JP2007275722A - Mineral water and powder thereof - Google Patents

Mineral water and powder thereof Download PDF

Info

Publication number
JP2007275722A
JP2007275722A JP2006103308A JP2006103308A JP2007275722A JP 2007275722 A JP2007275722 A JP 2007275722A JP 2006103308 A JP2006103308 A JP 2006103308A JP 2006103308 A JP2006103308 A JP 2006103308A JP 2007275722 A JP2007275722 A JP 2007275722A
Authority
JP
Japan
Prior art keywords
water
mineral
mineral water
amino acid
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006103308A
Other languages
Japanese (ja)
Other versions
JP5090657B2 (en
Inventor
Hisashi Morita
悠 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEIO BUSSAN KK
MIURA DSW KK
Original Assignee
MEIO BUSSAN KK
MIURA DSW KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEIO BUSSAN KK, MIURA DSW KK filed Critical MEIO BUSSAN KK
Priority to JP2006103308A priority Critical patent/JP5090657B2/en
Publication of JP2007275722A publication Critical patent/JP2007275722A/en
Application granted granted Critical
Publication of JP5090657B2 publication Critical patent/JP5090657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Alcoholic Beverages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide mineral water in which minerals incorporated in mineral water can be concentrated and powdered in uniform componential conditions as they are without producing insoluble precipitates, and to provide the powder thereof. <P>SOLUTION: First, amino acid is added to mineral water at least containing magnesium or calcium, and, after concentration, drying is performed. In this case, the amino acid of ≥0.1 mol is added to 1 mol of the mineral component comprised in the mineral water. The amino acid is glycine, and the mineral water at least comprising magnesium or calcium is deep sea water. Secondary, amino acid and starch sirup or reduced starch sirup are added to mineral water at least comprising magnesium or calcium, and, after concentration, the same is dried by the well-known method such as a spray dryer, so as to be powdered. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、濃縮されたミネラル水もしくはミネラル水の粉末に関するものである。   The present invention relates to concentrated mineral water or mineral water powder.

全国的な水道水の水質悪化に伴い、ミネラルウォーターの需要が高まっている。ミネラルウォーターは、単に美味しいというだけでなく、産地によっては、人間の健康を保つのに欠かせない必須微量元素が多く含まれていることがある。   As the quality of tap water deteriorates nationwide, demand for mineral water is increasing. Mineral water is not only delicious, but it may contain many essential trace elements that are essential for maintaining human health, depending on the production area.

一方、海水、特に海洋深層水には各種のイオン成分が豊富に含まれ、原水または様々な処理が行われた海水は、食品、医薬品、化粧品、農業、水産などに幅広く利用されている。   On the other hand, seawater, particularly deep seawater, is rich in various ionic components, and raw water or seawater that has been subjected to various treatments is widely used in foods, pharmaceuticals, cosmetics, agriculture, fisheries, and the like.

ちなみに、下記表1は海洋表層水および海洋深層水の分析結果の一例を示すものである。深層水は低温である、生菌数が少ない、栄養塩類が多い、などの特徴がある。各種イオンについては表層水および深層水間で大きな差異はみられない。   Incidentally, Table 1 below shows an example of analysis results of ocean surface water and ocean deep water. Deep water is characterized by low temperature, low viable count, and high nutrients. There is no significant difference between surface water and deep water for various ions.

Figure 2007275722
Figure 2007275722

前記海洋深層水からミネラルウォーター(水)を得る方法には下記のごとく種々の提案がなされている。
特開平9−290260号公報 特開2001−87762号公報 特開2003−94055号公報
Various methods for obtaining mineral water (water) from the deep ocean water have been proposed as follows.
JP-A-9-290260 JP 2001-87762 A JP 2003-94055 A

前記特許文献1は、塩水を逆浸透膜により透過水及び濃縮海水に分離し、濃縮海水を電気透析法により濃縮海水及び脱塩水に分離し、濃縮海水の水分を蒸発させた蒸発水及び逆浸透膜の透過水を飲料水として供給する飲料水の製造方法である。   In Patent Document 1, salt water is separated into permeated water and concentrated seawater by a reverse osmosis membrane, concentrated seawater is separated into concentrated seawater and demineralized water by an electrodialysis method, and evaporated water and reverse osmosis obtained by evaporating water from the concentrated seawater. It is the manufacturing method of the drinking water which supplies the permeated water of a membrane as drinking water.

特許文献2は、海洋深層水を逆浸透法によって脱塩処理して脱塩水を生成し、脱塩水を利用して電気透析法によって海洋深層水を脱塩処理する水の製造方法である。   Patent Document 2 is a method for producing water in which deep sea water is desalted by reverse osmosis to produce desalted water, and the deep sea water is desalted by electrodialysis using the desalted water.

特許文献3は、海水を脱塩処理して、脱塩処理水と、濃縮海水と、を生成する脱塩工程と、前記工程で生成された前記濃縮海水から塩を分離して濃縮ミネラル水を生成する濃縮ミネラル水生成工程と、前記濃縮ミネラル水生成工程で生成された濃縮ミネラル水を、前記脱塩工程で生成された前記脱塩処理水で導電率を測定しながら希釈してミネラル水を生成するミネラル水生成工程とからなるミネラル組成物、その製造方法およびその使用方法である。   Patent Document 3 discloses a desalination process in which seawater is desalted to produce desalted treated water and concentrated seawater, and salt is separated from the concentrated seawater generated in the process to obtain concentrated mineral water. Dilute mineral water by measuring the conductivity of the concentrated mineral water generated in the concentrated mineral water generating step and the concentrated mineral water generated in the desalted water generated in the desalting step. It is the mineral composition which consists of the mineral water production | generation process to produce | generate, its manufacturing method, and its usage method.

このように海水を余すところなくミネラルウォーター(水)として利用することができ、海水が含有するカルシウム、マグネシウム等や窒素、リン等の栄養塩、セレン、亜鉛、マンガン、ヨウ素等の微量元素をバランスよく含有するミネラル分の豊富なミネラル水を製造することができる技術は提案されているものの、製造されたミネラルウォーター(水)はそのままの形態で流通されるものであり、運搬性等が非効率的なものであった。   In this way, seawater can be used as mineral water (water), and it balances nutrient elements such as calcium and magnesium, nitrogen and phosphorus, and trace elements such as selenium, zinc, manganese and iodine. Although technology that can produce mineral water rich in minerals that are often contained has been proposed, the produced mineral water (water) is distributed as it is, and transportability is inefficient. It was typical.

また、ミネラルウォーター(水)には人間の健康を保つのに欠かせない必須微量元素が多く含まれているといっても、1リットル中の含有量はせいぜい50〜100マイクログラム程度であり、多量の水を飲まないと効果は薄い。   In addition, even though mineral water (water) contains a lot of essential trace elements that are indispensable for maintaining human health, the content in 1 liter is at most about 50 to 100 micrograms, The effect is weak unless you drink a lot of water.

そこで、ミネラル水を濃縮し、ミネラル分の濃度を高めて用いることが検討されてきた。   Therefore, it has been studied to use mineral water by concentrating the mineral water and increasing the concentration of the mineral content.

たとえば前記特許文献3では、ミネラル水を濃縮または乾燥して得られたことを特徴とするミネラルペーストまたはミネラル粉末やミネラル水、ミネラルペーストおよび/またはミネラル粉末を、飲料、粉末飲料、加工食品、豆腐凝固剤、皮膚外用剤水、植物生育調整剤または動物生育調整剤の原料に配合することを特徴とするミネラル組成物を含有する加工品の製造方法について言及している。   For example, in Patent Document 3, mineral paste or mineral powder, mineral water, mineral paste and / or mineral powder obtained by concentrating or drying mineral water are used as beverages, powdered beverages, processed foods, tofu. Reference is made to a method for producing a processed product containing a mineral composition, characterized in that it is added to a raw material of a coagulant, a skin external preparation water, a plant growth regulator or an animal growth regulator.

特許文献3の明細書の段落番号[0033]では、「本発明において、処理された原水および透析水はともに特定の組成を持つイオン水となるため、双方とも製品として使用することができる。また、得られたイオン水はさらに濃縮、固化、乾燥などの操作を行うことにより、ミネラルペーストやミネラル粉末として利用してもよい。」とあるが、この濃縮、固化の具体的な方法は示されていない。   In paragraph [0033] of the specification of Patent Document 3, “In the present invention, both the treated raw water and dialysis water are ionic water having a specific composition, and therefore both can be used as products. The obtained ionic water may be further used as a mineral paste or mineral powder by performing operations such as concentration, solidification, and drying. ”However, a specific method of concentration and solidification is shown. Not.

透析装置を用いた通常の濃縮方法では、塩濃度の比率を変えた濃縮は可能であるが、ミネラル分を多量に損なうという問題がある。   In a normal concentration method using a dialyzer, concentration by changing the ratio of salt concentration is possible, but there is a problem that a large amount of mineral content is lost.

また、水分を蒸発させることにより濃縮すると、例えば海洋深層水などの硫酸イオンを含むミネラル水の場合、ミネラル水内に含まれているミネラル、特にMgやCaなどのアルカリ土類金属が硫酸イオンと結合して不溶性の沈殿物を生成してしまう。このように沈殿物が生じてしまうと、沈殿物は再溶解しないため、結果的にミネラル水の液中のミネラル分が減少してしまうという問題を生じる。   Further, when the water is concentrated by evaporating the water, for example, in the case of mineral water containing sulfate ions such as deep sea water, minerals contained in the mineral water, especially alkaline earth metals such as Mg and Ca, are sulfate ions. It binds to form an insoluble precipitate. When precipitates are generated in this way, the precipitates are not redissolved, resulting in a problem that the mineral content in the mineral water is reduced.

また、不溶性の沈殿物を生じると、以下のような不具合も生じる。すなわち、濃縮したミネラル水をスプレードライヤーで乾燥させて粉末にすると更に取り扱いが容易となり、運搬の利便性も増すが、濃縮したミネラル水中に沈殿物があるとスプレードライヤーが目詰まりを起こしてしまう。これを防ぐために乾燥前に沈殿物を取り除いたとしても、濃縮によってノズルもしくはアドマイザーの中で固化が起こり、管が詰まってしまうという問題があった。   In addition, when an insoluble precipitate is generated, the following problems also occur. That is, if the concentrated mineral water is dried with a spray dryer to form a powder, handling becomes easier and the convenience of transportation increases. However, if there is a precipitate in the concentrated mineral water, the spray dryer will be clogged. In order to prevent this, even if the precipitate was removed before drying, there was a problem that the tube was clogged due to concentration in the nozzle or the administrer due to concentration.

本発明の目的は前記従来例の不都合を解消し、ミネラル水内に含まれているミネラルが不溶性の沈殿物を生成してしまうことなく、そのままの均一な成分状態で濃縮および粉末化できるミネラル水およびその粉末を提供することにある。   The object of the present invention is to eliminate the inconvenience of the conventional example, and the mineral water contained in the mineral water can be concentrated and powdered in the same uniform component state without generating an insoluble precipitate. And providing the powder.

前記目的を達成するため本発明のミネラル水は、第1に、少なくともマグネシウムまたはカルシウムのいずれかを含むミネラル水に、アミノ酸を加えて濃縮したこと、第2に、ミネラル水に含まれるミネラル分1molに対し、0.1mol以上のアミノ酸を加えて濃縮させること、第3に、アミノ酸はグリシンであることを要旨とするものである。   To achieve the above object, the mineral water of the present invention is firstly concentrated by adding an amino acid to mineral water containing at least either magnesium or calcium, and secondly, 1 mol of mineral content contained in the mineral water. On the other hand, the gist is that 0.1 mol or more of amino acid is added and concentrated, and thirdly, the amino acid is glycine.

また、第4に、少なくともマグネシウムまたはカルシウムのいずれかを含むミネラル水は海洋深層水であることを要旨とするものである。   The fourth aspect is that the mineral water containing at least either magnesium or calcium is deep ocean water.

さらに、ミネラル水の粉末としては、少なくともマグネシウムまたはカルシウムのいずれかを含むミネラル水に、アミノ酸および水あめまたは還元水あめを添加し、濃縮した後で、スプレードライヤーまたは既知の方法で乾燥させて粉末化したことを要旨とするものである。   Further, as mineral water powder, amino acid and syrup or reduced syrup are added to mineral water containing at least either magnesium or calcium, concentrated, and then dried by a spray dryer or a known method to be powdered. This is the gist.

請求項1記載の本発明によれば、ミネラル水中のミネラル分である金属イオンとアミノ酸とによるキレート化合物が形成され、金属イオンはアミノ酸分子によるキレート環の間にトラップされるから、濃縮した後に乾燥してもミネラル水中の硫酸イオンによって不溶性の沈殿物を生成してしまうことがなく、そのままの均一な成分状態で濃縮することができる。   According to the first aspect of the present invention, a chelate compound is formed by a metal ion, which is a mineral component in mineral water, and an amino acid, and the metal ion is trapped between chelate rings by amino acid molecules. Even if it does not produce | generate an insoluble precipitate by the sulfate ion in mineral water, it can concentrate in the uniform component state as it is.

請求項2記載の本発明によれば、前記作用に加えて、ミネラル水に含まれるミネラル分1molに対して加えるアミノ酸を0.1mol以上とすることで、その後の濃縮により沈殿物が生じる危険性を十分に回避することができる。   According to this invention of Claim 2, in addition to the said effect | action, the danger that a deposit will be produced by subsequent concentration by making the amino acid added with respect to 1 mol of minerals contained in mineral water 0.1 mol or more. Can be avoided sufficiently.

また、アミノ酸としてはバリン、ロイシン、イソロイシン、アラニン、アルギニン、グルタミン、リジン、アスパラギン酸、グルタミン酸、プロリン、システイン、スレオニン、メチオニン、ヒスチジン、フェニルアラニン、チロシン、トリプトファン、アスパラギン、グリシン、セリンのいずれも使用可能であるが、請求項3記載の本発明によれば、その中でももっとも簡単な構造を持ち、分子量ももっとも小さいグリシンが、分子量および分子の形状の面で最も適している。   As amino acids, valine, leucine, isoleucine, alanine, arginine, glutamine, lysine, aspartic acid, glutamic acid, proline, cysteine, threonine, methionine, histidine, phenylalanine, tyrosine, tryptophan, asparagine, glycine, serine can be used. However, according to the present invention described in claim 3, glycine having the simplest structure and the smallest molecular weight is most suitable in terms of molecular weight and molecular shape.

請求項4記載の本発明によれば、乾燥濃縮するとミネラル分と硫酸イオンとによって不溶性の沈殿が生じやすいという海洋深層水の弱点を克服しつつ、生菌数が少なく栄養塩類が多いという海洋深層水の利点を生かしたミネラル水が得られる。   According to the present invention of claim 4, the deep ocean where the number of viable bacteria is small and the amount of nutrients is high, while overcoming the weakness of deep ocean water that insoluble precipitation is likely to occur due to minerals and sulfate ions when dry concentrated. Mineral water can be obtained taking advantage of water.

請求項5記載の本発明によれば、ミネラル水中のミネラル分である金属イオンとアミノ酸とによるキレート化合物が形成され、金属イオンはアミノ酸分子によるキレート環の間にトラップされるから、濃縮した後に乾燥してもミネラル水中の硫酸イオンによって不溶性の沈殿物を生成してしまうことがない。そのため、濃縮されたミネラル水をスプレードライヤーで乾燥させても、スプレードライヤーのノズルに沈殿物が詰まったり、スプレードライヤー内部でミネラル分が固化して詰まったりすることがなく、そのままの均一な成分状態の粉末が得られる。また、添加した水あめまたは還元水あめによってきれいな粉末状となる。   According to the present invention of claim 5, a chelate compound is formed by a metal ion that is a mineral content in mineral water and an amino acid, and the metal ion is trapped between chelate rings by amino acid molecules. Even so, insoluble precipitates are not generated by sulfate ions in mineral water. Therefore, even if concentrated mineral water is dried with a spray dryer, the spray dryer nozzles do not clog sediment, or the mineral content solidifies inside the spray dryer and remains in a uniform state. Is obtained. Moreover, it becomes a fine powder form by the added water candy or reduced water candy.

以上述べたように本発明のミネラル水およびその粉末によれば、ミネラル水内に含まれているミネラルが不溶性の沈殿物を生成してしまうことなく、そのままの均一な成分状態で濃縮および粉末化できる。   As described above, according to the mineral water and the powder thereof of the present invention, the mineral contained in the mineral water is concentrated and powdered in a uniform component state as it is without forming an insoluble precipitate. it can.

以下、本発明の実施の形態を詳細に説明する。図1は本発明のミネラル水およびその粉末の第1実施形態を示す製造工程図、図2は同上第2実施形態を示す製造工程図で、図1は海洋深層ミネラル水を使用する場合、図2は海洋深層ミネラル塩水を使用する場合である。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a production process diagram showing a first embodiment of mineral water and powder thereof according to the present invention, FIG. 2 is a production process diagram showing a second embodiment of the same, and FIG. 1 is a diagram when deep sea mineral water is used. 2 is a case where deep sea mineral water is used.

図1に示すように、本発明は、少なくともマグネシウムまたはカルシウムのいずれかを含む(両方含む場合も多い)ミネラル水としての海洋深層ミネラル水または海洋深層ミネラル塩水にアミノ酸を加えて55℃で混合し、濃縮器で濃縮する(固形率25%)。   As shown in FIG. 1, the present invention adds an amino acid to deep sea mineral water or deep sea mineral salt water as mineral water containing at least one of magnesium and calcium (and often includes both) and mixes at 55 ° C. Concentrate with a concentrator (solid content 25%).

前記ミネラル水を海水から得る場合に、原水、海洋深層ミネラル水、海洋深層ミネラル塩水、塩水の得方を図3に示す。   When the mineral water is obtained from seawater, FIG. 3 shows how to obtain raw water, deep ocean mineral water, deep ocean mineral salt water, and salt water.

図3に示すように、海洋深層水26を取水管36を介して取水ポンプ室37の取水ポンプ37aによって汲み上げ、一次貯留タンク38に送った後、この水を被処理水として更に送水ポンプ38aによって各処理ラインへと送る。処理の仕方によって、原水21、ミネラル水208、塩水209、淡水18、ミネラル塩水19など、複数の種類の水を得ることができる。   As shown in FIG. 3, the deep ocean water 26 is pumped up by a water intake pump 37a in a water intake pump chamber 37 through a water pipe 36 and sent to a primary storage tank 38. Then, this water is further treated as water to be treated by a water supply pump 38a. Send to each processing line. A plurality of types of water such as raw water 21, mineral water 208, salt water 209, fresh water 18, and mineral salt water 19 can be obtained depending on the manner of treatment.

まず、淡水18およびミネラル塩水19を得る方法について説明すると、逆浸透膜(以下、RO膜という)を設けたRO膜分離装置13を備えてなる。   First, a method for obtaining the fresh water 18 and the mineral salt water 19 will be described. The RO membrane separation device 13 provided with a reverse osmosis membrane (hereinafter referred to as RO membrane) is provided.

RO膜分離装置13において、RO膜として、例えば酢酸セルロース膜や合成高分子膜(ポリビニール系、架橋アラミド系、架橋ポリアミド系等)等を用いることができる。また、RO膜は、中空糸型、スパイラル型等、種々のものを用いることができ、モジュール形状のものを使用するのが好都合である。   In the RO membrane separator 13, as the RO membrane, for example, a cellulose acetate membrane, a synthetic polymer membrane (polyvinyl, crosslinked aramid, crosslinked polyamide, etc.) can be used. Various RO membranes such as a hollow fiber type and a spiral type can be used, and it is convenient to use a module shape.

給水タンク39に貯めて、必要に応じて給水ポンプ39aによってそれぞれの給水スタンド28へと送り出すようにし、給水スタンド28から取り出さないときは循環させてUV殺菌装置29により定期的に殺菌するようにする。   The water is stored in the water supply tank 39 and sent to each water supply stand 28 by a water supply pump 39a as necessary. When not taken out from the water supply stand 28, it is circulated and periodically sterilized by the UV sterilizer 29. .

前記RO膜分離装置13のRO膜に供給して、水17中の塩等の溶質を膜分離により除去し、RO膜を透過してこれらの溶質が低減された水を淡水(透過水)18として得、これらの溶質がRO膜を透過しないで濃縮された水をミネラル塩水(非透過水)19として得る。   The RO membrane separation device 13 supplies the RO membrane to remove solutes such as salts in the water 17 by membrane separation, and the water that has permeated the RO membrane and reduced these solutes is fresh water (permeated water) 18. As a mineral salt water (non-permeated water) 19, water obtained by concentrating these solutes without passing through the RO membrane is obtained.

次に、ミネラル水208および塩水209を得る方法について説明する。原水を電気透析装置203にかけて生成し、希釈化されたミネラル分を多く含むものがミネラル水208であり、濃縮側のものが塩水209である。   Next, a method for obtaining the mineral water 208 and the salt water 209 will be described. The raw water produced by applying the electrodialyzer 203 and containing a large amount of the diluted mineral is the mineral water 208, and the concentrated water is the salt water 209.

前記電気透析装置203は、イオン交換膜で仕切られた部屋からなり、イオン交換膜は、陽イオンだけを選択的に透過させる陽イオン膜と、陰イオンだけを選択的に透過させる陰イオン膜とが交互に組み付けられている。本発明において、電気透析装置203を通る海水等から、ナトリウムイオンや塩素イオン等を極力脱塩し、カリウム、カルシウム、マグネシウム等の有用なミネラルは脱塩せずにできるだけ多く残るようにするのが好ましい。しかし、カリウム、カルシウム、マグネシウム等の所望の金属イオンを透過させずに残留させる陽イオン膜は存在しない。そのため、陽イオン膜として1価イオン選択性膜を使用する。これにより、海水等からナトリウム、カリウム、塩素イオン等の1価イオンが選択的に除かれ、2価以上のイオンは除去されずに原水中に存在するものがほとんど残留する。   The electrodialyzer 203 is composed of a room partitioned by an ion exchange membrane, and the ion exchange membrane includes a cation membrane that selectively transmits only cations and an anion membrane that selectively transmits only anions. Are assembled alternately. In the present invention, sodium ions and chlorine ions are desalted as much as possible from seawater passing through the electrodialyzer 203 so that useful minerals such as potassium, calcium and magnesium remain as much as possible without desalting. preferable. However, there is no cation membrane that does not allow permeation of desired metal ions such as potassium, calcium, magnesium and the like. Therefore, a monovalent ion selective membrane is used as the cation membrane. As a result, monovalent ions such as sodium, potassium, and chlorine ions are selectively removed from seawater and the like, and most of the ions existing in the raw water remain without removing divalent or higher ions.

電気透析装置203において用いるかかる1価イオン選択性膜として、例えば(株)アストム社製の品番k−192を挙げることができる。また、陰イオン交換膜(アニオン膜)としては、任意のものを使用することができるが、例えば(株)アストム社製の品番A−501を挙げることができる。   As such a monovalent ion selective membrane used in the electrodialyzer 203, for example, product number k-192 manufactured by Astom Co., Ltd. can be mentioned. Moreover, as an anion exchange membrane (anion membrane), arbitrary things can be used, For example, product number A-501 by Astom Co., Ltd. can be mentioned.

電気透析装置203は、脱塩利用率を適度に調整して脱1価イオン化水207中のミネラル分を所望の通りに調整することができる。   The electrodialysis apparatus 203 can adjust the desalination utilization rate appropriately to adjust the mineral content in the demonovalent ionized water 207 as desired.

なお、前記のような工程を得ずに、そのままの原水21を得ることもできる。このようにして得た各種類の水は、一時的に給水タンク39に貯めて、必要に応じて給水ポンプ39aによってそれぞれの給水スタンド28へと送り出すようにし、給水スタンド28から取り出さないときは循環させてUV殺菌装置29により定期的に殺菌するようにする。   In addition, the raw | natural water 21 as it is can also be obtained, without obtaining the above processes. Each type of water obtained in this way is temporarily stored in the water supply tank 39 and sent out to the respective water supply stands 28 by the water supply pump 39a as necessary, and is circulated when not taken out from the water supply stand 28. The UV sterilizer 29 is used to sterilize regularly.

これらの各種の水のうち、特にミネラルを多く含むミネラル水208とミネラル塩水19(以下、海洋深層ミネラル水20)は、図1、図2に示すようにして濃縮をかける。   Of these various types of water, mineral water 208 containing a large amount of minerals and mineral salt water 19 (hereinafter, deep sea mineral water 20) are concentrated as shown in FIGS.

図1に示すようにニーダ32に、海洋深層ミネラル水20を10,000.00(kg)に対してアミノ酸としてグリシン30を70.00(kg)の割合で添加し、前記のごとく、55℃で混合し、循環式減圧濃縮機33により約800L/Hの蒸発量で乾燥させて濃縮する。濃縮中に液温は60〜70℃迄上昇する。   As shown in FIG. 1, glycine 30 as an amino acid is added to the kneader 32 at a ratio of 70.00 (kg) as the amino acid to the deep sea mineral water 20 with respect to 10,000,000 (kg). Then, the mixture is dried with a circulating vacuum concentrator 33 at an evaporation amount of about 800 L / H and concentrated. During concentration, the liquid temperature rises to 60-70 ° C.

最終液量が少なくなり、循環式減圧濃縮機33で濃縮できなくなると、1000L減圧濃縮機34により仕上げ濃縮を行う。その後、これら乾燥機で乾燥させることにより濃縮させたものを85℃、10分間殺菌・過熱・攪拌し、60メッシュの篩いにかけ、異物を除き、濃縮ミネラル水22を得る。   When the final liquid amount becomes small and cannot be concentrated by the circulation type vacuum concentrator 33, the final concentration is performed by the 1000 L vacuum concentrator 34. After that, those concentrated by drying with these dryers are sterilized, superheated and stirred at 85 ° C. for 10 minutes, passed through a 60 mesh sieve to remove foreign matters, and concentrated mineral water 22 is obtained.

このようにして得られた濃縮ミネラル水22は、海洋深層ミネラル水20の成分をそのまま含み、なおかつ、ミネラル分の中でも特に人体に有用な成分であるMgやCaを沈殿物として損なうことなく含むものである。   The concentrated mineral water 22 thus obtained contains the components of the deep sea mineral water 20 as it is, and also contains Mg and Ca, which are particularly useful for the human body, without damaging the precipitate as a precipitate. .

グリシンはもっとも簡単な構造を持ち、分子量ももっとも小さいアミノ酸であり、好適なものであるが、アミノ酸として前記グリシンの代りに、バリン、ロイシン、イソロイシン、アラニン、アルギニン、グルタミン、リジン、アスパラギン酸、グルタミン酸、プロリン、システイン、スレオニン、メチオニン、ヒスチジン、フェニルアラニン、チロシン、トリプトファン、アスパラギン、グリシン、セリン等も使用できる。   Glycine has the simplest structure and has the smallest molecular weight, and is a preferred amino acid. However, as an amino acid, instead of glycine, valine, leucine, isoleucine, alanine, arginine, glutamine, lysine, aspartic acid, glutamic acid Proline, cysteine, threonine, methionine, histidine, phenylalanine, tyrosine, tryptophan, asparagine, glycine, serine and the like can also be used.

ミネラル塩水19の場合は、図2に示すように、ニーダ32に、ミネラル塩水19を5,000.00(kg)に対してアミノ酸としてグリシン30を100.00(kg)の割合で添加し、前記のごとく、55℃で混合し、循環式減圧濃縮機33により約800L/Hの蒸発量で乾燥させて濃縮する。濃縮中に液温は60〜70℃迄上昇する。   In the case of the mineral salt water 19, as shown in FIG. 2, the mineral salt water 19 is added as an amino acid to the kneader 32 at a ratio of 100.00 (kg) as an amino acid to the 5.000.00 (kg), As described above, the mixture is mixed at 55 ° C., dried by the circulating vacuum concentrator 33 at an evaporation amount of about 800 L / H, and concentrated. During concentration, the liquid temperature rises to 60-70 ° C.

最終液量が少なくなり、循環式減圧濃縮機33で濃縮できなくなると、1000L減圧濃縮機34により仕上げ濃縮を行う。その後、これら乾燥機で乾燥させることにより濃縮させたものを85℃、10分間殺菌・過熱・攪拌し、60メッシュの篩いにかけ、異物を除き、濃縮ミネラル塩水22′を得る。   When the final liquid amount becomes small and cannot be concentrated by the circulation type vacuum concentrator 33, the final concentration is performed by the 1000 L vacuum concentrator 34. After that, those concentrated by drying with these dryers are sterilized, heated and stirred at 85 ° C. for 10 minutes, passed through a 60-mesh sieve to remove foreign substances, and concentrated mineral brine 22 ′ is obtained.

また、さらに粉末化する場合には、前記海洋深層ミネラル水20を10,000.00(kg)に対してアミノ酸としてグリシン30を70.00(kg)の割合で添加したものに、水あめまたは還元水あめ31(還元水あめとしては商品名 PO−10が好適である)を160.00(kg)の割合で添加し、前記のごとく、55℃で混合し、循環式減圧濃縮機33および1000L減圧濃縮機34で乾燥させることにより、糖分濃度がBx=25となるまで濃縮させたものを85℃、10分間殺菌・過熱・攪拌し、60メッシュの篩いにかけ、異物をのぞいた後で、スプレードライヤー35により乾燥させ、20メッシュの篩いにかけ、マグネットパスにかける。これにより、粉末ミネラル水27を得る。   In addition, when further powdered, the above-mentioned deep sea mineral water 20 is added to 100000.00 (kg) as an amino acid with glycine 30 added at a ratio of 70.00 (kg), and then syrup or reduced. Add water candy 31 (trade name PO-10 is preferred as reduced water candy) at a rate of 160.00 (kg), mix at 55 ° C. as described above, and circulate vacuum concentrator 33 and 1000 L vacuum concentrated. What was concentrated until the sugar concentration was Bx = 25 by drying with a machine 34 was sterilized, heated and stirred at 85 ° C. for 10 minutes, passed through a 60 mesh sieve, and then removed with a spray dryer 35 Dry with a 20 mesh sieve and pass through magnet path. Thereby, powdered mineral water 27 is obtained.

または、ミネラル塩水19を5,000.00(kg)に対してアミノ酸としてグリシン30を100.00(kg)の割合で添加したものに、水あめまたは還元水あめ31(還元水あめとしては商品名 PO−10が好適である)を115.00(kg)の割合で添加し、前記のごとく、55℃で混合し、循環式減圧濃縮機33および1000L減圧濃縮機34で乾燥させることにより濃縮させたものを85℃、10分間殺菌・過熱・攪拌し、60メッシュの篩いにかけ、異物をのぞいた後で、スプレードライヤー35により乾燥させ、20メッシュの篩いにかけ、マグネットパスにかける。これにより、粉末ミネラル塩水27′を得る。   Alternatively, mineral salt water 19 is added as an amino acid to 5.000.00 (kg) and glycine 30 is added at a ratio of 100.00 (kg). 10 is preferred) at a rate of 115.00 (kg), mixed at 55 ° C. as described above, and concentrated by drying with a circulating vacuum concentrator 33 and a 1000 L vacuum concentrator 34 The mixture is sterilized, heated and stirred at 85 ° C. for 10 minutes, passed through a 60-mesh sieve, and after removing foreign matter, dried by a spray dryer 35, passed through a 20-mesh sieve, and passed through a magnet path. Thereby, powder mineral salt water 27 'is obtained.

この際、前記のとおり濃縮ミネラル水22または濃縮ミネラル塩水22′はMgやCaなどのミネラル分をそのまま含みながらミネラル分が沈殿物とはならないため、ミネラル分をそのまま含んだ粉末ミネラル水27、粉末ミネラル塩水27′を得ることができる。   At this time, as described above, the concentrated mineral water 22 or the concentrated mineral salt water 22 ′ contains the mineral content such as Mg and Ca as it is, but the mineral content does not become a precipitate. Mineral salt water 27 'can be obtained.

なお、この粉末ミネラル水27または粉末ミネラル塩水27′は水分を除去したものであるので軽く、更に固体であるため運搬が容易である。また、この粉末ミネラル水27または粉末ミネラル塩水27′は水に対しても良好に溶解する。   The powdered mineral water 27 or the powdered mineral salt water 27 'is light and free from moisture, and is solid and easy to transport. Further, the powdered mineral water 27 or the powdered mineral salt water 27 'dissolves well in water.

また、図示は省略するが、原水21も同様に、少なくともマグネシウムまたはカルシウムのいずれかを含むミネラル水に、アミノ酸および水あめまたは還元水あめを添加し、濃縮した後で、スプレードライヤーにより乾燥させたて粉末化することができる。   Moreover, although illustration is abbreviate | omitted, the raw water 21 is similarly powdered by adding an amino acid and a syrup or a reduced syrup to mineral water containing at least either magnesium or calcium, concentrating, and drying with a spray dryer. Can be

このようにして得た濃縮水または粉末は、飲料、粉末飲料、加工食品、豆腐凝固剤、皮膚外用剤水、植物生育調整剤または動物生育調整剤の原料に配合することにより利用できる。   The concentrated water or powder thus obtained can be used by blending it into a raw material for beverages, powdered beverages, processed foods, tofu coagulants, skin external preparations, plant growth regulators or animal growth regulators.

海水、特に海洋深層水には各種のイオン成分が豊富に含まれ、原水または様々な処理が行われた海水は、食品、医薬品、化粧品、農業、水産などに幅広く利用できる。また、近年ではミネラル補給による健康増進、生活習慣病予防を目的とした健康飲料が注目されており、この原料としても好適である。   Seawater, especially deep seawater, contains a variety of ionic components, and raw water or seawater that has been subjected to various treatments can be widely used in foods, pharmaceuticals, cosmetics, agriculture, fisheries, and the like. In recent years, health drinks for the purpose of health promotion by mineral supplementation and prevention of lifestyle-related diseases have attracted attention, and are also suitable as raw materials.

本発明の第1実施形態としてミネラル水およびその粉末の製造工程の説明図である。It is explanatory drawing of the manufacturing process of mineral water and its powder as 1st Embodiment of this invention. 本発明の第2実施形態としてミネラル塩水およびその粉末の製造工程の説明図である。It is explanatory drawing of the manufacturing process of mineral salt water and its powder as 2nd Embodiment of this invention. 海洋深層水から得られる各種の水の製造工程の説明図である。It is explanatory drawing of the manufacturing process of the various water obtained from deep sea water.

符号の説明Explanation of symbols

11 被処理水 12 前処理装置
13 RO膜分離装置 14 充填塔
15 キレート形成性繊維床 16 濾過水
17 水 18 淡水
19 ミネラル塩水 20 海洋深層ミネラル水
21 原水
22 濃縮ミネラル水 22′ 濃縮ミネラル塩水
26 海洋深層水
27 粉末ミネラル水 27′ 粉末ミネラル塩水
28 給水スタンド 29 UV殺菌装置
30 グリシン 31 水あめまたは還元水あめ
32 ニーダ 33 循環式減圧濃縮機
34 1000L減圧濃縮機 35 スプレードライヤー
36 取水管 37 取水ポンプ室
37a 取水ポンプ 38 一次貯留タンク
38a 送水ポンプ 39 給水タンク
39a 給水ポンプ
203 電気透析装置
207 水 208 ミネラル水
209 塩水
DESCRIPTION OF SYMBOLS 11 Water to be treated 12 Pretreatment device 13 RO membrane separation device 14 Packing tower 15 Chelate-forming fiber bed 16 Filtration water 17 Water 18 Fresh water 19 Mineral salt water 20 Deep sea mineral water 21 Raw water
22 Concentrated mineral water 22 'Concentrated mineral salt water 26 Deep sea water
27 Powder mineral water 27 ′ Powder mineral salt water 28 Water supply stand 29 UV sterilizer 30 Glycine 31 Water candy or reduced water candy 32 Kneader 33 Circulating vacuum concentrator 34 1000 L vacuum concentrator 35 Spray dryer 36 Intake pipe 37 Intake pump chamber 37a Intake pump 38 Primary storage tank 38a Water pump 39 Water tank 39a Water pump 203 Electrodialyzer 207 Water 208 Mineral water 209 Salt water

Claims (5)

少なくともマグネシウムまたはカルシウムのいずれかを含むミネラル水に、アミノ酸を加えて濃縮したことを特徴とするミネラル水。   A mineral water characterized by adding an amino acid to a mineral water containing at least either magnesium or calcium. ミネラル水に含まれるミネラル分1molに対し、0.1mol以上のアミノ酸を加えて濃縮させる請求項1記載のミネラル水。   The mineral water according to claim 1, wherein 0.1 mol or more of an amino acid is added to concentrate 1 mol of mineral contained in the mineral water. アミノ酸はグリシンである請求項1または請求項2記載のミネラル水。   The mineral water according to claim 1 or 2, wherein the amino acid is glycine. 少なくともマグネシウムまたはカルシウムのいずれかを含むミネラル水は海洋深層水である請求項1ないし請求項3のいずれかに記載のミネラル水。   The mineral water according to any one of claims 1 to 3, wherein the mineral water containing at least either magnesium or calcium is deep sea water. 少なくともマグネシウムまたはカルシウムのいずれかを含むミネラル水に、アミノ酸および水あめまたは還元水あめを添加し、濃縮した後で、スプレードライヤーまたは既知の方法で乾燥させて粉末化したことを特徴とするミネラル水の粉末。   Mineral water powder characterized by adding amino acid and syrup or reduced syrup to mineral water containing at least either magnesium or calcium, concentrating, and then drying and pulverizing with a spray dryer or a known method .
JP2006103308A 2006-04-04 2006-04-04 Mineral water powder Active JP5090657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103308A JP5090657B2 (en) 2006-04-04 2006-04-04 Mineral water powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006103308A JP5090657B2 (en) 2006-04-04 2006-04-04 Mineral water powder

Publications (2)

Publication Number Publication Date
JP2007275722A true JP2007275722A (en) 2007-10-25
JP5090657B2 JP5090657B2 (en) 2012-12-05

Family

ID=38677789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103308A Active JP5090657B2 (en) 2006-04-04 2006-04-04 Mineral water powder

Country Status (1)

Country Link
JP (1) JP5090657B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014150728A (en) * 2013-02-05 2014-08-25 Meio Bussan Kk Masking method for improving smell and bitter taste of food
KR102036125B1 (en) * 2019-05-29 2019-10-24 송성은 Low-density Small Molecule Ionized Mineral Composition and Manufacturing Method Thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246286A (en) * 1999-03-03 2000-09-12 Rengo Co Ltd Method for preventing generation of scale
JP2001300584A (en) * 2001-03-19 2001-10-30 Miura Co Ltd Scale removing agent
JP2004065196A (en) * 2002-08-09 2004-03-04 Suntory Ltd Mineral composition produced by using seawater
JP2004065016A (en) * 2002-08-01 2004-03-04 Air Water Inc Mineral-containing solution, method for producing the solution, and product using the solution
JP2004237280A (en) * 2003-01-15 2004-08-26 Toray Ind Inc Method and device for producing mineral liquid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246286A (en) * 1999-03-03 2000-09-12 Rengo Co Ltd Method for preventing generation of scale
JP2001300584A (en) * 2001-03-19 2001-10-30 Miura Co Ltd Scale removing agent
JP2004065016A (en) * 2002-08-01 2004-03-04 Air Water Inc Mineral-containing solution, method for producing the solution, and product using the solution
JP2004065196A (en) * 2002-08-09 2004-03-04 Suntory Ltd Mineral composition produced by using seawater
JP2004237280A (en) * 2003-01-15 2004-08-26 Toray Ind Inc Method and device for producing mineral liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014150728A (en) * 2013-02-05 2014-08-25 Meio Bussan Kk Masking method for improving smell and bitter taste of food
KR102036125B1 (en) * 2019-05-29 2019-10-24 송성은 Low-density Small Molecule Ionized Mineral Composition and Manufacturing Method Thereof

Also Published As

Publication number Publication date
JP5090657B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
CN102665447B (en) A process for producing water enriched with natural orthosilicic acid
KR101639848B1 (en) The manufacturing process of high hardness drinking water using NF/RO/ED membrane connection system
AU2018266639B2 (en) Water treatment of sodic, high salinity, or high sodium waters for agricultural applications
JP2006192422A (en) Method for producing water suitable for drinking by reducing boron content in water
KR101643146B1 (en) Manufacturing Apparatus for Mineral Water with Forward Osmosis Hybrid
JP2008136945A (en) Natural-mineral containing agent and production method thereof
TWI306840B (en)
JP5054784B2 (en) How to process a material stream
JP2007289953A (en) Method for producing salt water, salt, and bittern using sea water as raw material, and salt water, salt, and bittern
JP5090657B2 (en) Mineral water powder
JP2001087762A (en) Water based on sea deep water, its production and production device therefor
JP2006305411A (en) Eutrophic artificial seawater, and method for producing the same
JP5062728B2 (en) Seawater treatment method and mineral water obtained by the seawater treatment method
JP2002172392A (en) Method and apparatus for manufacturing mineral- containing solution from seawater
JP2002338242A (en) Method for manufacturing high-mineral oxide
TWI591021B (en) Mineral water and powder thereof
TWI532684B (en) Method for obtaining high calcium and magnesium mineral water from deep seawater
JPWO2002080671A1 (en) Disinfectant for water treatment, water treatment method and water treatment device
JP2006007084A (en) Mineral composition, manufacturing method therefor and usage thereof
KR20090090542A (en) Mineral water and powder thereof
JP2004082021A (en) Disinfectant for water treatments, water treatment method, and water treatment apparatus
KR20120108460A (en) (method for separation of high purity minerals from magma seawater
JP2002316151A (en) Method and apparatus for manufacturing mineral- containing water and natural salt
JP2003088863A (en) Method for producing mineral-containing liquid and equipment therefor
Vargas et al. Evaluation of the operation seawater and brackish water desalination system using two-pass nanofiltration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5090657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250