can be adjusted.

請求項2の発明は、例えば、図4〜図6に示すように、請求項1に記載のオゾン水生成装置100Aにおいて、
前記触媒電極2Aは、前記精製水が満たされた水槽1A内に配置され、
前記水槽内に旋回水流を発生させて前記触媒電極に精製水を連続接触させる旋回水流発生手段(例えば、回転子6A及びマグネットスターラ7A)が設けられていることを特徴とする。
The invention of claim 2 is an ozone water generator 100A according to claim 1, for example, as shown in FIGS.
The catalyst electrode 2A is disposed in a water tank 1A filled with the purified water,
A swirling water flow generating means (for example, a rotor 6A and a magnet stirrer 7A) for generating a swirling water flow in the water tank and continuously bringing purified water into contact with the catalyst electrode is provided.

請求項2の発明によれば、触媒電極が水槽内に配置され、触媒電極に精製水を連続接触させる旋回水流発生手段が設けられているので、旋回水流発生手段によって、触媒電極と旋回水流との接触が良くなり、陽極電極が旋回水流に面するため旋回水流の遠心力で陽極電極に衝突して微細な渦流が発生し、陽極電極から発生したオゾン気泡をその中に巻き込んで精製水中に溶解させることができる。したがって、オゾン気泡の精製水への溶解効率を向上させることができる。また、水槽内に触媒電極を配置することで、オゾン気泡が精製水中に溶解する溶解時間を十分に確保でき、この点においても溶解効率の向上を図ることができる。   According to the second aspect of the present invention, the catalyst electrode is disposed in the water tank, and the swirling water flow generating means for continuously contacting the purified water with the catalyst electrode is provided. Since the anode electrode faces the swirling water flow, it collides with the anode electrode due to the centrifugal force of the swirling water flow to generate a fine vortex, and the ozone bubbles generated from the anode electrode are entrained in the purified water. Can be dissolved. Therefore, the dissolution efficiency of ozone bubbles in purified water can be improved. In addition, by disposing the catalyst electrode in the water tank, it is possible to secure a sufficient dissolution time for the ozone bubbles to dissolve in the purified water, and also in this respect, the dissolution efficiency can be improved.

請求項3の発明は、例えば、図8に示すように、請求項1に記載のオゾン水生成装置100Bにおいて、
前記触媒電極は、前記精製水が満たされた水槽内に配置され、
前記水槽内の精製水を吸引し加圧して前記触媒電極の陽極電極に吹き付けることを特徴とする。
The invention of claim 3 is, for example, as shown in FIG. 8, in the ozone water generating apparatus 100 </ b> B according to claim 1,
The catalyst electrode is disposed in a water tank filled with the purified water,
Purified water in the water tank is sucked and pressurized, and sprayed onto the anode electrode of the catalyst electrode.

請求項3の発明によれば、触媒電極が水槽内に配置され、精製水を吸引し加圧して陽極電極に吹き付けるので、陽極電極から発生したオゾン気泡を、吹き付けられた精製水中に確実に溶解させることができる。したがって、オゾン気泡の精製水への溶解効率を向上させることができる。また、水槽内に触媒電極を配置することで、オゾン気泡が精製水中に溶解する溶解時間を十分に確保でき、この点においても溶解効率の向上を図ることができる。   According to the invention of claim 3, the catalyst electrode is disposed in the water tank, and the purified water is sucked and pressurized and sprayed onto the anode electrode, so that the ozone bubbles generated from the anode electrode are surely dissolved in the sprayed purified water. Can be made. Therefore, the dissolution efficiency of ozone bubbles in purified water can be improved. Further, by disposing the catalyst electrode in the water tank, it is possible to secure a sufficient dissolution time for the ozone bubbles to dissolve in the purified water, and in this respect also, the dissolution efficiency can be improved.

本発明に係るオゾン水生成装置によれば、カソード水の廃棄や交換を必要とせずに、電気抵抗率の高い精製水を使用して容易にオゾン水を生成することができる。その結果、オゾン水を殺菌や洗浄用として医療業や食品業、農業等に幅広く使用することができる。   According to the ozone water generator according to the present invention, ozone water can be easily generated using purified water having a high electrical resistivity without requiring disposal or replacement of cathode water. As a result, ozone water can be widely used in medical industry, food industry, agriculture and the like for sterilization and cleaning.

以下、本発明の実施の形態について図面を参照しながら説明する。
図1は、本発明の第一の実施の形態のオゾン水生成装置100の斜視図、図2は、オゾン水生成装置100の平断面図である。
図1〜図2に示すように本発明に係るオゾン水生成装置100は、精製水が随時流され
る水槽1内に、触媒電極2を配置して構成されたもので、触媒電極2に直流電圧を印加することによってオゾン気泡を発生させて、そのオゾン気泡を水に溶解させることによりオゾン水を生成する装置である。
水槽1は、平断面視略T字状をなした略箱体であって、長手方向に延びる側面の一部が外側に突出して突出部分11を有している。水槽1の短手方向における一端面には、水槽1内に精製水を流入するための流入管41が取り付けられ、他端面には水槽1内で反応して生成されたオゾン水が流出する流出管42が取り付けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of an ozone water generation apparatus 100 according to the first embodiment of the present invention, and FIG. 2 is a plan sectional view of the ozone water generation apparatus 100.
As shown in FIGS. 1 and 2, an ozone water generating apparatus 100 according to the present invention is configured by arranging a catalyst electrode 2 in a water tank 1 in which purified water is flowed as needed. Is a device that generates ozone water by generating ozone bubbles and dissolving the ozone bubbles in water.
The water tank 1 is a substantially box-like body having a substantially T shape in a plan view, and has a protruding portion 11 with a part of a side surface extending in the longitudinal direction protruding outward. An inflow pipe 41 for allowing purified water to flow into the aquarium 1 is attached to one end surface in the short direction of the aquarium 1, and the ozone water generated by reaction in the aquarium 1 flows out to the other end surface. A tube 42 is attached.

流入管41は、精製水が貯留された精製水貯留タンク(図示略)にポンプ(図示略)を介して連結されている。また、流出管42は、水槽1内で生成されたオゾン水を貯留するためのオゾン水貯留タンク(図示略)にポンプ(図示略)を介して連結されている。
水槽1内には、流入管41及び流出管42によって、その上端部近傍まで精製水で満たされており、また、水槽1の短手方向における一端部側から他端部側まで随時精製水が流されている。
このような水槽1のうち突出部分11には、その底部に水槽1の内壁面11aに沿って触媒電極2が配設されている。
The inflow pipe 41 is connected to a purified water storage tank (not shown) in which purified water is stored via a pump (not shown). The outflow pipe 42 is connected to an ozone water storage tank (not shown) for storing ozone water generated in the water tank 1 via a pump (not shown).
The water tank 1 is filled with purified water up to the vicinity of the upper end thereof by the inflow pipe 41 and the outflow pipe 42, and purified water is occasionally added from one end side to the other end side in the lateral direction of the water tank 1. Being washed away.
A catalyst electrode 2 is disposed along the inner wall surface 11 a of the water tank 1 at the bottom of the protruding portion 11 of the water tank 1.

触媒電極2は、陽イオン交換膜21の一方の面に陽極電極22を密着させ、他方の面に陰極電極23を密着させてなるもので、陰極電極23面が突出部分11を形成する長手方向における内壁面11a側を向き、陽極電極22面が前記内壁面11aと対向する内壁面11b側を向くように配されている。このように触媒電極2を配置することにより、流入管41から水槽1内に流入された精製水の大部分が陽極電極22面に連続接触して流れる第一の流路31と、流入管13から水槽1内に流入された精製水の一部が分岐して陰極電極23面と突出部分11を形成する長手方向における内壁面11aとの間を陰極電極23面と連続接触して流れる第二の流路32とに仕切られている。
また、陽極電極22と陰極電極23との間には、電源装置(図示しない)の出力端24が電気的に連結され、直流電圧が印加されるように構成されている。すなわち、陽極電極22及び陰極電極23は、各電極22、23に導線を介して電源装置に連結されている。印加する直流電圧は、例えば、6〜15ボルトが好ましい。
The catalyst electrode 2 has an anode electrode 22 in close contact with one surface of the cation exchange membrane 21 and a cathode electrode 23 in close contact with the other surface. The longitudinal direction in which the surface of the cathode electrode 23 forms the protruding portion 11. The anode electrode 22 is disposed so that the surface of the anode electrode 22 faces toward the inner wall surface 11b facing the inner wall surface 11a. By arranging the catalyst electrode 2 in this way, the first flow path 31 in which most of the purified water that has flowed into the water tank 1 from the inflow pipe 41 flows in continuous contact with the surface of the anode electrode 22, and the inflow pipe 13. A portion of the purified water that has flowed into the water tank 1 branches from the cathode electrode 23 surface and the inner wall surface 11a in the longitudinal direction forming the protruding portion 11 and flows in continuous contact with the cathode electrode 23 surface. The flow path 32 is partitioned.
An output terminal 24 of a power supply device (not shown) is electrically connected between the anode electrode 22 and the cathode electrode 23 so that a DC voltage is applied. That is, the anode electrode 22 and the cathode electrode 23 are connected to the power supply device through the conductive wires to the electrodes 22 and 23. The DC voltage to be applied is preferably 6 to 15 volts, for example.

陽イオン交換膜21としては、従来公知のものを使用することができ、発生するオゾンに耐久性の強いフッ素系陽イオン交換膜を使用することができ、例えば厚さ200〜300ミクロンが好ましい。   As the cation exchange membrane 21, a conventionally known one can be used, and a fluorine-based cation exchange membrane having a high durability against the generated ozone can be used. For example, a thickness of 200 to 300 microns is preferable.

陽極電極22と陰極電極23とは、陽イオン交換膜21を全面的に覆い隠すように密着されるものではなく、多数の通孔を設けて、陽極電極22と陰極電極23とは陽イオン交換膜21に接触部と非接触部とを有して重ねられている。すなわち、陽極電極22及び陰極電極23はグレーチング状又はパンチングメタル状をなしている。図2ではグレーチングの場合を示している。特に、陰極電極23は陽極電極22よりも目の粗さが粗くなるように形成されている。具体的に、グレーチング状とは線材を溶接した格子状で、パンチングメタル状とは金属板に多数の通孔を形成した多孔板状である。   The anode electrode 22 and the cathode electrode 23 are not closely attached so as to completely cover the cation exchange membrane 21, but a large number of through holes are provided so that the anode electrode 22 and the cathode electrode 23 are cation exchanged. The film 21 is overlapped with a contact portion and a non-contact portion. That is, the anode electrode 22 and the cathode electrode 23 have a grating shape or a punching metal shape. FIG. 2 shows the case of grating. In particular, the cathode electrode 23 is formed to have a coarser mesh than the anode electrode 22. Specifically, the grating shape is a lattice shape in which wires are welded, and the punching metal shape is a porous plate shape in which a large number of through holes are formed in a metal plate.

陽極電極22としてはオゾン発生触媒機能を有した金属を使用し、この金属としては二酸化鉛が最も広く知られている。しかし、この二酸化鉛は加工が難しく、微小な通孔が不規則に存在するポーラス体を使用しているが、二酸化鉛のポーラス体は脆弱で耐久性に劣り、さらにはオゾン水中に鉛が溶出する可能性もあることから、純粋なオゾン水を得るため、白金又は白金被覆金属の電極を使用することが好ましく、特に、本発明ではチタンに白金を被覆した金属を使用することが好ましい。
一方、陰極電極23としては塩化銀層を有する銀又は銀被覆金属を使用する。塩化銀はオゾン測定の比較電極としても使われており、毒性なく安定してカソード電位の維持を行い、陽極電極22において安定してオゾンを発生できるものである。
そして、陽極電極22は平面状の金属をグレーチング状に加工することが望ましい。また、被覆処理としては、例えばメッキや熱着等により行うことができる。
A metal having an ozone generation catalytic function is used as the anode electrode 22, and lead dioxide is the most widely known metal. However, this lead dioxide is difficult to process and uses a porous body with irregularly small pores, but the lead dioxide porous body is fragile and inferior in durability, and lead elutes into ozone water. Therefore, in order to obtain pure ozone water, it is preferable to use a platinum or platinum-coated metal electrode, and in the present invention, it is particularly preferable to use a metal in which titanium is coated with platinum.
On the other hand, as the cathode electrode 23, silver having a silver chloride layer or a silver-coated metal is used. Silver chloride is also used as a reference electrode for ozone measurement, and can stably maintain the cathode potential without toxicity and can stably generate ozone at the anode electrode 22.
The anode electrode 22 is preferably processed from a planar metal into a grating shape. Moreover, as a coating process, it can carry out by plating, heat deposition, etc., for example.

このようにグレーチング状の陽極電極22とすることによって、陽極電極22を構成する部材の交点部位Pが尖って外面に突出し、水流と接触して渦流を生じ、陽極電極22で発生したオゾンの微泡を巻き込んで溶解を早めることができる。   By using the grating-like anode electrode 22 as described above, the intersection P of the members constituting the anode electrode 22 is pointed and protrudes to the outer surface to generate a vortex in contact with the water flow. Bubbles can be involved to accelerate dissolution.

また、パンチングメタル状の電極とした場合には、多孔板は略平面的であるので、多孔板と平行な水はこの多孔板内をほとんど流過しづらいので、例えば、ラス網の下に重ねて併用することがより好ましい。   In the case of a punched metal electrode, since the porous plate is substantially planar, water parallel to the porous plate hardly flows through the porous plate. It is more preferable to use them together.

このような陽イオン交換膜21、陽極電極22及び陰極電極23は、それぞれ板状に形成されており、これらを密着させた後、絶縁性の接合部材(図示しない)により接合されることによって触媒電極2とされている。また、触媒電極2の水槽1への固定方法としては、例えば、水槽1の突出部分11における内壁面11aから陰極電極23に向けて所定箇所に棒状の取付部材(図示しない)を設けて、これによって支持するように固定しても良い。ここで使用する取付部材は、耐オゾン性の材料からなるものが好ましい。また、その他、水槽1の底面に触媒電極2を直接固定しても良く、特に限定しない。   The cation exchange membrane 21, the anode electrode 22, and the cathode electrode 23 are each formed in a plate shape, and after being brought into close contact with each other, the catalyst is bonded by an insulating bonding member (not shown). The electrode 2 is used. Further, as a method of fixing the catalyst electrode 2 to the water tank 1, for example, a rod-shaped attachment member (not shown) is provided at a predetermined position from the inner wall surface 11a of the protruding portion 11 of the water tank 1 toward the cathode electrode 23. You may fix so that it may support. The mounting member used here is preferably made of an ozone-resistant material. In addition, the catalyst electrode 2 may be directly fixed to the bottom surface of the water tank 1, and is not particularly limited.

また、オゾン水生成装置100は、図1及び図2には図示しないが図5に示すように、水槽1内のオゾン濃度を検出する濃度検出器5Aと、検出したオゾン濃度に基づいて触媒電極2への通電を制御する通電制御手段(図示しない)とを備えている。濃度検出器5Aは、検出電極51Aと電位測定の基準となる比較電極52A、これら検出電極51A及び比較電極52Aの一方の端部に結線して電位を測定する電位差計等から構成されている。したがって、検出電極51A及び比較電極52Aの先端部(他方の端部)を水槽1内の溶液中に浸し、検出電極51Aのオゾン濃度変化による検出電極51Aと比較電極52Aとの電位差を検出して濃度を測定する。
検出電極51Aとしては、例えば白金や金等からなる電極を使用し、比較電極52Aとしては銀/塩化銀を使用することが好ましい。
このようにして検出されたオゾン濃度と、予め設定されたオゾン濃度とが一致するように電源装置の通電制御部(通電制御手段)が陽極電極22及び陰極電極23間の電圧を制御するように構成されている。
Moreover, although not shown in FIG.1 and FIG.2, as shown in FIG. 5, the ozone water production | generation apparatus 100 has 5A of concentration detectors which detect the ozone concentration in the water tank 1, and a catalyst electrode based on the detected ozone concentration. 2 is provided with an energization control means (not shown) for controlling energization to 2. The concentration detector 5A includes a detection electrode 51A, a comparison electrode 52A that serves as a reference for potential measurement, a potentiometer that is connected to one end of the detection electrode 51A and the comparison electrode 52A, and measures a potential. Therefore, the tip part (the other end part) of the detection electrode 51A and the comparison electrode 52A is immersed in the solution in the water tank 1, and the potential difference between the detection electrode 51A and the comparison electrode 52A due to the ozone concentration change of the detection electrode 51A is detected. Measure the concentration.
As the detection electrode 51A, an electrode made of, for example, platinum or gold is preferably used, and silver / silver chloride is preferably used as the comparison electrode 52A.
The energization control unit (energization control means) of the power supply device controls the voltage between the anode electrode 22 and the cathode electrode 23 so that the ozone concentration detected in this way matches the preset ozone concentration. It is configured.

次に、上述の構成をなしたオゾン水生成装置100の作用について説明する。
図1〜図2に示すように、流入管41から流出管42へと精製水を常に流し続けて、水槽1内に水流を発生させておく。ここで、精製水は、第一の流路31を流れて陽極電極22に接触し流出管42へと流れるとともに、その一部は第二の流路32を流れて陰極電極23に接触した後、流出管42へと流れる。
そして、電源装置を駆動させることによって陽極電極22及び陰極電極23間に所定の電圧を印加する。ここで、陰極電極23に例えば上述の塩化銀を使用しているので、通電により陽極電極22と陰極電極23との間に電路が形成されて、第一の流路31を流れる精製水が陽極電極22に接触することによって陽極電極22上に酸素と多量のオゾンが発生し、発生したオゾンは流水中に溶解してオゾン水化する。陰極電極23では、第二の流路32を流れる精製水が陰極電極23に接触することによって水素が生成される。
Next, the operation of the ozone water generator 100 having the above-described configuration will be described.
As shown in FIGS. 1 and 2, the purified water is always kept flowing from the inflow pipe 41 to the outflow pipe 42 to generate a water flow in the water tank 1. Here, the purified water flows through the first flow path 31 and contacts the anode electrode 22 and flows to the outflow pipe 42, and a part of the purified water flows through the second flow path 32 and contacts the cathode electrode 23. To the outflow pipe 42.
A predetermined voltage is applied between the anode electrode 22 and the cathode electrode 23 by driving the power supply device. Here, since the above-described silver chloride is used for the cathode electrode 23, for example, an electric path is formed between the anode electrode 22 and the cathode electrode 23 by energization, and the purified water flowing through the first channel 31 is the anode. By contacting the electrode 22, oxygen and a large amount of ozone are generated on the anode electrode 22, and the generated ozone is dissolved in flowing water to become ozone water. In the cathode electrode 23, purified water flowing through the second flow path 32 comes into contact with the cathode electrode 23 to generate hydrogen.

また、第一の流路31では流入管41から流出管42へと流れる水流が発生しているので、陽極電極22側において精製水はわずかな陽極電極22の凹凸によって流れの方向が複雑に変わる。すなわち、陽極電極22において水はわずかな間隙流路を求めて、通孔内に流出入して、方向を変えながら複雑な迷路状の流路を通ることになり、その結果、水は渦を巻く流れ、つまり渦流となる。そして、この渦流は陽極電極22に近接して起こり、陽イオン交換膜21の表面の水をこの渦流で巻き込み、渦流は陽イオン交換膜21の表面にまで達して陽イオン交換膜21の表面に局所的に沿う流れを惹起し、陽極電極22と陽イオン交換膜21の表面とのわずかな間隙部位にも水が淀むことなく流れることになる。
このように精製水が複雑な迷路状の流路を通ることは攪拌力による気液接触頻度を確保するもので、また渦流は陽イオン交換膜21の表面、特に陽極電極22とのごく狭い間隙に発生したオゾン気泡をいち早く水中に取り込んで溶解させることによってオゾン水を生成し、陽極電極22と陽イオン交換膜21との間(正確には陽極電極22と陰極電極23との間)に電流が多く流れる状態を確保することになる。
そして、生成されたオゾン水は第一の流路31から流出管42へと流れる。
In addition, since the water flow that flows from the inflow pipe 41 to the outflow pipe 42 is generated in the first flow path 31, the flow direction of the purified water on the anode electrode 22 side changes in a complicated manner due to slight unevenness of the anode electrode 22. . That is, in the anode electrode 22, water seeks a slight gap flow path, flows into and out of the through hole, passes through a complicated labyrinth flow path while changing the direction, and as a result, the water vortexes. It becomes a winding flow, that is, a vortex flow. The vortex flows close to the anode electrode 22 and the water on the surface of the cation exchange membrane 21 is engulfed by the vortex, and the vortex reaches the surface of the cation exchange membrane 21 and reaches the surface of the cation exchange membrane 21. A local flow is induced, and water flows without a stagnation into a slight gap between the anode electrode 22 and the surface of the cation exchange membrane 21.
In this way, purified water passes through a complicated labyrinth-like flow path to ensure the frequency of gas-liquid contact due to stirring force, and the vortex flow is a very narrow gap between the surface of the cation exchange membrane 21, particularly the anode electrode 22. Ozone bubbles generated in the water are quickly taken in and dissolved in water to generate ozone water, and a current flows between the anode electrode 22 and the cation exchange membrane 21 (precisely between the anode electrode 22 and the cathode electrode 23). This will ensure a state where a lot of air flows.
Then, the generated ozone water flows from the first flow path 31 to the outflow pipe 42.

一方、第二の流路32においても流入管41から流出管42へと水流が発生しているため、陰極電極23側において、水流は陽極電極22と同様に陰極電極23の凹凸によって流れの方向が変わるが、陽極電極22よりも目の粗い電極であるので、流れの方向が陽極電極22ほど複雑に変わることはない。そのため、陰極電極23で発生した水素気泡はある程度の大きさになった後、ゆっくりと陰極電極23から離されてその浮力によって、水面へと上昇し、水素ガスとして系外に放出されるか、あるいは一部は流水中に取り込まれて水素懸濁水として第二の流路32から第一の流路31へと流れ、オゾン水と混合される。   On the other hand, since a water flow is generated from the inflow pipe 41 to the outflow pipe 42 also in the second flow path 32, the flow of the water flows on the cathode electrode 23 side due to the unevenness of the cathode electrode 23 in the same manner as the anode electrode 22. However, since the electrode is coarser than the anode electrode 22, the flow direction does not change as complicated as the anode electrode 22. Therefore, after the hydrogen bubbles generated at the cathode electrode 23 become a certain size, they are slowly separated from the cathode electrode 23 and rise to the water surface due to the buoyancy, and are released out of the system as hydrogen gas. Alternatively, a part is taken into running water and flows as hydrogen suspension water from the second flow path 32 to the first flow path 31 and mixed with ozone water.

また、通電中に、同時に濃度検出器5Aによって水槽1内の溶液の濃度が測定され、オゾン濃度が予め設定されたオゾン濃度となるように電源装置の陽極電極22及び陰極電極23間の電圧が制御される。   During energization, the concentration detector 5A simultaneously measures the concentration of the solution in the water tank 1, and the voltage between the anode electrode 22 and the cathode electrode 23 of the power supply device is set so that the ozone concentration becomes a preset ozone concentration. Be controlled.

なお、上記第一の実施の形態において、陰極電極23で発生した水素を第二の流路32から第一の流路31に流れないように第二の流路32に別の流路を形成して、第一の流路31を流れるオゾン水と混合しないように構成しても構わない。   In the first embodiment, another channel is formed in the second channel 32 so that the hydrogen generated in the cathode electrode 23 does not flow from the second channel 32 to the first channel 31. And you may comprise so that it may not mix with the ozone water which flows through the 1st flow path 31. FIG.

以上、本発明の第一の実施の形態によれば、陽極電極22に白金被覆金属を使用し、陰極電極23に塩化銀を使用し、水槽1内に精製水を流入管41から流出管42へと一方向に常に流すことによって、第一の流路31を流れる精製水を陽極電極22に接触させ、精製水の一部を第二の流路32に流して陰極電極23にも供送し、陽極電極22と陰極電極23との間に直流電流を印加する。これによって精製水が陽極電極22で電気分解され、水素が陽イオン交換膜21を通って陰極電極23に迅速に到達し、水分子より水素が引き抜かれた結果、陽極電極22において酸素とオゾンが発生する。発生したオゾンは、精製水に容易に溶解しオゾン水化する。このように電気抵抗率の高い精製水を使用した場合でも、陰極電極23に電導性の高い食塩水やクエン酸水溶液などを用いる必要がないので、カソード水の廃棄やその交換作業にかかる手間を省くことができ、容易にオゾン水を生成することができる。
また、第二の流路32に精製水の一部を流すことによって陰極電極23にも精製水を供送するので、陽極電極22と陰極電極23とにおける水流のバランスを調整することができる。
As described above, according to the first embodiment of the present invention, platinum-coated metal is used for the anode electrode 22, silver chloride is used for the cathode electrode 23, and purified water is supplied from the inflow pipe 41 to the outflow pipe 42 in the water tank 1. The purified water flowing through the first flow path 31 is brought into contact with the anode electrode 22 by flowing constantly in one direction, and a part of the purified water flows through the second flow path 32 and is also supplied to the cathode electrode 23. A direct current is applied between the anode electrode 22 and the cathode electrode 23. As a result, purified water is electrolyzed at the anode electrode 22, hydrogen quickly reaches the cathode electrode 23 through the cation exchange membrane 21, and hydrogen is extracted from water molecules. appear. The generated ozone is easily dissolved in purified water and turned into ozone water. Even when purified water having a high electrical resistivity is used in this way, it is not necessary to use a highly conductive saline solution or citric acid aqueous solution for the cathode electrode 23. Ozone water can be easily generated.
In addition, since the purified water is supplied also to the cathode electrode 23 by flowing a portion of the purified water through the second flow path 32, the balance of the water flow between the anode electrode 22 and the cathode electrode 23 can be adjusted.

次に、上述のオゾン水生成装置100を使用して精製水のような高電気抵抗の純粋な水を原料としてオゾン水を生成する方法について実施例を挙げて説明する。
[実施例]
本発明の一実施例として、図1及び図2に示すような水槽1の突出部分11(第一の流路31と第二の流路32との間)に、幅30mm、長さ100mmの白金が被覆された陽極電極22と、デュポン製陽イオン交換膜ナフイオン21、さらに陽極電極22と同一面積の塩化銀が被覆された銀製の陰極電極23とを圧接した触媒電極2を設置し、精製水を陽極電極22側に毎分4L、陰極電極23側に同じく精製水を毎分1Lとなるように流した。陽極電極22と陰極電極23との間に直流電流を印加し、電圧の上昇と発生したオゾン水濃度との関係を図3に示した。
図3に示すように、約7.5Vの架電でオゾン水濃度は約1ppmを示し、その時の電流値は10A、さらに約9.0Vの架電でオゾン水濃度は2ppmを示し、その時の電流値は14Aであった。さらに、電圧を上げていくと、10.5Vで約3ppm、17Aとなり、12Vで約4ppm、20A、最後に13.5Vで5ppm、23Aという高濃度を達成した。
上述の医療用などの用途には4〜5ppmという濃度は、十分殺菌や手術用患部洗浄水としての必要濃度と認められている。
比較例として、陰極電極23に従来使用されている白金被覆チタン電極を取り替えて使用したところ12V以下では殆ど電流が流れなかった。従って、オゾン水濃度も0ppmであり、12Vでようやく約13A、オゾン水は0.3ppmとなり、さらに13.5Vで約5A、オゾン水は0.6ppmを示した。
以上の結果から、精製水を原料水としてオゾン水を発生する方法としては、本発明のように陰極電極23として塩化銀を使用することによって、その効果が明らかであることがわかる。
Next, a method for generating ozone water using pure water having high electrical resistance such as purified water as a raw material using the above-described ozone water generating apparatus 100 will be described with examples.
[Example]
As an embodiment of the present invention, a protruding portion 11 (between the first channel 31 and the second channel 32) of the water tank 1 as shown in FIGS. 1 and 2 has a width of 30 mm and a length of 100 mm. The catalyst electrode 2 was installed by pressing the anode electrode 22 coated with platinum, the cation exchange membrane naphtho ion 21 made by DuPont, and the silver cathode electrode 23 coated with silver chloride of the same area as the anode electrode 22 for purification. Water was supplied at a rate of 4 L / min on the anode electrode 22 side and purified water at 1 L / min on the cathode electrode 23 side. A direct current is applied between the anode electrode 22 and the cathode electrode 23, and the relationship between the voltage rise and the generated ozone water concentration is shown in FIG.
As shown in FIG. 3, the ozone water concentration is about 1 ppm with a call of about 7.5 V, the current value at that time is 10 A, and the ozone water concentration is 2 ppm with a call of about 9.0 V, at that time The current value was 14A. Furthermore, when the voltage was increased, the concentration became about 3 ppm and 17 A at 10.5 V, and a high concentration of about 4 ppm and 20 A at 12 V and finally 5 ppm and 23 A at 13.5 V was achieved.
A concentration of 4 to 5 ppm is recognized as a necessary concentration for sterilization and surgical affected area washing water for medical use as described above.
As a comparative example, when a conventionally used platinum-coated titanium electrode was replaced with the cathode electrode 23, almost no current flowed at 12 V or less. Therefore, the ozone water concentration was also 0 ppm, and finally it was about 13 A at 12 V, and the ozone water was 0.3 ppm. Further, at 13.5 V, about 5 A and the ozone water showed 0.6 ppm.
From the above results, it can be seen that the effect of the method of generating ozone water using purified water as raw material water is obvious by using silver chloride as the cathode electrode 23 as in the present invention.

[第二の実施の形態]
図4は、本発明の第二の実施の形態におけるオゾン水生成装置100Aの斜視図、図5は、オゾン水生成装置100Aの側断面図、図6は、オゾン水生成装置100Aの平断面図である。
図4〜図6に示すように、本発明の第二の実施の形態におけるオゾン水生成装置100Aでは、第一の実施の形態の水槽1と異なる水槽1Aを使用している。第二の実施の形態の水槽1Aは略円筒形状であって、その上端部近傍まで精製水で満たされている。この水槽1Aの下側には、水槽1Aの内壁面に沿って円弧状に触媒電極2Aが配設されている。
[Second Embodiment]
4 is a perspective view of the ozone water generating device 100A according to the second embodiment of the present invention, FIG. 5 is a side sectional view of the ozone water generating device 100A, and FIG. 6 is a plan sectional view of the ozone water generating device 100A. It is.
As shown in FIGS. 4-6, in the ozone water production | generation apparatus 100A in 2nd embodiment of this invention, the water tank 1A different from the water tank 1 of 1st embodiment is used. The water tank 1A of the second embodiment has a substantially cylindrical shape and is filled with purified water up to the vicinity of its upper end. Below the water tank 1A, a catalyst electrode 2A is arranged in an arc along the inner wall surface of the water tank 1A.

触媒電極2Aは、陽イオン交換膜21Aの一方の面に陽極電極22Aを密着させ、他方の面に陰極電極23Aを密着させてなるものである。陽イオン交換膜21A、陽極電極22A及び陰極電極23Aの構成材料等は、円弧状に形成した以外は第一の実施の形態の陽イオン交換膜21、陽極電極22及び陰極電極23からなる触媒電極2と同様であるためその説明を省略する。
円弧状の触媒電極2Aは、水槽1Aの中心部側に陽極電極22Aが配置され、外側に陰極電極23Aが配置されるように水槽1A内に固定されている。
水槽1A内の固定方法としては、例えば、水槽1Aの内壁面から陰極電極23Aに向けて所定箇所に棒状の取付部材(図示しない)を設けて、これによって支持するように固定しても良い。ここで使用する取付部材は、耐オゾン性の材料からなるものが好ましい。また、その他、水槽1Aの底面に触媒電極2Aを直接固定しても良く、特に限定しない。
The catalyst electrode 2A has an anode electrode 22A in close contact with one surface of the cation exchange membrane 21A and a cathode electrode 23A in close contact with the other surface. The constituent materials of the cation exchange membrane 21A, the anode electrode 22A, and the cathode electrode 23A, etc. are the catalyst electrodes comprising the cation exchange membrane 21, the anode electrode 22, and the cathode electrode 23 of the first embodiment except that they are formed in an arc shape. Since it is the same as 2, its description is omitted.
The arc-shaped catalyst electrode 2A is fixed in the water tank 1A so that the anode electrode 22A is disposed on the center side of the water tank 1A and the cathode electrode 23A is disposed outside.
As a fixing method in the water tank 1A, for example, a rod-shaped attachment member (not shown) may be provided at a predetermined position from the inner wall surface of the water tank 1A toward the cathode electrode 23A, and may be fixed so as to support it. The mounting member used here is preferably made of an ozone-resistant material. In addition, the catalyst electrode 2A may be directly fixed to the bottom surface of the water tank 1A, and is not particularly limited.

また、オゾン水生成装置100Aは、円筒中心部に向けて水槽1A内に旋回水流を発生させるための回転子6A及び攪拌装置からなる旋回水流発生手段を備えている。
攪拌装置としては、マグネットスターラ7A(図5のみ図示)を使用することが好ましく、装置本体71Aと、装置本体71A内のモータ72Aと、このモータ72Aの回転軸に連結されて回転する磁石73Aから構成されており、マグネットスターラ7Aの上面に載置された水槽1A内のマグネット回転子6Aを所望の回転数で回転させることができるようになっている。このように攪拌装置はマグネットにより攪拌する非接触式の装置であるので、水槽1A内の底部に貫通穴を設けて直接、回転子6Aを回転させて旋回水流を発生させる接触式の装置に比べて、貫通穴付近にパッキン処理をする必要もなく、パッキンによるオゾン水の劣化が生じることもない。その他の旋回水流発生手段としては、ポンプで駆動するインペラを使用することができる。
Further, the ozone water generating apparatus 100A includes a swirling water flow generating means including a rotor 6A and a stirring device for generating a swirling water flow in the water tank 1A toward the center of the cylinder.
As the stirring device, a magnet stirrer 7A (shown only in FIG. 5) is preferably used. From the device main body 71A, the motor 72A in the device main body 71A, and the magnet 73A connected to the rotating shaft of the motor 72A and rotating. The magnet rotor 6A in the water tank 1A placed on the upper surface of the magnet stirrer 7A can be rotated at a desired rotational speed. Thus, since the stirring device is a non-contact type device that stirs with a magnet, compared with a contact-type device in which a through hole is provided in the bottom of the water tank 1A and the rotor 6A is directly rotated to generate a swirling water flow. In addition, it is not necessary to perform a packing process in the vicinity of the through hole, and the ozone water does not deteriorate due to the packing. As other swirling water flow generating means, an impeller driven by a pump can be used.

なお、水槽1A内には、第一の実施の形態で説明した濃度検出器5A(図5のみ図示)や通電制御手段を備えるものとする。
また、図7に示すように、水槽1A内には、陰極電極23Aから発生した水素を旋回水流によって陰極電極23Aから離して水面又は外気に放出させる水素誘導路8Aを設けても良い。この水素誘導路8Aは、水槽1A内において触媒電極2Aの上方から水槽1Aの上端部に延在する円筒状部材81Aを配設することによって、水槽1Aの内周面と円筒部材81Aとの隙間に形成する。このように水素誘導路8Aを設けることによって、陰極電極23Aから発生した水素気泡を、水素誘導路8Aを介して水面又は外気に放出することができる。円筒状部材81Aの水槽1Aへの固定方法は、例えば、上方から円筒状部材81Aを吊り下げる構成としても良いし、水槽1A内の内面に、円筒状部材81Aを挟み込んで支持する棒状の部材を設けて固定する構成としても良く、特に限定しない。図7中、図6と同様の構成部分については同様の符号を付した。
The water tank 1A includes the concentration detector 5A described in the first embodiment (shown only in FIG. 5) and energization control means.
Further, as shown in FIG. 7, in the water tank 1A, a hydrogen guiding path 8A for releasing hydrogen generated from the cathode electrode 23A away from the cathode electrode 23A by a swirling water flow to the water surface or outside air may be provided. The hydrogen guiding path 8A is provided with a cylindrical member 81A extending from the upper side of the catalyst electrode 2A to the upper end of the water tank 1A in the water tank 1A, thereby providing a gap between the inner peripheral surface of the water tank 1A and the cylindrical member 81A. To form. By providing the hydrogen induction path 8A in this way, hydrogen bubbles generated from the cathode electrode 23A can be discharged to the water surface or the outside air through the hydrogen induction path 8A. The cylindrical member 81A may be fixed to the water tank 1A by, for example, a structure in which the cylindrical member 81A is suspended from above, or a rod-like member that supports the cylindrical member 81A by sandwiching the cylindrical member 81A on the inner surface of the water tank 1A. It is good also as a structure to provide and fix, and it does not specifically limit. In FIG. 7, the same components as those in FIG.

次に、上述の構成をなしたオゾン水生成装置100Aの作用について説明する。
まず、水槽1A内に精製水を満たし、攪拌装置を駆動させることによって回転子6Aを回転させて、水槽1A内に一定の速度の旋回水流を発生させておく。
そして、電源装置を駆動させることによって陽極電極22A及び陰極電極23A間に所定の電圧を印加する。ここで、陰極電極23Aに塩化銀を使用しているので、通電により陽極電極22Aと陰極電極23Aとの間に電路が形成されて、水槽1A内の中心部側を旋回する精製水が陽極電極22Aに接触することによって陽極電極22A上に酸素と多量のオゾンが発生し、発生したオゾンは旋回水流中に溶解してオゾン水化する。陰極電極23Aでは、水槽1A内の内壁面側を旋回する精製水が陰極電極23Aに接触することによって水素が生成される。
Next, the operation of the ozone water generator 100A having the above-described configuration will be described.
First, the water tank 1A is filled with purified water and the agitator is driven to rotate the rotor 6A to generate a swirling water flow at a constant speed in the water tank 1A.
Then, a predetermined voltage is applied between the anode electrode 22A and the cathode electrode 23A by driving the power supply device. Here, since silver chloride is used for the cathode electrode 23A, an electric path is formed between the anode electrode 22A and the cathode electrode 23A by energization, and the purified water swirling around the center side in the water tank 1A is used as the anode electrode. By contacting 22A, oxygen and a large amount of ozone are generated on the anode electrode 22A, and the generated ozone is dissolved in the swirling water stream to be turned into ozone water. In the cathode electrode 23A, hydrogen is generated by the purified water rotating around the inner wall surface in the water tank 1A coming into contact with the cathode electrode 23A.

また、第一の実施の形態と同様に、旋回水流によって陽極電極22A側ではわずかな陽極電極22Aの凹凸によって流れの方向が複雑に変わり、渦流が発生し、陽イオン交換膜21Aの表面に発生したオゾン気泡をいち早く水中に取り込んで溶解させることによってオゾン水を生成し、陽極電極22Aと陽イオン交換膜21Aとの間に電流が多く流れる状態を確保することになる。   Similarly to the first embodiment, the swirling water flow causes the flow direction to be complicated due to slight unevenness of the anode electrode 22A on the anode electrode 22A side, and a vortex flow is generated on the surface of the cation exchange membrane 21A. The ozone bubbles are quickly taken in and dissolved in the water to generate ozone water, thereby securing a state in which a large amount of current flows between the anode electrode 22A and the cation exchange membrane 21A.

一方、陰極電極22A側でも陰極電極23Aの凹凸によって流れの方向が変わるが、陽極電極22Aよりも目の粗い電極であるので、流れの方向が陽極電極22Aほど複雑に変わることはなく、陰極電極23Aで発生した水素気泡はある程度の大きさになった後、ゆっくりと陰極電極23Aから離されてその浮力によって、水面へと上昇し、水素ガスとして系外に放出されるか、あるいは一部は流水中に取り込まれて水素懸濁水として、オゾン水と混合される。   On the other hand, although the flow direction changes due to the unevenness of the cathode electrode 23A on the cathode electrode 22A side, the flow direction is not as complicated as the anode electrode 22A because it is a coarser electrode than the anode electrode 22A. After the hydrogen bubbles generated in 23A become a certain size, they are slowly separated from the cathode electrode 23A and lifted to the water surface by the buoyancy and released as hydrogen gas outside the system, or a part of them It is taken into running water and mixed with ozone water as hydrogen suspension water.

また、通電中に、同時に濃度検出器5Aによって水槽1A内の溶液の濃度が測定され、オゾン濃度が予め設定されたオゾン濃度となるように電源装置の陽極電極22A及び陰極電極23A間の電圧が制御される。   During energization, the concentration detector 5A simultaneously measures the concentration of the solution in the water tank 1A, and the voltage between the anode electrode 22A and the cathode electrode 23A of the power supply device is set so that the ozone concentration becomes a preset ozone concentration. Be controlled.

以上、本発明の第二の実施の形態によれば、陽極電極22Aに白金被覆金属を使用し、陰極電極23Aに塩化銀を使用し、このような触媒電極2Aを陽極電極22Aが水槽1Aの円筒中心を向き、陰極電極23Aが円筒内周面を向くように配設し、旋回水流発生手段によって旋回水流を発生させて、陽極電極22Aに連続接触させ、陰極電極23Aにもその一部を供送する。そして、陽極電極22Aと陰極電極23Aとの間に直流電流を印加する。これによって精製水が陽極電極22Aで電気分解され、水素が陽イオン交換膜21Aを通って陰極電極23Aに迅速に到達し、水分子より水素が引き抜かれた結果、陽極電極22Aにおいて酸素とオゾンが発生する。発生したオゾンは、精製水に容易に溶解しオゾン水化する。このように電気抵抗率の高い精製水を使用した場合でも、従来のようにカソード水の廃棄やその交換作業にかかる手間を省くことができ、容易にオゾン水を生成することができる。
また、マグネットスターラ7A及び回転子6Aを有する旋回水流発生手段によって、触媒電極2Aと旋回水流との接触が良くなり、陽極電極22Aが円筒中心を向いており旋回水流に面するため旋回水流の遠心力で陽極電極22Aに衝突して微細な渦流が発生し、陽極電極22Aから発生したオゾン気泡をその中に巻き込んで精製水中に溶解させることができる。したがって、オゾン気泡の精製水への溶解効率を向上させることができる。また、水槽1A内に触媒電極2Aを配置することで、オゾン気泡が精製水中に溶解する溶解時間を十分に確保でき、この点においても溶解効率の向上を図ることができる。
As described above, according to the second embodiment of the present invention, platinum-coated metal is used for the anode electrode 22A, silver chloride is used for the cathode electrode 23A, and the catalyst electrode 2A is used in the water tank 1A. The cathode electrode 23A is arranged so as to face the center of the cylinder and face the inner peripheral surface of the cylinder, and the swirling water flow is generated by the swirling water flow generating means so as to continuously contact the anode electrode 22A. Deliver. A direct current is applied between the anode electrode 22A and the cathode electrode 23A. As a result, purified water is electrolyzed at the anode electrode 22A, hydrogen quickly reaches the cathode electrode 23A through the cation exchange membrane 21A, and hydrogen is extracted from the water molecules. As a result, oxygen and ozone are absorbed at the anode electrode 22A. appear. The generated ozone is easily dissolved in purified water and turned into ozone water. Even when purified water having a high electrical resistivity is used as described above, it is possible to save the trouble of discarding and replacing the cathode water as in the prior art, and to easily generate ozone water.
Further, the swirling water flow generating means having the magnet stirrer 7A and the rotor 6A improves the contact between the catalyst electrode 2A and the swirling water flow, and the anode electrode 22A faces the swirling water flow because it faces the center of the cylinder. A fine vortex is generated by colliding with the anode electrode 22A by force, and ozone bubbles generated from the anode electrode 22A can be entrained therein and dissolved in purified water. Therefore, the dissolution efficiency of ozone bubbles in purified water can be improved. In addition, by disposing the catalyst electrode 2A in the water tank 1A, it is possible to secure a sufficient dissolution time for the ozone bubbles to dissolve in the purified water, and also in this respect, the dissolution efficiency can be improved.

[第三の実施の形態]
図8は、本発明の第三の実施の形態におけるオゾン水生成装置100Bの平断面図である。
本発明の第三の実施の形態におけるオゾン水生成装置100Bでは、第二の実施の形態のオゾン水生成装置100Aで使用した水槽1Aと同様の略円筒形状の水槽1Aを使用し、円弧状の触媒電極2Aが水槽1A内に陽極電極22Aが水槽1Aの中心部を向き、陰極電極23Aが外側を向くように配設されている。これらの構造は、第二の実施の形態と同様であるため、同様の構成部分については同様の符号を付してその説明は省略する。
そして、第三の実施の形態では、水槽1A内の精製水を吸引する吸引口を有する吸引管91Bと、精製水を触媒電極2Aに吹き付けるための吹き付け口を有する吹き付け管92Bと、これら吸引管91B及び吹き付け管92Bに連結されて精製水を加圧する循環ポンプ93Bとを備えている。
さらに、水槽1A内には、吹き付け管92Bから吹き付けられた精製水を陽極電極22Aへとガイドするガイドベーン94Bが設けられている。ガイドベーン94Bは、円弧状に形成された板状をなし、水槽1A内の吹き付け管92B近傍の内壁面から陽極電極22Aまで延在するように配されている。ガイドベーン94Bの先端と触媒電極2Aの一端部との間には若干の隙間が設けられており、陰極電極23A面側にも吹き付け管92Bから吹き付けられた精製水の一部が流れるようになっている。このような構成とすることにより、発生したオゾンの精製水への溶解を助長できるようになっている。
[Third embodiment]
FIG. 8 is a plan sectional view of an ozone water generator 100B according to the third embodiment of the present invention.
In the ozone water generating apparatus 100B according to the third embodiment of the present invention, a substantially cylindrical water tank 1A similar to the water tank 1A used in the ozone water generating apparatus 100A according to the second embodiment is used, and an arc-shaped water tank 1A is used. The catalyst electrode 2A is disposed in the water tank 1A so that the anode electrode 22A faces the center of the water tank 1A and the cathode electrode 23A faces the outside. Since these structures are the same as those of the second embodiment, the same components are denoted by the same reference numerals and the description thereof is omitted.
In the third embodiment, a suction tube 91B having a suction port for sucking purified water in the water tank 1A, a spray tube 92B having a spray port for spraying purified water to the catalyst electrode 2A, and these suction tubes 91B and a circulation pump 93B that is connected to the spray pipe 92B and pressurizes purified water.
Furthermore, a guide vane 94B for guiding purified water sprayed from the spray pipe 92B to the anode electrode 22A is provided in the water tank 1A. The guide vane 94B has a plate shape formed in an arc shape, and is arranged to extend from the inner wall surface in the vicinity of the spray pipe 92B in the water tank 1A to the anode electrode 22A. A slight gap is provided between the tip of the guide vane 94B and one end of the catalyst electrode 2A, and a part of the purified water sprayed from the spray tube 92B also flows on the cathode electrode 23A surface side. ing. By adopting such a configuration, dissolution of the generated ozone in purified water can be promoted.

次に、上述の構成をなしたオゾン水生成装置100Bの作用について説明する。
まず、水槽1A内に精製水を満たしておき、吸引管91Bから精製水を吸引し、循環ポンプ93Bによって加圧することにより吹き付け管92Bから精製水を陽極電極22Aに吹き付ける。ここで、吹き付け管92Bから吹き付けられた精製水はガイドベーン94Bにガイドされて、陽極電極22Aに接触し、水槽1A内の中心部を中心として旋回するとともに、その一部はガイドベーン94Bと触媒電極2Aとの間の隙間から陰極電極23Aと水槽1Aの内壁面との間の流路を流れて陰極電極23Aに接触し、同様に水槽1A内の中心部を中心として旋回する。
そして、電源装置を駆動させることによって陽極電極22A及び陰極電極23A間に所定の電圧を印加する。ここで、陰極電極23Aに塩化銀を使用しているので、通電により陽極電極22Aと陰極電極23Aとの間に電路が形成されて、水槽1A内の中心部側を旋回する精製水が陽極電極22Aに接触することによって陽極電極22A上に酸素と多量のオゾンが発生し、発生したオゾンは旋回水流中に溶解してオゾン水化する。陰極電極23Aでは、水槽1A内の内壁面側を旋回する精製水が陰極電極23Aに接触することによって水素が生成される。
Next, the operation of the ozone water generator 100B having the above-described configuration will be described.
First, the water tank 1A is filled with purified water, the purified water is sucked from the suction pipe 91B, and pressurized by the circulation pump 93B, whereby the purified water is sprayed from the spray pipe 92B to the anode electrode 22A. Here, the purified water sprayed from the spray pipe 92B is guided by the guide vane 94B, contacts the anode electrode 22A, rotates around the center in the water tank 1A, and part of the purified water is guided by the guide vane 94B and the catalyst. It flows through the flow path between the cathode electrode 23A and the inner wall surface of the water tank 1A from the gap between the electrode 2A, contacts the cathode electrode 23A, and similarly turns around the center in the water tank 1A.
Then, a predetermined voltage is applied between the anode electrode 22A and the cathode electrode 23A by driving the power supply device. Here, since silver chloride is used for the cathode electrode 23A, an electric path is formed between the anode electrode 22A and the cathode electrode 23A by energization, and the purified water swirling around the center side in the water tank 1A is used as the anode electrode. By contacting 22A, oxygen and a large amount of ozone are generated on the anode electrode 22A, and the generated ozone is dissolved in the swirling water stream to be turned into ozone water. In the cathode electrode 23A, hydrogen is generated by the purified water rotating around the inner wall surface in the water tank 1A coming into contact with the cathode electrode 23A.

また、第一の実施の形態と同様に、旋回水流によって陽極電極22A側ではわずかな陽極電極22Aの凹凸によって流れの方向が複雑に変わり、渦流が発生し、陽イオン交換膜21Aの表面に発生したオゾン気泡をいち早く水中に取り込んで溶解させることによってオゾン水を生成し、陽極電極22Aと陽イオン交換膜21Aとの間に電流が多く流れる状態を確保することになる。   Similarly to the first embodiment, the swirling water flow causes the flow direction to be complicated due to slight unevenness of the anode electrode 22A on the anode electrode 22A side, and a vortex flow is generated on the surface of the cation exchange membrane 21A. The ozone bubbles are quickly taken in and dissolved in the water to generate ozone water, thereby securing a state in which a large amount of current flows between the anode electrode 22A and the cation exchange membrane 21A.

一方、陰極電極23A側でも陰極電極23Aの凹凸によって流れの方向が変わるが、陽極電極22Aよりも目の粗い電極であるので、流れの方向が陽極電極22Aほど複雑に変わることはなく、陰極電極23Aで発生した水素気泡はある程度の大きさになった後、ゆっくりと陰極電極23Aから離されてその浮力によって、水面へと上昇し、水素ガスとして系外に放出されるか、あるいは一部は流水中に取り込まれて水素懸濁水として、オゾン水と混合される。   On the other hand, the direction of the flow also changes on the side of the cathode electrode 23A due to the unevenness of the cathode electrode 23A, but since the electrode is coarser than the anode electrode 22A, the direction of the flow does not change as complicated as the anode electrode 22A. After the hydrogen bubbles generated in 23A become a certain size, they are slowly separated from the cathode electrode 23A and lifted to the water surface by the buoyancy and released as hydrogen gas outside the system, or a part of them It is taken into running water and mixed with ozone water as hydrogen suspension water.

また、通電中に、同時に濃度検出器5A(図8では図示しない)によって水槽1A内の溶液の濃度が測定され、オゾン濃度が予め設定されたオゾン濃度となるように電源装置の陽極電極22A及び陰極電極23A間の電圧が制御される。   During energization, the concentration detector 5A (not shown in FIG. 8) simultaneously measures the concentration of the solution in the water tank 1A, and the anode electrode 22A of the power supply device and the ozone concentration are set so that the ozone concentration becomes a preset ozone concentration. The voltage between the cathode electrodes 23A is controlled.

以上、本発明の第三の実施の形態によれば、水槽1Aに精製水を吸引する吸引管91Bと、吸引した精製水を循環ポンプ93Bで加圧して陽極電極22Aに吹き付ける吹き付け管92Bとが設けられているので、陽極電極22Aから発生したオゾン気泡を、吹き付けられた精製水中に確実に溶解させることができる。したがって、オゾン気泡の精製水への溶解効率を向上させることができる。また、水槽1A内に触媒電極2Aを配置することで、オゾン気泡が精製水中に溶解する溶解時間を十分に確保でき、この点においても溶解効率の向上を図ることができる。
さらに、水槽1A内にはガイドベーン94Aが設けられているので、ガイドベーン94Aに沿って精製水を触媒電極2Aに効果的に吹き付けることができる。
また、第二の実施の形態と同様の構成部分については同様の効果を得ることができる。
As described above, according to the third embodiment of the present invention, the suction pipe 91B that sucks purified water into the water tank 1A and the spray pipe 92B that pressurizes the sucked purified water with the circulation pump 93B and sprays it onto the anode electrode 22A. Since it is provided, ozone bubbles generated from the anode electrode 22A can be reliably dissolved in the sprayed purified water. Therefore, the dissolution efficiency of ozone bubbles in purified water can be improved. In addition, by disposing the catalyst electrode 2A in the water tank 1A, it is possible to secure a sufficient dissolution time for the ozone bubbles to dissolve in the purified water, and also in this respect, the dissolution efficiency can be improved.
Furthermore, since the guide vane 94A is provided in the water tank 1A, purified water can be effectively sprayed onto the catalyst electrode 2A along the guide vane 94A.
Moreover, the same effect can be acquired about the component similar to 2nd embodiment.

なお、本発明の第一〜第三の実施の形態は、上記実施の形態に限定されるものではなく、その要旨を変更しない限り、適宜変更可能である。
例えば、上記第二及び第三の実施の形態の水槽1Aは径が略同じとなるように形成された円筒状であるとしたが、四角柱状であっても良い。
また、陽極電極22,22A及び陰極電極23,23Aはそれぞれグレーチング状又はパンチングメタル状に形成されているとしたが、板状のものであっても良い。また、陽極電極22,22Aの表面にラス網等の金網を設けるようにしても良い。このように金網を設けることによって、さらに、旋回水流に乱れが生じて速やかにオゾン気泡を原料水に溶かし込んでオゾン水を生成することができる。
In addition, the 1st-3rd embodiment of this invention is not limited to the said embodiment, Unless it changes the summary, it can change suitably.
For example, although the water tank 1A of the second and third embodiments is a cylindrical shape formed so as to have substantially the same diameter, it may be a quadrangular prism shape.
In addition, although the anode electrodes 22 and 22A and the cathode electrodes 23 and 23A are formed in a grating shape or a punching metal shape, they may be plate-shaped. Further, a metal net such as a lath net may be provided on the surfaces of the anode electrodes 22 and 22A. By providing the wire mesh in this manner, the swirling water flow is further disturbed, and ozone water can be quickly dissolved in the raw water to generate ozone water.

本発明の第一の実施の形態におけるオゾン水生成装置100の斜視図である。It is a perspective view of ozone water generating device 100 in a first embodiment of the present invention. オゾン水生成装置100の平断面図である。2 is a plan sectional view of the ozone water generator 100. FIG. 印加電圧と生成オゾン水濃度との関係を示したグラフである。It is the graph which showed the relationship between an applied voltage and the production | generation ozone water density | concentration. 本発明の第二の実施の形態におけるオゾン水生成装置100Aの斜視図である。It is a perspective view of ozone water generating device 100A in a second embodiment of the present invention. オゾン水生成装置100Aの側断面図である。It is a sectional side view of ozone water generating apparatus 100A. オゾン水生成装置100Aの平断面図である。It is a plane sectional view of ozone water generating device 100A. 水素誘導路8Aが設けられたオゾン水生成装置100Aの平断面図である。It is a plane sectional view of ozone water generating device 100A provided with hydrogen induction way 8A. 本発明の第三の実施の形態におけるオゾン水生成装置100Bの平断面図である。It is a plane sectional view of ozone water generating device 100B in a third embodiment of the present invention.

符号の説明Explanation of symbols

1,1A 水槽
2,2A 触媒電極
6A 回転子(旋回水流発生手段)
7A マグネットスターラ(旋回水流発生手段)
21,21A 陽イオン交換膜
22,22A 陽極電極
23,23A 陰極電極
100,100A,100B オゾン水生成装置
1,1A water tank 2,2A catalyst electrode 6A rotor (swirl water flow generating means)
7A Magnet Stirrer (Swirl water flow generating means)
21, 21A Cation exchange membrane 22, 22A Anode electrode 23, 23A Cathode electrode 100, 100A, 100B Ozone water generator

Claims (3)

陽イオン交換膜の一方の面に陽極電極を圧接し、他方の面に陰極電極を圧接してなる触媒電極を備え、前記陽極電極に精製水を接触させて、前記陽極電極と前記陰極電極との間に直流電流を印加してオゾン水を発生させるオゾン水生成装置において、
前記陽極電極に白金又は白金被覆金属を使用し、前記陰極電極に塩化銀層を有する銀又は銀被覆金属を使用し、
前記陰極電極に前記精製水の一部を供送することを特徴とするオゾン水生成装置。
A catalyst electrode is formed by pressing an anode electrode on one surface of a cation exchange membrane and pressing a cathode electrode on the other surface, and purified water is brought into contact with the anode electrode, and the anode electrode, the cathode electrode, In the ozone water generator that generates ozone water by applying a direct current between
Using platinum or platinum-coated metal for the anode electrode, using silver or silver-coated metal having a silver chloride layer for the cathode electrode,
A device for generating ozone water, wherein a part of the purified water is supplied to the cathode electrode.
前記触媒電極は、前記精製水が満たされた水槽内に配置され、
前記水槽内に旋回水流を発生させて前記触媒電極に精製水を連続接触させる旋回水流発生手段が設けられていることを特徴とする請求項1に記載のオゾン水生成装置。
The catalyst electrode is disposed in a water tank filled with the purified water,
2. The ozone water generating device according to claim 1, further comprising a swirling water flow generating means for generating a swirling water flow in the water tank and continuously contacting purified water with the catalyst electrode.
前記触媒電極は、前記精製水が満たされた水槽内に配置され、
前記水槽内の精製水を吸引し加圧して前記触媒電極の陽極電極に吹き付けることを特徴とする請求項1に記載のオゾン水生成装置。
The catalyst electrode is disposed in a water tank filled with the purified water,
2. The ozone water generation apparatus according to claim 1, wherein purified water in the water tank is sucked and pressurized and sprayed to the anode electrode of the catalyst electrode.
JP2005275847A 2005-09-22 2005-09-22 Ozone water generator Active JP4217233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275847A JP4217233B2 (en) 2005-09-22 2005-09-22 Ozone water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275847A JP4217233B2 (en) 2005-09-22 2005-09-22 Ozone water generator

Publications (2)

Publication Number Publication Date
JP2007083174A JP2007083174A (en) 2007-04-05
JP4217233B2 true JP4217233B2 (en) 2009-01-28

Family

ID=37970696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275847A Active JP4217233B2 (en) 2005-09-22 2005-09-22 Ozone water generator

Country Status (1)

Country Link
JP (1) JP4217233B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133592B2 (en) 2007-05-09 2013-01-30 日科ミクロン株式会社 Ozone water generator
JP5904727B2 (en) * 2011-07-06 2016-04-20 株式会社東芝 Household appliances
JP5791841B1 (en) * 2015-04-17 2015-10-07 日科ミクロン株式会社 Ozone water production equipment
DE102017107891A1 (en) * 2017-04-12 2018-10-18 Willi Bernard Method for controlling an electrolytic cell for the electrolytic production of ozone and a device for disinfecting water
JPWO2020179667A1 (en) * 2019-03-07 2021-03-11 株式会社超微細科学研究所 Fine bubble-containing water generator

Also Published As

Publication number Publication date
JP2007083174A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4217233B2 (en) Ozone water generator
US10464830B2 (en) Electrolytic liquid generating device, liquid modifying device provided with electrolytic liquid generating device, and electric apparatus using electrolytic liquid generated by means of electrolytic liquid generating device
US5314589A (en) Ion generator and method of generating ions
JP5544181B2 (en) Electrochemical synthesis of ozone fine bubbles
KR101812008B1 (en) An electrolyzer having a porous 3-dimensional mono-polar electrodes, and water treatment method using the electrolyzer having the porous 3-dimensional mono-polar electrodes
KR20090060136A (en) Membrane-electrode assembly, electrolytic cell employing the same, electrolytic-water sprayer, and method sterilization
JP2858853B2 (en) humidifier
JP2008086960A (en) Washing apparatus
JP4528840B2 (en) Ozone water generator
JP5370543B2 (en) Hydrogen peroxide production apparatus and air conditioner, air purifier and humidifier using the same
JP2006150215A (en) Ozone water generator and ozone water generation method
JP2009208021A (en) Water absorption device and atomizer
JP3297227B2 (en) Ozone water production equipment
JP5560835B2 (en) Mist generator
JP4464362B2 (en) Ozone water generation method
JP4310321B2 (en) Air purifier
JP2003190954A (en) Method for sterilizing seawater and apparatus therefor
JPH03158487A (en) Electrolysis type ozonized water producing device
JP2007125502A (en) Apparatus for ejecting ozonized water
JP6630984B2 (en) Electrolyzed water generator
JP4291320B2 (en) Ozone water generator
JP2007136381A (en) Ozone water purifier
JP5547661B2 (en) Cleaning method of ozone water sensor
WO2022114142A1 (en) Method for producing ozone water, and apparatus for manufacturing ozone water
JP5172098B2 (en) Air sanitizer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080926

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081107

R150 Certificate of patent or registration of utility model

Ref document number: 4217233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20171114

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250