TWI532684B - Method for obtaining high calcium and magnesium mineral water from deep seawater - Google Patents
Method for obtaining high calcium and magnesium mineral water from deep seawater Download PDFInfo
- Publication number
- TWI532684B TWI532684B TW102147957A TW102147957A TWI532684B TW I532684 B TWI532684 B TW I532684B TW 102147957 A TW102147957 A TW 102147957A TW 102147957 A TW102147957 A TW 102147957A TW I532684 B TWI532684 B TW I532684B
- Authority
- TW
- Taiwan
- Prior art keywords
- mineral water
- high calcium
- deep seawater
- reverse osmosis
- calcium magnesium
- Prior art date
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
本發明是有關於一種從深層海水中取得高鈣鎂礦物水的方法,特別是指一種包含先使用逆滲透膜,再使用不同的奈米濾膜步驟的從深層海水中取得高鈣鎂礦物水的方法。 The invention relates to a method for obtaining high calcium magnesium mineral water from deep seawater, in particular to a method for obtaining high calcium magnesium mineral water from deep seawater by using a reverse osmosis membrane and then using different nanofiltration membrane steps. Methods.
近年來深層海水成為目前世界開發的主要重點,透過深層海水的處理可萃取出豐富且潔淨的礦物質及微量元素,可供現代人補足日常攝取礦物質的不足。深層海水之所以富含礦物質,主要是因為陽光不能穿透,光合作用無法發生,使得無機營養鹽未被浮游植物消耗,和表層海水比較起來深層海水有較高含量的無機營養鹽。由於含有豐富的無機營養鹽,深層海水目前廣為被應用於保健飲料、食品、醫藥產品及水產養殖。 In recent years, deep seawater has become the main focus of the world's development. Through the treatment of deep seawater, rich and clean minerals and trace elements can be extracted, which can be used by modern people to make up for the daily intake of minerals. The reason why deep seawater is rich in minerals is mainly because sunlight cannot penetrate, photosynthesis cannot occur, and inorganic nutrient salts are not consumed by phytoplankton. Compared with surface seawater, deep seawater has a higher content of inorganic nutrient salts. Due to its rich inorganic nutrients, deep seawater is widely used in health drinks, food, pharmaceutical products and aquaculture.
目前深層海水可經由蒸餾法、逆滲透法或電透析法等處理後可獲得純水、礦物質水及低鹽的海水濃縮液。該純水可做為人類一般的飲用水,而礦物質水及低鹽的海水濃縮液可做為補充人體所需之礦物質的來源。 At present, deep seawater can be treated by distillation, reverse osmosis or electrodialysis to obtain pure water, mineral water and low-salt seawater concentrate. The pure water can be used as human drinking water, and mineral water and low-salt seawater concentrate can be used as a source of minerals needed to supplement the human body.
然,該蒸餾法需設備體積龐大,且需於高溫的 環境中進行。 However, the distillation method requires a large volume of equipment and needs to be at a high temperature. In the environment.
該逆滲透法會無區別地濾過水中所有的溶質及離子,所以不適合用來選擇性濾除深層海水中的離子,且過程中會有海水滲出之現象,大幅影響脫鹽水的水質,故目前僅適用來移除鈉離子的處理。 The reverse osmosis method filters all the solute and ions in the water indiscriminately, so it is not suitable for selective filtration of ions in the deep seawater, and there is a phenomenon of seawater seepage during the process, which greatly affects the water quality of the desalted water. Suitable for the removal of sodium ions.
該電透析法需耗用大量的電能,且隨著海水變淡水所造成的電阻增加,電流強度無法提升而影響效能,再者,當海水所含的總溶解固體量較高,若以該電透析法處理海水,則每噸水耗費的電量會較該逆滲透法高,不符合經濟效益。此外,使用電透析法獲得高鈣鎂礦物水的時間冗長,且每日最大產量為4噸,處理效能不佳。 The electrodialysis method consumes a large amount of electric energy, and as the resistance caused by the fresh water of the seawater increases, the current intensity cannot be increased to affect the efficiency, and further, when the total dissolved solids contained in the seawater is high, if the electricity is high, When dialysis treatment of seawater, the electricity consumption per ton of water will be higher than the reverse osmosis method, which is not economical. In addition, the use of electrodialysis to obtain high calcium magnesium mineral water takes a long time, and the maximum daily output is 4 tons, and the treatment efficiency is not good.
再者,該逆滲透法及電透析法是透過離子膜來達到分離海水中各礦物質或淡化海水的方法,隨著長時間的使用,該離子膜會產生結垢、堵塞和劣化等的現象,且不易製造出各種不同含量配比礦物質。 Furthermore, the reverse osmosis method and the electrodialysis method are methods for separating various minerals or desalinating seawater in seawater through an ion membrane, and the ionic membrane may cause scale, clogging, and deterioration with a long period of use. And it is not easy to produce a variety of minerals with different content ratios.
因此,以目前市場需求的趨勢來看,有必要發展出一種取得含有高含量鎂離子與鈣離子的礦物質水的方法。 Therefore, in view of the current market demand trend, it is necessary to develop a method for obtaining mineral water containing high levels of magnesium ions and calcium ions.
因此,本發明之目的,即在提供一種從深層海水中取得高鈣鎂礦物水的方法。該方法可有效地從深層海水取得出高含量鈣離子與鎂離子的礦物水。 Accordingly, it is an object of the present invention to provide a method for obtaining high calcium magnesium mineral water from deep seawater. The method can effectively obtain mineral water with high content of calcium ions and magnesium ions from deep seawater.
於是本發明從深層海水中取得高鈣鎂礦物水的方法,包含以下步驟: (a)使用一逆滲透膜(reverse osmosis membrane)對一深層海水進行逆滲透處理,形成一逆滲透濃縮液以及一稀釋液;(b)使用一第一奈米濾膜(nanofiltration membrane)阻擋該逆滲透濃縮液中的硫酸根離子通過,形成一第一過濾液,以及,一殘留硫酸根離子的溶液;接著,(c)使用一第二奈米濾膜阻擋該第一過濾液中的鈣離子與鎂離子通過,形成一第二過濾液,以及,一高鈣鎂礦物水。 Thus, the method for obtaining high calcium magnesium mineral water from deep seawater comprises the following steps: (a) reverse osmosis treatment of a deep seawater using a reverse osmosis membrane to form a reverse osmosis concentrate and a diluent; (b) blocking the use of a first nanofiltration membrane The sulfate ion in the reverse osmosis concentrate passes to form a first filtrate, and a solution of residual sulfate ions; then, (c) blocks the calcium in the first filtrate using a second nanofiltration membrane The ions pass through the magnesium ions to form a second filtrate, and a high calcium magnesium mineral water.
在該步驟(a)中,該逆滲透膜的作用是對深層海水進行逆滲透處理以將深層海水中的水移除,繼而獲得高礦物質的逆滲透濃縮液。該逆滲透膜可採以往應用在深層海水中進行逆滲透處理的逆滲透膜。該逆滲透膜例如但不限於產品型號BW30-440i(廠牌:陶氏)等。 In this step (a), the reverse osmosis membrane functions to reverse osmosis the deep seawater to remove water from the deep seawater, thereby obtaining a high mineral reverse osmosis concentrate. The reverse osmosis membrane can be used as a reverse osmosis membrane which has been subjected to reverse osmosis treatment in deep seawater. The reverse osmosis membrane is, for example but not limited to, the product model BW30-440i (label: Dow) and the like.
在該步驟(a)中,較佳地,該逆滲透濃縮液中的鎂離子重量與鈣離子重量比值範圍為3至4。 In the step (a), preferably, the ratio of the weight of the magnesium ions to the weight of the calcium ions in the reverse osmosis concentrate ranges from 3 to 4.
在該步驟(a)中,該逆滲透處理所使用的設備可採以往應用在深層海水逆滲透處理的逆滲透設備。 In this step (a), the apparatus used in the reverse osmosis treatment may employ a reverse osmosis apparatus which has been conventionally applied to deep seawater reverse osmosis treatment.
在該步驟(a)中,較佳地,該逆滲透設備的進料操作壓力範圍為500psi至1,000psi。較佳地,該逆滲透設備的進料溫度範圍為6℃至7℃。較佳地,該逆滲透設備的稀釋液回收率為20%。該回收率指的是稀釋液的體積除以逆滲透濃縮液與稀釋液的體積總和。 In this step (a), preferably, the reverse osmosis apparatus has a feed operating pressure ranging from 500 psi to 1,000 psi. Preferably, the feed temperature of the reverse osmosis apparatus ranges from 6 ° C to 7 ° C. Preferably, the reverse osmosis device has a diluent recovery of 20%. The recovery refers to the volume of the diluent divided by the sum of the volume of the reverse osmosis concentrate and the diluent.
在該步驟(b)中,使用該第一奈米濾膜阻擋該逆滲透濃縮液中的硫酸根離子通過,是因為硫酸根離子會與水中的鈣離子形成難溶於水的硫酸鈣而析出,使得鈣離子含量減少,再者,當高含量的硫酸鹽存在於飲用水中除了有苦澀味外,還會導致腹瀉對人體有害,故需先從該逆滲透濃縮液中除去硫酸根離子。且同時為了能夠使鈣離子生成的鹽類能以易溶於水的氯化鈣為主以利人體吸收,故更需將硫酸根離子移除避免形成難溶於水的硫酸鈣。 In the step (b), the first nanofiltration membrane is used to block the passage of the sulfate ion in the reverse osmosis concentrate because the sulfate ion forms a water-insoluble calcium sulfate with calcium ions in the water and precipitates. In addition, when the high content of sulfate is present in drinking water, in addition to the bitter taste, it also causes diarrhea to be harmful to the human body, so it is necessary to remove the sulfate ion from the reverse osmosis concentrate. At the same time, in order to enable the salt formed by calcium ions to be mainly dissolved in water-soluble calcium chloride for absorption by the human body, it is more necessary to remove the sulfate ion to avoid formation of calcium sulfate which is poorly soluble in water.
該第一奈米濾膜只要能使鈣離子與鎂離子通過並有效防止硫酸根離子通過的皆可。該第一奈米濾膜例如但不限於NF270-4040(廠牌:Dow)、ESNA1-LF2-LD(廠牌:Nitto Denko Hydranautics),或M-N4040A9(廠牌:Applied membranes)等。 The first nanofiltration membrane can pass calcium ions and magnesium ions and can effectively prevent passage of sulfate ions. The first nanofiltration membrane is, for example but not limited to, NF270-4040 (label: Dow), ESNA1-LF2-LD (label: Nitto Denko Hydranautics), or M-N4040A9 (label: Applied membranes).
該第一過濾液指的是該逆滲透濃縮液中通過第一奈米濾膜後所形成的溶液。該殘留硫酸根離子的溶液指的是該逆滲透濃縮液中被第一奈米濾膜阻擋下來所形成的溶液。 The first filtrate refers to a solution formed by passing through the first nanofiltration membrane in the reverse osmosis concentrate. The solution of the residual sulfate ion refers to a solution formed by the first nanofiltration membrane in the reverse osmosis concentrate.
在該步驟(b)中,該阻擋硫酸根離子所使用的設備可採以往應用在深層海水中用來移除硫酸根離子的設備。 In this step (b), the apparatus used to block sulfate ions can be used in equipment used to remove sulfate ions in deep seawater.
在該步驟(b)中,較佳地,該設備的進料操作壓力範圍為50psi至250psi。較佳地,該設備的第一過濾液回收率範圍為20%至80%。該回收率指的是第一過濾液的體積除以殘留硫酸根離子的溶液與第一過濾液的體積總和。 In this step (b), preferably, the apparatus is operated at a pressure in the range of 50 psi to 250 psi. Preferably, the first filtrate recovery of the apparatus ranges from 20% to 80%. The recovery refers to the volume of the first filtrate divided by the sum of the volume of the residual sulfate ion solution and the first filtrate.
較佳地,以該第一過濾液的總量為1升計,該硫酸根離子含量範圍為45毫克至285毫克。較佳地,以該第一過濾液的總量為1升計,該鎂離子含量範圍為300毫克至500毫克,且,該鈣離子含量範圍為50毫克至300毫克。較佳地,以該第一過濾液的總量為1升計,該鈉離子含量範圍為10,000毫克至11,500毫克。 Preferably, the sulfate ion content ranges from 45 mg to 285 mg based on the total amount of the first filtrate being 1 liter. Preferably, the magnesium ion content ranges from 300 mg to 500 mg, and the calcium ion content ranges from 50 mg to 300 mg, based on the total amount of the first filtrate. Preferably, the sodium ion content ranges from 10,000 mg to 11,500 mg, based on the total amount of the first filtrate.
在該步驟(c)中,使用該第二奈米濾膜目的在於達到濃縮效果,提升鈣離子與鎂離子的含量。該步驟(c)的執行不以一次為限,可依所需的鈣離子與鎂離子的含量進行調整。 In the step (c), the second nanofiltration membrane is used for the purpose of achieving a concentration effect and increasing the content of calcium ions and magnesium ions. The execution of the step (c) is not limited to one time, and can be adjusted according to the required content of calcium ions and magnesium ions.
在該步驟(c)中,該第二奈米濾膜只要能有效防止鈣離子與鎂離子通過的皆可。該第二奈米濾膜例如但不限於TM610(廠牌:Toray)。 In the step (c), the second nanofiltration membrane can effectively prevent the passage of calcium ions and magnesium ions. The second nanofiltration membrane is for example but not limited to TM610 (label: Toray).
該第二過濾液指的是該第一過濾液中通過第二奈米濾膜後所形成的溶液。該高鈣鎂礦物水指的是該第一過濾液中被第二奈米濾膜阻擋下來所形成的溶液。 The second filtrate refers to a solution formed in the first filtrate after passing through the second nanofiltration membrane. The high calcium magnesium mineral water refers to a solution formed by the second nanofiltration membrane in the first filtrate.
在該步驟(c)中,較佳地,該設備的進料操作壓力範圍為50psi至250psi。較佳地,該設備的第二過濾液的回收率範圍為20%至80%。該回收率指的是第二過濾液的體積除以第二過濾液與高鈣鎂礦物水的體積總和。 In this step (c), preferably, the apparatus is operated at a pressure in the range of 50 psi to 250 psi. Preferably, the second filtrate of the apparatus has a recovery ranging from 20% to 80%. The recovery refers to the volume of the second filtrate divided by the sum of the volume of the second filtrate and the high calcium magnesium mineral water.
較佳地,以該高鈣鎂礦物水的總量為1升計,該鎂離子含量範圍為500毫克至2,500毫克。較佳地,以該高鈣鎂礦物水的總量為1升計,該鈣離子含量範圍為280毫克至800毫克。 Preferably, the magnesium ion content ranges from 500 mg to 2,500 mg based on the total amount of the high calcium magnesium mineral water of 1 liter. Preferably, the calcium ion content ranges from 280 mg to 800 mg, based on the total amount of the high calcium magnesium mineral water.
較佳地,從深層海水中取得高鈣鎂礦物水的方法還包括一將該稀釋液加至該高鈣鎂礦物水的步驟,形成一低鈉高鈣鎂礦物水。較佳地,以該低鈉高鈣鎂礦物水的總量為1升計,該鈉離子的含量範圍為30毫克以下。 Preferably, the method for obtaining high calcium magnesium mineral water from deep seawater further comprises the step of adding the diluent to the high calcium magnesium mineral water to form a low sodium high calcium magnesium mineral water. Preferably, the sodium ion content is in the range of 30 mg or less based on the total amount of the low sodium high calcium magnesium mineral water.
較佳地,從深層海水中取得高鈣鎂礦物水的方法還包括一將該殘留硫酸根離子的溶液加至該逆滲透濃縮液的步驟。 Preferably, the method of obtaining high calcium magnesium mineral water from the deep seawater further comprises the step of adding the residual sulfate ion solution to the reverse osmosis concentrate.
未必從深層海水中取得高鈣鎂礦物水的方法還包括一將該第二過濾液加至該第一過濾液的步驟。 The method of obtaining high calcium magnesium mineral water from the deep seawater further includes the step of adding the second filtrate to the first filtrate.
本發明之功效在於:該方法透過先使用逆滲透膜得到一具有高濃度礦物質的逆滲透濃縮液,再使用第一奈米濾膜除去硫酸根離子,避免硫酸根離子與鈣離子反應形成不溶物,使得鈣離子含量減少,以及,使用第二奈米濾膜達到濃縮效果,提升鈣離子與鎂離子的含量,而有效地從深層海水取得高含量鈣離子與鎂離子的礦物水,繼而可做為補充人體所需礦物質的來源。 The effect of the invention is that the method first obtains a reverse osmosis concentrate having a high concentration of minerals by using a reverse osmosis membrane, and then removes the sulfate ion by using the first nanofiltration membrane to prevent the sulfate ion from reacting with the calcium ion to form an insoluble solution. The content of the calcium ion is reduced, and the second nanofiltration membrane is used to achieve the concentration effect, and the calcium ion and magnesium ion content are increased, and the mineral water with high calcium ion and magnesium ion is effectively obtained from the deep seawater, and then As a source of minerals needed to supplement the body.
<<實施例1>> <<Example 1>>
提供一逆滲透設備,其中,使用逆滲透膜(廠牌:陶氏;型號:BW30-440i)對深層海水進行逆滲透處理,形成逆滲透濃縮液以及稀釋液,其中,該深層海水的 鈣離子含量為410mg/L、鎂離子含量為1,350mg/L、鈉離子含量為11,140mg/L,且,硫酸根離子含量為2,660mg/L。該逆滲透濃縮液中的鈣離子含量為511mg/L、鎂離子含量為1,780mg/L、鈉離子含量為12,353mg/L,且,硫酸根離子含量為3,111mg/L。該設備的操作條件分別為溫度6℃至7℃且進料操作壓力為600psi。 Providing a reverse osmosis device, wherein a reverse osmosis membrane (label: Dow; model: BW30-440i) is used for reverse osmosis treatment of deep seawater to form a reverse osmosis concentrate and a diluent, wherein the deep seawater The calcium ion content was 410 mg/L, the magnesium ion content was 1,350 mg/L, the sodium ion content was 11,140 mg/L, and the sulfate ion content was 2,660 mg/L. The reverse osmosis concentrate had a calcium ion content of 511 mg/L, a magnesium ion content of 1,780 mg/L, a sodium ion content of 12,353 mg/L, and a sulfate ion content of 3,111 mg/L. The equipment was operated at a temperature of 6 ° C to 7 ° C and a feed operating pressure of 600 psi.
使用一第一奈米濾膜(廠牌:Dow;型號:NF270-4040)阻擋該逆滲透濃縮液中的硫酸根離子通過,形成一第一過濾液,以及,一殘留硫酸根離子的溶液。其中,該設備的進料操作壓力為150psi。該第一過濾液的鈣離子含量為243mg/L、鎂離子含量為389mg/L、鈉離子含量為10,210mg/L、硫酸根離子含量為48mg/L,且,該第一過濾液的回收率為20%。 A first nanofiltration membrane (label: Dow; model: NF270-4040) is used to block the passage of sulfate ions in the reverse osmosis concentrate to form a first filtrate, and a solution of residual sulfate ions. Among them, the equipment has a feed operating pressure of 150 psi. The first filtrate has a calcium ion content of 243 mg/L, a magnesium ion content of 389 mg/L, a sodium ion content of 10,210 mg/L, a sulfate ion content of 48 mg/L, and a recovery rate of the first filtrate. It is 20%.
<<實施例2至3>> <<Examples 2 to 3>>
實施例2至3是以與實施例1相同的步驟來製備逆滲透濃縮液,不同的地方在於改變第一過濾液的回收率,如表1所示。 Examples 2 to 3 were the reverse osmosis concentrates prepared in the same manner as in Example 1, except that the recovery rate of the first filtrate was changed as shown in Table 1.
<<實施例1-1>> <<Example 1-1>>
使用第二奈米濾膜(廠牌:Toray;型號:TM610)阻擋該第一過濾液中的鈣離子與鎂離子通過,形成一第二過濾液,以及,第二殘留液,其中,該設備的進料操作壓力為150psi。該第二殘留液的鈣離子含量為310mg/L、鎂離子含量為540mg/L,且,鈉離子含量為10,210mg/L。 Using a second nanofiltration membrane (label: Toray; model: TM610) to block the passage of calcium ions and magnesium ions in the first filtrate to form a second filtrate, and a second residual liquid, wherein the device The feed operation pressure was 150 psi. The second residual liquid had a calcium ion content of 310 mg/L, a magnesium ion content of 540 mg/L, and a sodium ion content of 10,210 mg/L.
接著,將第二殘留液再經由第二奈米濾膜進行第二次處理,即可獲得高鈣鎂礦物水,其中,該高鈣鎂礦物水中的鈣離子含量為340mg/L、鎂離子含量為670mg/L,且,鈉離子含量為11,000mg/L。 Then, the second residual liquid is further treated by the second nanofiltration membrane to obtain high calcium magnesium mineral water, wherein the high calcium magnesium mineral water has a calcium ion content of 340 mg/L and a magnesium ion content. It was 670 mg/L and the sodium ion content was 11,000 mg/L.
接著,將實施例1的稀釋液加入至高鈣鎂礦物水中,以形成一低鈉高鈣鎂礦物水,其中,該低鈉高鈣鎂礦物水中的鈣離子含量為3.5mg/L、鎂離子含量為20mg/L,且,鈉離子含量為30mg/L。 Next, the diluent of Example 1 is added to the high calcium magnesium mineral water to form a low sodium high calcium magnesium mineral water, wherein the low sodium high calcium magnesium mineral water has a calcium ion content of 3.5 mg/L and a magnesium ion content. It is 20 mg/L and the sodium ion content is 30 mg/L.
<<實施例1-2至1-3>> <<Examples 1-2 to 1-3>>
實施例1-2至1-3是以與實施例1-1相同的步驟來製備高鈣鎂礦物水以及低鈉高鈣鎂礦物水,不同的地方在於改變高鈣鎂礦物水的回收率,如表2所示。 Examples 1-2 to 1-3 were prepared in the same manner as in Example 1-1 to prepare high calcium magnesium mineral water and low sodium high calcium magnesium mineral water, except that the recovery rate of high calcium magnesium mineral water was changed. As shown in table 2.
綜上所述,該方法透過先使用逆滲透膜得到一具有高濃度礦物質的逆滲透濃縮液,再使用第一奈米濾膜除去硫酸根離子,避免硫酸根離子與鈣離子反應形成不溶物,使得鈣離子含量減少,以及,使用第二奈米濾膜達到濃縮效果,提升鈣離子與鎂離子的含量,而有效地從深層海水取得高含量鈣離子與鎂離子的礦物水,繼而可做為補充人體所需礦物質的來源,故確實能達成本發明之目的。 In summary, the method first obtains a reverse osmosis concentrate having a high concentration of minerals by using a reverse osmosis membrane, and then removes the sulfate ion by using the first nanofiltration membrane to prevent the sulfate ion from reacting with calcium ions to form an insoluble matter. In order to reduce the calcium ion content, and to use the second nanofiltration membrane to achieve the concentration effect, increase the content of calcium ions and magnesium ions, and effectively obtain high-content calcium and magnesium ion mineral water from the deep seawater, and then can be done In order to supplement the source of the minerals required by the human body, it is indeed possible to achieve the object of the present invention.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and patent specification content of the present invention, All remain within the scope of the invention patent.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102147957A TWI532684B (en) | 2013-12-24 | 2013-12-24 | Method for obtaining high calcium and magnesium mineral water from deep seawater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102147957A TWI532684B (en) | 2013-12-24 | 2013-12-24 | Method for obtaining high calcium and magnesium mineral water from deep seawater |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201524911A TW201524911A (en) | 2015-07-01 |
TWI532684B true TWI532684B (en) | 2016-05-11 |
Family
ID=54197396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102147957A TWI532684B (en) | 2013-12-24 | 2013-12-24 | Method for obtaining high calcium and magnesium mineral water from deep seawater |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI532684B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI580646B (en) * | 2016-09-12 | 2017-05-01 | 呂傳盛 | Method of manufacturing magnesium-based water |
CN108341534A (en) * | 2017-01-23 | 2018-07-31 | 财团法人石材暨资源产业研究发展中心 | The method for preparing floating sea salt |
-
2013
- 2013-12-24 TW TW102147957A patent/TWI532684B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201524911A (en) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101639848B1 (en) | The manufacturing process of high hardness drinking water using NF/RO/ED membrane connection system | |
EA200700200A1 (en) | FOOD METHOD | |
NZ721694A (en) | A sea water harvesting process | |
JP2002292371A (en) | Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt | |
CN103408179A (en) | Production method for desalting seawater by hot film coupling | |
KR101643146B1 (en) | Manufacturing Apparatus for Mineral Water with Forward Osmosis Hybrid | |
KR20160004063A (en) | Removal system of sulfate in seawater using ion exchange resin | |
TWI532684B (en) | Method for obtaining high calcium and magnesium mineral water from deep seawater | |
KR101689059B1 (en) | Removal of anions and conversion technology of carbonate ions from seawater | |
CN103449571A (en) | Method and device for processing pit water | |
KR101641869B1 (en) | Apparatus for Separation And Concentration of Sea-water Minerals | |
CN107902800A (en) | Salt production embrane method sea brine concentration method | |
TWI428292B (en) | Preparation method of seawater concentrate and seawater mineral powder | |
TW201802040A (en) | Industrial method of preparing alkaline water with sea mineral | |
JP2002172392A (en) | Method and apparatus for manufacturing mineral- containing solution from seawater | |
CN203513329U (en) | Mine water treatment device | |
CN102815810A (en) | Desalination system and desalination method | |
KR20080108926A (en) | Preparation method of magnesium, calcium and potassium mineral water from deep ocean water | |
CN209554948U (en) | High rigidity brackish water desalination processing system | |
RU2579126C1 (en) | Method of producing deep-purified drinking water | |
JP5090657B2 (en) | Mineral water powder | |
JP2002292248A (en) | Mineral solution obtained from seawater and its manufacturing method | |
JP2006305412A (en) | Mineral water, and method for producing the same | |
KR20120108402A (en) | The system of producing mineral rich water from sea water | |
KR101881937B1 (en) | Method for purification of calcium salts |