JP2007275821A - Evaporation concentrator for aqueous solution - Google Patents

Evaporation concentrator for aqueous solution Download PDF

Info

Publication number
JP2007275821A
JP2007275821A JP2006107553A JP2006107553A JP2007275821A JP 2007275821 A JP2007275821 A JP 2007275821A JP 2006107553 A JP2006107553 A JP 2006107553A JP 2006107553 A JP2006107553 A JP 2006107553A JP 2007275821 A JP2007275821 A JP 2007275821A
Authority
JP
Japan
Prior art keywords
aqueous solution
evaporator
evaporation
boiling
heating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006107553A
Other languages
Japanese (ja)
Other versions
JP4815254B2 (en
Inventor
Naotada Maeda
直忠 前田
Tetsuya Matsushita
哲也 松下
Isamu Tatsuno
勇 辰野
Kenichi Okuda
謙一 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2006107553A priority Critical patent/JP4815254B2/en
Publication of JP2007275821A publication Critical patent/JP2007275821A/en
Application granted granted Critical
Publication of JP4815254B2 publication Critical patent/JP4815254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the crystallization or freezing of an aqueous solution in the bottom of the evaporation can on stopping of boiling or evaporation in an evaporation concentrator which has a heating mechanism 2 for evaporation heating an aqueous solution crystallizing or freezing on a decrease of the temperature, an evaporation can 1 boiling or evaporating, within the can, the aqueous solution having been heated by the heating mechanism, a condenser 10 condensing the steam generated in the can, and a circulating conduit 6 circulating the aqueous solution accumulated in the bottom of the evaporation can after the evaporation so as to return to the evaporation can through the heating mechanism. <P>SOLUTION: A heater 15 which raises the temperature of the aqueous solution accumulated in the bottom of the evaporation can 1 at least on a stop of the boiling or evaporation in the evaporation can is arranged in the part 4 of the bottom of the evaporation can where aqueous solution is accumulated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,例えば,硫酸アンモニウム(硫安)を含む半導体工場廃水等のように温度が下がると結晶が析出する性質を有する水溶液,又は,顔料及びレジストを含んだTMAH(テトラ・メチル・アンモニウム・ハイドロオキサイド)廃水等のように,温度が下がると凝固する性質を有する水溶液を,蒸発にて濃縮するための装置に関するものである。   The present invention is, for example, an aqueous solution having a property that crystals are precipitated when the temperature is lowered, such as semiconductor factory waste water containing ammonium sulfate (ammonium sulfate), or TMAH (tetramethylammonium hydroxide containing a pigment and a resist). This relates to an apparatus for concentrating by evaporation an aqueous solution having the property of solidifying as the temperature drops, such as waste water.

従来,前記したように低い温度で結晶又は凝固する性質を有する水溶液の蒸発濃縮に際しては,例えば,特許文献1等に記載されているように,前記水溶液を加熱する加熱手段と,この加熱手段で加熱した水溶液を内部において沸騰・蒸発する蒸発缶と,この蒸発缶で発生した水蒸気を凝縮する凝縮器とを備え,更に,前記蒸発缶の底部における蒸発後の水溶液を前記加熱手段を経て前記蒸発缶の上部に戻すように循環する循環管路を備えて成る蒸発濃縮装置が使用されている。
特開2005−270902号公報
Conventionally, when evaporating and concentrating an aqueous solution having a property of crystallizing or solidifying at a low temperature as described above, for example, as described in Patent Document 1 and the like, a heating means for heating the aqueous solution, An evaporator that boils and evaporates the heated aqueous solution inside, and a condenser that condenses the water vapor generated in the evaporator, and further, the evaporated aqueous solution at the bottom of the evaporator is evaporated through the heating means. An evaporating and concentrating device having a circulation line that circulates back to the top of the can is used.
JP 2005-270902 A

しかし,この構成の蒸発濃縮装置において,その蒸発缶内における沸騰・蒸発を停止した場合,前記蒸発缶内の底部には,濃縮されて濃度が高くなった状態の水溶液が溜まり,この高い濃度の水溶液は,冷やされて結晶が析出するとか,凝固することになるから,次に,沸騰・蒸発の運転に入ることに重大な支障を及ぼすばかりか,場合によっては,装置の損傷を招来し,次に,沸騰・蒸発を開始するに際して,水溶液を所定の沸騰・蒸発を行う温度にまで加熱上昇することに長い時間がかかるという問題がある。   However, in the evaporative concentrator having this configuration, when boiling / evaporation in the evaporator is stopped, the concentrated aqueous solution is concentrated at the bottom of the evaporator, and this high concentration is accumulated. Since the aqueous solution is cooled and crystallizes or solidifies, it will not only seriously hinder the next operation of boiling / evaporation, but may cause damage to the equipment. Next, when boiling / evaporation is started, there is a problem that it takes a long time to heat the aqueous solution up to a predetermined boiling / evaporating temperature.

しかも,前記水溶液が,前記したように,顔料を含むTMAH廃水等のような場合には,この水溶液は同時に粘度が高いことにより発泡性をも有することから,前記した従来の装置のように,沸騰・蒸発の開始の当初から,前記蒸発缶内の底部における水溶液を沸騰蒸発用の加熱手段に供給し,この加熱手段において所定の沸騰・蒸発を行う温度にまで加熱上昇したのち蒸発缶内で沸騰・蒸発するというように,蒸発缶と加熱手段との間を循環するという構成である場合には,前記蒸発缶内に水溶液の泡立ちが発生し,水溶液の沸騰・蒸発を著しく妨げるばかりか,場合によっては,濃縮運転を不能にするという問題もあった。   Moreover, as described above, when the aqueous solution is a TMAH waste water containing a pigment or the like, since the aqueous solution has a foaming property due to high viscosity at the same time, as in the conventional apparatus described above, From the beginning of boiling / evaporation, the aqueous solution at the bottom of the evaporator is supplied to the heating means for boiling evaporation, heated to a temperature at which the boiling / evaporation is performed in the heating means, and then heated in the evaporator. When it is configured to circulate between the evaporator and the heating means, such as boiling and evaporating, foaming of the aqueous solution occurs in the evaporator and not only significantly hinders boiling and evaporation of the aqueous solution, In some cases, there was a problem of making the concentration operation impossible.

本発明は,これらの問題を解消した蒸発濃縮装置を提供することを技術的課題とするものである。   This invention makes it a technical subject to provide the evaporative concentration apparatus which eliminated these problems.

この技術的課題を達成するために,本発明の請求項1は,
「温度が下がると結晶が析出するか又は凝固する性質を有する水溶液を加熱する蒸発用加熱手段と,この蒸発用加熱手段で加熱した水溶液を内部において沸騰・蒸発する蒸発缶と,この蒸発缶で発生した水蒸気を凝縮する凝縮器とを備え,更に,前記蒸発缶の底部に溜まる蒸発後の水溶液を前記蒸発用加熱手段を経て前記蒸発缶内に戻すように循環する循環管路を備えて成る蒸発濃縮装置において,
前記蒸発缶の底部において水溶液が溜まる部分に,当該部分に溜まる水溶液を,少なくとも前記蒸発缶内での沸騰・蒸発を停止したときにおいて温度を高くするようにした加熱器を設けて成る。」
ことを特徴としている。
In order to achieve this technical problem, claim 1 of the present invention provides:
“Evaporation heating means for heating an aqueous solution that has the property that crystals precipitate or solidify when the temperature drops, an evaporator that boils and evaporates the aqueous solution heated by this evaporation heating means, A condenser for condensing the generated water vapor, and further comprising a circulation line for circulating the evaporated aqueous solution accumulated at the bottom of the evaporator to return it to the evaporator through the heating means for evaporation. In evaporative concentration equipment,
A heater is provided in a portion where the aqueous solution is stored at the bottom of the evaporator, so that the temperature of the aqueous solution stored in the portion is increased at least when boiling and evaporation in the evaporator is stopped. "
It is characterized by that.

本発明の請求項2は,
「前記請求項1の記載において,前記加熱器が,間接熱交換型の加熱器である。」
ことを特徴としている。
Claim 2 of the present invention includes:
“In the description of claim 1, the heater is an indirect heat exchange type heater.”
It is characterized by that.

本発明の請求項3は,
「前記請求項1又は2の記載において,前記循環管路による水溶液の循環を,前記蒸発缶内での沸騰・蒸発を停止したとき,前記蒸発缶の底部において水溶液が溜まる部分より前記加熱手段を経て前記蒸発用蒸発缶内に戻すという循環から前記蒸発缶の底部において水溶液が溜まる部分より前記蒸発用加熱手段を経ることなく前記蒸発缶内に直接戻すという循環に切り換えるように構成した。」
ことを特徴としている。
Claim 3 of the present invention provides:
“In the method of claim 1 or 2, when the aqueous solution is circulated through the circulation line, when the boiling / evaporation in the evaporator is stopped, the heating means is provided from the portion where the aqueous solution is accumulated at the bottom of the evaporator. Then, the circulation is switched from the return to the evaporator for evaporation to the circulation to return directly to the evaporator without passing through the evaporation heating means from the portion where the aqueous solution is accumulated at the bottom of the evaporator.
It is characterized by that.

本発明の請求項3は,
「前記請求項1〜3のいずれかの記載において,前記蒸発缶内での沸騰・蒸発を,蒸発濃縮装置への水溶液供給管路中に設けた受け槽内における水面に関連して,当該水面が低くなると停止するように構成した。」
ことを特徴としている。
Claim 3 of the present invention provides:
“In the description of any one of claims 1 to 3, the boiling and evaporation in the evaporator is related to the water surface in the receiving tank provided in the aqueous solution supply pipe to the evaporation concentrator. It was configured to stop when the value was low. "
It is characterized by that.

前記したように,蒸発缶の底部において水溶液が溜る部分に,当該部分に溜まる水溶液を,少なくとも前記蒸発缶内での沸騰・蒸発を停止したときにおいて温度を高くするようにした加熱器を設けるという構成であることにより,前記蒸発缶内での沸騰・蒸発を停止したとき,前記蒸発缶の底部に溜まる高い濃度の水溶液を,前記加熱器による加熱によって,前記沸騰・蒸発時における温度又はこれに近い温度に維持することができるから,前記蒸発缶の底部において,高い濃度の水溶液が,温度の低下により結晶化したり又は凝固したりすることを確実に防止できるとともに,前記蒸発缶内での沸騰・蒸発の開始に際して,水溶液を,前記沸騰・蒸発の温度にまでに加熱上昇することに要する時間を大幅に短縮できる。   As described above, a heater is provided at the bottom of the evaporator where the aqueous solution is stored so that the temperature of the aqueous solution stored in the part is raised at least when boiling and evaporation in the evaporator are stopped. With this configuration, when boiling / evaporation in the evaporator is stopped, a high-concentration aqueous solution that accumulates at the bottom of the evaporator can be heated to the temperature at the boiling / evaporation by heating with the heater. Since it can be maintained at a temperature close to the bottom of the evaporator, it is possible to reliably prevent the high-concentration aqueous solution from crystallizing or solidifying due to a decrease in temperature, and boiling in the evaporator. At the start of evaporation, the time required for heating the aqueous solution up to the boiling / evaporating temperature can be greatly reduced.

また,蒸発缶の底部において水溶液が溜る部分に,当該部分に溜まる水溶液を,少なくとも前記蒸発缶内での沸騰・蒸発を停止したときにおいて温度を高くするようにした加熱器を設けるという構成であることにより,蒸発缶内での沸騰・蒸発の開始に先立って,前記蒸発缶における水溶液を,沸騰・蒸発するための加熱手段には送ることなく,前記加熱器にて,沸騰・蒸発時における温度又はこれに近い温度にまで加熱上昇することができるから,前記蒸発缶内に,水溶液の泡立ちが発生することを確実に抑制できる。   In addition, a heater is provided at the bottom of the evaporator where the aqueous solution is stored so that the temperature of the aqueous solution stored in the part is increased at least when the boiling / evaporation in the evaporator is stopped. Thus, prior to the start of boiling / evaporation in the evaporator, the aqueous solution in the evaporator is not sent to the heating means for boiling / evaporating, and the temperature at the time of boiling / evaporation is measured by the heater. Or since it can be heated up to a temperature close to this, it is possible to reliably suppress the foaming of the aqueous solution in the evaporator.

更にまた,前記蒸発缶の底部における加熱器による水溶液の加熱は,少なくとも蒸発缶内での沸騰・蒸発を停止したときにおいて行うものであるが,この加熱器による水溶液の加熱を,沸騰・蒸発を行った状態においても行うことにより,前記蒸発缶内における沸騰・蒸発をより促進できるから,蒸発能力の向上を図ることができる。   Furthermore, the heating of the aqueous solution by the heater at the bottom of the evaporator is performed at least when the boiling / evaporation in the evaporator is stopped. By performing even in the performed state, boiling / evaporation in the evaporator can be further promoted, so that the evaporation ability can be improved.

この場合,前記蒸発缶の底部における加熱器を,請求項2に記載したように,間接熱交換型の加熱器にすることにより,前記水溶液の加熱を,加熱源としての蒸気の吹き込みによって直接に行う場合に比べて,水溶液における濃度を薄くするように変化することがない利点を有する。   In this case, the heater at the bottom of the evaporator is an indirect heat exchange type heater as described in claim 2, so that the aqueous solution can be heated directly by blowing steam as a heating source. Compared to the case where it is performed, there is an advantage that the concentration in the aqueous solution does not change so as to decrease.

特に,請求項3に記載した構成によると,前記加熱器にて加熱している水溶液を,前記蒸発缶の底部より蒸発用加熱手段を経ることなく前記蒸発缶に直接戻すという循環に切り換えて攪拌することができて,その各所均一に加熱できるとともに,その加熱を大幅に促進できるから,その結晶化又は凝固化を,泡立ちの発生を抑制した状態のもとで,より確実に防止することができるとともに,前記沸騰・蒸発の開始に際して,水溶液を沸騰・蒸発の温度にまで高くすることに要する時間を,更に短縮できる利点がある。   In particular, according to the configuration described in claim 3, the aqueous solution heated by the heater is switched to a circulation in which the aqueous solution is directly returned to the evaporator from the bottom of the evaporator without passing through the heating means for evaporation. Because it can be heated uniformly in each place and the heating can be greatly accelerated, the crystallization or solidification can be more reliably prevented under the condition that the occurrence of foaming is suppressed. In addition, there is an advantage that the time required for raising the aqueous solution to the boiling / evaporation temperature at the start of the boiling / evaporation can be further shortened.

また,請求項4に記載した構成によると,蒸発缶内での沸騰・蒸発の停止及び開始を,受け槽に溜める水溶液の量に応じて自動化することができる利点がある。   Moreover, according to the structure described in Claim 4, there exists an advantage which can stop and start the boiling and evaporation in an evaporator according to the quantity of the aqueous solution stored in a receiving tank.

以下,本発明の実施の形態を図面について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は,第1の実施の形態を示す。   FIG. 1 shows a first embodiment.

この第1の実施の形態は,0.116wt%濃度の硫酸アンモニウム(硫安)水溶液を,30.0wt%の高い濃度まで濃縮するようにした蒸発装置を示している。   This first embodiment shows an evaporation apparatus in which an ammonium sulfate (ammonium sulfate) aqueous solution having a concentration of 0.116 wt% is concentrated to a high concentration of 30.0 wt%.

この図1において,符号1は,密閉した蒸発缶を示し,この蒸発缶1内における上部には,水平方向に延びる伝熱管2aの複数本を束ねて成る蒸発用の加熱手段2が設けられている一方,前記蒸発缶1内における底部には,水溶液供給管路3より前記蒸発缶1内に供給される水溶液を,適宜量だけ溜めるようにした溜まり部4が設けられている。   In FIG. 1, reference numeral 1 denotes a hermetically sealed evaporator, and at the upper part in the evaporator 1 is provided a heating means 2 for evaporation formed by bundling a plurality of heat transfer tubes 2a extending in the horizontal direction. On the other hand, a reservoir 4 is provided at the bottom of the evaporator 1 so as to store an appropriate amount of the aqueous solution supplied into the evaporator 1 from the aqueous solution supply line 3.

前記溜まり部4内における水溶液を,循環ポンプ5にて汲み出し,循環管路6を介して前記蒸発缶1内の頂部に設けたノズル7に供給して,このノズル7から前記蒸発用加熱手段2における各伝熱管2aの外表面に散布したのち,前記蒸発缶1の底部における溜まり部4に戻るという循環を行うように構成している。   The aqueous solution in the reservoir 4 is pumped out by a circulation pump 5 and supplied to a nozzle 7 provided at the top of the evaporator 1 through a circulation pipe 6, and the evaporation heating means 2 is supplied from the nozzle 7. After being sprayed on the outer surface of each heat transfer tube 2a in the above, the circulation is performed so as to return to the reservoir 4 at the bottom of the evaporator 1.

前記蒸発缶1内において発生した水蒸気を,一旦,密閉構造のミスト分離タンク9内に導入したのち,ボイラー等からの制御弁8a付き蒸気供給管路8より供給されて来る高圧蒸気にて駆動される蒸気エゼクター10にて吸引して圧縮し,この蒸気エゼクター10にて圧縮された蒸気を,前記蒸発用加熱手段2における各伝熱管2a内に,加熱源として導入することにより,この各伝熱管2aの外表面における水溶液を加熱して沸騰・蒸発するように構成している。   The steam generated in the evaporator 1 is once introduced into a sealed mist separation tank 9, and then driven by high-pressure steam supplied from a steam supply line 8 with a control valve 8a from a boiler or the like. Each of the heat transfer tubes is sucked and compressed by the steam ejector 10 and the steam compressed by the steam ejector 10 is introduced into each heat transfer tube 2a of the heating means 2 for evaporation as a heating source. The aqueous solution on the outer surface of 2a is heated to boil and evaporate.

前記蒸発用加熱手段2の各伝熱管2a内における一部の水蒸気は,不凝縮性ガスと一緒に,水冷式又は空冷式の凝縮器11に送られて,ここで凝縮して,その底部における凝縮水溜め室12に,前記蒸発用加熱手段2の各伝熱管2a内における凝縮水と一緒に溜められのち,ポンプ13にて排出される一方,前記凝縮器11には,不凝縮性ガスの抽出にて前記蒸発缶1内を大気圧より低い減圧に保持するための真空ポンプ14等の真空発生源が接続されている。   A part of the water vapor in each heat transfer tube 2a of the evaporating heating means 2 is sent to the water-cooled or air-cooled condenser 11 together with the non-condensable gas, where it is condensed and at the bottom thereof. In the condensate water storage chamber 12, the condensate water in the heat transfer tubes 2 a of the evaporating heating means 2 is stored together and then discharged by the pump 13, while the condenser 11 contains noncondensable gas. A vacuum generating source such as a vacuum pump 14 is connected to keep the inside of the evaporator 1 at a pressure lower than atmospheric pressure by extraction.

そして,前記蒸発缶1の底部における溜まり部4には,当該溜まり部4内における水溶液を加熱するための間接熱交換式の加熱器15が設けられ,この加熱器15に,前記蒸気供給管路8における高圧蒸気を加熱源として制御弁16a付き蒸気管路16を介して供給することにより,前記溜まり部4内における水溶液を間接加熱するという構成にしている。   The reservoir 4 at the bottom of the evaporator 1 is provided with an indirect heat exchange type heater 15 for heating the aqueous solution in the reservoir 4, and the steam supply pipe is connected to the heater 15. The high-pressure steam in 8 is supplied as a heating source through the steam line 16 with the control valve 16a, whereby the aqueous solution in the reservoir 4 is indirectly heated.

この構成において,前記蒸発缶1の上部におけるノズル7から散布された水溶液は,その流下の途中に,蒸発用加熱手段2における各伝熱管2aの外表面に接触することにより加熱されて沸騰・蒸発して,濃度が高くなって底部における溜まり部4に集まり,この溜まり部4から前記蒸発缶1の上部におけるノズル7から散布されるという循環を行う一方,前記蒸発缶1内での沸騰・蒸発にて発生した水蒸気は,ミスト分離タンク9内において水溶液ミストが分離されたのち蒸気エゼクター9にて吸引・圧縮され,前記蒸発用加熱手段2における各伝熱管2a内に,当該各伝熱管2aの外表面における水溶液の加熱源として導入され,更に,この各伝熱管2a内から凝縮器10に導かれて,ここで凝縮される。   In this configuration, the aqueous solution sprayed from the nozzle 7 in the upper part of the evaporator 1 is heated and brought to the boil / evaporation while in contact with the outer surface of each heat transfer tube 2a in the heating means 2 for evaporation in the middle of its flow. Then, the concentration increases and collects in the reservoir 4 at the bottom, and is sprayed from the nozzle 7 at the upper portion of the evaporator 1 from the reservoir 4 while being boiled / evaporated in the evaporator 1. After the aqueous mist is separated in the mist separation tank 9, the water vapor generated in is sucked and compressed by the steam ejector 9, and in each heat transfer tube 2a in the heating means 2 for evaporation, the heat transfer tubes 2a It is introduced as a heat source for the aqueous solution on the outer surface, and is further led from each heat transfer tube 2a to the condenser 10 where it is condensed.

なお,前記ミスト分離タンク9内において蒸気が分離した水溶液は,U字管17を介して前記蒸発缶1内に戻される。   The aqueous solution from which the vapor is separated in the mist separation tank 9 is returned to the evaporator 1 via the U-shaped tube 17.

そして,前記した蒸発缶1内での沸騰・蒸発を,前記蒸発缶1内への水溶液供給管路3からの水溶液の供給を止めること,前記蒸気エゼクター9への蒸気供給管路8からの高圧蒸気の供給を制御弁8aの閉にて止めること及び前記循環ポンプ5による水溶液の循環を止めること等にて停止すると,前記蒸発缶1の底部における溜まり部4には,沸騰・蒸発によって濃度が高くなった水溶液が溜まることになるが,この濃度の高い水溶液を,前記溜まり部4に設けた加熱器15にて加熱することにより,この高い濃度の水溶液を,前記沸騰・蒸発時における温度又はこれに近い温度に維持することができるから,前記蒸発缶1の底部において,高い濃度の水溶液が,硫酸アンモニウム(硫安)の結晶が析出するように結晶化することを確実に防止できるとともに,前記蒸発缶1内での沸騰・蒸発の開始に際して,水溶液を,前記沸騰・蒸発の温度にまでに加熱上昇することに要する時間を大幅に短縮できる。   Then, the boiling / evaporation in the evaporator 1 is stopped, the supply of the aqueous solution from the aqueous solution supply line 3 into the evaporator 1 is stopped, and the high pressure from the vapor supply line 8 to the vapor ejector 9 is stopped. When the supply of steam is stopped by closing the control valve 8a and stopping the circulation of the aqueous solution by the circulation pump 5, the concentration in the reservoir 4 at the bottom of the evaporator 1 is increased by boiling and evaporation. The aqueous solution having a high concentration accumulates. By heating the aqueous solution having a high concentration by the heater 15 provided in the reservoir portion 4, the aqueous solution having the high concentration is heated to the temperature at the time of boiling or evaporation, or Since it can be maintained at a temperature close to this, at the bottom of the evaporator 1, it is possible to reliably prevent the aqueous solution having a high concentration from crystallizing so that ammonium sulfate crystals are precipitated. Can together, at the start of boiling and evaporation in the evaporator within 1, aqueous solution, can greatly reduce the time required for heating increased to a temperature of the boiling and evaporation.

また,前記蒸発缶1の底部における水溶液を,これを前記蒸発用加熱手段2に供給することなく,加熱器15の間接加熱によって,その沸騰・蒸発の温度にまで加熱上昇することができるから,蒸発缶1内に水溶液の泡立ちが発生することを抑制できる。   Further, the aqueous solution at the bottom of the evaporator 1 can be heated up to the boiling / evaporation temperature by indirect heating of the heater 15 without supplying it to the heating means 2 for evaporation. Generation | occurrence | production of foaming of aqueous solution in the evaporator 1 can be suppressed.

ところで,前記加熱器15による加熱は,少なくとも,前記蒸発缶1内での沸騰・蒸発を停止したときにおいて行うように構成すれば良いが,この加熱器15による加熱を,前記した沸騰・蒸発中においても行うように構成することにより,蒸発能力を向上することができる。   Incidentally, the heating by the heater 15 may be performed at least when the boiling / evaporation in the evaporator 1 is stopped, but the heating by the heater 15 is performed during the boiling / evaporation described above. By configuring so as to also perform the above, the evaporation capacity can be improved.

次に,図2は,第2の実施の形態を示す。   Next, FIG. 2 shows a second embodiment.

この第2の実施の形態は,前記したTMAH廃水を10倍濃縮する場合において,前記蒸発缶1の底部における溜まり部4における水溶液を加熱することに,前記第1の実施の形態のように間接熱交換式の加熱器15を使用することに代えて,直接加熱式の加熱器を使用した場合である。   In the second embodiment, when the TMAH waste water is concentrated 10 times, the aqueous solution in the reservoir 4 at the bottom of the evaporator 1 is heated as in the first embodiment. This is a case where a direct heating type heater is used instead of using the heat exchange type heater 15.

すなわち,前記溜まり部4内に,直接加熱用の蒸気噴射ノズル15′を設けて,この蒸気噴射ノズル15′から前記蒸気供給管路8における高圧蒸気を噴出することによって,前記溜まり部4内における水溶液を直接に加熱するように構成したものであり,その他の構成は,前記第1の実施の形態は同様である。   That is, a steam injection nozzle 15 ′ for direct heating is provided in the pool portion 4, and high pressure steam in the steam supply pipe 8 is ejected from the steam spray nozzle 15 ′, so that the interior of the pool portion 4 is obtained. The aqueous solution is configured to be directly heated, and the other configurations are the same as those in the first embodiment.

前記溜まり部4内における水溶液を,第1の実施の形態のように,間接的に加熱する場合には,水溶液における濃度の変化はない利点を有する。これに対して,前記溜まり部4内における水溶液を,第2の実施の形態のように,直接的に加熱する場合には,水溶液における濃度が変化するものの,前者のように間接的に熱交換を行う伝熱面にスケールの付着等が発生することがない利点がある。   When the aqueous solution in the reservoir 4 is indirectly heated as in the first embodiment, there is an advantage that the concentration of the aqueous solution does not change. On the other hand, when the aqueous solution in the reservoir 4 is directly heated as in the second embodiment, the concentration in the aqueous solution changes, but indirectly the heat exchange as in the former. There is an advantage that no scale adheres to the heat transfer surface.

ところで,前記したTMAH廃水は,TMAHを約1.4wt%と,顔料及びレジスト等を約0.9wt%とを含み残りが水であるという廃水であり,濃縮前の約20℃の温度においては,暗緑色で,回転粘度計で測定した粘度が1.80cpであり,且つ,ガラス面への付着が認められなかった。   By the way, the above-mentioned TMAH waste water is a waste water containing about 1.4 wt% of TMAH and about 0.9 wt% of pigment and resist, and the rest is water, and at a temperature of about 20 ° C. before concentration. It was dark green, the viscosity measured with a rotational viscometer was 1.80 cp, and no adhesion to the glass surface was observed.

しかし,これを10倍濃縮した廃水は,静止した状態で暗緑色と濃褐色との二層に分離し,約60℃において回転粘度計で測定した粘度が0.80cpであり,且つ,ガラス面への付着が認められた。   However, the wastewater obtained by concentrating this 10 times is separated into two layers of dark green and dark brown in a stationary state, the viscosity measured by a rotational viscometer at about 60 ° C. is 0.80 cp, and the glass surface. Adhesion to was observed.

つまり,TMAH廃水を10倍濃縮する場合,前記蒸発缶1の底部の溜まり部4内における水溶液を,その温度を約60℃にすることにより,その粘度を,蒸発運転を阻害することが状態に大幅に低くすることができるのであり,しかも,前記蒸気噴射ノズル15′から高圧蒸気を噴出するという直接加熱であることにより,伝熱面を備えていないから,スケール付着の発生を確実に回避することができる。   That is, when the TMAH wastewater is concentrated 10 times, the temperature of the aqueous solution in the reservoir 4 at the bottom of the evaporator 1 is set to about 60 ° C., so that the viscosity is hindered from evaporating operation. In addition, since direct heating is performed by ejecting high-pressure steam from the steam injection nozzle 15 ', no heat transfer surface is provided, and therefore, scale adhesion can be reliably avoided. be able to.

次に,前記蒸発缶1の底部の溜まり部4内における水溶液を1200kgとして,その温度を20℃から65℃に上昇するには,その比熱を1とすれば,1200×(65−20)×1=54000kcalの熱量が必要である。一方,前記蒸発缶1における加熱手段2及び溜まり部4等を備えた総重量を10000kg,その構成材料の比熱を0.1とすると,その温度を20℃から65℃に上昇するには,10000×(65−20)×0.1=45000kcalの熱量が必要である。   Next, in order to increase the temperature from 20 ° C. to 65 ° C. by setting the aqueous solution in the reservoir 4 at the bottom of the evaporator 1 to 1200 kg, if the specific heat is 1, 1200 × (65-20) × A heat quantity of 1 = 54000 kcal is required. On the other hand, if the total weight of the evaporator 1 including the heating means 2 and the reservoir 4 is 10000 kg, and the specific heat of the constituent material is 0.1, to raise the temperature from 20 ° C. to 65 ° C., 10000 X (65-20) * 0.1 = 45000 kcal of heat is required.

そして,前記した温度上昇を,専ら,前記蒸気噴射ノズル15′から高圧蒸気を噴出することで行うには,前記高圧蒸気における潜熱を560kcal/kgとすれば,前記高圧蒸気の使用量は,(54000+45000)÷560=177kgとなる。つまり,高圧蒸気の177kgを前記蒸気噴射ノズル15′から噴出することにより,所定の蒸発運転に入ることができる。   In order to perform the above-described temperature rise exclusively by ejecting high-pressure steam from the steam injection nozzle 15 ', if the latent heat in the high-pressure steam is 560 kcal / kg, the amount of use of the high-pressure steam is ( 54000 + 45000) ÷ 560 = 177 kg. That is, a predetermined evaporation operation can be started by ejecting 177 kg of high-pressure steam from the steam injection nozzle 15 '.

次に,図2は,第3の実施の形態を示す。   Next, FIG. 2 shows a third embodiment.

この第3の実施の形態は,前記第1又は第2の実施の形態の構成に加えて,前記蒸発缶1への水溶液供給管路3の途中に,水面計18aを備えた受け槽18を設け,この受け槽18内における水面が高くて溜まっている水溶液の量が所定値よりも多い場合には,コントローラ19にて,前記水溶液供給管路3中の弁3aを自動的に開いて蒸発缶1への水溶液の供給を開始して,前記循環ポンプ5を自動的に始動して所定の循環を行うようにするとともに,前記蒸気供給管路8中の制御弁8aを自動的に開いて蒸気エゼクター10への高圧蒸気の供給を開始することによって,前記した水溶液の沸騰・蒸発の運転を行う。   In the third embodiment, in addition to the configuration of the first or second embodiment, a receiving tank 18 having a water level gauge 18 a is provided in the middle of the aqueous solution supply pipe 3 to the evaporator 1. When the amount of the aqueous solution accumulated in the receiving tank 18 is higher than a predetermined value, the controller 19 automatically opens the valve 3a in the aqueous solution supply line 3 to evaporate. The supply of the aqueous solution to the can 1 is started, the circulation pump 5 is automatically started to perform a predetermined circulation, and the control valve 8a in the steam supply line 8 is automatically opened. By starting the supply of high-pressure steam to the steam ejector 10, the above-described operation of boiling / evaporating the aqueous solution is performed.

この蒸発運転の進行により,前記受け槽18内における水面が低くなり,溜まっている水溶液の量が所定値よりも少なくなると,前記コントローラ19にて,前記水溶液供給管路3中の弁3a及び前記蒸気供給管路8中の制御弁8aを自動的に閉じて,前記水溶液の沸騰・蒸発を停止することに加えて,更に,前記循環ポンプ5を駆動した状態のもとで,循環管路6中の弁6aを自動的に閉じる一方,前記循環管路6と前記蒸発缶1とを直接接続するバイパス循環管路20中の弁20aを自動的に開くことにより,前記蒸発缶1の底部の溜まり部4内における水溶液を,前記加熱手段2を経て蒸発缶1内に戻す循環から,前記加熱手段2を経ることなく前記蒸発缶1内に直接戻すような循環に自動的に切り換えるように構成し,更に,前記加熱器15又は加熱用の蒸気噴射ノズル15′への蒸気管路16における制御弁16aを開いて,前記蒸発缶1の底部の溜まり部4における水溶液を加熱するようにしたものである。   When the water level in the receiving tank 18 is lowered due to the progress of the evaporation operation and the amount of the accumulated aqueous solution is less than a predetermined value, the controller 19 causes the valve 3a in the aqueous solution supply line 3 and the In addition to automatically closing the control valve 8a in the steam supply line 8 to stop the boiling / evaporation of the aqueous solution, the circulation line 6 is further operated under the state where the circulation pump 5 is driven. The valve 6a is automatically closed while the valve 20a in the bypass circulation line 20 that directly connects the circulation line 6 and the evaporator 1 is automatically opened. A configuration in which the aqueous solution in the reservoir 4 is automatically switched from circulation returning to the evaporator 1 via the heating means 2 to circulation returning directly to the evaporator 1 without passing through the heating means 2. In addition, Vessel 15 or by opening the control valve 16a in the steam line 16 to the steam injection nozzle 15 'for heating, in which so as to heat the aqueous solution at reservoir 4 at the bottom of the evaporator 1.

なお,前記蒸気管路16における制御弁16aは,運転時及び運転停止の両方において開いた状態にしても良い。   Note that the control valve 16a in the steam line 16 may be opened during both operation and stoppage.

この第3の実施の形態においては,前記蒸発缶1内での水溶液の沸騰・蒸発を,沸騰・蒸発の停止及び開始を,受け槽18に溜める水溶液の量に応じて自動化することができるのであり,しかも,前記蒸発缶1内での沸騰・蒸発を停止したとき,前記加熱器15又は加熱用蒸気噴射ノズル15′にて加熱している水溶液を,前記蒸発缶1の底部より前記熱交換器2を経ることなく前記蒸発缶1内に直接戻すという循環にて攪拌することができることができるから,その凝固を,泡立ちを抑制した状態のもとで,より確実に防止することができる。   In the third embodiment, the boiling / evaporation of the aqueous solution in the evaporator 1 can be automated according to the amount of the aqueous solution stored in the receiving tank 18 because the boiling / evaporation can be stopped and started. In addition, when boiling / evaporation in the evaporator 1 is stopped, the aqueous solution heated by the heater 15 or the heating steam injection nozzle 15 ′ is exchanged from the bottom of the evaporator 1 through the heat exchange. Since the agitation can be carried out by circulation of returning directly to the evaporator 1 without passing through the vessel 2, the solidification can be more reliably prevented under the state where foaming is suppressed.

なお,前記した各実施の形態は,濃縮する水溶液として,硫酸アンモニウム(硫安)水溶液等のように,温度が下がると結晶が析出する結晶性の水溶液の場合であったが,本発明は,このような結晶性の水溶液に限らず,温度が下がると凝固する性質を有する水溶液の場合にも同様に適用できることはいうまでもない。   In each of the above embodiments, the aqueous solution to be concentrated is a crystalline aqueous solution in which crystals are precipitated when the temperature is lowered, such as an ammonium sulfate (ammonium sulfate) aqueous solution. However, the present invention is not limited to this. Needless to say, the present invention can be similarly applied to an aqueous solution having a property of solidifying when the temperature is lowered.

本発明における第1の実施の形態を示す図である。It is a figure which shows 1st Embodiment in this invention. 本発明における第2の実施の形態を示す図である。It is a figure which shows 2nd Embodiment in this invention. 本発明における第3の実施の形態を示す図である。It is a figure which shows the 3rd Embodiment in this invention.

符号の説明Explanation of symbols

1 蒸発缶
2 蒸発用加熱手段
2a 蒸発用加熱手段における伝熱管
3 水溶液供給管路
4 水溶液が溜まる部分
5 循環ポンプ
6 循環管路
7 ノズル
8 蒸気供給管路
10 蒸気エゼクター
11 凝縮器
15 間接熱交換式加熱器
15′ 加熱用蒸気噴出ノズル
18 受け槽
18a 水面計
DESCRIPTION OF SYMBOLS 1 Evaporator 2 Evaporating heating means 2a Heat transfer tube in evaporating heating means 3 Aqueous solution supply line 4 Portion where aqueous solution accumulates 5 Circulating pump 6 Circulating line 7 Nozzle 8 Steam supply line 10 Steam ejector 11 Condenser 15 Indirect heat exchange Type heater 15 'Steam jet nozzle for heating 18 Receiving tank 18a Water level gauge

Claims (4)

温度が下がると結晶が析出するか又は凝固する性質を有する水溶液を加熱する蒸発用加熱手段と,この蒸発用加熱手段で加熱した水溶液を内部において沸騰・蒸発する蒸発缶と,この蒸発缶で発生した水蒸気を凝縮する凝縮器とを備え,更に,前記蒸発缶の底部に溜まる蒸発後の水溶液を前記蒸発用加熱手段を経て前記蒸発缶内に戻すように循環する循環管路を備えて成る蒸発濃縮装置において,
前記蒸発缶の底部において水溶液が溜まる部分に,当該部分に溜まる水溶液を,少なくとも前記蒸発缶内での沸騰・蒸発を停止したときにおいて温度を高くするようにした加熱器を設けて成ることを特徴とする水溶液の蒸発濃縮装置。
Evaporation heating means for heating an aqueous solution that has the property of causing crystals to precipitate or solidify when the temperature falls, an evaporator that boils and evaporates the aqueous solution heated by this evaporation heating means, and generated in this evaporator An evaporator comprising a condenser for condensing the water vapor, and a circulation line for circulating the aqueous solution accumulated at the bottom of the evaporator to return it to the evaporator through the heating means for evaporation. In the concentrator,
A portion of the bottom of the evaporator where the aqueous solution is stored is provided with a heater that raises the temperature of the aqueous solution stored in the portion at least when boiling / evaporation in the evaporator is stopped. An evaporative concentration apparatus for an aqueous solution.
前記請求項1の記載において,前記加熱器が,間接熱交換型の加熱器であることを特徴とする水溶液の蒸発濃縮装置。   2. The aqueous solution evaporative concentration apparatus according to claim 1, wherein the heater is an indirect heat exchange type heater. 前記請求項1又は2の記載において,前記循環管路による水溶液の循環を,前記蒸発缶内での沸騰・蒸発を停止したとき,前記蒸発缶の底部において水溶液が溜まる部分より前記蒸発用加熱手段を経て前記蒸発缶内に戻すという循環から前記蒸発缶の底部において水溶液が溜まる部分より前記蒸発用加熱手段を経ることなく前記蒸発缶内に直接戻すという循環に切り換えるように構成したことを特徴とする水溶液の蒸発濃縮装置。   3. The evaporating heating means according to claim 1, wherein when the aqueous solution is circulated through the circulation line, when the boiling / evaporation is stopped in the evaporator, the aqueous solution accumulates at a bottom of the evaporator. It is configured to switch from the circulation of returning to the evaporator through the evaporator to the circulation of returning directly to the evaporator without passing through the heating means for evaporation from the portion where the aqueous solution accumulates at the bottom of the evaporator. Evaporative concentration device for aqueous solution. 前記請求項1〜3のいずれかの記載において,前記蒸発缶内での沸騰・蒸発を,蒸発濃縮装置への水溶液供給管路中に設けた受け槽内における水面に関連して,当該水面が低くなると停止するように構成したことを特徴とする水溶液の蒸発濃縮装置。   In any one of the said Claims 1-3, the said water surface is related with the water surface in the receiving tank provided in the aqueous solution supply pipe line to the evaporation concentrator, and the said water surface is boiling and evaporation in the said evaporator. An apparatus for evaporating and concentrating an aqueous solution, which is configured to stop when it is lowered.
JP2006107553A 2006-04-10 2006-04-10 Evaporation concentration apparatus for aqueous solution Active JP4815254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006107553A JP4815254B2 (en) 2006-04-10 2006-04-10 Evaporation concentration apparatus for aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006107553A JP4815254B2 (en) 2006-04-10 2006-04-10 Evaporation concentration apparatus for aqueous solution

Publications (2)

Publication Number Publication Date
JP2007275821A true JP2007275821A (en) 2007-10-25
JP4815254B2 JP4815254B2 (en) 2011-11-16

Family

ID=38677875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006107553A Active JP4815254B2 (en) 2006-04-10 2006-04-10 Evaporation concentration apparatus for aqueous solution

Country Status (1)

Country Link
JP (1) JP4815254B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009094896A1 (en) * 2008-01-22 2009-08-06 Qingquan Su An evaporating system and an evaporating-concentrating method
CN105129890A (en) * 2015-10-07 2015-12-09 中国轻工业长沙工程有限公司 Evaporating crystallizer
CN107076528A (en) * 2014-08-14 2017-08-18 科思创德国股份有限公司 Apparatus and method for evaporating the liquid containing potential explosive impurity
CN111265909A (en) * 2020-03-25 2020-06-12 刘向东 Multi-effect evaporation concentration crystallizer and evaporation concentration crystallization method
JP2020116511A (en) * 2019-01-23 2020-08-06 株式会社ササクラ Evaporation device and evaporation method
CN115571942A (en) * 2022-11-23 2023-01-06 山东辛化硅胶有限公司 Intelligent wastewater treatment equipment is used in production of silica gel cat litter
CN116768306A (en) * 2023-07-25 2023-09-19 无锡朗盼环境科技有限公司 Waste water evaporating crystallizer device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119401U (en) * 1984-07-10 1986-02-04 三菱重工業株式会社 Vapor recompression evaporator
JPS62136204A (en) * 1985-12-11 1987-06-19 Sasakura Eng Co Ltd Concentration method
JPH04330902A (en) * 1991-05-07 1992-11-18 Sasakura Eng Co Ltd Method for evaporating water solution containing water soluble solute having saturation solubility in water inversely proportional to temperature and equipment therefor
JP2000282273A (en) * 1999-03-30 2000-10-10 Osaka Gas Co Ltd Treatment of waste hydrochloric acid
JP2004202374A (en) * 2002-12-25 2004-07-22 Sasakura Engineering Co Ltd Method and apparatus for vaporizing/concentrating spumous liquid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119401U (en) * 1984-07-10 1986-02-04 三菱重工業株式会社 Vapor recompression evaporator
JPS62136204A (en) * 1985-12-11 1987-06-19 Sasakura Eng Co Ltd Concentration method
JPH04330902A (en) * 1991-05-07 1992-11-18 Sasakura Eng Co Ltd Method for evaporating water solution containing water soluble solute having saturation solubility in water inversely proportional to temperature and equipment therefor
JP2000282273A (en) * 1999-03-30 2000-10-10 Osaka Gas Co Ltd Treatment of waste hydrochloric acid
JP2004202374A (en) * 2002-12-25 2004-07-22 Sasakura Engineering Co Ltd Method and apparatus for vaporizing/concentrating spumous liquid

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009094896A1 (en) * 2008-01-22 2009-08-06 Qingquan Su An evaporating system and an evaporating-concentrating method
CN107076528A (en) * 2014-08-14 2017-08-18 科思创德国股份有限公司 Apparatus and method for evaporating the liquid containing potential explosive impurity
JP2017530857A (en) * 2014-08-14 2017-10-19 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Apparatus and method for evaporating liquids containing potentially explosive impurities
US10859317B2 (en) 2014-08-14 2020-12-08 Covestro Deutschland Ag Apparatus and method for evaporating liquids containing potentially explosive impurities
CN105129890A (en) * 2015-10-07 2015-12-09 中国轻工业长沙工程有限公司 Evaporating crystallizer
JP2020116511A (en) * 2019-01-23 2020-08-06 株式会社ササクラ Evaporation device and evaporation method
JP7050255B2 (en) 2019-01-23 2022-04-08 株式会社ササクラ Evaporator and evaporation method
CN111265909A (en) * 2020-03-25 2020-06-12 刘向东 Multi-effect evaporation concentration crystallizer and evaporation concentration crystallization method
CN111265909B (en) * 2020-03-25 2023-12-29 刘向东 Multiple-effect evaporation concentration crystallizer and evaporation concentration crystallization method
CN115571942A (en) * 2022-11-23 2023-01-06 山东辛化硅胶有限公司 Intelligent wastewater treatment equipment is used in production of silica gel cat litter
CN116768306A (en) * 2023-07-25 2023-09-19 无锡朗盼环境科技有限公司 Waste water evaporating crystallizer device
CN116768306B (en) * 2023-07-25 2023-12-19 无锡朗盼环境科技有限公司 Waste water evaporating crystallizer device

Also Published As

Publication number Publication date
JP4815254B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4815254B2 (en) Evaporation concentration apparatus for aqueous solution
WO2013145335A1 (en) Closed drain recovery system
JP5472393B2 (en) Closed drain recovery system
JP2011230071A (en) Crystallizer
CN108298569A (en) A kind of device and its production method producing hydronium(ion) lithia based on MVR
US6938583B2 (en) Blowdown heat recovery
CN102326025A (en) Feed water degasifier for olar thermal power station
RU2631057C1 (en) System of passive removal of heat of reactor installation
JP2008212900A (en) Device carrying out concentration, cooling, and degassing, and cogeneration system using the same
US6887345B2 (en) Process and device for evaporating liquids, for example black liquor from cellulose cooking, which contain solid and dissolved substances
US2027395A (en) Water reclaimer
JP5821411B2 (en) Steam generator
CN110755873A (en) Production process for continuous crystallization of liquid substance
JP4138473B2 (en) Method and apparatus for evaporating and concentrating foaming liquid
KR20180121800A (en) Vacuum Degreaser
CN102650486B (en) Closed water cooling system being capable of producing condensed water
JP2005270902A (en) Aqueous waste liquid treatment apparatus and washing method therefor
JP2007175564A (en) Waste liquid treatment apparatus
KR101974014B1 (en) Evaporative Desalination Apparatus, Desalination Method and System therewith
RU155932U1 (en) PASSIVE HEAT REMOVAL SYSTEM OF REACTOR INSTALLATION
JP2001300512A (en) Evaporating/concentrating device
JP4192014B2 (en) Method and apparatus for evaporating and concentrating foaming liquid
JP2000325941A (en) Device for desalting salt water
JP4683773B2 (en) Method for evaporating and concentrating effervescent liquid
JP4112772B2 (en) Desalination equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

R150 Certificate of patent or registration of utility model

Ref document number: 4815254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250